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Abstract

Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function,
forced expiratory volume in one second (FEV1), and its ratio to forced vital capacity (FEV1/FVC). Given that cigarette smoking
adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide
polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV1 and FEV1/FVC across 19
studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near
DNER (smallest PJMA = 5.00610211), HLA-DQB1 and HLA-DQA2 (smallest PJMA = 4.3561029), and KCNJ2 and SOX9 (smallest
PJMA = 1.2861028) were associated with FEV1/FVC or FEV1 in meta-analysis models including SNP main effects, smoking main
effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for
autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER,
KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of
differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that
joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed
when considering only the genetic main effects.
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Introduction

Spirometric measures of pulmonary function, particularly

forced expiratory volume in one second (FEV1) and its ratio to

forced vital capacity (FEV1/FVC), are important clinical tools

for diagnosing pulmonary disease, classifying its severity, and

evaluating its progression over time. These measures also

predict other morbidities and mortality in the general

population [1–3]. Genetic factors likely play a prominent role

in determining the maximal level of pulmonary function in

early adulthood and its subsequent decline with age [4,5]. A

relatively uncommon deficiency of a-1 antitrypsin, due to

homozygous mutations of the SERPINA1 gene, is a well-

established genetic risk factor for accelerated decline in

pulmonary function, but it accounts for little of the population

variability in pulmonary function.

Genome-wide association studies (GWAS) have identified many

common genetic variants underlying pulmonary function. The

first GWAS of pulmonary function implicated HHIP for FEV1/

FVC [6,7]. GWAS meta-analyses for FEV1/FVC and FEV1 from

the Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE) and SpiroMeta Consortia have togeth-

er identified 26 additional novel loci in or near the following genes:

ADAM19, AGER-PPT2, ARMC2, C10orf11, CCDC38, CDC123,

CFDP1, FAM13A, GPR126, HDAC4, HTR4, INTS12-GSTCD-

NPNT, KCNE2, LRP1, MECOM (EVI1), MFAP2, MMP15, NCR3,

PID1, PTCH1, RARB, SPATA9, TGFB2, THSD4, TNS1, and

ZKSCAN3 [8–10].

Inhaled pollutants, especially cigarette smoking, can have

important adverse effects on pulmonary function. Candidate gene

studies have not consistently identified interactions with cigarette

smoking in relation to pulmonary function. Despite the importance

of smoking and other environmental factors in the etiology of many

complex human diseases and traits, few GWAS have incorporated

gene-by-environment interactions [11–14]. Meta-analyses are

generally necessary to provide sufficient sample size to detect

moderate effects, and methods for joint testing of single nucleotide

polymorphism (SNP) main effects and SNP-by-environment

interactions in the meta-analysis setting have only recently been

developed [15,16]. This strategy has the potential to identify novel

loci that would not emerge from analyses based on the SNP main or

interactive effects alone [15–17]. The well-documented and

consistent deleterious effect of cigarette smoking on pulmonary

function [18] makes it a good candidate for such an approach, since

genetic factors may have heterogeneous effects on pulmonary

function depending on smoking exposure. We conducted genome-

SNP and SNP-by-Smoking Analysis for Lung Function
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wide joint meta-analyses (JMA) of SNP and SNP-by-smoking

interaction (ever-smoking or pack-years) associations with cross-

sectional pulmonary function measures (FEV1/FVC and FEV1) in

50,047 study participants of European ancestry.

Results

Table S1 presents characteristics of the 50,047 participants from

19 studies contributing to our analyses. As expected, mean FEV1

and FVC values were lower in studies with the oldest participants.

Standardized residuals of FEV1 and FEV1/FVC (see Methods)

were used as the phenotypes for the JMA, in order to maximize

comparability with our recent GWAS meta-analysis from the

CHARGE and SpiroMeta Consortia [10]. Our original GWAS

meta-analyses, conducted separately in CHARGE and SpiroMeta,

showed that we were able to identify replicable genetic loci

whether using actual pulmonary function measures [8] or their

standardized residuals [9]. The standardized residual approach

was similarly taken in GWAS of other complex quantitative traits,

such as height and body mass index from the Genetic Investigation

of ANthropometric Traits (GIANT) Consortium [19,20].

In each of the 19 studies, four regression models with differing

SNP-by-smoking interaction terms were run: (1) SNP-by-ever-

smoking for standardized FEV1/FVC residuals, (2) SNP-by-pack-

years for standardized FEV1/FVC residuals, (3) SNP-by-ever-

smoking for standardized FEV1 residuals, and (4) SNP-by-pack-

years for standardized FEV1 residuals. Study-specific genomic

inflation factors (lgc) were calculated for the 1 degree-of-freedom

(d.f.) SNP-by-smoking interaction term, to ensure that there was

no substantial inflation due to the main effect of smoking being

misspecified [21]. All study-specific results had 1 d.f. lgc#1.09

(Table S2), which is of comparable magnitude to other studies with

large sample sizes [10,19,22,23].

The study-specific regression coefficients from each of the four

models were then combined in JMA, and the resulting lgc values

from the 2 d.f. JMA, calculated across all SNPs, ranged from 1.056

to 1.064. The quantile-quantile plots (Figure S1) show substantial

deviation from expectation for SNPs having low P values from the

JMA (PJMA). The JMA results corresponding to the top SNP from

each previously implicated locus [8–10] are presented in Table S3.

To identify novel loci among the genome-wide significant loci

implicated by our JMA models, the genomic regions surrounding

the most significant SNP from each of the 27 previously implicated

loci [8–10] (500 kb upstream to 500 kb downstream of each SNP)

were removed from consideration (Table S3). Following the

removal of all previously implicated loci [8–10], the quantile-

quantile plots show that some deviation remained between

observed and expected P values for high-signal SNPs suggesting

the presence of novel signals.

