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Abstract

Voice communication systems such as Voice-over IP (VoIP), Public Switched
Telephone Networks, and Mobile Telephone Networks, are an integral means of
human tele-interaction. These systems pose distinctive challenges due to their
unique characteristics such as low volume, burstiness and stringent delay/loss
requirements across heterogeneous underlying network technologies. Effective
quality evaluation methodologies are important for system development and
refinement, particularly by adopting user feedback based measurement. Presently,
most of the evaluation models are system-centric (Quality of Service or QoS-based),
which questioned us to explore a user-centric (Quality of Experience or QoE-based)
approach as a step towards the human-centric paradigm of system design. We
research an affect-based QoE evaluation framework which attempts to capture users’
perception while they are engaged in voice communication. Our modular approach
consists of feature extraction from multiple information sources including various
affective cues and different classification procedures such as Support Vector
Machines (SVM) and k-Nearest Neighbor (kNN). The experimental study is illustrated
in depth with detailed analysis of results. The evidences collected provide the
potential feasibility of our approach for QoE evaluation and suggest the
consideration of human affective attributes in modeling user experience.

Introduction
The voice communication industry is undergoing a rapid phase change with technolo-

gies such as cellular, mobile and Internet telephony replacing the conventional tele-

phone networks. Service providers are faced with offering high communication quality

under more heterogeneous and dynamic networking conditions. Effective evaluation of

system performance is becoming critical, which will serve as an important instrument

for quality monitoring and management.

Traditional evaluation methods are very system-oriented where Quality of Service

(QoS) metrics have been the de facto standards for voice communication technologies.

Recently, there is a paradigm shift towards user-oriented methodologies with the

introduction of human-centric computing in the systems area [1], and the concept of

Quality of Experience (QoE) is gradually gaining popularity [2-4]. Since QoE metrics

are closely related to human perception, they could potentially serve as more valuable

quality indicator from the user perspective.

The main challenge of how to evaluate QoE remains largely unsolved due to its com-

plexity. Over the years, different meanings have been attached to the term [5-7].
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Theoretical studies from various disciplines characterize QoE as a multi-dimensional

construct which involves both subjective and objective factors intertwined in the user

interaction such as perception, emotion, behavior, need, context, system and network-

ing [8-14]. In practice, system developers have applied QoE assessment techniques,

ranging from user feedback [15,16], QoS-based estimation [17,18] to media quality ana-

lysis [19,20]. Despite the value demonstrated, each approach has limitations and weak-

nesses as elucidated in related work (Related work).

In this paper, we investigate the usability of affective computing in evaluating QoE of

voice communication. Affective computing deals with the analysis of human emotional

variables naturally revealed during the user-system interaction. In the process, emo-

tions have been shown to have strong association with user experience regarding inter-

est, satisfaction, motivation and performance [21-24]. Using signal processing,

linguistic analysis, and psycho-physiological techniques, automated emotion recogni-

tion is feasible by aggregating affective cues from multi-modal user input such as facial

expression, speech, body gesture, and neuroimaging [25-27]. Leveraging on these find-

ings, affect-aware systems are emerging that dynamically adapt according to the change

of user emotions in applications of user interface, health care, education, customer ser-

vice, intelligent automobile, entertainment, information retrieval and social signal pro-

cessing [28-33].

Guided by the above evidences, we hypothesize that QoE or the user perception of

quality in voice communication is correlated to his/her affective behavior (e.g., pitch,

voice, timing and articulation), which will vary across networking conditions. To the

best of our knowledge, the analysis of affective behavior and its role in the QoE evalua-

tion of voice communication is an unexplored area. As an initial step, we focus on

experimental user studies to record changes of user affect state and examine at what

level QoE is reflected from these changes.

Audio 
Signal

Affect Analysis 
Framework

QoE
Estimation

QoS

Audio 
Signal

Affect Analysis 
Framework

QoE
Estimation

Network

Figure 1 The overview of affect-based approach for QoE evaluation in voice communication.
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The general scheme of the experiment is given in Figure 1, which shows the network

setting, the voice communication, the audio signal input, and the affect analysis frame-

work that processes audio signals to produce QoE estimation.

Our study is based on the context of human-human voice communication. In a test

session, two participants are engaged in natural conversation through a VoIP connec-

tion mediated with varying QoS parameters (e.g., delay, loss rate, and bandwidth).

During the conversation, the communication quality is tagged by user feedback

(“Good“, “Average“ and “Bad“). The conversation is saved and further processed by the

affect analysis framework offline. The front end of the framework performs feature

extraction to derive samples. The set of features are drawn from three major categories

of affective signals involving acoustic, lexical and discourse features as suggested by

previous research in emotion detection [25,34-36]. The affective behavior is analyzed

individually for each category as well as combined. A subset of samples are used to

train classification modules. Then, the rest samples are used for performance testing.

