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I.  PARTICIPANTS 
 
A. PARTICIPANT INDIVIDUALS 
Principal Investigators:  
Rudolf Jaffé; Dan Childers 
 
Co Principal Investigators:  
Joseph Boyer; Rudolf Jaffé; James Fourqurean; Joel Trexler  
 
Senior personnel:  
William Anderson; Thomas Armentano; Mahadev Bhat; Henry Briceno; Randolph Chambers; 
Alice Clarke; Laurel Collins; Timothy Collins; Carlos Coronado-Molina; Stephen Davis; Frank 
Dazzo; Paolo D'Odorico; Robert Doren; Kelsey Downum; Daniel Dustin; Vic Engel; Sergio 
Fagherazzi; Jack Fell; Carl Fitz; Jose Fuentes; Evelyn Gaiser; Jennifer Gebelein; Hugh Gladwin; 
Anne Hartley; Mike Heithaus; Gail Hollander; Krish Jayachandaran; Frank Jochem; Lynn 
Leonard; Julie Lockwood; William Loftus; Jerome Lorenz; Christopher Madden; Carole McIvor; 
Jack Meeder; Sherry Mitchell-Bruker; Greg Noe; Laura Ogden; Thomas Philippi; Rene Price; 
Mark Rains; Jennifer Rehage; Jennifer Richards; Victor Rivera-Monroy; Michael Robblee; 
Michael Ross; Rinku Roy Chowdhury; David Rudnick; Leonard Scinto; Marc Simard; Fred 
Sklar; Ned Smith; Helena Solo-Gabrielle; Leonel Sternberg; Miyoshi Toshikazu; Robert 
Twilley; George Wolff; Joseph Zieman 
 
Post-docs:  
Anna Armitage; Susan Dailey; Sharon Ewe; Nagamitsu Maie; Renato Neto; Brad Peterson; Jay 
Sah; Colin Saunders; Norm Scully; Serge Thomas; Tiffany Troxler-Gann; Youhei Yamashita 
 
Graduate students:  
Dane Barr; Jordan Barr; Jose Bazante; Robin Bennett; Dorothy Byron; Pablo Cardona-Olarte; 
Edward Castenada; Meilian Chen; Josh Cloutier; Virginia Cornett; Kevin Cunniff; Kim de 
Mutsert; Bryan Delius; Bryan Dewsbury; Kendra Dowell; Samantha Evans; Meredith Ferdie; 
Tom Frankovich; Min Gao; Patrick Gibson; Noemi Gonzalez; Charles Goss; Andy Gottlieb; 
David Green; Erin Hanan; Alison Holinka; David Iwaniec; Gary Jacobi; Vera Jones; Greg Juszli; 
Greg Koch; Ken Krauss; Michael Laas; Josette LaHee; Shawn Liston; Regina Lynch; Ernesto 
Mancera-Pineda; Ralph Mead; Elizabeth Mickler; Danielle Mir-Gonzales; Ron Mossman; Jay 
Munyon; Amy Omae; Kathy Parish; Nicole Poret; Amanda Quillen; David Reed; Matthew 
Rogers; Melissa Romigh; Craig Rose; Gustavo Rubio; Sergio Ruiz; Michelle Sanchez; Jenise 
Snyder; Kathryn Stanaway; Chris Stevenson; Adele Tallman; Travis Thyberg; Matthew Toro; 
Raul Urgelles; Theo Vlaar; Ania Wachnicka; Kevin Whelan; Wendy Wildson; Clayton 
Williams; Jade Williams; Adam Wood; Kathy Worley; Jeffrey Wozniak; Yunping Xu; 
Chengyong Yang 
 
Research Experience for Undergraduates:  
Rene Aguilera; Jennifer Arce; Jody Chong; Jennifer Foss; Jenny Jun; Kathleen Kelley; Christa 
Lopez; Kametra Matthews; Tiffany McKelvey; Daniel Muth; Robert Muxo; Jill Schrlau; Angie 
Zafiris 
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Undergraduate students:  
Carla Baez; Ashley Bubp; Michelle Calvo; Roger Lopez; Greg Losada; Kristin Pederson; 
Alberto Pisani; Oliva Pisani; Carrie Rebenack; Michael Right; Mary Shockley; Jeremy 
Wacksman; Annika Wagenhoff; Mary White 
  
Pre-college teachers:  
Jennifer Alvord; Kathy Kermes; Nicolas Oehm 
 
High school students:  
Brian Aguilar; Nia Brisbane; Sara Claro; Magaly Dacosta; Jorge Delase; Sebastian Diaz; 
Rebecca Fonseca; Juan Gallo; Ben Giraldo; Lauren Lesser; Oscar Marti; Natalie Navarro 
 
Technician, programmers: Daniel Bond; Alex Croft; Andy Davis; Amanda Dean; Joel Detty; 
Lisa Giles; Tim Grahl; Imrul Hack; Bernice Hwang; David Jones; Steve Kelly; Mark Kershaw; 
Amanda McDonald; Jennifer O'Reilly; Alaina Owens; Linda Powell; Amy Renshaw; Sarah 
Ridgway; Damon Rondeau; Mike Rugge; Pablo Ruiz; Timothy Russell; Brooke Shamblin; 
Christine Taylor; Franco Tobias; Raphael Travieso; Josh Walters 
 
 
B. PARTNER ORGANIZATIONS 

• U.S. Department of the Interior: In-kind Support; Facilities; Collaborative Research 
• South Florida Water Management District: Financial Support; In-kind Support; 

Collaborative Research 
• Department of Interior U.S. Geological Survey: In-kind Support; Collaborative Research 
• Environmental Protection Agency: Collaborative Research 
• NOAA: Financial Support 
• National Aububon Society: Collaborative Research; Personnel Exchanges 
• University of Virginia Main Campus: Collaborative Research; Personnel Exchanges 
• Fairchild Tropical Garden: Collaborative Research 
• UNC-Wilmington: Collaborative Research; Personnel Exchanges 
• University of Miami Rosenstiel School of Marine&Atmospheric Sci: Collaborative 

Research; Personnel Exchanges 
Jack Fell through a separately funded NSF grant. 

• Texas A&M University Main Campus: Collaborative Research; Personnel Exchanges 
Collaborations with Stephen Davis. 

• Harbor Branch Oceanographic Institute: Collaborative Research 
• Rutgers University New Brunswick: Collaborative Research 
• Louisiana State University & Agricultural and Mechanical College: Collaborative 

Research; Personnel Exchanges 
• University of South Florida: Collaborative Research; Personnel Exchanges 
• NASA: Collaborative Research 
• Florida State University: Collaborative Research 
• University of Liverpool: Collaborative Research 
• College of William & Mary: Collaborative Research; Personnel Exchanges 
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• University of Miami: Collaborative Research; Personnel Exchanges 
• Miami Public Schools: Collaborative Research; Personnel Exchanges 

Two of our Education and Outreach coordinators (Susan Dailey and Nick Oehm) have 
taught and given FCE LTER presentations at Miami-Dade County Public Schools.  Our 
Research Experience for Teachers (RET) and Research Experience for Secondary 
Students (RESSt) programs have included teachers and students from Miami-Dade 
County Public schools. 

• Michigan State University: Collaborative Research 
• Nova Southeastern University: Collaborative Research 
• University of Florida: Collaborative Research 
• University of North Carolina at Chapel Hill: Collaborative Research 

 
 
C. OTHER COLLABORATORS 
We have maintained important collaborative partnerships with 5 federal agencies (Everglades 
National Park, USGS, NOAA, EPA, and NASA-JPL) during the first 6 years of the FCE LTER 
Program.  We also partner with 1 state agency (South Florida Water Management District), 1 
NGO (National Audubon Society), and 14 other universities (Louisiana State University and 
College of William & Mary through subcontracts). 
 
Examples of specific collaborations include: 
 

• Rudolf Jaffé collaborated with (1) Dr. G. Wolff; The University of Liverpool, UK; (2) 
Dr. Miyoshi Toshikazu, Macromolecular Technology Research Center, Japan; (3) Dr. H. 
Knicker, Technical University Munich, Germany; (4) Dr. B.R.T. Simoneit, Oregon State 
University; (5) Dr. D. McKnight, University of Colorado; (6) Dr. J. Jones, University of 
Alaska; (7) Dr. B. Kloeppel, University of Georgia; (8) Dr. R. Benner, University of 
South Carolina; (9) Dr. W. Dodds, Kansas State University; (10) Dr. J. Ortiz, University 
of Puerto Rico; (11) S. Ziegler,University of Arkansas; (12) Dr. P. Hatcher, Old 
Dominion University. 

 
• Jim Fourqurean spent six months on sabbatical at Institut Mediterrani d'Estudis Avancat, 

Spain, discussing LTER related ideas with scientists and graduate students from Spain. 
 

• Colin Saunders collaborated with a number of researchers (Dr.  Deborah Willard, USGS, 
Reston, VA; Dr. Christopher Craft, Indiana University; Dr. Jason Lynch, North Central 
College; Dr. Brian Beckage, University of Vermont; Drs. Susan Newman and Shili Miao 
at the South Florida Water Management District) to use paleoecological data such as 
plant pollen, seeds, biomarkers, charcoal abundance and stable isotopes of carbon to 
understand and model historic changes in vegetation and environment within the 
Everglades National Park. 

 
• Sharon Ewe collaborated with Dr. Maria Sobrado (Universiti of Simon Bolivar; 

Smithsonian funded)on the 'Understanding linkages between aboveground plant water-
use and belowground water uptake patterns' study and Dr. William Overholt (University 
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of Florida)on the 'Salinity tolerance of Brazilian pepper from different habitats of South 
Florida' project. 

 
• Since 2004, we have collaborated with the SFWMD (Coastal Ecosystems Division; 

Carlos Coronado-Molina). The district is interested in the nutrient cycling and modeling 
results obtained by the FCE-LTER program in the mangrove transition zone.  These 
results will contribute to develop 'performance measures' for mangrove forests and to 
evaluate water management scenarios proposed by the Comprehensive Everglades  
Restoration Plan for the Taylor and Shark River sloughs. 

 
• Greg Noe communicated research methods and findings to SFWMD and their contractors 

to improve monitoring of STAs. 
 

• We continue to communicate with the education groups at Everglades National Park to 
share educational developments and opportunities. We have become active in the 
Everglades Education Committee, an open organization of educators in South Florida that 
meet to discuss avenues to improve South Florida Environmental education and 
awareness. 

 
 
II. ACTIVITIES AND FINDINGS 
 
A. RESEARCH AND EDUCATION ACTIVITIES 

The first phase of Florida Coastal Everglades (FCE) research (FCE I) focused on 
understanding how dissolved organic matter (DOM) from upstream oligotrophic marshes 
interacts with a marine source of phosphorus, the limiting nutrient, to control estuarine 
productivity in the estuarine ecotone.  We established 17 research sites located along freshwater 
to marine transects in the Shark River Slough (SRS), and the Taylor Slough/Panhandle (TS/Ph) 
regions of Everglades National Park.  Our research was organized into 7 working groups: 
Primary Production, Soils and Sediments, Nutrients and DOM, Trophic Dynamics and 
Community Structure, Ecological Modeling, Abiotic Factors, and Education and Outreach.  
We’ve included summaries of FCE I working group activities and information management 
activities below. 
 
1. Primary Production 

The goal of the primary production group is to measure the production of the dominant 
primary producers at the FCE sites to determine the interaction of hydrology and nutrients in 
controlling productivity along the coastal gradient represented by our two transects.  We 
expected that peaks would occur where communities are released from N or P limitation by the 
confluence of fresh and marine water.  In order to address this hypothesis, a major challenge was 
to convert productivity estimates for each major producer to common units, and combine them to 
estimate system annual net primary production (ANPP) for each site.  We accomplished this with 
our first 6 years of data and presented the findings in Ewe et al. (2006).  We found an increase in 
Cladium and mangrove productivity in the oligohaline regions of Shark River Slough and two 
production peaks in the Taylor River Slough, one in the oligohaline zone and one at the terminal 
site close to the Gulf of Mexico.  These productivity patterns conformed generally to our 
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interpretation of water quality trends (Childers et al., 2006a), with the unexpected oligohaline 
peak in the TS transect likely being driven by a supply of nutrients from the groundwater 
(Childers et al., 2006b).  This hypothesis is going to be further explored in FCE II, where we will 
focus on how the relative supply of nutrients from the surface and groundwater interact to 
control biomass allocation and production in the ecotone. 

We provide a brief synopsis here of results and activity, organized to follow the flow of 
water from the upstream freshwater marsh to the downstream marine end member for each 
transect.   

Beginning with the Shark Slough transect, primary producer biomass in the marsh is 
dominated by sawgrass (Cladium) and periphyton.  Annual production of Cladium is calculated 
from above and below-ground biomass and mortality measures and periphyton by accumulation 
on artificial substrates and O2 change in light-dark bottle BOD incubations.  Cladium produces 
about 400-700 g dw m-2 y-1 while periphyton produces 20-30 g C m-2 y-1; on average periphyton 
accounts for about 15% of above-ground production in the marsh (Ewe et al., 2006).  Biomass of 
both producers changed significantly from the site near the canal input (SRS-1) to the 
downstream marsh site (SRS-3).    Notably, we found an inverse relationship between Cladium 
productivity and several hydrologic variables, including hydroperiod, mean annual water depth, 
and depth-days (a hybrid variable that combines the two).  We also found that other plant 
species—primarily Eleocharis—increase their density as sawgrass ANPP declines (Childers et 
al. 2006). We quantified belowground biomass of and productivity by Cladium at our 2 estuarine 
ecotone sites (SRS-3 and 4), and found higher biomass but lower productivity at the SRS-4 site, 
which has direct, tidal connectivity to the marine source of P (Juszli, 2006).  Decomposition of 
the 3 dominant herbaceous species at these 2 sites (Cladium, Eleocharis, and Juncus) showed 
some interesting inter-species differences.  Cladium decomposed more quickly at the SRS-4 site, 
where P was more available, while Eleocharis decomposition was more rapid at the SRS-3 site, 
where N was more available.  Additionally, Cladium litter tended to immobilize P while 
Eleocharis litter showed net remineralization during the decomposition process (Rubio & 
Childers, 2006).   

The ratio of epiphytic to floating periphyton also decreased from the canal site to the two 
interior sites, possibly denoting a nutrient-induced loss of the calcareous floating mat, observed 
frequently in the Everglades.  Net productivity per unit biomass of the periphyton was also 
consistently low at SRS-1 compared to the two downstream sites (8, 29, 33 g C m-2 y-1, 
respectively) perhaps due to shading by the dense sawgrass culms at this site.  A significant 
negative relationship between production and phosphorus content of the mats was detected. 
Periphyton production was highest in the wet season and lowest in the dry season, while no 
significant interannual trends were detected.   

Further downstream, productivity at SRS-4, 5 and 6 is dominated by mangroves.  Annual 
litterfall rates were determined using monthly collections of litter fall material in litter baskets. 
SRS6 had the highest mean rate (3.12 ± 0.26 g m2 d-1), followed by SRS4 (2.76 ± 0.31 g m2 d-1), 
SRS5 (2.30 ± 0.21 g m2 d-1), showing a productivity peak at the marine end of the transect. Leaf 
fall comprised most of the total litterfall in all sites ranging from 69% (SRS4) to 83% (SRS5). 
Wood fall contribution to total litterfall ranged from 9% (SRS5) to 13% (SRS6), while 
reproductive parts had the smallest contribution varying from 5% (SRS5) to 9% (SRS6).  There 
was a consistent seasonal pattern of litterfall production in all sites. Higher rates were observed 
during the wet season (June-November) compared to the dry season (December-May). For 
SRS6, the mean daily rate during the dry season was 1.73 ± 0.14 g m2 d-1, while wet season rates 
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were 4.53 ± 0.33. There was significant interannual variation at SRS4, with higher rates during 
2005 compared to 2001-2004. These higher rates (up to 15.4 g m2 d-1; annual mean of 16.28 ± 
0.58 Mg ha-1 yr-1) observed during the rainy season of 2005 reflected the effect of two major 
hurricane events, Katrina (August 29, 2005) and Wilma (October 29, 2005) that strongly 
impacted the study sites in the Florida Coastal Everglades.  

Water level data recorded in the interior part of these mangrove forests during the 
passage of hurricane Wilma indicated the strong effect of these pulsing events in the mangrove 
forests. Water level values in SRS5 and SRS6 were above 1 m, while in SRS4 water levels were 
not as high (up to 50 cm). Thus, most of the litterfall was washed out of the forest in the 
downstream sites. The extremely high annual rates of litterfall observed during 2005 in SRS4 
compared to the downstream sites (SRS5 and SRS6) of Shark River is likely the result of the 
strong wind effect and the lack of the storm surge effect in the upstream site of the Shark River 
estuary.  

Overall, the estimated values for the Shark River sites and TS/Ph8 are within the range of 
values reported for other mangrove sites in the Neotropics. However, the hurricane effect 
episodically altered the productivity gradient, which has been well documented along the Shark 
River estuary (Chen and Twilley 1999). After hurricane Wilma the observed productivity 
gradient was as follows SRS6 > SRS4 > SRS5. These results corroborate the significant effect of 
pulsing events such as hurricanes in the structure and function of mangrove forests. We are 
currently analyzing nutrient concentrations (carbon, nitrogen and phosphorous) in the plan 
material to determine litterfall nutrient fluxes into soils at each site. 

Phytoplankton, measured monthly by pulse amplitude modulated (PAM) fluorometry has 
shown that biomass (dominated by diatoms, rather than cyanobacteria and green algae) decreases 
from the freshwater system to the estuary, while photosynthetic rates (highest for cyanobacteria) 
increase from the marsh to the estuary along the SRS transect. 

The Taylor Slough/Panhandle transect is bifurcated at the upstream end, containing 
freshwater marsh sites in both the Taylor Slough and C-111 wetlands.  The stations are similar in 
composition to the upstream portions of SRS, being dominated by Cladium and periphyton, but 
because they dry more frequently and for a longer duration, they are dominated marl rather than 
peat soils.  Perhaps due to this difference in soil type, Cladium plants are smaller and production 
is lower (200-500 g dw m-2) in the upstream TS/Ph marsh sites relative to the SRS marsh, while 
culm densities are significantly higher. In addition to quantifying ANPP of Cladium, we also 
quantified belowground biomass and productivity, and decomposition rates at the two southern 
Everglades ecotone sites (TS/Ph-3 and 6).  We found no significant difference in Cladium 
belowground biomass at these two sites, and belowground productivity values that were high and 
similar to those measured at the SRS-3 upper ecotone site—a result that reflects the fact that the 
southern Everglades ecotone does not receive marine P (Juszli, 2006). We also found that 
Cladium litter tended to immobilize P while Eleocharis litter showed net remineralization during 
the decomposition process (Rubio & Childers, 2006). 