In the JMA of SNP and SNP-by-smoking in relation to FEV1/

FVC, we observed two novel loci containing several significant

SNP associations at the standard genome-wide Bonferroni-

corrected threshold of PJMA,561028, when considering interac-

tion with ever-smoking (Figure 1A) or pack-years (Figure 1B). The

SNP associations from both loci also exceeded the more

conservative genome-wide significance threshold of

PJMA,1.2561028, based on additional Bonferroni correction for

the four JMA models.

The most statistically significant result was for rs7594321, an

intronic SNP located in DNER (delta/notch-like EGF-related

receptor) on chromosome 2, which gave PJMA = 2.6461029

(corresponding PINT = 0.27) in the ever-smoking model and

PJMA = 5.00610211 (corresponding PINT = 0.0069) in the pack-

years model (Table 1). For the ever/never-smoking interaction

model, the observed level of significance for the JMA is plausible in

the presence of a nominally significant SNP main effect and a

nonsignificant interactive effect, as detailed in Text S1. The

rs7594321 T allele had a positive b coefficient for the genetic main

association and a negative b coefficient for the interaction (Table 1,

Table S4 for study-specific results). The regression coefficients

correspond to a per allele change of 0.049 (95% CI: 0.030, 0.068)

in never-smokers and 0.035 (95% CI: 0.016, 0.053) in ever-

smokers. A conserved binding site for the Zic1 transcription factor

is located 115 base pairs away from rs7594321. Further,

rs7594321 is located upstream of the previously implicated PID1

gene (Figure 2A), but it is 713 kb away from the previously

implicated SNP (rs1435867), which is located downstream of

PID1. There is no linkage disequilibrium (LD) between rs7594321

and rs1435867 (r2 = 0, D9 = 0).

Our next most statistically significant SNP (rs7764819) is

intergenic between two human leukocyte antigen (HLA) genes,

HLA-DQB1 and HLA-DQA2, on chromosome 6 (Figure 2B). The

HLA-DQ region is highly variable, and the association signal in this

region is largely driven by two SNPs that are in high LD with one

another (rs7764819 and rs7765379, r2 = 1) but only low to

moderate LD with all other genotyped and imputed SNPs. A

GWAS meta-analysis of asthma implicating the HLA-DQ region

similarly found highly significant associations with only a few SNPs

[24]. Our top SNP rs7764819 gave PJMA = 4.3961029 in the ever-

smoking model and PJMA = 4.3561029 in the pack-years model

for FEV1/FVC (Table 1). The corresponding PINT values were

.0.05 (see Text S1). The rs7764819 T allele had negative b
coefficients for both the main association and interaction (Table 1,

Table S5 for study-specific results), which correspond to a SNP

effect of 20.060 (95% CI: 20.09, 20.031) in never-smokers and

20.070 (95% CI: 20.10, 20.042) in ever-smokers. Although

rs7764819 is located 529 kb away from a previously implicated

AGER SNP (rs2070600), there is some LD between the two SNPs

(r2 = 0.29, D9 = 0.81). Conserved binding sites for two transcrip-

tion factors, HTF and Lmo2, are located within 100 kb of

rs7764819.

Besides the DNER and HLA-DQB1/HLA-DQA2 loci, SNPs from

12 other chromosomal regions having PJMA values between

Author Summary

Measures of pulmonary function provide important clinical
tools for evaluating lung disease and its progression.
Genome-wide association studies have identified numer-
ous genetic risk factors for pulmonary function but have
not considered interaction with cigarette smoking, which
has consistently been shown to adversely impact pulmo-
nary function. In over 50,000 study participants of
European descent, we applied a recently developed joint
meta-analysis method to simultaneously test associations
of gene and gene-by-smoking interactions in relation to
two major clinical measures of pulmonary function. Using
this joint method to incorporate genetic main effects plus
gene-by-smoking interaction, we identified three novel
gene regions not previously related to pulmonary func-
tion: (1) DNER, (2) HLA-DQB1 and HLA-DQA2, and (3) KCNJ2
and SOX9. Expression analyses in human lung tissue from
ours or prior studies indicate that these regions contain
genes that are plausibly involved in pulmonary function.
This work highlights the utility of employing novel
methods for incorporating environmental interaction in
genome-wide association studies to identify novel genetic
regions.
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561028 and 161026 from either smoking model in relation to

FEV1/FVC are presented in Table S6. Secondary meta-analyses

of the interaction product terms alone identified no SNP-by-

smoking (ever-smoking or pack-years) interactions at genome-wide

statistical significance with FEV1/FVC. SNPs from two chromo-

somal regions had PINT values between 561028 and 161026 in

relation to FEV1/FVC, as shown in Table S7.

For FEV1, the JMA of SNP and SNP-by-smoking gave genome-

wide significant associations (PJMA,561028) in the ever-smoking

model for four SNPs on chromosome 17 (Figure 1C). However,

these SNP associations did not exceed the more conservative

significance threshold of PJMA,1.2561028. No novel loci reached

genome-wide significance level in the pack-years model in relation

to FEV1 (Figure 1D).

The most significant SNP (rs11654749) from both smoking

models is intergenic between KCNJ2 (a potassium inwardly-

rectifying channel also known as KIR2.1) and SOX9 (sex

determining region Y-box 9) (Figure 2C). Conserved binding sites

for four transcription factors (HNF-1, CP2, Cdc5, and FOXF2)

are located within 100 kb upstream or downstream of rs11654749.

The rs11654749 SNP gave PJMA = 1.2861028 in the ever-smoking

model and PJMA = 6.6361028 in the pack-years model (Table 1).