Finally, the accuracy analysis is provided by comparing the output of the affect analysis

framework (i.e., QoE estimation) with the user tagged feedback.

Our contributions in this paper are the followings. Most of all, we provide a new

affect-based methodology of QoE evaluation in voice communication. Different from

previous approaches, we propose to assess quality directly from the user affective

responses. Therefore, our method has the advantage of deriving subjective QoE mea-

sures in an implicit and non-intrusive manner. The experimental results indicate very

promising prospect of this approach. Regarding boarder impacts, as the communica-

tion systems become more media-rich and interactive (e.g., spatial audio, 3D/immersive

space), measuring QoE via indirect methods will become more challenging [4]. There-

fore, our work represents an important step towards the understanding of QoE for the

future generation of communication systems.

In the remainder of the paper, Related work reviews existing work on QoE evaluation

in voice communication. Experimental design describes the methodologies and settings

of the user study experiment. Affect analysis framework presents the details of the

affect analysis framework. Results highlights the results and implications of affect-

based approach on the prediction of QoE. The paper is concluded in Conclusions with

discussion on future directions.

Related work
We classify available QoE evaluation methods of voice communication in three groups:

(a) user feedback, (b) QoS-based estimation, and (c) media quality analysis.

User feedback

These group of methods obtain explicit input from user for quality measurement. For

example, in the popular format of Mean Opinion Score (MOS) [16], users are asked to

complete a questionnaire based on a 1-to-5 scale. It is a simple method that provides

subjective measures of user perception. The main disadvantage is its intrusiveness [29].

The laboratory settings are often not transparent to the participants, which destroys

the eco-psychological validity of a naturalistic study. Thus, the user feedback may not

easily elicit spontaneous expressive behavior. Another disadvantage is the issue of scal-

ing quality with numbers [37,38]. To alleviate the problem, an interesting idea of One
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Click [15] is proposed where the user only needs to click the mouse whenever he/she

feels dissatisfied with the quality. Compared with traditional user feedback, it is less

intrusive: the user task is reduced from a multiple-choice decision to a dichotomous

one, and the test can be performed “during“ user interaction instead of “after.” How-

ever, One Click still requires direct user attention which poses cognitive overhead. For

more interactive systems like gaming or 3D immersion, it implies that the user may

have to pause his/her ongoing activity from time to time.

QoS-based estimation

A good amount of research has been done in this area [17,18,39-41], where QoE is

estimated by modeling from the underlying QoS parameters. QoS-based methods are

implicit and non-intrusive which makes them an appealing choice. However, these

methods are essentially objective approximation of QoE due to lack of user engage-

ment. Accordingly, they cannot cover all QoE dimensions that may affect user percep-

tion and experience [15], and the discrepancy among the user population tend to be

ignored [42]. For example, users have different sensitivity to delays under varying con-

versational dynamics (e.g., various talk/silent spurt duration) [18]. It is hard to accom-

modate such feature in QoS-based estimation. The correlation between QoS and QoE

also becomes more intractable for advanced communication systems, which greatly

complicates the modeling process [7]. Moreover, there are non-trivial technical details

regarding its deployment in the field such as messaging overhead and traffic detection

[43,44], and the buffer masking effect on the interaction between QoE and delay/loss

[40].

Media quality analysis

Media quality analysis methods assess the quality by measuring the distortion of the

signal based on certain analysis models like signal-to-noise ratio (SNR). More sophisti-

cated ones attempt to incorporate human auditory perception such as Enhanced Bark

Spectral Distortion (EBSD) and Perceptual Speech Quality Measure (PSQM) [45]. Simi-

lar to QoS-based estimation, these methods do not require explicit user input. The

state-of-the-art standard in this category is ITU-T P.862 [19], also known as the

Perceptual Evaluation of Speech Quality (PESQ). The drawback of PESQ is that it is

double-ended: the algorithm requires both the original and the degraded signals to

compute the quality difference [46]. Further, it fails to consider factors such as various

listening levels, sidetone/talk echo, and conversational delay/interaction [15,17].

We argue that a suitable QoE evaluation method in voice communication should

capture the subjective measures from the user in a non-intrusive manner. It is clear

that none of the existing methods comprises of both characters. The contribution of

this paper is the proposition of a new affect-based approach which opens such

possibility.