In contrast to the SRS transect, periphyton in the TS/Ph transect is dominated by thick, 
highly agglutinated, sediment-associated mats, rather than floating or epiphytic aggregations.  
These mats are more productive than the SRS mats, contributing an average of 55% of total 
primary production at the research sites (Iwaniec et al., 2006).  Site TS-Ph 4 was particularly 
productive, at times exceeding 10,000 g C m-2 yr-1.  Spatial trends in production were positively 
related to total phosphorus availability.  Temporal trends in production were related to water 
flow, with production being highest immediately following pulses of water delivery. 
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In contrast to mangrove communities at the marsh-marine ecotone of Shark River slough, 
the mangrove-dominated sites in Taylor Slough have significantly shorter trees and had lower 
rates of litterfall (1.03 ± 0.1 g m2 d-1 at TsPh-8) and root production. Wood fall contributed only 
9% to total litterfall. The current estimates of fine root productivity in the Taylor region reflect 
significant phosphorus limitation, in contrast to the marine site along the SRS transect (SRS-6) 
that were very highly productive, supporting the hypothesis marine P is being sequestered by 
Florida Bay.Seasonal changes were similar to those on the SRS transect, with dry season values 
at TS/Ph8 averaging 0.84 ± 0.17 g m2 d-1 (TS/Ph8) and wet season rates averaging 1.32 ± 0.1 g 
m2 d-1 (TS/Ph8). The 2005 hurricanes also affected the TS/Ph8 site where wind and storm surge 
partially destroyed litter baskets.   

Like the SRS transect, phytoplankton production in panhandle sites show a decrease in 
biomass (dominated by diatoms) from freshwater to estuary sites while primary production by 
cyanobacteria increases in that direction.  Taylor Slough biomass is also dominated by diatoms, 
with a peak at TSPh3; primary production is divided equally across guilds with no observable 
trends in PP along the transect 

Seagrass composition and production continue to be measured quarterly in Florida Bay 
(TS/Ph-7-11) using in-situ visual cover and abundance assessments and leaf marking.  Data from 
these efforts can be found at www.fiu.edu/~seagrass.  LTER data are being coupled to larger 
seagrass monitoring activities and to a large-scale nutrient manipulation study.   
     One student used PAM fluorometry to assess seagrass productivity and response to 
salinity stress along the TS/Ph transect (Byron 2006).  She coupled field measurements of 
seagrass fluorescence-salinity relationships with direct measurements of the response of 
fluorescence to salinity manipulation in mesocosms.  Her results showed that the main seagrass 
along the TS/Ph transect, Thalassia testudinum, maintained the integrity of its photosynthetic 
apparatus over a broad range of conditions, and that it could adapt to the salinities it encountered 
during her study without a loss in photosynthetic performance. Another student documented for 
the first time the submerged aquatic vegetation of the Shark River along the SRS3-6 transect 
(Cornett 2006).  She found that the benthic communities were represented by 5 well-defined 
species assemblages, and that these assemblages corresponded to the riverine gradients of 
salinity, P availability and TOC concentration.  She also documented the stable C and N isotope 
ratios of the submerged aquatic plants in this system for use in a food web study of the West 
Indian Manatee. 

Previous mass mortality events in the seagrasses of Florida Bay have been shown to be 
caused by hypoxic conditions that allow sulfide entry into the meristems of the seagrasses from 
the highly reducing conditions of the sediments (Borum et al. 2005). In order to assess the roles 
of organic-matter driven sulfate reduction on sulfide availability and the effects of sulfide on 
seagrasses, and the role of iron in sulfide sequestration, a manipulative experiment was carried 
out over 2 years at TS/Ph 10 (Ruiz-Halpern 2006).  This study documented significant 
suppression of seagrass productivity and biomass when sulfate reduction was enhanced, and 
further found that iron amendments could sequester all of the excess sulfide produced under the 
organic matter loading treatment and protect the seagrasses from the harmful sulfide effects. 

In the oligotrophic Florida Bay ecosystem, nutrients supplied by hydrological processes 
largely limit the biomass, and therefore productivity, of the seagrasses of the system.  Previous 
work has shown that congregations of pisivorous birds can cause an increase in plant density 
and productivity in Florida Bay because of the deposition of nutrients in bird feces (Powell et al 
1991). We tested whether congregations of piscivorous fish could also lead to local nutrient 
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concentration and increased primary production (Dewsbury 2006).  Over a short (1 y)  period, 
artificial reefs placed near TS/Ph 10 attracted and held large schools of fish; these fish did 
increase sediment nutrients; but over the sort time scale of the experiment they did not augment 
primary production in the seagrass beds adjacent to the reefs.  We will continue to monitor these 
reefs to determine the time scale of nutrient accumulation around artificial reefs in this very 
oligotrophic environment. 

Epiphyte accumulation rates are measured quarterly on artificial blades (mylar strips, 
incubated for 6 weeks).  Rates are significantly higher at TS/Ph-11 than TS/Ph-9 and 10 at all 
times of the year and these epiphytes contain a higher concentration of phosphorus than those at 
the two upstream sites.  Compositional differences in the epiphytic diatom flora were also 
pronounced among the three Florida Bay sites and were related to gradients in salinity and 
phosphorus availability (Frankovich et al., 2006). 
 
2. Soils and Sediments 
Soil/sediment biogeochemistry 

The biogeochemistry of iron, sulfur and phosphorus is tied closely to the cycling and 
preservation of organic matter in soils and sediments.  Annual, synoptic sampling and analysis of 
the physical and chemical properties of soils during FCE-I allowed us to establish a baseline 
context for spatial comparisons among FCE-LTER sites/transects, against which “push-press” 
changes in the Everglades-mangrove-Florida Bay system can be documented during FCE-II.  Our 
data showed that the marl-dominated TS/Ph surface soils are characterized by low organic 
percentage, low extractable iron, low total sulfur and low total phosphorus. In contrast, peat-
dominated SRS surface soils are characterized by high organic percentage, high extractable iron, 
low total sulfur and high total phosphorus. Mangrove soils tend to have higher concentrations of 
organic matter, extractable iron, total sulfur and total phosphorus than do soils from either the 
freshwater (Everglades) or saltwater (Florida Bay) end-members along TS/Ph and SRS transects.  
This effect is much more pronounced along the SRS transect.  Mineral sulfide formation occurs 
primarily as pyrite (FeS2, not FeS) and tends to be iron-limited in surface soils along the TS/Ph 
transect, but not along the SRS transect.  Most inorganic phosphorus in soils from both transects 
occurs in the calcium carbonate pool, and most organic phosphorus occurs in the recalcitrant pool 
extracted by ashing/acid hydrolysis.  These patterns in soil properties suggest that water flow 
affects delivery of nutrients and removal of reduced toxins in south Florida wetlands.  To date we 
have documented changes in soil properties related to hurricanes (short-term, acute impact) and 
to availability of sediment reactive iron (longer-term, chronic impact).   
 
Mangrove Zone Research 

The mangrove vegetation landscape in the Florida Coastal Everglades (FCE) represents a 
combination of different mangrove ecological types distributed across a carbonate environmental 
setting with gradients in resources, regulators, and hydroperiod. Thus, mangrove forests structure 
and function in south Florida are regulated by resource competition and stress due to shifts in 
nutrient pools and hydroperiod across a coastal gradient. During FCE-I, the mangrove soil and 
sediments component of the LTER project addressed several research questions to understand 
soil organic matter, soil biogeochemical properties and nutrient pools dynamics along the 
freshwater-estuarine transect of Taylor River and Shark River Sloughs. 

In this report we show the results from different studies performed during the period 
2001-2006. We present a comprehensive long-term study on the spatial and temporal patterns of 
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soil biogeochemical properties (porewater and soil nutrients, sulfides, salinity, redox potential) 
and hydroperiod along the freshwater-estuarine transect of Shark River (SRS4, SRS5, SRS6) and 
Taylor River (TsPh6, TsPh7, TsPh8). We showed the distinct spatial variability and seasonality 
(dry vs. wet season) in soil biogeochemical properties and hydroperiod across the mangrove 
vegetation landscape; we also demonstrated how hydroperiod regulates soil properties between 
two contrasting mangrove regions (Taylor River and Shark River). Water levels along the Shark 
River sites showed the influence of tidal exchange, while along the Taylor sites flooding 
conditions are dominant, except in the downstream site (Ts/Ph8). Along the Shark River sites, 
water levels during the dry season were above the surface less than 40% of the time each month, 
while during the wet season monthly flooding duration was between 80% and 100%. A total 
different scenario occurred in the Taylor sites, where flooding duration was 100% during most of 
the years (Ts/Ph6), while in Ts/Ph7 and Ts/Ph8 monthly flooding duration ranged from 10% to 
100% (dry and wet seasons, respectively). Flooding frequency is significantly different between 
both regions, with an increase in tidal frequency from upstream (SRS-4) to downstream (SRS-6) 
locations along the Shark River estuary. In contrast, frequency of inundation in Taylor River is 
negligible upstream (Ts/Ph6 and Ts/Ph7) and downstream (Ts/Ph8). Tidal range in this region is 
less than 0.1 m and is frequently masked by wind forcing. 

We also showed how concentrations of soil nitrogen (N) and phosphorus (P), and N:P 
ratios were closely related to patterns of productivity. Phosphorus (P) concentrations along the 
Shark River sites showed a distinct gradient that decrease with distance from the marine end 
member (SRS6) (range: 22 to 93 g m-2), while concentrations along the Taylor River showed 
similar values (range: 20 to 40 g m-2). N:P ratios < 25 in SRS6 were indicative that P is not a 
limiting nutrient for mangrove productivity, while in the upstream sites of Shark River (SRS4 
and SRS5) and all Taylor sites, N:P ratios > 40 indicated P-limited conditions. Results from this 
study support our hypothesis that a combination of different hydrological regimes and gradients 
in nutrient resources and regulators constrain mangrove forest productivity and growth along the 
freshwater-estuarine transects of both Shark and Taylor Rivers. In addition Cesium-137 specific 
activity measurements showed that accretion rates along Shark River are in the range observed in 
other mangrove forest in the Neotropics (2-3 mm yr-1). 

We evaluated tidal and seasonal variations in concentrations and fluxes of nitrogen 
(NH4

+, NO2+NO3, total nitrogen) and phosphorus (soluble reactive phosphorus, total 
phosphorus) in a riverine mangrove forest (SRS6) using the flume technique during the dry 
(May, December 2003) and rainy (October 2003) seasons in Shark River. We further 
demonstrated how the distinct seasonality in nutrient concentrations in the flume and the 
adjacent tidal creek are closely coupled with Ponce de Leon Bay (i.e., Gulf of Mexico), which is 
the main source of SRP and N+N into the mangrove forests for this region. 

Our mangrove soil processes/formation studies continued to focus on belowground root 
production and decomposition and their effects on root nutrient stoichiometry, particularly 
during decomposition of fine roots. This information contributed to estimations of ecosystem 
level carbon budgets. We evaluated the spatial patterns of belowground biomass and productivity 
along Shark River and Taylor River Sloughs. We performed two separate field experiments 
(from December 2000 to December 2002 and from December 2002 to February 2006) to 
evaluate standing crop root biomass, belowground productivity, and root distribution at different 
depths (top: 0-45 cm and bottom: 45-90 cm), using the sequential coring and ingrowth core 
techniques. Belowground biomass varied significantly among sites and depths, with higher 
values in the Taylor than in Shark River. Higher productivity rates were observed in Shark River 

 11



(SRS5 > SRS4 > SRS6) compared to Taylor River (TsPh6 > TsPh8 > TsPh7), with higher rates 
in the top section (0-45 cm) than in the bottom section (45-90 cm) for all sites. These results 
confirmed our hypothesis that mangroves under P-limited conditions such in the Taylor River 
sites and one upstream site in Shark River (SRS4) allocate more resources to roots when 
compared to downstream Shark River (SRS-6), where the highest soil P concentrations (93 g m-

2) were observed. 
A fine root decomposition study showed that rates for ambient roots were significantly 

different among the FCE-LTER sites (SRS-4, SRS-5, SRS-6) (p < 0.001). Losses at the end of 
the incubation period (7 months) ranged from 25% to 50% for the ambient roots across six sites. 
The highest losses among the ambient roots occurred along the Shark River transect in SRS5 
(50% loss), SRS4 (45% loss) and SRS6 (43% loss). The lowest losses occurred along the Taylor 
Slough transect in Ts/Ph7 (35% loss), Ts/Ph8 (31% loss) and Ts/Ph6 (25% loss). In general, 
ambient root decay was lower among Taylor Slough sites than in the Shark River sites, with the 
exception of Ts/Ph7. 

Finally, we contribute data from our carbon dynamic and ecological modeling studies to 
prepare two review papers in collaboration with other colleagues from different institutions. The 
first manuscript (Global Biogeochemical Cycles, in review) reviews carbon budgets for 
mangrove forests and propose several research venues to determine other carbon sources to 
account for ~30-40% of  “missing” carbon in current budgets for this coastal ecosystem; another 
paper reviews the state of the art of individual-based mangrove modeling in the Neotropics 
(Aquatic Botany, accepted). 
 
Organic geochemistry research 

We have spent a considerable effort during the FCE-LTER-1 funding cycle in assessing 
organic matter sources in Everglades’ wetland and estuarine environments. These studies were 
primarily based on molecular marker fingerprints and were initiated through the identification of 
biomass-specific molecular markers or molecular proxies in wetland vegetation. As such the 
application of n-alkane distributions proved to be quite useful for this purpose, as the relationship 
between long- and mid-chain n-alkanes were quite characteristic for different biomass 
components (Mead et al., 2004; Neto et al., 2005). Other biomass specific biomarkers such as the 
C20 highly branched isoprenoids (HBIs), identified in the FCE as markers for periphyton (likely 
from cyanobacteria) were successfully applied to better assess periphyton/floc transport 
throughout the system (Jaffe et al., 2001; Xu et al., 2006). Other biomarkers such as the kaurenes 
were identified in wetland vegetation, particularly Cladium, and initially thought to be markers 
for fungi (Neto et al., 2005). While this may still be the case, it looks like the best application for 
these markers is as indicators of belowground Cladium biomass as they were particularly 
abundant in the roots of Cladium (but not of Eleocharis) (Gao, 2007).  

In addition, molecular distributions of n-alkanes as well as n-alkane-2-ones were found to 
be quite characteristic for seagrasses and thus applied to trace seagrass-derived OM throughout 
FCE estuaries (Hernandez et al., 2001; Jaffe et al., 2001; Xu et al., 2006a). To better understand 
the dynamics of OM in FCE estuaries, the sources and transformations of sedimentary organic 
matter along a salinity gradient of the estuarine Shark River Slough were assessed using such a 
biomarker approach. In general, the freshwater marsh endmember samples had a different overall 
composition compared to the estuarine sediment extracts (Jaffe et al., 2001, Jaffe et al., 2006). 
Generally, compound concentrations decrease downstream due to dilution, and alteration of 
organic compounds from plant waxes and coastal vegetation is obvious in sediment samples. 
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This is confirmed by the significant low abundance of n-alkanes and n-alkenoic acids due to 
biodegradation, oxidation of α-tocopherol to homophytanic acid γ-lactone, and presence of traces 
of dihydrolacunosic acid, a photochemical alteration product of taraxerol (Simoneit et al., 2007). 
OM in the estuary seemed primarily influenced by local vegetation sources, although some 
exchange with both freshwater and marine endmembers was observed. As such mangrove 
markers such as taraxerol, showed highest abundances in the mangrove dominated estuary, while 
biomarkers for marine diatoms (C25 HBIs) increased in abundance with increasing salinity along 
the estuary (Xu et al., 2006a; Mead, 2003).  Conceptual models for OM mixing were developed 
for the Shark River and Taylor River estuaries based un both sediment and particulate organic 
matter (POM) biomarker analyses (Mead, 2003; Jaffe et al., 2001).  

Temporal and spatial variations in the composition of POM from Florida Bay were also 
examined (Xu and Jaffe, 2007). The biomarker distribution suggested a bay-wide predominant 
autochthonous/marine OM source. However, several biomarker proxies indicated a spatial shift 
in OM sources where terrestrial OM rapidly decreased while seagrass and microbial OM 
markedly increased along a northeastern to southwestern transect. This trend was more marked 
in surface sediments (Xu et al., 2006a). POM collected during the dry season was enriched in 
terrestrial constituents relative to the wet season, likely as a result of reduced primary 
productivity of planktonic species and seagrasses during the dry season. Hydrological 
fluctuations and seasonal primary productivity fluctuations are the drivers controlling the POM 
composition in the Bay. For sediments a clear NE to SW gradient was observed in regards to OM 
sources, which changed from terrestrial/mangrove derived to mainly seagrass/plankton derived 
along this transect. Paleoecological studies performed on Florida Bay sediment cores suggested a 
clear relationship between recent human induced environmental changes and biomass production 
and distribution (Xu et al., 2007; Xu et al., 2006b).    

In a continued pursuit of biomass specific OM tracers in the FCE we further investigated a 
suite of C20 and C25 HBIs and C30 highly branched isoprenoids (7,11-cyclobotryococcanes; Xu, 
2005) hydrocarbons as potential microbial indicators for cyanobacteria, diatoms and green sulfur 
bacteria respectively. In addition, an exceptionally high abundance of the isoprenoid 
hydrocarbons, botryococcenes, with carbon skeletons from 32 to 34 were detected in the Florida 
Everglades freshwater wetlands (Gao et al., 2007). This is the first report that botryococcenes 
occur in the Everglades freshwater wetlands where the presumed source organisms of these 
compounds, Botriococcus braunii, have not been reported. While their origin remains unknown 
in this ecosystem, paleoenvironmental assessments showed that their abundance has significantly 
increased over the past 40 years suggesting a response to anthropogenic impacts, possibly 
increased nutrient inputs, on these wetlands. 

Present and past environmental conditions and paleo-environmental changes were assessed 
in freshwater wetland soils of the Everglades using organic geochemistry techniques. Organic 
matter in both peat and marl soil cores was characterized by geochemical means. Samples were 
selected along nutrient and hydrology gradients with the objective to determine the historical 
sources of organic matter as well as the extent of its preservation and the environmental factors 
which control it (Gao, 2007; Saunders et al., 2006). Thus short-term sub-aqueous decomposition 
patterns of aboveground and belowground produced organic matter from two freshwater vascular 
plants (Cladium jamaicense and Eleocharis cellulosa) were investigated at two marsh sites, 
while mangrove leaf and root decomposition was determined in estuarine areas. The bulk 
chemical composition of fresh, decomposing litter, and soils was estimated by elemental analysis 
and solid state 13C NMR spectroscopy. Optical properties of extracted humic substances and 
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degradation of lignins were also determined as proxies of OM degradation. The results suggest 
that Eleocharis derived OM was more liable compared to Cladium. Relative to aboveground 
litter, root and rhizome litterbag experiments showed that the belowground biomass of both 
species was more resistant to degradation, and that rhizomes were more labile than roots.  