The corresponding PINT values were .0.05 (see Text S1). The

rs11654749 T allele had negative b coefficients for both the main

association and interaction (Table 1, Table S8 for study-specific

results). These estimates correspond to a SNP effect of 20.028

(95% CI: 20.047, 20.010) in never-smokers and 20.046 (95%

CI: 20.063, 20.029) in ever-smokers. To better understand the

magnitude of these b estimates, we compared our results with

those observed in one of our previous GWAS meta-analyses of

SNP main effects [9], where standardized residuals of the

pulmonary function measures were similarly computed. For a

SNP with MAF around 40%, an absolute b value of 0.028 would

be equivalent to 19 mL per copy of the risk allele (comparable to a

year of FEV1 decline in healthy never-smokers), and an absolute b
value of 0.046 would be equivalent to 31 mL per copy of the risk

allele (comparable to a year and a half of FEV1 decline in healthy

never-smokers) [25].

Besides this KCNJ2/SOX9 locus, SNPs from five other

chromosomal regions have PJMA values between 561028 and

161026 from either smoking model in relation to FEV1 as shown

in Table S6. In secondary meta-analyses of the interaction product

terms, there were no SNP-by-smoking (ever-smoking or pack-

years) interactions implicated at genome-wide statistical signifi-

cance with FEV1. SNPs from four chromosomal regions had PINT

values between 561028 and 161026 in relation to FEV1, as

shown in Table S7.

None of the most significant SNPs from the three novel loci we

identified by the JMA were associated with FEV1/FVC or FEV1

at or near genome-wide significance in our previous GWAS meta-

analysis of 48,201 participants from the CHARGE and SpiroMeta

Consortia. In fact, the lowest P value observed for these SNPs was

1.0461025 (Table 2) [10].

To evaluate whether the three novel loci identified by the JMA

were related to smoking, we evaluated their SNP associations with

ever-smoking and cigarettes per day using GWAS meta-analysis

results from the Oxford-GlaxoSmithKline (Ox-GSK) Consortium

(N = 41,150) [26]. None of our implicated SNPs were associated

Figure 1. Genome-wide joint meta-analysis (JMA) of SNP and SNP-by-smoking interaction in relation to pulmonary function. The
Manhattan plots show the chromosomal position of SNPs in comparison to their 2log10 PJMA values. JMA results are shown for models with (A) SNP-
by-ever-smoking interaction term in relation to FEV1/FVC, (B) SNP-by-pack-years interaction term in relation to FEV1/FVC, (C) SNP-by-ever-smoking
interaction term in relation to FEV1, and (D) SNP-by-pack-years interaction term in relation to FEV1. SNPs located within previously implicated loci are
shown, but these loci were not considered when identifying novel loci from the joint modeling of SNP main effects and smoking interactive effects.
Novel loci on chromosomes 2, 6, and 17 (shown in blue and circled) were identified as those having SNPs with genome-wide significant P values at
the standard threshold (P,561028 as indicated by the solid red line). Names of the novel gene (or closest genes) are provided.
doi:10.1371/journal.pgen.1003098.g001
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with these smoking phenotypes at P,0.05 (Table S9), adding

confidence that our JMA-implicated SNP associations were not

simply reflective of smoking main effects.

Expression analyses
Three genes (DNER, KCNJ2, and SOX9) harboring or flanking

novel genome-wide significant SNPs were selected for follow-up

mRNA expression profiling in human lung tissue and a series of

primary cells. Transcripts of all three genes were found in lung

tissue, airway smooth muscle, and bronchial epithelial cells; DNER

and KCNJ2 transcripts were also found in peripheral blood cells

(Table S10).

In a separate line of investigation, using the publically available

Gene Expression Omnibus repository [27,28], we found that the

expression profiling of DNER and SOX9 showed differential

expression in human airway epithelium of smokers compared to

non-smokers (Figure S2A and S2B) [29]. Expression profiling of

KCNJ2 did not show statistically significant differential expression

by smoking status (Figure S2C) [29]. We also identified novel

genome-wide significant SNPs in the HLA-DQ region, but we did

not examine HLA-DQ expression given the known expression of

class II MHC antigens on a range of airway cell types [30,31].

However, the lead SNP in this region (rs7764819) was associated

with statistically significant effects on HLA-DQB1 expression

(P = 1.2610214), according to an eQTL analysis database of

lymphoblastoid cell lines [32].

Discussion

Few GWAS have accounted for potential interaction with

environmental risk factors. To identify novel genetic risk factors

that are missed when considering only genetic main effects [33],

we used the newly available JMA method [15] to simultaneously

summarize regression coefficients for the main SNP and SNP-by-

smoking interactive effects in 50,047 participants from 19 studies,

based on models that were fully saturated for the main effect of

smoking. This study represents the most comprehensive analysis to

date of gene-by-smoking interaction in relation to pulmonary

function. We identified two novel loci (DNER and HLA-DQB1/

HLA-DQA2) having highly significant evidence for association with

FEV1/FVC. A third novel locus (KCNJ2/SOX9) was associated

with FEV1. For the most significant SNPs at each of these three

loci, there was no evidence for heterogeneity across the studies

(smallest heterogeneity P = 0.59), indicating that the associations

were not driven by one or a few studies and thus reflect

accumulation of evidence across the studies. None of these three

loci had previously been associated with pulmonary function. The

comparison of results with our prior GWAS meta-analysis of SNP

main effects [10], using a comparable sample size, suggested that

the SNP associations for our top SNPs were weaker in our

previous analyses that examined only genetic main effects.

However, our analyses and those of Manning et al. [14] suggest

that some of the benefit of using the joint test for some findings

comes from the careful adjustment for the environmental main

effect. Thus, future studies aimed at replicating these findings may

wish to jointly test the SNP main and interactive effects [15,16,33]

instead of implementing a standard test of only the SNP main

effects. If there is no evidence for interaction at a given locus, the

saturation of the main effect of the environmental factor may be

important. The joint testing is applicable for both candidate gene

[15] and genome-wide [14] approaches. Further, there was

minimal overlap in the top SNPs associated with FEV1/FVC

and FEV1, as similarly observed in our previous GWAS meta-

analyses of SNP main effects [8–10]. Given that the biological

underpinnings of these discrepant association findings remain

unknown, future studies should evaluate these genetic loci in the

context of the pulmonary function measure for which they were

originally implicated.

Given that pulmonary function is a phenotype for which

numerous genetic loci have been identified in GWAS and smoking

is clearly associated with pulmonary function, it might seem

surprising that none of the genome-wide significant SNPs

Table 1. Genome-wide significant SNPs from the joint meta-analysis (JMA) of SNP and SNP-by-smoking (ever-smoking or pack-
years) interaction in relation to pulmonary function.

SNP (coded
allele) Chr

Gene/closest
gene(s)

Coded allele
frequency1 JMA results

Smoking
metric bSNP

2 SESNP PSNP bINT
3 SEINT PINT PJMA

SNPs implicated in relation to FEV1/FVC

rs7594321 (T) 2q36.3 DNER 0.35 Ever-
smoking

0.049 0.0097 4.1461027 20.015 0.013 0.27 2.6461029

Pack-years 0.048 0.0070 7.03610212 20.00020 0.000074 6.8861023 5.00610211

rs7764819 (T) 6p21.32 HLA-DQB1/HLA-
DQA2

0.89 Ever-
smoking

20.060 0.015 6.3261025 20.0010 0.021 0.63 4.3961029

Pack-years 20.064 0.011 5.9561029 20.000058 0.00010 0.56 4.3561029

SNPs implicated in relation to FEV1

rs11654749 (T) 17q24.3 KCNJ2/SOX9 0.39 Ever-
smoking

20.028 0.0094 2.4661023 20.017 0.013 0.17 1.2861028

Pack-years 20.038 0.0068 2.2961028 0.000047 0.000068 0.49 6.6361028

After removing SNPs with known associations with FEV1/FVC or FEV1, three novel loci with genome-wide significant SNPs (standard threshold of P,561028) remained
from the JMA testing in the current study. The most significant SNP from each locus is shown.
FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; JMA, joint meta-analysis; SE, standard error ; SNP, single nucleotide polymorphism.
1Weighted average coded allele frequency across the 19 studies. The coded allele refers to the effect allele.
2bSNP, per allele change in the FEV1/FVC standardized residual due to the SNP main association.
3bINT, per allele change in the FEV1/FVC standardized residual due to the interaction between SNP and smoking.
doi:10.1371/journal.pgen.1003098.t001
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implicated by the JMA demonstrated a substantial interaction per

se. The lack of strong interactive effects does not negate the well-

established harmful effects of cigarette smoking nor the need for

broad public health campaigns to curb smoking. Instead, our

findings demonstrate the value of applying the newly developed

joint methods to uncover novel genetic risk factors that might shed

light on the mechanisms leading to reduced pulmonary function.

Our pattern of SNP main and interactive results resemble the

patterns seen in another recent application of the same JMA

method to incorporate the interaction with body mass index (BMI)

into GWAS of type 2 diabetes traits (fasting insulin and blood

glucose) [14]. In that study with a sample size of 96,453, nearly

double that of ours, the top JMA finding had a corresponding

interaction P value of 1.661024 [14]. In our study, the smallest

interaction P value for our top JMA finding was 6.961023. In both

our GWAS of smoking and pulmonary function and the recent

GWAS of BMI and diabetes traits [14], the SNPs newly implicated

by the JMA had marginally significant associations with the trait

under study in models with no interaction term, but they became

genome-wide significant when accounting for the environmental

factor (cigarette smoking or BMI) and the SNP-by-environment

interaction. Our JMA included careful modeling of the environ-

mental factor to saturate the environmental main effects along

with the interaction testing. In the GWAS of diabetes traits [14],

the careful modeling of the environmental factor appeared to

account for some of the novel findings from the JMA, consistent

with the modest evidence for interaction [14]. Although our

previous GWAS meta-analysis was conducted in ever/never-

smoking strata, the regression models were not adjusted for

smoking status or pack-years [10]. Some of our novel JMA

findings compared with our previous GWAS findings may reflect,

in part, the saturated modeling of the smoking main effect rather

than the interaction per se.

The current analysis of 50,047 participants included only 1,846

more participants than our previous GWAS meta-analysis of SNP

main effects [10]. To evaluate the likelihood that this 3.8%

increase in sample size above that in our previous meta-analysis of

pulmonary function was sufficient to explain our identification of

these three novel loci at genome-wide statistical significance in the

current JMA, we calculated the statistical power to detect genetic

main associations (QUANTO [34]) with minor allele frequency

(MAF) and b estimates comparable to the three genome-wide

significant SNPs presented in Table 1. The current study (total

N = 50,047 participants) had only 0.7% to 4.2% more statistical

power than our previous GWAS meta-analysis (total N = 48,201

participants) [10], suggesting that the JMA-implicated SNPs are

not merely reflective of increased power to detect genetic main

effects. Instead, our novel JMA findings demonstrate an advantage

of the method used to jointly test the SNP and SNP-by-smoking

interactive effects, including the benefit of the saturated modeling

of the smoking main effect.