The soil organic matter (SOM) preservation was assessed through elemental analysis and 
molecular characterizations of bulk 13C stable isotopes, solid state 13C NMR spectroscopy, UV-
Vis spectroscopy, and tetramethyl ammonium hydroxide (TMAH) thermochemolysis-GC/MS. 
The relationship of the environmental conditions and degradation status of the soil organic 
matter (SOM) among the sites suggested that both high nutrient levels and long hydroperiod 
favor organic matter degradation in the soils. This is probably the result of an increase in the 
microbial activity in the soils which have higher nutrient levels, while longer hydroperiods may 
enhance physical/chemical degradation processes. The most significant transformations of 
biomass litter in this environment are controlled by very early physical/chemical processes and 
once the OM is incorporated into surface soils, the diagenetic change, even over extended 
periods of time is comparatively minimal, and SOM is relatively well preserved regardless of 
hydroperiod or nutrient levels. SOM accumulated in peat soils is more prone to continued 
degradation than the SOM in the marl soils. The latter is presumably stabilized early on through 
direct air exposure (oxidation) and thus, it is more refractory to further diagenetic 
transformations such as humification and aromatization reactions. 

Regarding OM preservation in mangrove forests, peat/soil cores were collected from the 
estuarine zones of Shark River Slough (SRS) and Taylor Slough (TS), the two major drainage 
basins of ENP. These two regions differ in soil type, forest structure, tidal influence and water 
residence time, and sites within these regions lie along nutrient and salinity gradients. Lipid 
biomarker analyses revealed that in addition to mangroves, fungi and cyanobacteria may be 
among the autochthonous sources of organic matter to mangrove soils. The high abundance of a 
series of ring-A-degraded triterpenoids in soil extracts suggests that microbial activity within the 
soils is high and/or another diagenetic pathway for the chemical alteration of the parent 3-oxy-
triterpenoids may exist. Preliminary results from lignin phenol and 13C-NMR analyses show that, 
similarly to the case of OM in freshwater marsh environments, after surficial diagenetic 
processes occur the chemical signature of mangrove-derived organic matter is well preserved in 
the sediments. This work is presently on-going (Cloutier, 2007).  

Effective molecular proxies were developed to differentiate the relative input of organic 
matter from different biological sources to wetland soils. Thus historical vegetation shifts and 
hydroperiods were reconstructed using those proxies (e.g. Saunders et al., 2006; Gao, 2007). The 
data show good correlations with historical water management practices starting at the turn of the 
century and during the mid 1900’s. Overall, significant shortening of hydroperiods during this 
period was observed. 

In summary, the first six year cycle of the FCE-LTER program resulted in a wealth of 
information regarding organic matter characterization and dynamics in this ecosystem. Hardly 
any organic geochemical information had previously been available on this important wetland-
estuarine system and the LTER work has provided a solid background on OM characteristics and 
molecular tools have been developed to better assess OM dynamics in the system. However, 
these dynamics are still far from being fully understood and additional research is required to 
better characterize the transport and mixing of OM from different sources, particularly in the 
FCE estuarine regions, and to develop models allowing the prediction of Everglades restoration 
efforts on OM production, transport (export), and preservation. Among key research issues is the 

 14



biochemistry of ‘floc’ or flocculent OM, widely distributed in the system, and whose dynamics 
(sources, transport and fate) are complex (Neto et al., 2005) and still poorly understood. This will 
be one focal point for the organic geochemistry research during the FCE-LTER-2 funding cycle. 
 
 
3. Nutrients and DOM 

The Nutrients and DOM working group research during FCE I was driven by a two-part 
central question: How is the quality and/or quantity of DOM or the quantity of inorganic 
nutrients in source water altered by changing freshwater flow versus internal processes occurring 
at a given location in the landscape? How are local ecosystem processes controlled by changes in 
source water DOM or inorganic nutrients?  We collected data on water quality, bacterial 
community structure and productivity, and dissolved organic matter (DOM) dynamics at all 17 
FCE sites and conducted experiments to address these questions. 
 
Water Quality 

FCE’s water quality program collected tri-daily composite water samples from the 14 
wetland sites (SRS 1-6, TS/Ph 1-8) using ISCO autosamplers, and monthly grab samples from 
the 3 Florida Bay sites (as part of a water quality program funded by other sources).  Tri-daily 
water samples from the 14 wetland sites were analyzed for total nitrogen (TN), total phosphorus 
(TP), and salinity.  Additionally, monthly grab samples were analyzed for TN, TP, NO2

-, NO3
-, 

NH4
+, soluble reactive P (SRP), dissolved organic carbon (DOC), and total organic carbon 

(TOC) at the wetland sites.  We also quantified rainfall at all freshwater sites, and periodically 
collect event-related surface water samples during major rain events.  Water quality at the 3 
Florida Bay sites (TS/Ph 9-11) was sampled monthly and analyzed for TN, TP, NO2

-, NO3
-, 

NH4
+, SRP, TOC, temperature, salinity, dissolved oxygen, silicate, chlorophyll a, and alkaline 

phosphatase activity.  Additionally, we took monthly measurements of phytoplankton biomass, 
deconvoluted as bluegreen, brown, and green algae, using the PAM fluorometric method and  
phytoplankton primary production, deconvoluted as bluegreen, brown, and green algae, using the 
PAM fluorometric method.  We conducted quarterly incubation experiments for bioavailability 
of DOC and DON at all accessible LTER sites. 

Our water quality data support the “upside down estuary” model, which is the central 
premise of FCE research.  By “upside down”, we mean simply that the marine end-member - the 
Gulf of Mexico - supplies the limiting nutrient (P) to our estuaries.  Along the Shark River 
Slough transect, the mangrove estuary is directly connected to this marine source of P whereas 
along the southern Everglades transects the mangrove estuarine sites are isolated from the GOM 
by Florida Bay.  We completed a detailed analysis of water quality data from 1996 - 2006 from 
all 17 LTER sites, and related these long-term patterns to water management and climatological 
forcing during this time.  Notably, we reported for the first time a consistent El Niño effect on 
precipitation in south Florida:  During ENSO events, the Everglades typically experiences dry 
wet seasons and wet dry seasons, but with no substantive change in total annual rainfall.  This 
“washout” of the seasonality of precipitation and freshwater inflow affects nutrient concentration 
patterns along both of our estuarine transects.  This paper was written by invitation, and was 
published in Limnology and Oceanography (Childers et al. 2006b). 

We characterized the phosphorus and nitrogen content of suspended particles in the water 
column of oligotrophic and eutrophic freshwater marshes across the Everglades hydroscape.  
Particulate phosphorus can be a large proportion of total phosphorus in the water column (23-
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47%) and this proportion is correlated with total suspended sediment concentrations.  The 0.45 to 
2.7 μm fraction was the dominant size of particulate phosphorus at all sites.  In contrast, 
particulate nitrogen was a small proportion of total nitrogen in surface water (2-7%) and was 
larger (mostly 2.7 to 10 μm size class).  We also characterized the composition and concentration 
of suspended particles in the water column of Everglades wetlands.  This information is being 
used to develop models of particulate dissolved nutrient transport in the Everglades and other 
wetlands. 

We estimated the flux of nutrients (P and N) to the surface waters of the Southern 
Everglades from groundwater discharge.  Nutrient concentrations are often higher in 
groundwater than in surface water due to longer water-rock interaction times, and can be a 
source of nutrients to the surface water in groundwater discharge areas.  During the summer of 
2003, 14 existing groundwater wells and 9 surface water samples were sampled across the 
seawater-freshwater mixing zone in the southern Everglades (an area for potential groundwater 
discharge) for TP and TN. Total P concentrations ranged from 0.5 to 2.3 µM (16 – 73.6 µg/L-P).  
Concentrations of TP in the overlying surface water were consistently lower and ranged from 
0.16 to 0.45 µM (5.1 – 14.4 µg/L-P).  Total N concentrations in both surface water and 
groundwaters were higher than TP values and ranged from 44.5 to 149.5 µM.  The average 
surface water TN concentration was 71.9 ± 11.2 µM.  In the groundwater, the average TN 
concentration was 89.9 ± 33.4 µM.  Groundwater TP concentrations were consistently higher 
than the surface water at all locations sampled in the southern Everglades.  In addition, 
groundwater TP concentrations increased toward the coastline.  Conversely, both groundwater 
and surface water concentrations of TN decreased toward the coastline.  There was a strong 
positive correlation between groundwater TP and salinity (R2=0.6).   The results of this 
investigation indicate enhanced P concentrations within mixing zone groundwaters underlying 
the southern Everglades.  Groundwater discharge across the region has been estimated to range 
from 2 to 25 cm/yr.  At these discharge rates, the groundwater can contribute between 0.1 to 3.5 
mg-P m-2 yr-1 to the overlying surface water of the coastal Everglades.  Although these values 
are small compared to published estimates of the atmospheric contribution of total phosphorus to 
the Everglades, they represent an additional input of phosphorus to a nutrient limited ecosystem.  
The observed low concentration of phosphorus in the surface waters of the southern Everglades 
suggest that the additional groundwater source of phosphorus may be retained within the 
sediments and/or biota of the Everglades. 
 
Bacterial Community Structure and Productivity  

Microbial parameters were quantified monthly at all 17 sites.  We monitored bacteria 
counts using epifluorescent microscopy and bacterial production using 3H-thymidine uptake at 
all 17 FCE LTER sites.  We investigated the change in sediment bacterial community structure 
(BCS) along FCE LTER gradients using PCR-DGGE.  Many different types of bacteria 
inhabited the soils and sediments along the gradient (50-60 bands).  Cluster analysis showed that 
BCS first divided into two clusters: an estuarine Florida Bay group and a terrestrial wetland 
group.  The Florida Bay cluster was further subdivided into Eastern and Central Bay group and a 
Western Bay group.  The wetland cluster was also subdivided into a freshwater marsh group and 
a mangrove forest group.  These results suggest that habitat types along with nutrient conditions 
are important drivers in BCS in coastal wetlands, whereas, in the estuary, BCS is mostly affected 
by the strong nutrient gradient.  Sequence analysis of the DGGE bands indicated that the major 
bacteria associated with every region was Actinobacteria, which was retrieved from wide range 
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of habitats.  In addition, the bacteria associated with sulfur cycling were also detected in every 
region.  Chloroflexi, Verrucomicrobia, and Nitrospirae were characteristic bacteria in Everglades 
(marsh and mangrove), while Cyanobacteria, Cytophagales, and Spirochaeta were more 
prevalent in Florida Bay.   

We evaluated the effects of N and P gradients on sediment bacterial communities across 
the estuarine nutrient gradient in Florida Bay.  Eastern Florida Bay is strongly P limited while 
western bay is more N limited.  Sediment samples were collected at six sites across the bay 
where control, N, P, and N+P application plots have been established.  DNA was extracted and 
the eubacterial communities delineated using PCR-DGGE analysis of the 16S rDNA.  Based on 
the DGGE patterns, many different types of bacteria were found to inhabit the sediments 
irrespective of sampling sites and fertilizer applications (47-56 bands).  Shannon-Weaver index 
showed that bacterial diversity in the east, as influenced by the runoff from Everglades, was 
higher than in western bay.  Cluster analysis of PCR products showed that the bacterial 
communities changed largely according to the natural E-W nutrient gradient existing in Florida 
Bay.  Sediment fertilization effects were overshadowed by natural ecosystem nutrient and 
salinity gradient.  The addition of N had no effect on sediment bacterial community structure.  
Significant changes in bacterial community structure were found for P and NP application plots 
across the bay, irrespective of water column nutrient status.  P addition caused convergence in 
bacterial community structure across the gradient to a more common type, enhancing 
populations of Fe (III) reducers and S oxidizers in the east and augmenting S oxidizers and the 
organic degrader community throughout the bay.  The overall effect was one of increased 
capacity to degrade and recycle C, S, and Fe under anaerobic conditions. 
 
Dissolved Organic Matter (DOM) Dynamics 

The molecular characterization of DOM at the FCE LTER sites used a multi-methods 
approach in combination with the monitoring of several optical and chemical parameters.  The 
molecular characterization was performed both on biannual sampling events for ultrafiltered 
DOM (UDOM; e.g. Maie et al., 2005) and monthly for bulk DOM characterizations (Jaffe et al., 
2004; Lu et al., 2003; Maie et al., 2006b). The former was intended to produce data 
representative for the dry and wet season in the Everglades ecosystem.  The techniques we used 
included solid state 13C-NMR and 15N-NMR, on line pyrolysis-GC/MS, TMAH 
chemothermolysis, and analysis of hydrolyzed sugars by GC/MS, 2D-electrophoresis of proteins, 
amino acid analyses and size exclusion chromatography (Maie et al., 2005; Maie et al. 2006a; 
Jonse et al., 2005, 2006; Maie et al., 2007a).  Our results showed clear differences in the DOM 
composition along the SRS and TS/Ph transects, which seem to relate to DOM source changes as 
well as to diagenetic transformations of the DOM (Scully et al., 2004; Maie et al., 2006c).  In 
this respect, DOM inputs from canals (i.e. more highly degraded DOM) and DOM freshly 
leached from local biomass, in conjunction with bio- and photo-degradation processes, seem to 
strongly influence the molecular composition relative to position of a water mass in the 
landscape.  

We also quantified optical properties (UV-Vis and fluorescence), total protein content, 
total carbohydrates, humic and non-humic substances, and molecular weight distribution of 
DOM from monthly samples collected at all SRS and TS/Ph sites (Parish et al., unpublished). 
These parameters allowed us to assess both seasonal and geographic variations in DOM 
composition and relate these variations to the contributions of canal, freshwater marsh, mangrove 
fringe and coastal derived DOM in the system.   
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Dissolved organic nitrogen (DON) is believed to play a key role in fueling the microbial 
loop in the FCE.  However, little is known about its molecular characteristics. A combination of 
techniques, including 15N cross-polarization magic angle spinning nuclear magnetic resonance 
(15N CPMAS NMR) and X-ray photoelectron spectroscopy (XPS), were used to analyze the N 
components of ultrafiltered DOM (Maie et al., 2006a). The concentrations and compositions of 
total hydrolysable amino acids (HAAs) were analyzed to estimate UDOM bioavailability and 
diagenetic state. Optical properties (UV-visible and fluorescence) and the stable isotope ratios of 
C and N were measured to assess the source and dynamics of UDOM. Spectroscopic analyses 
consistently showed that the major N species of UDOM are in amide form, but significant 
contributions of aromatic-N were also observed. XPS showed a very high pyridinic-N 
concentration in the FCE-UDOM (21.7±2.7%) compared with those in other environments. The 
sources of this aromatic-N are unclear, but could include soot and charred materials from wild 
fires. Relatively high total HAA concentrations (4±2 %UDOC or 27±4 %UDON) are indicative 
of bioavailable components, and HAA compositions suggest FCE-UDOM has not undergone 
extensive diagenetic processing.  These observations can be attributed to the low microbial 
activity and a continuous supply of fresh UDOM in this oligotrophic ecosystem. Marsh plants 
appear to be the dominant source of UDOM in freshwater regions of the FCE, whereas 
seagrasses and algae are the dominant sources of UDOM in Florida Bay.   

To better understand the environmental dynamics of DOM in the FCE, experiments were 
conducted which addressed the effect of increased salinity on flocculation of DOM, the effect of 
photolysis on the chemical structure of DOM (Jaffe et al., 2004), and on the microbial 
bioavailability of the DON component (Boyer et al., 2007) from sawgrass marsh, mangrove 
forest, and seagrass beds.  No significant flocculation or precipitation of DOM occurred with 
increased salinity.  Therefore, terrestrial DOM remains in the water column where it subjected to 
extended photolysis, estuarine mixing, and transport.  Simulated sunlight had a significant effect 
on the chemical characteristics of DOM.  While the DOM concentration did not change 
significantly during photo-exposure, its optical characteristics were modified (Scully et al., 
2004).  The environmental implications of this are conflicting as photo-induced polymerization 
may stabilize DOM by reducing its bioavailability while photolysis may make the DOM more 
labile.  The DON bioavailability was relatively low in this region.  Under estuarine salinity 
conditions, the percent of bioavailable DON (BDON), from the freshwater wetland was higher 
(9.2%) than from both mangrove (4.8%) and seagrass sites (3.5%).  This implies that faster DON 
transport from freshwater wetlands to the bay may have a more pronounced impact on the N 
cycle than is currently the case.  Although the BDON is low, the DON concentrations are high 
relative to the DIN pool.  Therefore, if the median DIN concentration for the estuarine site is 4.6 
µM while amount supplied by BDON is 1.6 µM, then amount of N supplied by DON recycling 
may become a significant portion of the total DIN pool in the estuary (Boyer et al., 2007). 

One potential biogeochemical process affecting DOM (and DON) particularly in the 
fringe mangrove dominated estuaries of the FCE is the fate and reactivity of tannins. While it is 
known that a significant amount of tannins is leached from abscised mangrove leaves in aquatic 
environments, there are no detailed biogeochemical studies on their environmental dynamics. 
Therefore, we studied the fate of mangrove leaf tannins in the FCE and their possible influence 
on dissolved organic nitrogen (DON) cycling.  Tannins were extracted and purified from 
senescent yellow leaves of the red mangrove (Rhizophora mangle) and used for a series of model 
experiments to investigate their physical and chemical reactivity in natural environments.  
Physical processes investigated included self-aggregation, adsorption to organic matter-rich 
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sediments, and co-aggregation with DON in natural waters (Maie et al., 2007b).  Chemical 
reactions included structural change, which was observed by excitation-emission matrix 
fluorescence spectra, and the release of proteins from tannin-protein complexes under solar 
simulated light exposure.  Our results suggest that a large portion of tannins can be physically 
eliminated from aquatic environments by precipitation at high salinity (> 15%) and also by 
binding to sediments.  DON in natural water can co-precipitate with tannins, suggesting that 
mangrove swamps can be a sink of DON in estuarine environments.  The chemical reactivity of 
tannins in natural waters was also very high, with a half-life of less than 1-d.  Proteins were 
released gradually from tannin-protein complexes incubated under light conditions but not under 
dark conditions, suggesting a potentially buffering role of tannin-protein complexes on DON 
recycling in mangrove estuaries.  Therefore, although tannins are not detected at a significant 
level in natural waters, they are considered to play an important role in biogeochemical processes 
and may influence the dynamics of DON in mangrove ecosystems and possibly other coastal 
wetlands.   

While detailed DOM characterization studies were needed to further understand DOM 
biogeochemistry in the FCE, simple optical properties monitoring on DOM can provide valuable 
information regarding spatial and seasonal dynamics (Maie et al., 2006b). For this purpose, water 
samples were collected monthly from a total of 73 sampling stations in the FCE estuaries for 
over two years.  Spatial and seasonal variability of CDOM characteristics were investigated for 
geomorphologically distinct sub-regions within Florida Bay (FB), the Ten Thousand Islands 
(TTI), and Whitewater Bay (WWB). These variations were observed in both quantity and quality 
of CDOM. TOC concentrations in the FCE estuaries were generally higher during the wet season 
(June-October), reflecting high freshwater loadings from the Everglades in TTI, and a high 
primary productivity of marine biomass in FB.  Fluorescence parameters suggested that the 
CDOM in FB is mainly of marine/microbial origin, while for TTI and WWB a terrestrial origin 
from Everglades’ marsh plants and mangroves was evident. Variations in CDOM quality  
seemed mainly controlled by tidal exchange/mixing of Everglades freshwater with Florida Shelf 
waters, tidally controlled releases of CDOM from fringe mangroves, primary productivity of 
marine vegetation in FB and diagenetic processes such as photodegradation (particularly for 
WWB). The source and dynamics of CDOM in these subtropical estuaries is complex and found 
to be influenced by many factors including hydrology, geomorphology, vegetation cover, 
landuse and biogeochemical processes. Simple, easy to measure, high sample throughput 
fluorescence parameters for surface waters can add valuable information on CDOM dynamics to 
long-term water quality studies which can not be obtained from quantitative determinations 
alone. Similar studies are now being performed using more advanced 3-D fluorescence 
techniques in combination with Parallel Factor Analysis to further improve our understanding on 
DOM dynamics in the FCE. These studies include groundwater samples.  
 