SNPs located in the DNER gene were significantly associated

with FEV1/FVC, even at the more conservative P value threshold

of 1.2561028. The JMA results for DNER SNPs were driven by

both smoking-adjusted main effects and interaction with quanti-

tative smoking history. The DNER protein product is a ligand of

the Notch signaling pathway that has been implicated in neuronal

differentiation and maturation [35,36], adipogenesis [37], and

hair-cell development [38]. The Notch pathway is a critical

controller of cellular differentiation in multiple organs including

the lung [39,40]. Interestingly, the expression levels of many

members of the Notch signaling cascade are significantly altered in

airway epithelial cells of smokers [41]. We confirmed the

expression of DNER transcripts in lung and peripheral cells, and

by mining publicly available transcriptional profiling databases

[29], we found that DNER is expressed in bronchial epithelial cells

of non-smoking adults and, importantly, its expression is

significantly higher in smokers (Figure S2A). Collectively, these

results suggest that DNER plays a role in cigarette smoke-induced

Figure 2. Regional association plots of novel loci implicated for
pulmonary function. Three novel loci contained SNPs associated
with FEV1/FVC or FEV1 at the standard genome-wide significance
threshold (P,561028) in joint meta-analyses of SNP and SNP-by-
smoking interaction. SNPs are shown within 500 kb of the most
significant SNPs on chromosomes (A) 2q36.3 associated with FEV1/FVC,
(B) 6p21.32 associated with FEV1/FVC, and (C) 17q24.3 associated with
FEV1. Pairwise r2 values were based on the HapMap CEU population,
and progressively darker shades of red indicate higher r2 values.
Estimated recombination rates from HapMap are shown as background
lines.
doi:10.1371/journal.pgen.1003098.g002
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airflow obstruction and further corroborate the importance of the

Notch signaling circuitry in the pathogenesis of obstructive lung

disease.

Also in relation to FEV1/FVC, intergenic SNPs between HLA-

DQB1 and HLA-DQA2 exceeded the more conservative genome-

wide significance threshold. The eQTL analyses indicated that the

lead SNP is associated with expression of HLA-DQB1 specifically.

However, the major histocompatibility complex region is highly

polymorphic with complex LD patterns, and a few specific

functional SNPs might explain the observed associations [42].

Genetic variations within this region have been associated with

several autoimmune disorders [43] and asthma [24,44,45], and an

interaction between HLA variants and cigarette smoking has been

previously implicated [46]. We found little evidence for interaction

with smoking at this locus, suggesting that the JMA results were

primarily driven by smoking-adjusted genetic main effects. It is

most likely that this locus was not identified in our previous GWAS

meta-analysis, because the genetic main associations were not

evaluated with careful adjustment for smoking status and pack-

years. Adjustment for smoking in the current analysis may have

removed residual variance in the outcome that is not attributable

to genetic variation [14], thus making the identification of the

newly associated SNPs possible.

Intergenic SNPs between KCNJ2 and SOX9 were significantly

associated with FEV1 at the standard P value threshold, but not

the more conservative threshold. Similar to the HLA region, it

appears that the JMA results for the KCNJ2/SOX9 region were

primarily driven by smoking-adjusted genetic main effects. This

region is enriched for long-range regulatory elements for SOX9,

although the possibility of this region containing KCNJ2 regulatory

elements cannot be discounted [47]. KCNJ2 is a member of the

inwardly-rectifying potassium channel family, which regulates

membrane potential and cell excitability and is expressed in many

tissues including myocardium, neurons, and vasculature. This

potassium channel also affects human bronchial smooth muscle

tone and airflow limitation [48]. Dominant negative mutations in

KCNJ2 cause the Andersen syndrome, characterized by ventricular

arrhythmias, periodic paralysis, and a number of skeletal and

cardiac abnormalities [49]. SOX9 is a transcription factor that is

essential for cartilage formation, [50] but it is also abundantly

expressed in other tissues including the respiratory epithelium

during development [51]. Sox92/2 and Sox9+/2 mice have

multiple skeletal anomalies and severe tracheal cartilage malfor-

mations and die prematurely from respiratory insufficiency

[50,52]. Mutations in SOX9 cause campomelic dysplasia charac-

terized by skeletal defects and autosomal sex reversal [53]. These

individuals develop respiratory distress due to chest wall abnor-

malities, narrowed airways resulting from tracheobronchial defects

and hypoplastic lungs [54]. We confirmed that KCNJ2 and SOX9

transcripts were present in human lung tissue and peripheral cells.

Using publicly available microarray data [29], we established that

SOX9 is expressed in human airway epithelial cells and its

expression is significantly down-regulated in smokers relative to

non-smoking adults (Figure S2B). Taken together, these results

suggest that SOX9 may be involved in cigarette smoke-induced

airflow obstruction, but further investigation is required to

elucidate putative mechanisms.

Most of the previously implicated SNPs had genome-wide

significant (or nearly significant) associations with pulmonary

function in the JMA, but some were associated with pulmonary

function at P values that did not approach the genome-wide

statistical significance threshold in the JMA analysis. This pattern

has two possible explanations. First, the identification of these

SNPs at genome-wide statistical significance in our most recent

analysis [10] required a sample size of nearly 95,000 individuals,

which was obtained by combining discovery and replication

cohorts, including additional genotyping on thousands of

participants from studies without GWAS data. In the current

analysis, the sample size is greatly reduced because of the need for

detailed quantitative smoking data and because we were unable to

perform additional genotyping in studies without GWAS data.

Second, Manning et al.[15] showed that a meta-analysis of main

SNP effects has slightly greater power than the JMA under the

scenario of no interaction, so it is not surprising that a few of the

prior SNP findings had varying levels of significance between our

prior GWAS meta-analyses [8–10] and the current JMA study.

While our sample size of over 50,000 study participants is large, and

the study of Manning et al. [14] examining SNP-by-BMI

interaction in relation to fasting insulin is nearly twice as large,

identification of interactions is challenging from a statistical power

perspective. Given the multiple testing issues in genome interaction

testing, even larger sample sizes will likely be needed to identify

gene-by-environment interactions with rare variants or with the

modest effect sizes that we generally expect. Nonetheless, our

findings exemplify the greater power achieved by using the joint

methods, such as those reported by Manning et al. [15] and Kraft et

al. [16,33], to incorporate interaction with a clearly associated

environmental risk factor. The novel genetic loci identified here for

pulmonary function would have remained unknown using standard

GWAS approaches.

Methods

Ethics statement
Nineteen independent studies contributed to our analyses. All

study protocols were approved by the respective local Institutional

Table 2. Look-up evaluation of SNP main associations with FEV1/FVC and FEV1 using data generated by our previous genome-
wide association study meta-analysis (N = 48,201), for the most significant SNP from each of the three novel loci implicated at
genome-wide significance in the joint meta-analysis.

SNP (coded allele) Gene/closest gene(s) FEV1/FVC FEV1

b1 SE P b1 SE P

rs7594321 (T) DNER 0.032 0.0072 1.0461025 0.0081 0.0074 0.27

rs7764819 (T) HLA-DQB1/HLA-DQA2 20.044 0.011 8.7961025 20.0073 0.011 0.52

rs11654749 (T) KCNJ2/SOX9 20.023 0.0071 0.0015 20.031 0.0072 1.2361025

FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; SE, standard error; SNP, single nucleotide polymorphism.
1bSNP, per allele change in the FEV1/FVC standardized residual due to the SNP main association.
doi:10.1371/journal.pgen.1003098.t002
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Review Boards, and written informed consent for genetic studies

was obtained from all participants included in our analyses.

Cohort studies
Of the 19 studies contributing to our analyses, 18 studies came

from the CHARGE [8,55] or SpiroMeta [9] Consortium: Age,

Gene, Environment, Susceptibility (AGES) – Reykjavik Study

[56]; Atherosclerosis Risk in Communities (ARIC) Study [57];

British 1958 Birth Cohort (B58C) [58]; Coronary Artery Risk

Development in Young Adults (CARDIA) [59,60]; Cardiovascular

Health Study (CHS) [61]; European Community Respiratory

Health Survey (ECRHS) [62]; European Prospective Investigation

into Cancer and Nutrition (EPIC, obese cases and population-

based subsets) [63]; Framingham Heart Study (FHS) [64,65];

Health, Aging, and Body Composition (Health ABC) Study [66];

Northern Finland Birth Cohort of 1966 (NFBC1966) [67,68];

Multi-Ethnic Study of Atherosclerosis (MESA) [69,70]; Rotterdam

Study (RS-I, RS-II, and RS-III) [71]; Swiss Study on Air Pollution

and Lung Diseases in Adults (SAPALDIA) [72]; Study of Health in

Pomerania (SHIP) [73]; and TwinsUK [74]. We reached out to

other population-based studies with GWAS genotyping and data

available on cigarette smoking and pulmonary function, resulting

in the inclusion of LifeLines [75]. Given the greater power needed

to detect novel genetic loci with subtle gene-environment

interaction regardless of the statistical method used [16], we chose

to maximize statistical power to discover novel genetic loci by

combining all available participants and to use the regression

coefficients across the many different component studies as

evidence for consistency. This approach was similarly taken by

another large-scale GWAS consortium for discovering SNP main

effects [24].

Pulmonary function measurements and smoking
information

All studies were included in our previous GWAS meta-analysis of

pulmonary function or the follow-up replication analyses, wherein

their pulmonary function testing protocols were described [10]. For

studies with spirometry at a single visit (B58C, LifeLines, MESA,

NFBC1966, SHIP, RS-I, RS-II, and RS-III), we analyzed FEV1/

FVC and FEV1 measured at that visit. For studies with spirometry

at more than one visit, we analyzed measurements from the baseline

visit (AGES, ARIC, CARDIA, CHS, ECRHS, EPIC obese cases,

EPIC population-based, Health ABC, and SAPALDIA) or the most

recent examination with spirometry data (FHS and TwinsUK).

Smoking history (current-, past-, and never-smoking) was

ascertained by questionnaire at the time of pulmonary function

testing. Pack-years of smoking were calculated for current and past

smokers by multiplying smoking amount (packs/day) and duration

(years smoked). Table S11 presents the specific questions used to

ascertain smoking history and pack-years in each of the 19 studies.

Genotyping, quality control, and imputation
Study participants were genotyped on various genotyping

platforms, and standard quality control filters for call rate, Hardy-

Weinberg equilibrium p-value, MAF, and other measures were

applied to the genotyped SNPs (Table S12). To generate a common

set of SNPs for meta-analysis, imputation was conducted with

reference haplotype panels from HapMap phase II subjects of

European ancestry (CEU) (Table S12) [76]. Imputed genotype

dosage values (estimated reference allele count with a fractional

value ranging from 0 to 2.0) were generated for approximately 2.5

million autosomal SNPs. Among participants with genome-wide

SNP genotyping data, exclusions were made due to standard quality

control metrics (call rate, discordance with prior genotyping, and

genotypic and phenotypic sex mismatch among others), missing

pulmonary function data, or missing covariate data (Table S13).

Statistical analysis
Our analyses included 50,047 participants from 19 studies who

passed their study-specific quality control and had complete data

on pulmonary function and smoking. Each study transformed the

pulmonary function measures to residuals using linear regression

of FEV1/FVC (%) and FEV1 (mL) on age, age2, sex, and standing

height as predictors. Principal component eigenvectors and

recruitment site were also included as covariates to adjust for

population stratification (if applicable). The residuals were

converted to z scores (henceforth referred to as standardized

residuals). We confirmed that smoking was inversely associated

with the FEV1/FVC and FEV1 standardized residuals in all 19

studies (meta-analysis b= 20.0030 and corresponding P,161026

for pack-years of smoking).