Overnight Sampling Trips and Experiments 

We conducted an overnight sampling trip to Shark River and Taylor Slough LTER sites 
in March 2001 and March 2002 where we conducted a multidisciplinary study of the hydrology 
of the estuary, DOM characterization, nutrient dynamics, microbial activities, and phytoplankton 
responses to diurnal and tidal exchanges.  The trip included rapid water sampling surveys from 
mouth to head at slack low and high tides as well as a fixed time series site at houseboat moored 
at SRS-5 for 24 hours.   
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We conducted sampling for 24 hour sampling periods at 2 FCE LTER sites in Florida 
Bay in 2004 and 2006.  These metabolic measurements are part of a study of gas exchange in 
Florida Bay (an LTER-leveraged grant funded by NOAA).  To better understand of sediment 
water column exchanges and production, we conducted seasonal benthic flux experiments at 
TS/Ph 10.  This is a highly active site with high TOC concentration, bioavailability with a high 
degree of geomorphic isolation.  We also conducted seagrass organic matter incubations and 
bioassays with both the seagrass groups and the organic matter research groups (NOAA grant) in 
order to elucidate bioavailability of freshly leached seagrass exudates. 
 
4. Trophic Dynamics and Community Structure 
Food-web structure illustrated by standing crop 

We tracked standing crops of fishes in freshwater and oligohaline sites throughout FCE 1 
to determine if their dynamics were consistent with a role of regional nutrient dynamics in 
shaping their productivity.  While standing stock may not reflect secondary production, it was 
considered proxy for that number in the absence direct measures (see below).  This work 
indicated that standing crops were inconsistent with patterns of primary productivity in the 
oligohaline zone.  Standing crops in the Shark River oligohaline zone were lower than those in 
the Taylor Slough oligohaline zone, and all were lower than in freshwater sites upstream (Green 
et al. 2006).  We hypothesized that these patterns resulted from a role for higher connectivity 
between oligohaline and freshwater habitats in Taylor Slough than in Shark River Slough; 
standing crops and species composition in the littoral zone of Shark River were consistent with a 
harsh habitat that is somewhat isolated from nearby freshwater marshes. In contrast, the 
oligohaline zone in Taylor Slough was dominated by freshwater fishes in the wet season, and 
more salt-tolerant ones in the dry season.  
 
Challenges for studies of secondary production: open communities 

Techniques to estimate secondary productivity often sampling data typically assume 
closed populations, for example those used by fisheries biologists to estimate secondary 
productivity from ‘catch curves.’  We tracked radio-tagged Florida gar at our long-term study 
sites to demonstrate that they annually move long distances (in excess of 12 kms) in response to 
marsh drying (Wolski et al., in prep).  A few fish tagged in the wet season in northern Shark 
River Slough (near SRS-1) moved the length of slough to send the dry season in Rookery 
Branch, just downstream from SRS-3.  These data illustrate that our oligohaline study sites 
receive substantial seasonal influx fish biomass, precluding methods assuming closed 
populations.  Isotopic data gathered from bull sharks further support the open-system concept, in 
this case from the marine end.  Work planned for FCE 2 will estimate movements more fully and 
help us produce realistic models that can be used to estimate secondary production. 
 
Food webs illustrated by stable isotopes 

We examined food web structure using carbon and nitrogen stable isotopic signatures in 
consumers.  Two studies were conducted during FCE 1; we examined the relationship between 
trophic position of three key consumers to nutrient status and hydroperiod at long-term study 
sites in the freshwater Everglades (Williams and Trexler 2006) and we documented long-term 
stability of tissue isotopic values in the oligohaline zone (Green and Trexler, work in progress).  
These studies found evidence that hydroperiod but not nutrient status affected trophic position in 
freshwater systems of the southern Everglades.  Our study sites in the southern Everglades did 
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not include areas with extreme nutrient enrichment as found in the northern Everglades, where 
eutrophication and anaerobic conditions are relatively common.  In the oligohaline zone, we 
found marked differences in the isotopic signatures of our Shark River, Taylor River, and Joe 
Bay study regions, reflective of different roles of mangrove and marine detrital contributions to 
these ecosystems.  Shark River and Joe Bay were relatively enriched in C13 compared to Taylor 
River.  These differences were stable over a 5-year period.   

Brian Delius and Mike Heithaus used stable isotopes to determine if juvenile bull sharks 
collected at our downstream SRS study sites were deriving their energy from oligohaline or 
marine sources.  Past work suggests that these fish may move downstream to seagrass beds to 
feed at night and return during the day to the relative safety from predators provided by 
oligohaline sites.  Their data supported a major role of marine-derived foods in growth of 
juvenile bull sharks, consistent with the hypothesis that these fish provide allochthonus nutrients 
to the oligohaline zone in their daily migrations.  

We also conducted laboratory and field experiments on the effect of salinity on the match 
of fish isotopic composition of liver and muscle tissue to their diets (Green, MS thesis).  These 
studies supported the use of carbon isotopes in tracing diets across a range of salinity conditions.  
However, nitrogen fraction was sensitive to the relationship of environmental salinity to optimal 
physiological salinity for two species.  These fish never attained the expected nitrogen isotopic 
composition after a diet switch when maintained at salinities that differed from their optimum.  
This raises a new source of concern for interpretation of nitrogen isotopic data in estuarine 
fishes.   
 
5. Ecological Modeling 

We summarized P standing stocks (g P m-2) and net P fluxes for the major ecosystem 
components (i.e., water, algal, plant, consumer, and detrital pools) along both FCE transects. 
These models have been parameterized separately for Cladium-dominated and wet prairie-
dominated marshes at each FCE LTER site. These models are calibrated with site-specific FCE 
data and are used to determine the sensitivity of P dynamics (e.g., long-term P accumulation and 
net P flux through the system) to slight changes in individual model parameters (e.g., turnover 
rates of P in periphyton), initial conditions (e.g., initial standing stocks of periphyton), and 
environmental conditions (e.g., annual average water depths). We have also been using these 
models to investigate future scenarios of water management, including changes in water depth 
and P loading rates, to ENP.  

Additionally, we developed a simulation model to hindcast historic changes in Cladium 
biomass in ENP. The model predicts Cladium biomass as a function of water depth using a 
complex algorithm based largely on empirical data our FCE LTER sites in Shark River Slough. 
To calibrate and test the model, we are now quantifying profiles of Cladium seeds, a proxy for 
Cladium biomass, as part of a project funded from other sources. We recently summarized this 
paleo-ecological approach to forecasting ecological change under various restoration scenarios. 
These data are presented in a paper that appeared in our FCE LTER Special Issue of 
Hydrobiologia in 2006 (Saunders et al. 2006).  

Finally, we worked closely with the developers of the Everglades Landscape Model, 
(ELM) and of several ecological models of seagrass dynamics at SFWMD. The ELM now has an 
extended period of simulation (1965-2000), an extended useful simulation domain that includes 
topography and tidal exchanges in southwest mangrove region of greater Everglades, and 
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enhanced documentation for ease of use and for independent peer review of ELM application to 
greater Everglades restoration planning. 
 
 
 
6. Abiotic Factors 

Because of the climatic impacts of increasing ambient carbon dioxide levels, scientists 
throughout the world are studying the contribution of the biosphere in sequestering carbon.  The 
resulting knowledge is utilized to constrain levels of atmospheric carbon dioxide.  One biome 
that has yet to be investigated for its carbon uptake capabilities is the mangrove forests.  
Mangrove ecosystems potentially represent significant carbon sinks because of year-round 
physiologically active foliage, and carbon exchanges at the estuary interface and continuous 
accretion of sediments.   

During June 2003, a 30-m tall triangular tower was established in a riverine mangrove 
forest to use as a platform to deploy flux measurement systems.  This research is a collaborative 
effort between researchers at the University of Virginia (Jose Fuentes), the Louisiana State 
University (Robert Twilley and Victor Rivera-Monroy), and other FCE scientists.  The study site 
is located along the Shark River in the western region of the Florida Everglades, at FCE-LTER 
site SRS-6.  The dominant tree species around the tower include red (Rhizophora mangle), black 
(Avicennia germinans), and white (Languncularia racemosa) mangroves.  The average tree 
height for this forest canopy is 15 m but trees as high as 25 m can be found randomly scattered 
throughout the landscape.  A raised 200-m long boardwalk was installed to provide tower access 
from the shore.  The boardwalk protects prop roots, seedlings, and the soil from repeated 
disturbances.  The tower is currently instrumented to define the micrometeorological conditions 
inside and just above the canopy, and to study mangrove physiology.  Current measurement and 
data acquisition systems are powered with a combination of solar panels and batteries.   

Continuous field measurements from an eddy covariance (EC) system provide the net 
exchange of carbon dioxide across the forest-atmosphere interface at half-hourly intervals.  The 
EC system consists of a 3-dimensional sonic anemometer and a fast response open-path gas 
analyzer.  When measured over days and weeks, these measurements provide the magnitude of 
the net carbon exchange between atmosphere and forest, sediment accretion, and estuary 
exchange.  Several key local climate variables are also continuously measured from the tower.  
These variables control carbon sequestration on short (half-hourly) time scales, and are being 
used in a coupled forest-atmosphere biophysical exchange model to predict forest productivity.  
Additional tower instruments include radiometers to measure light levels, anemometers to 
measure atmospheric turbulence, air thermometers, hygristors to measure humidity, and soil 
thermometers.  These measurements, combined with tidal and salinity information, are 
elucidating the response of the mangrove biome to climate change (e.g. sea level rise) and 
changes in the quantity and quality of freshwater flow from the greater Everglades. 
 
7. Information Management  

The mission of the Florida Coastal Everglades (FCE) Information Management System 
(IMS) has been to facilitate the site’s scientific work and ensure the integrity of the information 
and databases resulting from the site’s coastal Everglades ecosystem research. Throughout FCE 
I, the Information Management (IM) team has provided total support of the site and network 
science by: 1) collecting and archiving both FCE and historical Everglades data, 2) providing 
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comprehensive metadata for data interpretation and analysis, 3) designing and implementing 
tools that facilitate data management, data discovery and data access and 4) contributing to 
LTER network informatics activities.  An Oracle10g relational database has been designed to 
accommodate the diverse spatial and temporal heterogeneous core data and accompanying 
metadata submitted by the FCE researchers.   

FCE cross-referenced project information, such as site location information, datasets, 
sampling attributes and publications, and minimal research data metadata stored in the FCE 
Oracle10g database drive the site’s web site. The FCE web site (http://fcelter.fiu.edu ) serves as 
the primary portal for dissemination of information about FCE, for distribution of datasets, to 
coordinate our Education and Outreach activities, and to aid FCE scientists and students in their 
research. 

The FCE IMS has been committed to the collection and organization of FCE project 
information.  Over the past 3 years, a ‘Project’ section has been added to the formal FCE data 
management policy mandating project information submission by researchers to the FCE 
Information Manager must occur no later than 6 months of notification of project funding.  The 
FCE IMS group developed a web-based project and information management application 
(http://fcelter.fiu.edu/research/projects/ and http://fcelter.fiu.edu/research/projects/sampling.htm ) 
for FCE researchers and FCE management groups to help with future experimental designs, 
publication discovery, and intra-site syntheses.  
 Over the past 6 years, the FCE IMS have been active participants in LTER network level 
activities. Data contributions have been made regularly to the following LTER network 
databases: 1) ClimDB, 2) SiteDB, 3) All Site Bibliography, 4) Personnel, 5) Metacat XML 
database and 6) Data Table of Contents.  The FCE IMS group was also a data contributor to the 
EcoTrends project managed by the Jornada Basin LTER.   

FCE IMS developed an EML metadata converter tool and template called Excel2EML 
and this tool has been made available to the LTER network and broader ecological community 
via the LTER CVS repository and a download link on the FCE web site 
(http://fcelter.fiu.edu/data/tools/).    

The FCE information manager, Linda Powell, was an invited keynote speaker at the 
RED-MEX ILTER All Scientists Meeting in March of 2006, held in Autlán de Navarro, Jalisco, 
Mexico.  She talked about the importance of establishing a strong information management 
system and gave examples of how the FCE LTER program handled different aspects of project 
and information management.  
 
8. Education and Outreach 

During FCE I we developed an Education & Outreach program that communicates our 
research findings to K-12 students, teachers, and the community of south Florida. We have 
developed a variety of programs to assess the most effective approaches to disseminate FCE 
LTER research findings and to educate the public about the ecology and importance of the 
Everglades. These approaches have included:  television segments; a website; video conference 
presentations; a high school student internship program; a science ranger education program with 
Everglades National Park; paired field with schoolyard activities; and classroom presentations.   

In 2001, our first Education & Outreach program, supported high school students and 
teachers while working in the laboratory of an FCE scientist.  The program focused on Felix 
Varela Senior High School, but also included teachers from at least two other local high schools.  
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This particular program also included travel support for both teachers and students to attend the 
Estuarine Research Federation Conference in St. Petersburg, FL, in November 2001.   

In 2003, Susan Dailey, Ph.D., became the FCE LTER Education and Outreach 
Coordinator.  She participated in the development workshop for the Schoolyard LTER 
Workbook held at the Konza Prairie LTER site in April 2003.   Two years later in August 2005, 
Susan left FIU to begin teaching high school biology at Felix Varela High Senior School. During 
that time, she was able to gain an "insider’s" view while enhancing and promoting the visibility 
and use of FCE data and results within the Miami-Dade County Public School science 
curriculum.  Nicholas Oehm assumed the duties of FCE LTER Education and Outreach 
Coordinator in the fall of 2006.  He is also a classroom teacher Felix Varela Senior High School 
and is a former FCE Research Experience for Teachers (RET) participant. 

 
EdEn Venture 

The FCE LTER Education program utilized funds from the NSF EdEn Venture 
supplement to hire Doug Vogel, a volunteer ranger from Everglades National Park, to develop a 
curriculum-based presentation.  As a former public school teacher, Doug was the perfect choice 
to implement the presentation in camp classrooms at Everglades National Park and within 
“Slough Slogs” at the Shark River Valley Tram and Visitor Center. Doug was also able to use his 
presentation during school visits where he was able to teach FCE research techniques to 
elementary, middle, and high school students.  

In addition, Doug also participated in many other FCE-related activities such as 
participating in FCE LTER samplings and visiting many of our research sites.  Doug used many 
of these experiences to establish our own Schoolyard Long Term Ecological Research sites 
through our “Hands on the Everglades”.  Sandy Dayhoff, Shark Look Environmental Education 
Center Coordinator, called our Schoolyard sites a “realistic eye” for students.  “Hands on the 
Everglades” was presented to nearly all of the 4th and 5th graders that will later attend Felix 
Varela Senior High School which is adjacent to the freshwater Everglades.   

The EdEn Venture and Hands on the Everglades resulted in a large number of 
presentations throughout south Florida including Miami-Dade, Broward and Monroe counties. 
At the completion of our EdEn grant period, we had 1,691 student contacts from our 
ForEverglades classroom program.  Foreverglades also included many hands-on activities such 
as periphyton observation and community structure determination, water budget exercises, and 
collecting and observing animals of the Everglades (various bones, tree snail collection, 
woodstork skull, turtle shell).  In addition to the ForEverglades contacts, an additional 1500 
contacts were made through Doug’s tram tours, special programs, and Slough Slogs.   

Surveys from our classroom visits revealed an overwhelming positive response to the 
programs and both the quantity and quality of the information delivered.  Teachers were very 
impressed with the hands-on activities that the students were able to conduct during and after the 
classroom presentations. 
 
Classroom Visits 

In 2003, FCE scientists and our EdEn Venture Ranger conducted classroom visits to 
present curriculum-based ecology lectures.  These lectures were presented for Advanced 
Placement, Honors, General Education, Gifted, and Marine Biology, Environmental Science, and 
Agriscience classes with students in grades 9-12.  Subsequently, some of those students visited 
FCE laboratories and participate in a variety of lab activities.  The presentations were well 
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received by the students and the practical lab experience was the most popular component.  
Many students continued to participate in FCE labs as volunteers to fulfill a program requirement 
for practical experience.   
 We continued our classroom visits through 2007 and FCE researchers gave several 
presentations on topics such as invasive exotic plants, general ecology and genetics, and algal 
dynamics in the Florida Coastal Everglades.  Students were then tested on each of the 
presentations and demonstrated an enhanced understanding of the research presented. 
 
Undergraduate Internship Programs 

NOAA provided the funds for an Educational Internship program for undergraduate 
students from FIU.  The program activities began in January 2004, and several of the participants 
were directly associated with the FCE-LTER program.  In addition, many FCE scientists and 
students participate in an NSF-funded UMEB program hosted at FIU.   

 
Hands on the Everglades 

Our “Hands on the Everglades” was a cooperative program that FCE offered with 
Everglades National Park and ran from 2003-2005.  This program was a combination of 
Schoolyard LTER and EdEn Venture components including teacher workshops and field 
samplings.  In each activity, participants received a lecture and instructed on the use of Hands on 
the Everglades materials.  Teachers were provided with instructional materials on Florida 
Coastal Everglades Ecology and sampling procedures.   

Students also participated in Hands on the Everglades activities and were able to visit 
SLTER plots in Everglades National Park for comparison with others at the Florida International 
University Preserve.   

Two classes from a Hialeah Elementary School visited our study sites.  Half of the 
students visited a hardwood hammock in Everglades National Park and the other half visited a 
hammock in the Florida International University Preserve.  The students visited their assigned 
sites on three different field days during both the wet and dry seasons.  During those visits the 
students collected data on invertebrates, abiotic factors, soils, water availability, tree and plant 
biomass data collections and litterfall.  FCE personnel were on-hand throughout the activity to 
help conduct the data collection and identify litterfall within the study plots.  Teachers then 
followed up with a visit to evaluate the experience and gave overwhelmingly positive response.  
Subsequently, the methods and field activities were published on our website. 
 