The FEV1/FVC and FEV1 standardized residuals were used as

the phenotypes for genome-wide association testing with linear

regression models, which included the following predictor variables:

imputed SNP genotype dosages, smoking history (dichotomous

variable, 0 = never-smokers and 1 = ever-smokers), smoking status

(dichotomous variable, 0 = never- and past-smokers and 1 = cur-

rent-smokers), pack-years of smoking (continuous variable), and a

SNP-by-smoking interaction product term. Two of the 19 studies

(FHS and TwinsUK) had much relatedness among participants,

and we took appropriate account of relatedness in the association

testing (Table S12). Four regression models with interaction terms

for ever-smoking or pack-years were specified in relation to

standardized residuals for FEV1/FVC or FEV1. As it has long

been advised in studying interactions, the regression models were

designed to fully saturate the main smoking effect on pulmonary

function, so that the interaction terms do not capture residual main

effects [77]. In each of the 19 studies, the genome-wide analyses

were implemented with robust variance estimation using the

software packages indicated in Table S12.

Our analyses were aimed at finding novel loci associated with

pulmonary function when considering an interaction with

cigarette smoking, so we chose to implement JMA of SNP main

and interactive SNP-by-smoking effects (two d.f. test of the null

hypothesis bSNP = 0 and bINT = 0) [15]. Manning et al. previously

compared the joint methods, such as JMA, with other methods

that incorporate gene-environment interaction (such as screening

by main effects [78] or conducting a 1 d.f. meta-analysis of the

interaction product term), and they found that the joint methods

offer optimal statistical power over a range of scenarios for SNP

main and interactive effects [15,33]. Therefore, our analyses

centered on the JMA method, which simultaneously estimates

regression coefficients for the SNP and SNP-by-smoking interac-

tion terms, while accounting for their covariance, to generate a

joint test of significance [15]. It also accounts for the unequal

variances from studies of different sample sizes. Secondarily, we

implemented meta-analyses of just the b coefficient from the

interaction term for comparison with the JMA results. Of note, the

two-step gene-environment interaction study designs by Murcray

et al. [79,80] and Gauderman et al. [81] are applicable to case-

control or case-parent trio studies, respectively, and were thus not

considered for our population-based studies of continuous traits.

The JMA was conducted with fixed effects on approximately 2.5

million SNPs using METAL software (version 2010-02-08) [82]

and patch source code provided by Manning et al. [82]. Genomic

control correction was applied by computing lgc as the ratio of the

observed and expected (2 d.f.) median chi-square statistics and

SNP and SNP-by-Smoking Analysis for Lung Function
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dividing the observed chi-square statistics by lgc. SNPs having

PJMA,561028 (the standard Bonferroni-adjusted P value) were

considered statistically significant [83]. Further correction for the

four different (albeit related) JMA models yielded a conservative

PJMA threshold of 1.2561028. In addition to reporting the PJMA

for the most significant SNP from each novel locus, we used the b
and standard error (SE) estimates from the JMA results to calculate

the P values corresponding to the SNP main association (PSNP) and

the SNP-by-ever-smoking interaction (PINT) [15].

Bioinformatics analysis
Gene annotation was performed using the gene prediction

tracks ‘‘UCSC Genes’’ and ‘‘RefSeq Genes’’ in the UCSC browser

(http://genome.ucsc.edu). The ‘‘sno/miRNA’’ track from the

USCS browser was used to search for any microRNA within

100 kb upstream or downstream of each SNP, and the ‘‘TFBS

Conserved’’ track was used to search for conserved transcription

factor binding sites (TFBSs) at or near the most significant SNPs.

The SNAP program [84] was used to infer LD patterns, based on

the HapMap phase II CEU population.

Expression analyses
We used separate types of expression analyses to confirm the

biologic plausibility of our findings. First, we carried out mRNA

expression profiling to show whether or not the implicated genes are

expressed in human tissues relevant to pulmonary function. The

mRNA expression profiles of implicated genes were determined

using reverse transcription polymerase chain reaction (RT-PCR).

RNA was sourced from lung (Ambion/ABI), human bronchial

epithelial cells (Clonetics) [85], and peripheral blood mononuclear

cells (3H Biomedica). RNA from human airway smooth muscle cells,

cultured as previously described from tissue obtained at thoracotomy

[86], was extracted using a commercially available kit (Qiagen).

Ethical approval for the use of primary cells was obtained from the

local ethics committees. cDNA was generated using 1 mg of RNA

template using random hexamers and a SuperScript kit (Invitrogen)

as directed by the manufacturer. PCR assays were designed to cross

intron-exon boundaries, where possible and where splice variation

was known, in order to detect all variants. The GAPDH gene was

used as a positive control for the cDNA quality, and water was used

as a negative control. Primer sequences for the genes of interest are

given in Table S14. All PCR were done using Platinum Taq High

Fidelity (Invitrogen) with 100 ng of cDNA template in a 25 mL

reaction. Cycling conditions were as follows: 94uC for 2 minutes, 35

cycles of 94uC for 45 seconds, 55uC for 30 seconds, and 68uC for

90 seconds. Following PCR, gel bands were directly sequenced to

confirm the presence of the gene’s transcript.

Second, we used another publically available data repository to

investigate whether any of the implicated genes showed evidence

for differential expression depending on smoking history. The gene

expression profiles of human airway epithelium from healthy

smokers (N = 10) and nonsmokers (N = 12) were obtained from the

Gene Expression Omnibus site (http://www.ncbi.nlm.nih.gov/

geo/) [27,28], based on robust multichip average processing of

probe intensities from Affymetrix HG-U133 Plus 2.0 microarrays

(GEO dataset number GSE4498) [29]. Mean expression levels of

genes around our genome-wide significant findings from the JMA

were compared between smokers versus nonsmokers. The P value

for the difference in means between smokers and nonsmokers was

calculated using the nonparametric Mann-Whitney test.