High School Intern Program 

Our High School Intern Program began in 2003 with a group of students that were 
enrolled in the Agriscience Academy at Felix Varela Senior High School.  The students used the 
FCE Intern program to fulfill part of their program requirements.  The FCE Intern program 
provided the students with:  research experience; career training; and professional mentoring.  
Students were also expected to participate in a series of lectures given by FCE scientists before 
they were allowed to shadow scientists in the laboratory.  Throughout the internship students 
were tested on the material presented during the lectures and culminated in a final research 
project.  At the end of the semester students gave an oral presentation of their research project to 
their peers and an interpretive presentation at nearby middle schools. 
 After reflecting on the success of our initial Intern program, several changes were made 
in 2005.  Although we continued to work with classroom teachers, we began to deliver a more 
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intensive program with fewer students.  Our first student, worked very closely with a graduate 
student studying belowground biomass and production of sawgrass.  The high school intern 
received high school credit for his course work and presented his research in a poster at the local 
science fair.  Winning several awards, this student advanced to the state science fair where he 
won the First Place title and over $17,000 in prizes and scholarships against a total pool of over 
350, 000 students. 
 Through the evolution of our High School Intern program, it has been renamed Research 
Experience for Secondary Students (RESSt) and grown to include 12 active interns and over 20 
alumni.  Students are working with FCE scientists in the following areas:  seagrass dynamics, 
algal culture, sawgrass growth and seed variation with respect to soil history, nitrogen dynamics, 
and phytoplankton dynamics. Students work between 5 and 10 hours per week while others 
exceed twenty hours a week. Many of these students continue to work on their projects over 
multiple years, present their work in their science classes, travel to elementary and middle 
schools to give presentations, present posters at our annual ASM meetings, and compete in local, 
state and international science fairs.   

In January 2007 we added a segment to our webpage where people can sign up to receive 
a presentation from one of our most outgoing interns. We have two students that participated in 
the Dade County Science Fair and both won “Superior” and advanced to the state competition. 
One of these students is competing for the Silver Knight Award, an award for local community 
service. Three of our interns gave oral presentations as part of our Education and Outreach 
update for the 2006 FCE LTER All Scientists Meeting and their presentations were posted on 
our web pages. 
 
Research Experience for Teachers (RET Program) 

In 2005, our first RET worked in various laboratories throughout the summer, 
participated in field work, and assisted with a metabolism study, received GIS training, 
performed nutrient and oxygen data collection, gained QA/QC experience, and summarized our 
accomplishments on the FCE LTER education website.  The second RET worked closely with 
the Education & Outreach Coordinator, and FCE scientists to adapt classroom activities to 
include information about the Everglades and South Florida ecology references.   

Through our RET program, we provided an opportunity for teachers to develop hands on 
activities and instructional materials that they tested and evaluated in the fall of the 2006 school 
year.  Using those evaluations, the RET continued to create and adapt presentations which he 
gave in several middle and high school classes, the local community college and in dual 
enrollment classes for FIU.  In addition, the RET was able to participate in field and lab work 
while familiarizing himself with several areas of FCE LTER research. Through these 
experiences, he was instrumental in the growth of our RESSt program by placing several 
students with FCE scientists. 
 
Research Experience for Undergraduates (REU) Program 
The FCE Research Experience for Undergraduates (REU) program is funded annually by 
supplements from NSF.  We funded 2-3 students most summers from 2001-2006, except 2005 
when we didn’t receive supplemental funding for our REU program.  In all cases, the students 
bring $750 in supply funds and receive $750 to travel to a scientific meeting and present their 
results.  Virtually all of our past REU students have presented posters of their findings at 
meetings.   
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Web site 

In August 2004, after in house evaluation, reviews and comments from researchers, we 
published our web pages.  Through our website we receive requests from both teachers and 
students for field trips, general Everglades information, and several questions about Everglades 
ecology from students ranging from the elementary college level.   
 
FCE LTER Curriculum Development 

A major focus of our Year 6 FCE LTER Education and Outreach Program was the 
development of curriculum formal education for their ecology modules. The primary target 
audience was high school but we expanded to give lectures in FCE findings and research to 
college courses. We had several test groups for the newly developed curricula including 9th and 
10th grade honors and general biology classes, AP biology classes and AP statistics class. The 
curriculum developed between the Education and Outreach Coordinator and RETs were tested in 
the classroom during the fall of 2006. 

These new materials were developed to increase the understanding of the LTER network 
and the range of biomes that they represent.  Three new presentations were generated.  The first 
presentation is used to introduce ecology and the LTER Network while the remaining 
presentations examine terrestrial and aquatic biomes.  We have also develop a three day take 
home assignment, examination and in class activity.  

Each of these products were distributed to classrooms in the Miami-Dade County Public 
School and Sarasota School systems, Miami Dade College and Florida International University 
and reached to over 1900 students. The evaluations of these new materials show an increase in 
the understanding and application of information about biomes and ecosystems. Students from 
both the high school classes and college classes showed a marked increase in the understanding 
of the Florida Coastal Everglades and the importance of the ecosystem. All of these new 
curricula are being revised and adapted to publish on our FCE LTER education and outreach 
pages. 
 
Partnership development 

In 2002, the FCE Schoolyard program focused on a cooperative arrangement with the 
Miami Museum of Science.  Working with the Museum staff we were able to put together a 
“virtual field trip” program for inner-city, secondary school students.  Through this program 
students were able to interact with scientists through a real-time webcam broadcast from the field 
to a classroom at the Museum.  Students were able to ask the scientist questions and explore the 
complexity of biospheres of the FCE LTER site by showing them live plants, animals, and 
periphyton.  The program was well-received with a great deal of positive feedback on our 
contribution to the museum’s videoconferencing program and the students were very excited to 
interact with the FCE scientists from the museum classroom.   

In 2006, we developed a working relationship with "Shake-A-Leg Miami".  This program 
provides summer and after school care to all students, but is geared towards underrepresented 
and disabled children.  Shake-A-Leg contacted FCE through our webpage to request an FCE 
presentation.  The Education and Outreach Coordinator and our RETs developed a two-day 
workshop with presentation of our “ForEverglades” presentation and two hands-on activities. 
The first activity was used to engage students in a discussion of controlling water flow through a 
5 m by 8 m map of the Everglades and a second activity had several exploratory stations where 
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students were able to examine plants, animals, rocks, and soils of the Everglades. In the end, we 
gave the giant Everglades map to Shake-A-Leg for their continued use with the ForEverglades 
presentation in their winter, spring and fall programming schedule.   

We are currently exploring and developing two new partnerships with the Fort 
Lauderdale Museum of Science and Discovery and the Florida Rock and Sand Company. Our 
new museum partnership has the focus of transferring information from our new FCE II working 
dimensions with a global change focus. The Florida Rock and Sand partnership is to bring new 
high school interns to a restored Everglades wetland to conduct data collections with a similar 
focus to our FCE LTER data collections. 
 
Television and Video 

In early 2005, we filmed a short children’s film called "Kidz Corner" that was aired on 
WLRN The Learning Channel, Closed circuit TV in the Miami Dade County Public School 
television station and childrens’ pediatrics hospital units of Florida. This television program was 
developed and is produced by high school students, and our episode featured a trip to the Florida 
Coastal Everglades and Everglades National Park. We assisted in both the script and scene 
development for months prior to the filming of the episode, and had several FCE researchers 
who "starred" in the film.  

Beginning in October 2006 we started a project to develop data file education movies for 
the classroom. The purpose of these videos is to generate interest for the use of the datasets 
published on the FCE LTER web pages. These products will be distributed to teachers and 
trailers to the movies will be made available on our Education and Outreach web pages during 
FCE LTER year seven. Distribution of these combined products to science department heads in 
Miami Dade schools will enable us to increase awareness of our web published FCE LTER 
research beyond the website or our existing contacts. 
 
 
B. FINDINGS 
The following publication summarizes findings for the first phase of Florida Coastal Everglades 
research. 
Childers, D.L. 2006. A synthesis of long-term research by the Florida Coastal Everglades LTER 
program. Hydrobiologia, 569(1): 531-544. 
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Abstract

This paper synthesizes research conducted during the first 5–6 years of the Florida Coastal Everglades
Long-Term Ecological Research Program (FCE LTER). My objectives are to review our research to date,
and to present a new central theme and conceptual approach for future research. Our research has focused
on understanding how dissolved organic matter (DOM) from upstream oligotrophic marshes interacted
with a marine source of the limiting nutrient, phosphorus (P), to control productivity in the oligohaline
estuarine ecotone. We have been working along freshwater to marine transects in two drainage basins
located in Everglades National Park (ENP). The Shark River Slough transect (SRS) has a direct connection
to the Gulf of Mexico, providing this estuarine ecotone with a source of marine P. The oligohaline ecotone
along our southern Everglades transect (TS/Ph), however, is separated from this marine P source by the
Florida Bay estuary. We originally hypothesized an ecosystem productivity peak in the SRS ecotone, driven
by the interaction of marine P and Everglades DOM, but no such productivity peak in the TS/Ph ecotone
because of this lack of marine P. Our research to date has tended to show the opposite pattern, however,
with many ecosystem components showing enhanced productivity in the TS/Ph ecotone, but not in the SRS
ecotone. Water column P concentrations followed a similar pattern, with unexpectedly high P in the TS/Ph
ecotone during the dry season. Our organic geochemical research has shown that Everglades DOM is more
refractory than originally hypothesized. We have also begun to understand the importance of detrital
organic matter production and transport to ecotone dynamics and as the base of aquatic food webs. Our
future research will build on this substantial body of knowledge about these oligotrophic estuaries. We will
direct our efforts more strongly on biophysical dynamics in the oligohaline ecotone regions. Specifically, we
will be focusing on inputs to these regions from four primary water sources: freshwater Everglades runoff,
net precipitation, marine inputs, and groundwater. We are hypothesizing that dry season groundwater
inputs of P will be particularly important to TS/Ph ecotone dynamics because of longer water residence
times in this area. Our organic geochemical, biogeochemical, and ecosystem energetics work will focus more
strongly on the importance of detrital organics and will take advantage of a key Everglades Restoration
project, scheduled for 2008 or 2009, that will increase freshwater inputs to our SRS transect only. Finally,
we will also begin to investigate the human dimensions of restoration, and of a growing population in south
Florida that will become increasingly dependent on the Everglades for critical ecosystem services (including
fresh water) even as its growth presents challenges to Everglades sustainability.

Introduction

This special issue is a compendium of the research
conducted during the first 5–6 years of the Florida

Coastal Everglades Long-Term Ecological
Research Program (FCE LTER). Synthesizing this
work, and presenting a conceptual basis for future
research, was both an exciting and daunting task.
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My objectives for this synthesis are (1) to review
the research to date in the context of the original
central theme and primary research hypotheses;
(2) to synthesize our findings in the context of a
new central theme and conceptual approach, and;
(3) to demonstrate how future research will build
on our current knowledge of (a) the coastal
Everglades landscape; (b) efforts to restore coastal
ecosystems, and; c) estuarine and coastal ecosys-
tems in general.

Research in the oligotrophic coastal everglades

Our research to date has focused on biophysical
dynamics in the estuarine ecotone regions of the
coastal Everglades. Our central theme and orga-
nizing hypotheses, presented, below, focused on
understanding how dissolved organic matter from
upstream oligotrophic marshes interacted with a
marine source of phosphorus, the limiting nutrient,
to control estuarine productivity where these two
influences meet – in the oligohaline ecotone. This
dynamic was affected by the interaction of local
ecological processes and landscape-scale drivers
(hydrologic, climatological, and human; Fig. 1).
Our organizing theme has been that regional pro-
cesses mediated by water flow control population
and ecosystem level dynamics at any location within

the coastal Everglades landscape. From this theme,
we have investigated the following hypotheses:

Hypothesis 1:
In nutrient-poor coastal systems, long-term
changes in the quantity or quality of organic
matter inputs will exert strong and direct con-
trols on estuarine productivity, because inor-
ganic nutrients are at such low levels.

Hypothesis 2:
Interannual and long-term changes in freshwa-
ter flow control the magnitude of nutrient and
organic matter inputs to the estuarine zone,
while ecological processes in the freshwater
marsh and coastal ocean control the quality and
characteristics of those inputs.

Hypothesis 3:
Long-term changes in freshwater flow (manifest
through management and restoration in the
coastal Everglades) will interact with long-term
changes in the climatic and disturbance regimes
to modify ecological pattern and process across
coastal landscapes.

We have tested these hypotheses along fresh-
water to marine gradients represented by land-
scape transects in two Everglades drainage basins
in Everglades National Park (ENP). The Shark
River Slough transect (SRS) is anchored at canal

Figure 1. A conceptual simplification of the central theme and three main hypotheses that have been driving our research to date. The

ovals represent key hydrologic, climatological, ecological, and human drivers. The small rectangles are the inputs thought to most

strongly control ecosystem productivity in the oligohaline ecotone. H1, H2, and H3 refer to the three main hypotheses (see text).
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inflow points along the Tamiami Trail and extends
through the mangrove estuary to Florida’s south-
west coast. Historically, most of the water draining
the Everglades flowed through this system. The
Taylor Slough/ENP Panhandle transect (TS/Ph) is
anchored at two main canal inflow points, and
extends through the oligohaline ecotone and
Florida Bay estuary to the same coastal ocean
endpoint. This is a smaller, more localized drain-
age basin (see Trexler & Gaiser, 2006, for a more
detailed description of the transects and a site
map). Because the freshwater Everglades is a
highly oligotrophic, phosphorus (P) limited system
(Noe et al., 2001), freshwater inflow to both estu-
aries is very nutrient-poor. In fact, the source of P
to Everglades estuaries is marine water from the
Gulf of Mexico, not the upstream watersheds
(Fourqurean et al., 1992; Chen & Twilley, 1999;
others), such that these systems are biogeochemi-
cally ‘‘upside-down’’ (Childers et al., 2006).

Data from the 1990s suggested a generalized
ecosystem productivity peak in the oligohaline
ecotone region of our SRS transect, where tidal
inputs of marine P meet organic matter-rich inputs
from the freshwater Everglades, but no such peak
in the southern Everglades ecotone (our TS/Ph
transect), because Florida Bay is so efficient at
sequestering marine P (Fig. 1). This central theme
directed our research at the oligohaline ecotone
regions of both transects, but also required us to
learn more about biophysical dynamics both
upstream (freshwater Everglades) and downstream
(the Shark River mangrove estuary and Florida
Bay) of the ecotone.

Primary production
The guiding question for our primary production
research has been: How are patterns and magni-
tudes of primary production controlled by fresh-
water flow and the concentrations and

Figure 2. (a) Generalized landscape-scale patterns of our expectations for how ecosystem productivity would vary along the Shark

River Slough (solid line) and southern Everglades (TS/Ph; dashed line) transects in response to the interactions shown in Figure 1. (b)

Generalized landscape-scale patterns of how ecosystem productivity actually varied along the Shark River Slough (solid line) and

southern Everglades (TS/Ph; dashed line) transects, based on the results presented in this issue and synthesized in this paper.
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characteristics of nutrients and organic matter in
the source water? At the scale of our two landscape
transects, mangrove aboveground net primary
production (ANPP) was higher along the SRS
transect than along the TS/Ph transect while
sawgrass ANPP was not different and periphyton
production was higher in the TS/Ph basin (Ewe
et al., 2006). However, the contribution of
periphyton to overall ANPP at the freshwater sites
was considerably greater in the southern Ever-
glades (the TS/Ph transect; Ewe et al., 2006; Iwa-
niec et al., 2006). Our central theme predicted an
oligohaline productivity peak in SRS (Fig. 2a), but
our ANPP data actually showed a ‘‘wedge’’ of
increasing productivity towards the marine end-
member (Fig. 2b). The same marine-directed in-
crease in ANPP has been seen in Florida Bay
(Fourqurean et al., 1992), and we saw some indi-
cations of higher ANPP in the oligohaline ecotone
along this same transect (TS/Ph; Ewe et al., 2006).
Our ANPP data did not generally support our
original hypothesis about landscape-scale patterns
in ecosystem productivity.

Along the SRS transect, mangrove production
closely paralleled soil P content (Ewe et al., 2006;
Chambers & Pederson, 2006), with both increasing
from the oligohaline ecotone to the Gulf of Mex-
ico. Krauss et al. (2006) integrated a mangrove
productivity mesocosm study with field observa-
tions from our SRS mangrove sites. They found a
close positive coupling of hydroperiod and soil P
content, and suggested that this is likely driven by
tidal inputs of marine P. They further concluded
that the negative response of mangrove production
to increased hydroperiod may be offset by the P
subsidy provided by this increased tidal inunda-
tion. In a different mesocosm experiment, Cardo-
na-Olarte et al. (2006) found higher production in
mangroves receiving variable inundation, simu-
lating tides, compared with mangroves that were
permanently flooded. Soils in the former treatment
had lower soluble reactive P concentrations, either
because of uptake associated with the higher pro-
ductivity because of physical flushing of P from the
mesocosm soils.

In their focus on the shorter hydroperiod TS/
Ph transect, Childers et al. (2006) showed that
sawgrass ANPP was typically highest at the estu-
arine ecotone sites, but was also sensitive to
interannual variation in salinity. Productivity was

negatively related to (1) maximum salinity; (2)
number of days with measurable salinity, and; (3)
annual mean salinity. Across all southern Ever-
glades sites, sawgrass ANPP was negatively related
to water depth and hydroperiod, and there was a
significant negative relationship between spikerush
stem densities and sawgrass ANPP (Childers et al.,
2006). Saunders et al. (2006) were able to infer
historical patterns in the SRS freshwater macro-
phyte community from down-core soil profiles of
seeds and plant-specific organic biomarkers (see
also Hajje & Jaffé, 2006). Their data suggested an
increase in sawgrass biomass and cover in some
regions of SRS in the last 25 years, probably due
to management-induced declines in hydroperiod
and water depth during this time. Saunders et al.
(2006) found that sawgrass responds positively to
a general drying of the landscape. Childers et al.
(2006) suggested that a general decline in saw-
grass may occur where long-term hydrologic
management causes a wetter landscape, and this
decline will likely be accompanied by a commu-
nity shift to deeper water species, such as spike-
rush. In upper Taylor Slough (our TS/Ph
transect), Armentano et al. (2006) demonstrated
a similar, relatively rapid shift from short hy-
droperiod to longer hydroperiod plant species
since 1979, followed by [the beginnings of a] shift
back to shorter hydroperiod species after 1999.
They linked both to changes in the management
of Taylor Slough hydrology, which made the
system wetter after 1979, then drier after 1999.
This coupling of vegetation community dynamics
to hydrologic change has also been reported for
SRS (Ross et al., 2003). In all cases, it seems
clear that the freshwater marsh plant community
responds dramatically to water management and
restoration.

Our results have also shed considerably more
light on the regulation of primary production at
more site-specific scales. In the freshwater marsh,
periphyton productivity was higher at sites nearest
canal inflows at times, but these events were gen-
erally short-lived and associated with initial rew-
etting at the onset of the wet season (Iwaniec et al.,
2006). Periphyton tissue nutrient content is the
most rapidly responding indicator of long-term P
enrichment (Gaiser et al., 2005), and while Iwaniec
et al. (2006) found low periphyton tissue N:P ra-
tios at these sites, they found little indication of
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long-term eutrophication. In Florida Bay, epi-
phytic diatom community structure was related to
salinity and local nutrient availability, and diatom
species distributions were good indicators of
spatial variation in water masses across the bay
(Frankovich et al., 2006). Across Florida Bay,
benthic microalgal biomass was 6–10 times
greater than epiphytic algal biomass, and pro-
duction by both was strongly controlled by P
availability – particularly in the eastern bay (Ar-
mitage et al., 2005, 2006). The nutrient enrich-
ment experiments that demonstrated this pattern
also showed that epifaunal biomass doubled when
P was added, and these grazers had a top-down
effect on algal responses to nutrient additions (Gil
et al., 2006).

Trophic dynamics
The guiding question for our trophic dynamics
research has been: How does freshwater flow or the
source of this water control secondary production
and trophic dynamics? At the landscape scale, we
found that fish biomass and species richness were
both considerably lower at the intertidal, non-
ecotone SRS mangrove sites relative to the oli-
gohaline ecotones of either transect (Green et al.,
2006). Green et al. (2006) also reported higher fish
biomass at the ecotone sites relative to upstream
freshwater marsh sites. They presented a concep-
tual model for this landscape-scale pattern that
relates fish habitat connectivity to topographic
differences between the SRS and TS/Ph ecotones
and to major differences in inundation regime.
Astronomical tides drive the SRS estuary, where
mangrove wetlands typically flood twice daily,
while high wet season water levels in the southern
Everglades estuarine ecotone more closely resem-
ble one [or a few] long-duration inundation events
per year. Overall, our fish standing stock data
showed an ecotone peak along both transects,
suggesting that the consumer data supported our
original hypothesis about landscape-scale patterns
in ecosystem productivity in SRS but not the
southern Everglades (Fig. 2b). This, in turn, sug-
gests that we should focus future work on a better
understanding of the TS/Ph ecotone region.

Work by Lorenz & Seraty (2006) in this
southern Everglades oligohaline ecotone (TS/Ph
transect) related declines in freshwater inflows
to this region since the 1960s, higher ecotone

salinities, lower numbers of demersal fish, and
declines in the populations of wading birds that
are dependent on those fish. They further sug-
gested that a [relatively rapid] northward expan-
sion of the dwarf mangrove ecotone in the
southern Everglades the last 50 years (Gaiser et
al., 2006; Ross et al., 2000) may have contributed
to declines in forage fish numbers and in wading
bird populations. In spite of this long-term decline,
fish standing stocks in oligohaline ecotone wet-
lands were higher than either upstream or down-
stream sites (Green et al., 2006).

Further upstream, Rehage & Trexler (2006)
investigated fish community responses to canal
inflows of fresh water. They found that animal
densities tended to increase with distance from
canal inflow points, but this increase occurred
within 5 m of the canal for many taxa. They sug-
gested that this pattern may be a bottom-up re-
sponse to higher soil P (Chambers & Pederson,
2006) and primary productivity at these sites
(Childers et al., 2006; Iwaniec et al., 2006), such
that this stimulation of secondary production may
compensate for higher predation at canal edges by
large fish. Overall, food webs in the freshwater
marsh consumer community appear to be based
on detrital food sources, not direct grazing on live
plant material (Williams & Trexler, 2006).

Experimental research conducted at more
localized scales has shed considerable light on
consumer dynamics. Dorn et al. (2006) reported on
top down effects in SRS freshwater marshes. They
found that [experimental] removal of large fish
predation increased the numbers of smaller fish and
decreased numbers of invertebrate meiofauna
within periphyton mats. This removal had no ef-
fects on periphyton mat biomass, but it did coin-
cide with an increase in detrital P content. Their
results were independent of hydroperiod and
macrophyte density. Liston (2006), however,
studied the infaunal communities living within
periphyton mats and found that community
structure was related to productivity while infaunal
densities were related to hydroperiod. The com-
munity structure of infauna living within the ben-
thic flocculent organic matter layer was also tied to
hydroperiod. More specifically, Liston (2006)
suggested that trophic dynamics in long hydrope-
riod freshwater wetlands may be regulated by
top-down dynamics (as per Dorn et al., 2006) while
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bottom-up dynamics are more important in short
hydroperiod wetlands.

Soil dynamics
The guiding question for our soil dynamics
research has been: How do changes in freshwater
flow or the content of source water control organic
matter accumulation in freshwater and mangrove
wetland soils? In the oligotrophic, P-limited Ever-
glades, soil P is an excellent long-term indicator of
P supply and availability. Chambers & Pederson
(2006) found somewhat higher bulk soil P at the
sites adjacent to canal inflows. For example, total P
levels at the TS/Ph sites nearest to canals averaged
92 lg P cm)3 compared with only 40 lg cm)3 at
the interior freshwater marsh sites. This pattern
was consistent with past results from SRS and
Taylor Slough (Childers et al., 2003). At the land-
scape scale, bulk soil P increased from freshwater
marsh sites to those closest to the Gulf of Mexico
(Florida Bay along the TS/Ph transect and the
mangrove sites along the SRS transect; Chambers
& Pederson, 2006). This trend held for bulk P in the
soils, as well as for the 3 forms of P most likely to be
available to plants – inorganic P (P-I), inorganic P
bound to Fe and Mg minerals (P-II), and Ca-
bound inorganic P (P-III). Along the SRS transect,
total soil P increased from approximately
97 lg P cm)3 (freshwater marsh sites) to
132 lg cm)3 in the ecotone to 250 lg cm)3 at the
estuarine [mangrove] sites. In the southern Ever-
glades, total soil P pools increased from about
40 lg cm)3 at the interior freshwater marsh sites to
146 lg cm)3 in the ecotone (Chambers & Peder-
son, 2006). Generally, soil and sediment P content
did not support our original hypothesis about
landscape-scale patterns in ecosystem productivity
(Fig. 2a), but rather followed the general patterns
in Fig. 2b.

Soil and sediment P content is affected by both
local and more distant sources of organic matter
and organic nutrients. Jaffé et al. (2001) used a
biomarker-based assessment of sources of partic-
ulate organic matter (POM) to the SRS and TS/Ph
estuaries. Their conceptual model suggested dif-
ferent processes controlled POM mixing in these
two systems. Mead et al. (2005) refined this model
by showing that simple end-member models do
not work well in Everglades estuaries. Much of the
POM in these systems is not suspended in the

water column, but rather is found as a flocculent
detrital layer above the soil surface. Neto et al.
(2005) reported that much of this ‘‘floc’’ was
locally produced, which greatly complicates tra-
ditional 2-source allochthonous mixing models.

Within Florida Bay sediments, Xu et al. (2006)
found that organic markers for mangrove organic
matter decreased towards the Gulf of Mexico
while seagrass markers increased. Carbon isotope
signatures (d13C) confirmed this, with d13C
enrichment increasing along this northeast to
southwest gradient, from roughly )20 to )13.5 per
mil (Xu et al., 2006). Water column organic matter
sources (based on the prevalence of algal and
bacterial geochemical markers) were more impor-
tant in the basins of the central bay, which are
more hydrologically isolated from either ecotone
(mangrove) or marine sources, suggesting that the
sediments in this region are most strongly influ-
enced by locally derived organic matter.

Nutrient and dissolved organic matter
(DOM) dynamics
The guiding questions for our biogeochemical and
organic geochemical research has been: (1) How is
the quality and/or quantity of DOM or the quan-
tity of inorganic nutrients in source water altered
by changing freshwater flow versus internal pro-
cesses occurring at a given location in the land-
scape? (2) How are local ecosystem processes
controlled by changes in source water DOM or
inorganic nutrients? At the broadest scale, we
addressed these questions with our long-term water
quality data. Total P concentrations were quite low
at the freshwater sites (often 0.2 lM), reflecting the
oligotrophic nature of these marshes (Childers
et al., 2006). Concentrations of TP increased from
the ecotone to the Gulf of Mexico in the SRS
estuary, reflecting the marine source of this limiting
nutrient. We found no evidence for higher oligoh-
aline P availability, as was originally hypothesized
(Fig. 2). In the southern Everglades, we saw a
similar pattern of higher TP concentrations near
the marine P source, but only at the Florida Bay
sites (Childers et al., 2006). The estuarine ecotone
along our TS/Ph transect has negligible astro-
nomical tidal influence, and does not have the
direct connection to marine P that we see in the
SRS ecotone. However, during the dry season we
routinely found high TP concentrations at our
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ecotone sites (see Fig. 3a for a summary of these
P patterns). Although our long-term nutrient con-
centration patterns did not generally support our
original hypothesis about landscape-scale patterns
in ecosystem productivity (Fig. 2), these data are
central to the new hypotheses and approaches we
will take in the future (discussed below).

Everglades estuaries are unique not only
because they are ‘‘upside-down’’ – that is, because
the source of limiting P is the ocean not the
watershed – but also because water flowing from
freshwater Everglades wetlands is virtually free of
suspended sediments. The only exogenous source
of POM to the estuarine ecotone is downstream

Figure 3. Note that the x-axis labels for a–c is shown in C. (a) Generalized landscape-scale patterns of water column P concentrations

in the wet season (left panel) and dry season (right panel) along the Shark River Slough (solid line) and southern Everglades (TS/Ph;

dashed line) transects (note the similarity to Figure 2b). (b) Hypothesized landscape-scale patterns of water residence time in the wet

season (left panel) and dry season (right panel) along the Shark River Slough (solid line) and southern Everglades (TS/Ph; dashed line)

transects. Dry season water residence time in the southern Everglades ecotone is long without freshwater inflow or tidal flushing.

Residence time in freshwater SRS marshes is long, but is dramatically shorter in the ecotone because of regular tidal flushing. (c) The

relative influence of four main water sources that we hypothesize are driving oligohaline ecotone dynamics. For each landscape

component (freshwater marshes, estuarine ecotone, and estuary), the SRS and TS/Ph transects are shown with separate bars.

white = freshwater inflow, dark gray = marine water, light gray = net precipitation, black = groundwater. The major difference

between the 2 transects is in the ecotone in the dry season, when we hypothesize that groundwater inputs to the TS/Ph transect are

relatively large compared with the SRS transect.
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transport of ‘‘floc’’. Interest in the dynamics and
importance of floc has grown in recent years (Jaffé
et al., 2001; Mead et al., 2005; Neto et al., 2005;
Wood, 2005; Leonard et al., 2006), but much of
our organic geochemical research has focused on
DOM dynamics (Jaffé et al., 2004). In fact, we
hypothesized a productivity peak in the oligoha-
line zone of the SRS transect because this is where
DOM-rich Everglades water first encounters the
marine source of P (Figs. 1 and 2a).

Considerable effort has been spent studying the
sources, transport, and fate of DOM along our
FCE transects (Lu et al., 2003; Jaffé et al., 2004;
Maie et al., 2005, 2006). Davis et al. (2006) and
Maie et al. (2006) quantified the release of dis-
solved organic carbon (DOC) and inorganic
nutrients as leachate during plant decomposition.
They found that the leaching of DOC and P from
senesced mangrove, spikerush, and sawgrass leaves
was primarily a physical process, but mobilization
of nutrients – particularly P – by microbes on the
leaves becomes more important later in the
decomposition process (Davis et al., 2003; Romero
et al., 2005; Maie et al., 2006; Rubio & Childers,
2006). The same was true of the seagrass decom-
position process (Fourqurean & Schrlau, 2003). Of
the major ecotone plant litter examined, DOC
leaching rates were greatest from mangrove leaves.
Davis et al. (2006) combined their leaching data
with leaf litterfall rates (mangrove) and leaf mor-
tality rates (sawgrass and spikerush) and estimated
that this process may be an important vector for
moving soil nutrients – particularly P – into the
water column. Additionally, Scully et al. (2004)
found different rates of physico-chemical process-
ing, photodegradation, and microbial degradation
for DOM leached from different vegetation sour-
ces, suggesting the need for a more detailed
molecular characterization of DOM (Jones et al.,
2004; 2006).

The nitrogen component of DOM is important
because of relatively large inputs of dissolved
organic nitrogen (DON) to Everglades estuaries
from the P-limited freshwater system. Canal water
flowing into freshwater marshes appears to con-
tain primarily refractory DON (Lu et al., 2003),
while these marshes themselves are a source of
more labile [proteinaceous] DON (Lu et al., 2003;
Jones et al., 2005; 2006). However, it appears that
most of the DON input to Everglades estuaries is

relatively refractory (J. Boyer, Florida Interna-
tional Univ., unpubl. Data). Some of this DON
appears to be bacterial in origin (Jones et al.,
2005), and much of the bio-available DON has
been consumed or transformed before reaching the
estuarine ecotone.

Interestingly, in some places in Florida Bay it
appears that the availability of labile DOC may
limit microbial production. Where cyanobacterial
blooms periodically occur, waterborne bacteria
compete with phytoplankton for both inorganic
nutrients (often N, not P, because these blooms
typically occur near the Gulf of Mexico margin)
and DOC. In central Florida Bay, ectoenzyme
activity suggested that bacterial production was
limited by DOM availability while near the estu-
arine ecotone P availability was the primary con-
trol (Williams & Jochem, 2006). Maie et al. (2006)
studied seasonal variation of one form of DOC
(chromophoric DOC) in both FCE estuaries, and
found higher concentrations in the wet season in
both estuaries. In Florida Bay, chromophoric
DOC was primarily autochthonous while these
pools reflected both freshwater marsh and man-
grove wetland sources in the SRS estuary.

The tidal efflux of DOM from mangrove wet-
lands has been well documented in previous stud-
ies. Tidally mediated exchanges of DOC from our
SRS mangrove wetlands appear to be driven by
inundation time and by water source. During the
wet season, when salinities in this estuary were
lowest, mangroves exported DOC and, in partic-
ular, the fringing mangroves released DOC on
both flooding and ebbing tides (Romigh et al.,
2006). As such, tidal exchanges of DOC appeared
to be controlled by freshwater inflow and tidal
amplitude.

Disturbance and landscape-scale dynamics
The guiding question for our disturbance and
larger-scale research has been: How do long-term
changes in freshwater flow (primarily manifest
through Everglades restoration) interact with
long-term changes in the climatic and disturbance
regimes to modify ecological pattern and process
in coastal landscapes? The dominant disturbances
on the coastal Everglades are hurricanes and fire,
which affect the landscape at a range of spatial
scales (Lockwood et al., 2003), and hydrologic
extremes (droughts and floods, mediated or
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exacerbated by human activities), which tend to
preferentially affect animal and upland communi-
ties (Trexler et al., 2005). Sea level rise is also a
disturbance that has gradual effects (i.e., ‘‘press-
type’’) rather than event-based impacts (i.e.,
‘‘pulse-type’’). We define our oligohaline ecotone
as the region where freshwater marsh plants (pri-
marily sawgrass and spikerush) co-exist with
mangroves. Sea level rise and hurricane-induced
storm surges tend to force the estuarine boundary
of the ecotone up-slope while fire, of which man-
groves are highly intolerant, moves the landward
ecotone boundary seaward. Everglades Restora-
tion will also increase freshwater inflows into the
estuarine ecotone in the future, and the long-term
spatial dynamic of this region will continue to be a
key focus of our disturbance research.

Freshwater inflows to the southern Everglades
have declined dramatically in the last 50 years
(Light & Dineen, 1994), but have recently
increased after a hydrologic restoration project
removed a key levee along the C-111 Canal (which
anchors the eastern leg of our TS/Ph transect;
Parker, 2000). During this period of reduced
freshwater inflow, the mangrove ecotone has
expanded north considerably (Ross et al., 2000).
Long-term peat accretion in these relatively new
mangrove wetlands has been considerably higher
(approximately 3 mm yr)1) than the marl soil
accretion by the freshwater marshes that were
replaced (about 0.8 mm yr)1; Gaiser et al., 2006).
This rate of peat production is roughly equal to
the rate of eustatic sea level rise in south Florida.
Short-term sediment deposition rates [in the eco-
tone] associated with specific storm events can be
considerably higher, however (Davis et al., 2004).
For example, the storm surge from Hurricane
Wilma, a Category 3 hurricane that tracked
northeast directly along our SRS transect on
October 24 2005, deposited over 3 cm of carbonate
mud in the mangrove forests of this system. Long-
term peat accretion estimates plus episodic surfi-
cial deposition during storms suggest that these
oligohaline ecotones may be able to maintain
themselves in this transgressive environment – at
least in the near term.

Hurricane winds can have a significant effect on
mangrove forests, particularly along our SRS
transect where the trees are taller (Chen & Twilley,
1999; Simard et al., 2006). In their analysis of

mangrove forest recovery after the 1992 Hurricane
Andrew, Ward et al. (2006) noted that these for-
ested wetlands appear to follow size-structured
organizing principles similar to those described for
recovering upland forests. The distribution of
woody debris (Krauss et al., 2005) and its
decomposition (Romero et al., 2005) are impor-
tant feedbacks to biogeochemical cycling and
organic matter dynamics. Seedling dynamics play
an important role in how mangrove forests recover
from canopy damage. Cardona-Olarte et al. (2006)
found that white mangrove (Laguncularia race-
mosa) seedlings – generally considered to be the
‘‘pioneer’’ species – were considerably more sen-
sitive to variation in salinity and hydroperiod than
were red mangrove (Rhizophora mangle) seedlings;
as such, white mangrove seedlings had a compet-
itive advantage only under conditions of low
[hydrologic and salinity] stress. The 2005 hurricane
season was particularly active in south Florida.
Our LTER sites were directly affected by Hurri-
canes Dennis (early July), Katrina (late August),
Rita (mid-September), and Wilma (late October).
These large-scale disturbances present a unique
opportunity of evaluate how hurricanes regulate
mangrove forest productivity, particularly in the
SRS estuary where mangrove forests grow to
considerable stature. We will continue to analyze
the ecological effects of these disturbances at var-
ious spatial scales in our future research.

Future research focusing on the oligohaline

ecotone

Our research to date has focused on understanding
ecological dynamics along two experimental tran-
sects. Our original conceptual model detailed this
focus, and demonstrated the importance of quan-
tifying the major flows of energy and nutrients in
the freshwater marsh, the estuarine ecotone wet-
lands, and the subtidal Florida Bay. Most of the
ecosystem components we studied showed only
equivocal support for our original hypothesis
(Fig. 2). Rather, patterns of ecosystem production
(Fig. 2b) tended to follow the generalization of
water column P availability shown in Fig. 3a. As I
discuss above, the lack of a peak in P concentra-
tions or productivity in the oligohaline ecotone of
the SRS transect is likely because the dissolved
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organic matter supplied by the freshwater Ever-
glades is less labile than we originally hypothe-
sized. We also learned that the downstream
transport of particulate organics may be an
important vector of nutrients and energy from the
freshwater Everglades to the SRS oligohaline
ecotone (Jaffé et al., 2001; Mead et al., 2005; Neto
et al., 2005; Wood, 2005). Interestingly, most
movement of this particulate organic matter
occurs as slow-moving bedload of the nearly
neutrally buoyant material that we refer to as
‘‘floc’’ (Leonard et al., 2006). Williams & Trexler
(2006) reported that the small fish and invertebrate
food webs are detrital-based, rather than grazer-
based, so this ‘‘floc’’ may be an important base for
these food webs. It is thus possible that the dom-
inant supply of labile organic matter from the
freshwater Everglades is as particles consumed
directly by animals rather than as DOM coupled
with microbial loop transformations. As such, we
will focus our future research more strongly on the
particulate (‘‘floc’’) component of organic matter
production, fate, and transport.