Third, our genome-wide significant SNPs from novel loci were

searched against an expression quantitative trait loci (eQTL) data

repository based on lymphoblastoid cell lines [32], to investigate

whether any of the implicated SNP variants might influence the

expression of the nearby genes. P,561028 was used to designate

statistically significant eQTL associations.

Supporting Information

Figure S1 Quantile–quantile plots for the genome-wide joint meta-

analysis (JMA) of SNP and SNP-by-smoking interaction in relation to

pulmonary function. The plots compare the observed vs. expected P

values for JMA testing of SNPs by (A) ever-smoking in relation to

FEV1/FVC, (B) pack-years of smoking in relation to FEV1/FVC, (C)

ever-smoking in relation to FEV1, and (D) pack-years of smoking in

relation to FEV1. The corresponding two degree-of-freedom genomic

inflation factors (lgc) are shown, as calculated across all SNPs before

the exclusion of previously implicated SNPs. The JMA results of all

SNPs were plotted (in blue), along with the SNPs remaining after

exclusion of the 27 previously implicated loci (in black).

(DOCX)

Figure S2 mRNA expression profiling in human airway

epithelium from healthy smokers versus nonsmokers. Expression

profiles of 10 smokers (indicated in blue) and 12 nonsmokers

(indicated in red) were obtained for (A) DNER, (B) SOX9, and (C)

KCNJ2, using microarray data from the Gene Expression

Omnibus site (http://www.ncbi.nlm.nih.gov/geo/) (GSE4498).

The y-axes reflect the probe intensities of each gene transcript

from Affymetrix HG-U133 Plus 2.0 microarrays [29], with the

horizontal bold bars indicating the average probe intensities and

the smaller bars indicating standard deviation. SOX9 was

represented by two different probes on the microarray; therefore,

the intensities were averaged for each sample. The P value was

calculated using the nonparametric Mann-Whitney test.

(DOCX)

Table S1 Characteristics of study participants (total N = 50,047)

at the time of pulmonary function testing.

(DOCX)

Table S2 Genomic inflation factors (lgc) for study-specific results

(corresponding to the 1 degree of freedom SNP-by-smoking

product term) in each of the four regression models.

(DOCX)

Table S3 Regions surrounding the most significant SNP from

each of 27 previously implicated loci (500 kb upstream to 500 kb

downstream of each SNP). These loci were excluded when

identifying novel loci from the joint meta-analysis (JMA) of SNP

and SNP-by-smoking interaction. The smallest P value from the

JMA (PJMA) is shown, along with the corresponding JMA model

from which the result was obtained.

(DOCX)

Table S4 Study-specific results for the genome-wide significant

SNP rs7594321 (coded allele: T), located in the DNER gene. b
estimates and P values are shown for the SNP main association

(bSNP and PSNP) and interactive association (bINT and PINT) by

smoking (ever-smoking and pack-years) in relation to FEV1/FVC.

The P values corresponding to the joint test of SNP main and

interactive associations are also shown.

(DOCX)

Table S5 Study-specific results for the genome-wide significant

SNP rs7764819 (coded allele: T), located between the HLA-DQB1

and HLA-DQA2 genes. b estimates and P values are shown for the

SNP main association (bSNP and PSNP) and interactive association

(bINT and PINT) by smoking (ever-smoking and pack-years) in

relation to FEV1/FVC. The P values corresponding to the joint

test of SNP main and interactive associations are also shown.

(DOCX)
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Table S6 SNPs from each of 16 chromosomal regions with P

values between 561028 and 161026 for the joint meta-analysis of

SNP and SNP-by-smoking (ever-smoking or pack-years) in relation

to pulmonary function (FEV1/FVC or FEV1). A hyphen (‘‘2’’)

indicates P.161026. For each regression model, the SNP having

the smallest PJMA from each locus is shown.

(DOCX)

Table S7 SNPs with P,161026 from the 1 degree-of-freedom

meta-analysis of regression coefficients corresponding to the

SNP-by-smoking (ever-smoking or pack-years) interaction term

in relation to FEV1/FVC. No SNPs exceeded the standard

genome-wide significance threshold (P,561028). A hyphen

(‘‘2’’) indicates P.161026. For each regression model, the SNP

having the smallest PINT from each locus is shown.

(DOCX)

Table S8 Study-specific results for the genome-wide significant SNP

rs11654749 (coded allele: T), located between the KCNJ2 and SOX9

genes. b estimates and P values are shown for the SNP main association

(bSNP and PSNP) and interactive association (bINT and PINT) by ever-

smoking in relation to FEV1. The P values corresponding to the joint

test of SNP main and interactive associations are also shown.

(DOCX)

Table S9 Look-up evaluation of main SNP associations with

cigarette smoking phenotypes using data generated by the Oxford-

GlaxoSmithKline Consortium (N = 41,150), for the most signifi-

cant SNP from each of the three novel loci implicated at genome-

wide significance in the joint meta-analysis.

(DOCX)

Table S10 mRNA expression profiling of three candidate genes

in the human lung and periphery. Primer sequences are provided

in Table S5. A ‘‘+’’ sign indicates presence of the transcript, and

‘‘2’’ indicates its absence. All products were sequence verified.

(DOCX)

Table S11 Questionnaire data used to ascertain cigarette

smoking history (ever-smoking), amount, and duration across the

19 studies. Smoking amount and duration were used together to

calculate pack-years.

(DOCX)

Table S12 Details of single nucleotide polymorphism (SNP)

genotyping, quality control (QC), imputation, and statistical

analysis across the 19 studies.

(DOCX)

Table S13 Study participants of European descent and quality

control (QC) across the 19 studies. Participants passing QC filters

and having acceptable spirometry data and complete covariate

data were included in the meta-analyses.
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Table S14 Primers for mRNA expression profiling.
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Text S1 Detailed explanation of joint meta-analysis significance

levels, in relation to main and interactive significance.

(DOCX)
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