In the southern Everglades estuarine ecotone,
we found an unexpected peak in P concentrations
and productivity during the dry season. We are
hypothesizing that this is partially a result of the
long residence time of water, which allows P pro-
duced by internal recycling to accumulate
(Fig. 3b). Another cause for this pattern may be
relatively P-rich groundwater inputs to this oli-
gohaline ecotone during the dry season (Fig. 3c).
Price et al. (2006) quantified the upward move-
ment of shallow brackish groundwater during the
dry season, when water levels in the southern
Everglades were relatively low and the upstream
freshwater head was minimal (these freshwater
marshes dry down during this time). Furthermore,
they reported that this groundwater had concen-
trations of P ranging from 1 to 2.3 lM, compared
with surface water concentrations that were typically
less than 1 lM (Childers et al., 2006; Price et al.,
2006). We hypothesize that the input of this P-rich
groundwater, at the time of year when surface water
residence time appears to be longest, plays a strong
role in the P concentration and productivity peaks
we have observed in the southern Everglades estu-
arine ecotone. We will address this hypothesis with
enhanced measures of groundwater dynamics at our
estuarine ecotone sites.

For several reasons, hydrology will become a
more important component of our future research
as we focus our efforts more closely on biophysical
dynamics in the estuarine ecotone (Fig. 4). To test
the hypotheses I present above (Figs. 3b, c), we
will be quantifying water residence times in both
ecotone regions. We expect relatively long water
residence times in the southern Everglades ecotone
during the dry season because this system has no
astronomical tidal energy to drive exchange with
the estuary proper (Fig. 4). We will be measuring
groundwater P inputs to this oligohaline ecotone,
and studying the fate of this P relative to macro-
phyte production (particularly belowground pro-
duction), microbial dynamics, and higher food
webs. The supply of ‘‘floc’’ to the estuarine eco-
tone, and its energetic fate in the ecotone, will be
an important new focus not just for our hydrologic
research, but for our organic geochemical and
food web work as well. As a final, overarching
reason for our enhanced focus on hydrology, we
expect freshwater inflow to increase markedly
along our SRS transect during this next phase of
our research. In 2008 or 2009, nearly 5 km of the
Tamiami Canal levee along the northern boundary
of Shark River Slough will be removed. As part of
this, a 3.2 km bridge will be built at the northern
anchor of our SRS transect. The removal of this
levee will permit a considerable increase in fresh-
water inflow at this site, and along our entire SRS
transect. This ‘‘Grand Hydrologic Experiment’’
will not take place along our southern Everglades
(TS/Ph) transect, but it will still provide us with an
excellent opportunity to study the effects of
increased freshwater inflows to one of our estua-
rine ecotone regions.

Our future research will also include a human,
or societal dimension. The FCE LTER is located
entirely within Everglades National Park, which is
immediately adjacent to Miami-Dade and Monroe
Counties and to more than 2 million people. The
Everglades is an excellent system to study human-
natural interactions. This expansive wetland land-
scape provides freshwater to 95% of south Flor-
ida’s 6 million residents by recharging the shallow
Biscayne Aquifer with clean drinking water. Yet
this growing human population is so close to the
natural system on which it depends that adverse
human impacts are increasing and worsening.
Conflicts seem inevitable between human
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Figure 4. Conceptual depiction of the future direction of our research. Note the focus on estuarine ecotone dynamics along both

transects. Rectangles = hydrologic drivers (=key water masses), ovals = climatic/environmental drivers, and heavy gray arrows

crossing the ecotone boundaries (and box) = key exchanges with upstream (freshwater Everglades wetlands) and downstream

(Florida Bay and the Shark River estuary) systems. Abbreviations for components of the ecosystem conceptual model within each

oligohaline ecotone box: (A) periphyton or phytoplankton; (B) emergent herbaceous vegetation (typically sawgrass or spikerush); (C)

mangroves; (D) inorganic nutrients (P & N); (E) bacteria; (F) fish; (G) DOM; (H) POM (‘‘floc’’ in water compartment, soil OM in soil

compartment).
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dependence on key ecosystem services and human
stresses on the purveyance of those services by the
Everglades. Our future research will address these
conflicts by examining trends in land use change
and human demographics in south Florida.We will
couple this with a quantitative assessment of the
economic values of ecosystem services being pro-
vided by the Everglades. The former requires a
strong sociological understanding of human
behavior and decision-making while the latter re-
quires biophysical understanding of how ecosys-
tems provide key services to humans. With this
approach, we hope to better understand the hu-
man-natural interactions that are the foundation of
the major drivers in our system (Fig. 4). This work
may even enable the ‘‘Grand Experiment’’ known
as Everglades Restoration to expand and include
key feedbacks between the Everglades and south
Florida’s human population.
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C. TRAINING AND DEVELOPMENT 
 
FCE I Education, Outreach, and Diversity Activities 

During FCE I, we developed an Ed & Outreach program that communicates our research 
findings to K-12 students, teachers, and the community of South Florida (which is over 60% 
Hispanic).  Our K-12 classroom effectiveness assessments have shown that 89% of the students 
we have impacted were Hispanic.  We have developed a variety of programs to assess the most 
effective approaches to disseminate FCE LTER research findings and to educate the public about 
the ecology and importance of the Everglades. These approaches have included television 
segments, a website, video conference presentations, a high school student internship program, a 
science ranger education program with ENP, paired field and schoolyard activities, and 
classroom presentations.   Our most widely distributed product has been the ForEverglades 
presentation (http://fcelter.fiu.edu/schoolyard) that explains the importance of the timing, 
distribution, and quality of water to the Everglades ecosystem.  This presentation has reached 
over 3500 individuals across South Florida via FCE personnel, classroom visits, and our website.   
 

One of our most successful components has been our high school internship program, the 
The Research Experience for Secondary Students (RESSt).  This program pairs high school 
students with FCE researchers who mentor students by providing hands-on experience with the 
science, tools and details of FCE research.  In 2005, one of our interns entered his project on 
belowground production in FCE sawgrass marshes in the high school science fair and proceeded 
to win the county, regional, and state science fair competitions!  After winning these prestigious 
awards, he went on to make presentations of his FCE LTER internship experience to 491 high 
school students and their teachers.  In 2006, several high school interns also won awards at the 
regional and state science fairs.  The REESt program has grown to include over ten high school 
students working with FCE scientists. 
 
FCE Graduate Student Activities and Productivity 

The FCE Affiliated Students Group has grown in size, influence, and activities since its 
inception in the fall of 2000. There are currently over 40 graduate, undergraduate, and high 
school students who are members.  The group meets once a month for meetings.  They receive 
funding from the FIU Graduate Student Organization and host seminars and social activities with 
other graduate student organizations.  FCE graduate students have also been very active at the 
network level.  In February 2005, 7 FCE graduate students attended the Ecosystem-based 
Management Workgroup, National Center for Ecological Analysis and Synthesis (NCEAS), 
Santa Barbara, CA.  Several of these students established Ecotank, an ecological think tank for 
students inspired by their experiences at NCEAS, at FIU.  Tiffany Troxler-Gann co-organized 
the First LTER Graduate Student Collaborative Research Symposium at H.J. Andrews LTER, in 
Blue River, Oregon in April 2005 and 4 FCE students attended the symposium.  Tiffany also 
served as the co-chair of the LTER Network student group and, as such, was a member of the 
LTER Network Coordinating Committee from 2001-2005.  FCE students earned 22 MS theses 
and 11 Ph.D. dissertations from 2000-2006. 
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D. OUTREACH ACTIVITIES 
 

There are many ways in which FCE scientists, students, and staff interact with the greater 
public. Outreach often takes the form of presentations at forums such as community group 
meetings, publicized events, and secondary schools, or of specific training activities for students, 
teachers, or others. If a FCE scientist discusses their LTER research in such a presentation, we 
record that presentation as FCE outreach.  The FCE Education and Outreach staff (including 
FCE high school interns) gave numerous presentations to schools in south Florida.  FCE 
researchers also gave 58 outreach presentations and over 440 conference presentations from 
2000-2006.  The FCE Education and Outreach program hosted teacher workshops and conducted 
a training session on nutrient cycling for Everglades National Park rangers.  In 2003, we held the 
Hands on the Everglades teacher workshop.  We also displayed and presented information about 
the FCE LTER program at GIS Day at Florida International University and at NSF at Florida 
Atlantic University in 2003.  In 2005, Dan Childers participated in several workshops hosted by 
ENP and SFWMD, in which FCE LTER research was integrated into restoration and 
management challenges.  The LTER Network Office publications staff assisted us with a site 
brochure in 2000, and FCE researchers have distributed these brochures during conferences, 
meetings, and outreach activities. 
 

FCE research has been featured on several television programs and videos. In 2004, Tim 
Grahl and Dan Childers were featured on an episode of New Florida, produced by Florida Public 
Television. The topic of the episode was Everglades Restoration, FCE LTER research, and the 
importance of the Everglades ecosystem to the people of Florida.  The WFSU-TV program 
'Florida Crossroads' show #1610: 'Everglades: Ebb & Flow' featured interviews with FCE 
researchers.  In early 2005, we filmed a short children's film called 'Kidz Corner' that was aired 
on WLRN The Learning Channel, Closed circuit TV in the Miami-Dade public school television 
station and childrens' pediatrics hospital units of Florida.  Our short film contributions for the 
Kidz Corner television show will reach a wide audience that has been estimates to be as much as 
120,000 people in the South Florida Area. Beginning in October 2006 we started a project to 
develop data file education movies for the classroom. The purpose of these videos is to spark 
interest for the use of the datasets published on the FCE LTER web pages. These products will 
be distributed to teachers and trailers to the movies will be made available on our Education and 
Outreach web pages during FCE LTER year seven. Distribution of these combined products to 
science department heads in Miami Dade schools will enable us to increase awareness of our 
web published FCE LTER research beyond the website or our existing contacts. 
 

The FCE LTER Program also reaches out to the public is through our web site.  In first 
the 6 years of the FCE Program, we have been reaching a steadily growing number of new web 
clients, suggesting a strong positive trajectory for our web-based public outreach.  We have 
received numerous general questions from our visitors and requests for schoolyard visits and 
presentations.  Additionally, visitors to the data section of our website downloaded 1352 datasets 
from May 2000 - February 2007. 
 
Finally, all FCE scientists and students are, to some degree, also involved with Everglades 
restoration.  Several FCE scientists participated in preparation of the Interim Operations Program 
report to Congress with scientists and managers at Everglades National Park.  FCE researchers 
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have also been involved with RECOVER (Everglades Restoration planning) with scientists and 
managers at the South Florida Water Management District. 
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B. OTHER SPECIFIC PRODUCTS 
 
Presentations at Professional Conferences 

The FCE LTER Program has not generated any tangible economically-valuable products 
to date.  However, we view the dissemination of our results at professional scientific conferences 
as a tangible intellectual product. FCE scientists and students have made nearly 500 such 
presentations from 2000-2006. 
 

We continue to dedicate significant FCE resources to provide travel support for FCE 
scientists, students, and educators to attend professional conferences. This is important for their 
professional development, but is also important as a mechanism for disseminating products of 
FCE LTER research.  Disseminating this intellectual product is critical to helping guide the 
science of Everglades Restoration. 
 
Data or databases 

We have completed of a novel GIS-based data and project search engine that interfaces 
our LTER website with our Oracle database.  This facility allows anyone to conduct a multi-
layered search of our LTER database using spatial identifiers--that is, to show on a map of 
Everglades National Park the regions for which they want to search data.  This interactive map is 
accessible via http://fcelter.fiu.edu/gis/everglades-map/. 
 

We have 273 FCE and historical Everglades datasets.  Datasets include climate, 
consumer, primary production, water quality, soils, and microbial data as well as other types of 
data.  An Oracle10g relational database has been designed to accommodate the diverse spatial 
and temporal heterogeneous core data and accompanying metadata submitted by the FCE 
researchers. Datasets are available for public download from the data section of the Florida 
Coastal Everglades LTER website at http://fcelter.fiu.edu/data. 

 
Human Resource Product 

Nagamitsu Maie received a Japanese Science award for his cumulative research on 
DOM. The award: 2004 Incentive Award from the Japanese Society of Soil Science & Plant 
Nutrition, for his work on dynamics of dissolved organic matter in natural environments. 
 
Software (or netware) 

Mike Rugge (FCE Program Manager) and Linda Powell (FCE Information Manager) 
developed, coded, and tested a new program that allows information to be entered into an Excel 
spreadsheet and converted to EML.  This Perl application was very gladly received by the IM 
committee. Mike and Linda have distributed this application to any LTER site that requested it, 
and it is currently being used at several LTER sites.  The application is open source and available 
for download from the Florida Coastal Everglades LTER website 
(http://fcelter.fiu.edu/research/information_management/tools/). 
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C. INTERNET DISSEMINATION 
The url of the main FCE LTER Program website is http://fcelter.fiu.edu. 
 
 
IV. CONTRIBUTIONS 
 
A. CONTRIBUTIONS WITHIN DISCIPLINE 
Abiotic Factors 
Our carbon flux tower research team developed new research methodologies to investigate 
mangrove forest-atmosphere interactions.  Such methodologies enabled us to study the 
production of biogenic hydrocarbons by mangroves and to investigate the mangrove carbon 
sequestration capacity in response to environmental regulator gradients such as sea-level rise and 
salinity. 
  
Primary Production 
We developed a method to recover seeds of Cladium, Rhyncospora, and other species in soils 
from ENP (FCE LTER sites) for use as paleoindicators of vegetation change over the last 100 
years (roughly the time of hydrologic modifications in the Everglades).  Despite its potential 
importance in restoration and management, there are very few data of this sort (published or 
unpublished) for most of the Everglades.  
 
We have been assembling and proofing a geospatial database of fire history within Everglades 
National Park relative to the response of an endangered species, the Cape Sable Seaside Sparrow, 
to fire and water management actions.   
 
We made the first isotopic measurement of cypress tree rings from the Everglades system, and 
discovered a new potential tool for reconstructing hydroperiods. 
 
The periphyton group hosted the 17th North American Diatom Symposium in Islamorada, FL in 
October 2003.  Over 120 diatom taxonomists and ecologists from the US and other countries 
(Belgium, Netherlands, Australia, New Zealand, Canada, Colombia, Puerto Rico) attended the 
meeting.  The meeting consisted of invited speakers and general symposia.  FCE students 
presented papers on (1) diatom taxonomic and ecological database for South Florida, (2) links 
between South Florida diatom flora and Caribbean islands, and (3) inferences of sea-level rise 
and salt-water encroachment in coastal Florida from sedimented diatoms.   
 
The periphyton group also created a searchable on-line database that includes photos, ecological 
and taxonomic information for over 600 diatoms and 150 other algae that is now being used 
regularly by other investigators in South Florida and elsewhere.  It provides the basis for 
instigating biogeographic explorations of algae in the Caribbean basin.   
 
We’ve learned new information about the belowground biomass of mangroves and gained a 
better understanding of the relative partition of aboveground and belowground biomass and 
productivity in coastal forested wetlands.  The aboveground: belowground ratio is not fixed in 
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mangrove forests; but follows the resource-use hypothesis of increased foraging under low 
nutrient conditions.   
 
We’ve gained new insights into the flow of water in mangrove trees – transpirational flux in 
coastal forests is sensitive to tidal hydroperiod, and varies among mangrove species.  These new 
values have been used to correct previous estimates of a hydrology budget for mangrove forests. 
This is an important consideration in hydrologic restoration of mangroves. 
 
Sharon Ewe, Dan Childers, and Leonel Sternberg measured the seasonal water use patterns of 
dominant macrophytes co-existing in the coastal southern Everglades ecotone (in Taylor River) 
to determine if plant water use differed spatially across the soil profile between the wet and dry 
seasons. Using stable isotopes of water (δ8O and δD) from the soil and plant xylem, we 
demonstrated that there was a seasonal shift in red mangrove (Rhizophora mangle) water uptake 
patterns that was not observed for sawgrass (Cladium jamaicense). In the dry season, when the 
surface water was hypersaline, the mangrove was able to tap into deeper, less saline 
groundwater. The sawgrass however used only shallow surface water, regardless of salinity 
(annual range: 0-40 PSU). Although little is known of the salinity tolerance of sawgrass, it is 
unlikely that long-term exposure to high salinity is conducive to the persistence of this 
freshwater marsh sedge. This study (in press, Oecologia) increases our ecological understanding 
of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not 
only in the southeast saline Everglades, but also in estuaries in general in response to global sea 
level rise and human-induced changes in freshwater flows. 
 
 
Trophic Dynamics and Community Structure 
Contributions by our Trophic Dynamics group include improved analysis of invasions by non-
native fishes in the Everglades and oligohaline zone of South Florida, analyses of the 
relationship of hydrological fluctuation and fish community succession; and relationship of fish 
dispersal and metacommunity dynamics. 
 
Evelyn Gaiser and Joel Trexler received an international research supplement in 2006 for travel 
to the Yucatan peninsula to conduct food web research that parallels their approach in the FCE. 
FCE students Josette LaHee and Cliff Ruehl also participated in the research.  They used similar 
techniques to measure periphyton and consumer abundance and composition in freshwater 
calcareous wetlands along in Quintana Roo (specifically the Sian Ka’an Biosphere Reserve and 
El Eden Research Station).  They found similar patterns to those in the Everglades, with 
consistently high biomass of calcareous periphyton mats and paradoxically low biomass of 
aquatic invertebrates and fish.  They are continuing to analyze compositional data and are 
planning another collecting trip to similar wetlands in Belize for Spring 2007. 
 
 
Nutrients and DOM 
The DOM organic geochemistry group has made significant contributions to the understanding 
of the dynamics of OM in wetlands and estuarine systems by combining molecular and isotope 
proxies to trace biomass-specific OM in such systems. This was the first data of its kind for the 
greater Everglades ecosystem.  We also made a significant contribution to biogeochemistry by 
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detailing the molecular characterization of DON via a combination of advanced analytical 
techniques thanks to the collaboration of a suite of scientists who joined our efforts on this 
project (Maie et al., 2006a).  Through this collaboration, we also published the first data on 
protein fingerprinting in natural water samples (see Jones et al., 2004; Jones et al., 2006) and 
enhanced our knowledge on DON characteristics in the system (e.g. Lu et al., 2003; Jones et al., 
2005; Maie et al., 2007a). 
 
Molecular level DOM characterizations proved to be useful in assessing sources and 
transformations of DOM  (Maie et al., 2005, 2006c; Scully et al., 2004) and proved that DOM in 
complex ecosystems such as the FCE presents bioavailability profiles that are hard-to-predict and 
somewhat unconventional, due to multiple source inputs and associated variability in their 
transformation pathways (see also: Boyer et al., 2007). To better assess the DOM dynamics in 
the FCE we have worked arduously to determine the most adequate analytical tools that provide 
pertinent biogeochemical information, but also allow for large sample number throughput needed 
to cover spatially and temporally the large study area. As such, a significant number of 
publications were produced based on more labor intensive techniques focused on ultrafiltered 
DOM (UDOM) to provide background molecular characteristics for FCE DOM. This was 
followed up by intense, spatial and temporal studies using high throughput techniques such as 
optical properties measurements (UV-Vis and fluorescence) and more recently 3D Fluorescence 
(Excitation Emission Matrices or EEM) in combination with parallel factor analysis 
(PARAFAC). The applications of theses techniques and particularly the EEM-PARAFAC has 
allowed us to better understand DOM dynamics, particularly in Florida Bay and estuarine areas 
on the FCE (Jaffé et al., 2004; Maie et al., 2006b).  
  
Rudolf Jaffé in collaboration with Diane McKnight, organized and hosted a LTER DOM 
Workshop at Florida International University in the Fall 2005. Analyses of DOM in over 130 
water samples from over 15 LTER sites nationwide showed a clear lack of correlation between 
OM quantity and quality, but clear trends in quality and quantity along environmental gradients 
were observed. The importance in determining the composition (i.e. quality) of DOM in addition 
to quantitative measurements in long tern ecological research was clearly established based on 
this data set and a manuscript is being elaborated for publication on this topic (Jaffé et al., 2007).   
 
Our water quality-climate analysis made a linkage between ENSO events and the Everglades via 
ENSO effects on precipitation seasonality and hydrology.  This linkage had been documented for 
dry season climate and the south Florida fire regime, but never for the entire year or for a 40 year 
time period. 
 
Greg Noe characterized the composition and concentration of suspended particles in the water 
column of Everglades wetlands.  This information is being used to develop models of particulate 
dissolved nutrient transport in the Everglades and other wetlands. 
 

Soils and Sediments 
A molecular marker (or biomarker) approach was used to characterize sources, fate ans transport 
of soil/sediment OM in the FCE. This approach,  that had previously not been applied in this 
system, was very successful both for present day OM dynamics assessments (Hernandez et al., 
2001; Jaffé et al., 2001; Mead et al., 2004; Neto et al., 2005; Jaffé et al., 2006; Hajje and Jaffé, 
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2006; Xu et al., 2006a; Xu and Jaffé, 2007; Gao et al., 2007; Simoneit et al, 2007) as well as for 
paleoenvironmental assessments both in wetland (Saunders et al., 2006) and estuarine 
environments (Xu et al., 2006b; Xu et al., 2007). The observed correlations between C25 highly 
branched isoprenoids and diatom fossils in sediment cores from Fl. Bay showed the first data of 
its kind as to the application of such biomarkers to reconstruct recent environmental histories of 
diatom inputs in coastal ecosystems (Xu et al., 2006b). Soil characteristics regarding OM 
preservation was assessed for the first time in the FCE and correlated with hydroperiod, soil type 
and nutrient availability (Gao, 2007).     
 
 
Ecological and Social Modeling 
Colin Saunders developed a dynamics model, using STELLA modeling software, of ecosystem P 
dynamics.  This model is being used as a catalyst for analyzing and integrating data sets on P 
stocks and fluxes (e.g., from periphyton, flocculant matter, plants, and soil) from the FCE LTER 
sites and other potential sources.  We also developed a method to recover seeds of Cladium, 
Rhyncospora, and other species in soils from ENP (FCE LTER sites) for use as paleoindicators 
of vegetation.  Despite its potential importance in restoration and management, there are very 
few data of this sort (published or unpublished) for most of the Everglades. 
 
Carl Fitz updated the Everglades Landscape Model (ELM): extended period of simulation (1965-
2000); extended useful simulation domain to include topography and tidal exchanges in 
southwest mangrove region of greater Everglades; enhanced documentation for ease of use and 
for independent peer review of ELM application to greater Everglades restoration planning. 
 
Jose Fuentes developed new biophysical numerical modeling systems to investigate the unique 
features of energy and mass exchanges between coastal ecosystems and overlying atmosphere. 
 
Other Contributions within Discipline 
In March 2003, NSF held its first 3-year external review of the FCE LTER Program.  Our 
approach to this exercise was somewhat non-traditional in several aspects, and [we feel that] the 
positive response by both the review team and the LTER community in general makes these new 
approaches a contribution.  First, we dedicated most of the first day to an intensive field trip that 
allowed the review team to see virtually all of our sampling sites (by both boat and air).  We 
were eager to communicate the spatial magnitude of our research, and we wanted to introduce 
the review team to our work by seeing it first-hand.  At each site stop, either a graduate student 
or a postdoc presented a poster of their research relevant to that site.  We ended the day with a 
poster session, social, and banquet at Fairchild Tropical Garden.  As with the field trip, this 
evening event featured student and postdoc research.  This approach was unconventional 
because:  a) we began our site review with the field trip, and; b) we dedicated nearly a day of our 
review to the trip.  The “field trip first” approach was subsequently used by several other LTER 
sites hosting their 3-year reviews in 2003.  Our second, non-traditional approach involved 
presenting an over-arching synthesis of our findings to date, relative to our original hypothesis, 
in four concise oral presentations held in a town-hall meeting environment.  Discussions about 
the presentations included many of the FCE scientists and students present, but the agenda was 
short as it included only 4 formal powerpoint presentations.  Again, this approach (rather than an 
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entire day of back-to-back 15 minute talks) was used by several LTER sites for their 2003 site 
reviews. 
 
Evelyn Gaiser participated as the FCE site representative in network-level meetings relevant to 
the planning grant. 
 
Tiffany Troxler-Gann organized a workshop entitled “Biogeochemical complexity across LTER 
sites: the what, where and how” at the 2006 LTER All Scientists Meeting in Estes Park, CO.   
 
Tiffany Troxler-Gann served on the planning committee for the 2006 LTER All Scientists 
Meeting in Estes Park, CO.  
 
 
B. CONTRIBUTIONS TO OTHER DISCIPLINES 
In 2003, Joel Trexler served as a Technical Lead in preparation of a report for the U.S. Congress 
on the Interim Operations Program (IOP) in management of water deliveries to Everglades 
National Park.  The IOP was intended to improve water deliveries to the Park for sustaining 
nesting populations of the Federally listed Cape Sable Seaside Sparrow. 
 
The theme of the 2003 Botanical Society of America meetings was wetlands; as Secretary of the 
Society, Jenny Richards interacted with symposia and keynote speakers, many of whom were 
involved in wetland research or policy, representing both FIU and the FCE LTER in this context, 
as well as presenting some portion of LTER research in the symposium she was in. 
 
Joe Boyer attended the Association of Marine Laboratories of the Caribbean from July 14-18, 
2003 in Port of Spain, Trinidad.  He was also a member of the Florida Keys Feasibility Study 
Modeling Sub-team.   He’s published numerous technical reports on the water quality of Florida 
Bay and the Florida Keys. 
 
Joe Boyer served on two technical advisory committees: 
1. The Florida Keys National Marine Sanctuary Technical Advisory Committee is composed of 
24 scientists and resource managers involved in the South Florida ecosystem and provides advice 
and assistance to NOAA and EPA on the prioritization and design of the research and monitoring 
programs. It also assists with research RFP's, serves to integrate the research and monitoring 
efforts, and serves to integrate interagency efforts. 
 
2. The Southeast Florida Coral Reef Initiative, Land-Based Sources of Pollution (LBSP) Focus 
Team was formed to addresses impacts to corals resulting from both point and non-point land 
based sources of pollution. Many of these point and non-point sources of pollution result in 
unintentional but very real stresses on coral reef ecosystem health. The aim of the projects in the 
local action strategy for this focus area is characterize the extent and condition of the coral reef 
tract and to quantify, characterize, and prioritize the land-based sources of pollution that need to 
be addressed based on identified impacts to the reefs. Due to the research nature of many of the 
LBSP projects, the LBSP Team has a Technical Advisory Committee formed by leading research 
scientist in the fields of coral reef ecology, water quality, geology, chemistry, and biology. 
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Joe Boyer participated as a panel member of the Florida Oceans Science Workshop which was 
tasked to create a framework for research institutions and resource managers to set research 
priorities to ensure that Florida’s coastal ocean remains a significant environmental and 
economic asset in the future.  He also participated in the Florida Water Quality Monitoring 
Council Retreat, the goal of which was to foster collaboration, communication, and cooperation 
among the water quality monitoring community, thereby facilitating improved efficiency and 
management of Florida’s water resources. 
 
 
Joe Boyer was an active member of the CERP-RECOVER Southern Estuaries Module which 
serves to advise and recommend adaptive management strategies for CERP.   He also 
participated in the South Florida Ecosystem Restoration Task Force, Science Evaluation Group, 
Biotic Indicators group, which is tasked to develop and recommend specific indicators of 
ecosystem health for use is assessing overall restoration activities in South Florida.  
 
Joe Boyer is the FIU representative to the Florida Coastal Ocean Observing System Consortium, 
the Southeast Coastal Ocean Observing Regional Association, and the Gulf of Mexico Coastal 
Ocean Observing System.  The overall mission of these organizations is to establish a sustained 
observing systems to provide observations and products needed by users in this region for the 
purposes of 1) detecting and predicting climate variability and consequences, 2) preserving and 
restoring healthy marine ecosystems, 3) ensuring human health, 4) managing resources, 5) 
facilitating safe and efficient marine transportation, 6) enhancing national security, and 7) 
predicting and mitigating against coastal hazards. 
 
Julie Lockwood, Mike Ross and Jay Sah have been collaborating on the effect of fire and water 
management on marl prairies within the Everglades.  Their efforts concern the interaction of 
physical drivers (water and fire) on plant community dynamics, and how these interactions 
influence the fate of an endangered species (Cape Sable Seaside Sparrow). 
 
Randy Chambers participated in a Florida Bay biogeochemistry modeling workshop at the 
Estuarine Research Federation meeting held in Seattle, WA in 2003. 
 
Dan Childers was involved in a NCEAS working group on Ecosystem Services 
that used FCE as a case study.  He also served as the faculty advisor for an FCE graduate student 
group who participated in a NCEAS-based Distributed Graduate Seminar on Ecosystem-based 
Management (funded by the Packard Foundation).  This seminar included a full week's visit to 
NCEAS by all 7 participating graduate students in early February 2005. 
 
Dan Childers co-hosted a human dimensions workshop at the University of Vermont in April 
that focused on ecosystem services and the Everglades.  He was active with the coupled human-
natural systems working group in LTER Network Planning activities, as well as in NEON 
Design Consortium activities. 
 
Rudolf Jaffé served as session chair at ASLO 2007 aquatic sciences meeting in Santa Fe 
organizing the “Dissolved Organic Matter Quality: Linking Environmental Dynamics to 
Molecular Structure” session.  
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Evelyn Gaiser presented FCE-related data to the South Florida Water Management District and 
Everglades National Park. The paleoecological data is allowing calculations of the rate of salt-
water encroachment that will be used to determine the quantity of freshwater to be relocation in 
the Biscayne coastal wetlands.  This work was presented at a public forum at Biscayne National 
Park in spring 2003.  Her work on periphyton in the marl prairie shows how hydroperiod, soils 
and plants interact with periphyton to determine habitat suitability for the endangered Cape Sable 
Seaside Sparrow (CSSP).  These results were presented at the annual CSSP and fire management 
meetings held at Everglades National Park in fall 2003.  Some results from this work appear in 
the report from Everglades National Park to congress about the Interim Operations Procedures 
for water management in ENP.  Her group’s work on periphyton dynamics C-111 basin will be 
presented at a meeting at the South Florida Water Management District in February 2004 in 
order to help guide restoration activities in that basin. She has contributed data, analysis and 
models for the construction of hydoperiod and nutrient “Periphyton Performance Measures” 
required by the SFWMD to determine metrics for success in restoration activities.   
 
In 2004, Greg Noe communicated data on particulate phosphorus characterization and transport 
to SFWMD to improve the monitoring and effectiveness of STAs. 
 
Carl Fitz updated the Everglades Landscape Model (ELM): extended period of simulation (1965-
2000); extended useful simulation domain to include topography and tidal exchanges in 
southwest mangrove region of greater Everglades; enhanced documentation for ease of use and 
for independent peer review of ELM application to greater Everglades restoration planning. 
 
In 2004, Sharon Ewe accompanied and assisted SFWMD Florida Bay researchers (3-days) to 
measure sediment accretion within Taylor River mangroves.  She also conducted field expedition 
to look for entomological biocontrol agents of three invasive exotic plants in Florida (Schinus 
terebinthifolius, Ardisia elliptica, A. crinata).  
 
Victor H. Rivera-Monroy participated in several meetings of the LTER MEXICAN Network 
program since its creation in 2001, and is currently one the Executive Committee members 
coordinating this program at the national level; he is also the co-coordinator of one of the LTER 
sites located in the Yucatan Peninsula (ECOPEY-Celestum). This Mexican site has similar 
geomorphological and hydrological characteristic as the FCE LTER site. A current activity 
involves the organization of ecological comparisons of mangrove wetlands in coastal FLorida, 
Mexican coastal regions of the Gulf of Mexico and the Mexican Caribbean. This effort is part of 
the FCE LTER Caribbean initiative framework developed by the FCE-LTER program in 2003-
2004. This initiative was published as a paper in 2004 (A conceptual framework to develop long-
term ecological research and management objectives in the wider Caribbean Region. Rivera-
Monroy et al. BioScience, 54(9): 843-856).   Also, during 2003-2004, Victor H. Rivera-Monroy 
developed close collaborations with researchers at additional Mexican LTER sites ( La Mancha, 
Veracruz,  Ecosistemas Costeros, Jalisco, Arrecifes del Pacifico, Pacific Ocean) for future 
student and research exchanges and intersite comparisons with  the FCE-LTER program. 
 
Joel Trexler was the Technical lead of the Aquatic Ecology Group, IOP Congressional Report, 
Everglades National Report (2003-2004).  For this group, he edited a section of a report going to 
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the US Senate Appropriations Committee about progress in the restoration. He also served on the 
Technical Review Committee, Miami-Dade County Watershed Study (2003-2005).  He is 
serving on a panel that is reviewing progress in a study that seeks to anticipate impacts of future 
growth of human populations in southern Dade County and assess its impact on the environment, 
primarily Biscayne National Park.  This project interfaces with CERP in many ways and it is 
currently in the newspaper a good bit because it might be seen as an impediment to expanding 
the Urban Development Boundary (for example, by discouraging letting Florida City annex 
lands between US-1 and Card Sound Road).  
 
Laura Ogden attended the LTER Network Social Science meeting in Athens, Georgia, August 
2005, a meeting where LTER site representatives developed recommendations for integrating 
social science research and approaches into the LTER Planning Grant process. Ogden served as a 
member of the LTER Planning Grant's Research Initiatives Subcommittee and participated in the 
ISSE writing team meeting in Madison, Wisconsin during June 2006. 
 
The FCE LTER Program has contributed to involvement of Robert Twilley (LSU) as a PI of the 
Coastal Louisiana Ecosystem Assessment & Restoration project, which is completing the science 
program for the Louisiana Coastal Area Comprehensive Restoration Plan.  Notably, Fred Sklar 
(SFWMD) was on the independent advisory board of experts for the LCACRP.  Robert 
Twilley’s involvement has expanded to include numerous post-Katrina environmental issues 
affecting south Louisiana. 
 
The Comprehensive Everglades Restoration Plan (CERP) is moving forward.  Many FCE 
scientists have been involved in the planning and development of this massive restoration effort, 
and are now involved in the Monitoring and Assessment Program (MAP) that will help CERP 
managers determine restoration success.  The number of participants, activities, committees, and 
workshops that have been part of this effort are too numerous to detail in this report. 
 
 
C. CONTRIBUTIONS TO EDUCATION AND HUMAN RESOURCES 
The FCE Schoolyard LTER program and the FCE EdEn Venture effort, joint with 
Environmental Education at Everglades National Park and several local schools, highlight our K-
12 human resource development. We detail these programs elsewhere in this report. 
 
In addition to our regular Schoolyard program, FCE scientists are also actively involved in the 
FIU-based, NSF-funded Undergraduate Mentoring in Environmental Biology  (UMEB) Program 
(J.Francisco-Ortega and L.Collins, Co-PIs) and a  NOAA Educational grant that provides 
research internships for undergraduate  students (ESRIP). Because FIU is a majority-minority 
institution, many of the undergraduates we impact are Hispanic or other minorities. 
 
Graduate education is a very important component of the FCE LTER program, and our graduate 
students maintain their own very active FCE Affiliated Student Group. We currently have nearly 
40 graduate students, from more than 8 different universities, who are affiliated with FCE. 
Between 2000 and 2006, 33 graduate degrees (22 MS theses and 11 Ph.D. dissertations) were 
conferred from FCE-based thesis/dissertation research. Many of these graduate students are from 
under-represented minority groups. Our student group (which also includes interested 
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undergraduate and high school students) meets monthly to discuss their LTER research or a 
current scientific topic of their choice. They receive funding support from the FIU Student 
Government Association, and they are very active in student governance at the Network level. 
Tiffany Gann, a former FCE student, served as the co-chair of the LTER Network student group 
from 2001-2005. 
 
 
D. CONTRIBUTIONS TO RESOURCES FOR SCIENCE AND TECHNOLOGY 
Research sites 
Our research plan focuses on 17 permanent sampling sites located on 2 large transects that cover 
most of Everglades National Park. At each site, we have constructed platform, boat dock, and 
boardwalk facilities that are available to any permitted researcher who wishes to use them (after 
requesting permission). To date, many academic and agency scientists are taking advantage of 
these field facilities, and the FCE LTER Program continues to support expanded use of our 
facilities through Letters of Support for proposals (8-10 such formal letters are written each 
year). 
 
Ecotank 
Several FCE students established Ecotank (http://ecotank.fiu.edu/), an ecological think tank at 
Florida International University, in 2005 based on their positive experiences at NCEAS.  
Ecotank's mission is 'to advance the state of ecological knowledge through a collaborative, 
interdisciplinary intellect and to improve graduate student culture through community creativity 
and cooperation.'  The Ecotank room provides a space for graduate student reading groups, 
discussions, presentations, and meetings. 
 
Website 
The FCE LTER website provides a variety of information, including data, educational activities, 
maps, project information, site information, publications, presentations, and photos.  Visitors to 
the data section of our website downloaded 1352 datasets from May 2000 - February 2007.   
 
 
E. CONTRIBUTIONS BEYOND SCIENCE AND ENGINEERING 
Our group has become very active in human dimensions aspects of south Florida ecology, and 
the field in general.   Dan Childers was involved in a NCEAS working group on Ecosystem 
Services that used our FCE site as a case study.  He also served as the faculty advisor for an FCE 
graduate student group who participated in a NCEAS-based Distributed Graduate Seminar on 
Ecosystem-based Management (funded by the Packard Foundation).  This seminar included a 
full week's visit to NCEAS by all 7 participating graduate students in early February 2005. Dan 
Childers also co-hosted a human dimensions workshop at the University of Vermont in April that 
focused on ecosystem services and the Everglades. He was active with the coupled human-
natural systems working group in LTER Network Planning activities, as well as in NEON 
Design Consortium activities.  
 
We have an active Human Dimensions group, headed up by Laura Ogden (Anthropology, FIU) 
that includes 8 social scientists from several universities. The FCE Human Dimensions group 
submitted a 2007 Social Science Supplemental Request for cross-site activities that would allow 
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us to 'jump-start' our FCE research by taking advantage of the depth and breadth of social 
science expertise across the LTER Network. 
 
Laura Ogden attended the LTER Network Social Science meeting in Athens, Georgia, August 
2005, a meeting where LTER site representatives developed recommendations for integrating 
social science research and approaches into the LTER Planning Grant process. Ogden served as a 
member of the LTER Planning Grant's Research Initiatives Subcommittee and participated in the 
ISSE writing team meeting in Madison, Wisconsin during June 2006. 
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