Affect analysis framework
The basic approach of affect-based framework is to apply multi-modal analysis for

QoE evaluation. The front end of the framework performs feature extraction from the

audio signals of user conversation. In our study, three major categories of affective sig-

nals are extracted including acoustic features, lexical features and discourse features.
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The importance and usage of acoustic features for automatic emotion detection has

been well-studied [34]. However, acoustic-based methods are effective for posed

expressions in staged scenarios but degrades in natural human interaction with sponta-

neous expression [25]. The common wisdom is to incorporate acoustic features along

with lexical and discourse features for performance enhancement [25,35]. Since we tar-

get normal human-human voice communication, we include all these features in the

framework. After feature extraction, the affective response is analyzed individually by

the classification module of each category. In the last stage, the results are then com-

bined to generate the final output of the framework (i.e., QoE estimation).

We follow the general methodologies and technical justifications as presented in [36]

for the design of the framework, but we independently completed the implementation

and integration work. We briefly introduce each module of the framework in the fol-

lowing sections as it is not our major focus of this research. An overview of the frame-

work is presented in Figure 2.

Acoustic features

We consider 22 different acoustic attributes related to segmental and suprasegmental

information of speech signals. These attributes are derived from turn-level statistics

and transformations in the domains of fundamental frequency, energy, duration, and

formants.

• Fundamental Frequency (F0): the lowest frequency of the signal wave. We use sta-

tistical functionals of mean, median, standard deviation, maximum, minimum, range

(maximum-minimum) and linear regression coefficient.

• Energy (Er): computed as the Root Mean Square (RMS) of the signal, i.e.,

Er =

√√√√
(∑N

n=0 x2
n

)

N
a PCM frame of size N. Similarly, we use statistical functionals of

mean, median, standard deviation, maximum, minimum, range, and linear regression

coefficient.

• Duration: computed by comparing various voiced and non-voiced regions in a tem-

poral-domain analysis of the speech waveform. The individual attributes are speech-

rate, duration of the longest voiced speech and ratio of voiced and unvoiced region.

• Formants: basically the resonance of human vocal tract. Formant location and

bandwidth are used to identify phonetic property of human speech. We use the first

and second formant frequencies (F1, F2), their corresponding bandwidths (BW1, BW2)

and the mean.

Acoustic Feature 
Extraction

Automatic Speech 
Recognition

Lexical Feature 
Extraction

Discourse Feature 
Extraction

Acoustic Feature            
Selection

Lexical              
Classifier

Discourse         
Classifier

Acoustic           
Classifier

QoE Prediction
(Good, Average, Bad)

audio
signal

Figure 2 The block diagram of the affect analysis framework.
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The module of acoustic feature extraction was implemented based on the tool of

openSMILE [47], an open-source software that can extract many low-level acoustic fea-

tures and statistic functionals. The 22 acoustic attributes form the base feature set

(denoted as Base). Generally, not all features are equally significant for affective analy-

sis. Following the work of [36], we perform feature selection with an expectation to

improve prediction accuracy by dropping off the least significant attributes. We employ

the leave-one-out method for feature selection and the nearest neighborhood rule for

estimating accuracy. We generate two subsets from the base feature set, one has 10

best features (denoted as f10) and the other has 15 best features (denoted as f15).

Lastly, we obtain another feature set by performing Principal Component Analysis

(PCA) on the base feature set, which is denoted as PCA.

Lexical features

Lexical features here refer to language related information regarding the fact that peo-

ple tend to choose specific words for various expressions (e.g., “can’t“, “damn“, “bad“,

and “great“) [9]. In our study, we adopt the notion of mutual information [48] to

establish the correlation between words and different Q o E levels.

Denote the vocabulary V={V1, V2,,Vn} and the set of quality levels Q ={q1,q2, qm}. As

mentioned earlier, we choose m = 3 (i.e., “Good“, “Average“, and “Bad“). The mutual

information is given as:

I(v, q) = log
Pr

{
q|v}

Pr
{
q
}

for v Î V and q Î Q. Intuitively, if a word v is correlated with a quality level q, then

Pr{q|v}Pr{q} and I(v,q) is positive. If there is no correlation, then Pr {q|v} = Pr{q} and

I(v,q) is zero. If v makes q less likely, I(v,q) is negative.

Given an utterance, the action for quality level qk can be calculated as:

ak =
n∑

i=1

OiI(qk, vi) + log(qk)

where Oi is the likelihood that word Vi is recognized in the utterance by the speech

recognition module. For simplicity, we use a one-layer network where the order and

sequence of words are not considered. Finally, we use {a0,a1,a2,a0,-a1,a1-a2,a2-a0} as

the feature set for the lexical information. The intent of this module is to associate

indicative words with respect to the different quality categories which will help for bet-

ter prediction. From experimental voice data, we found that participants used words

such as “Damn“, “Disgusting“ more frequently whenever they rated the quality as

“Bad.” This correlation is automatically captured by lexical module whereby these

words will be marked as indicative for corresponding quality category to improve pre-

diction accuracy.

We leverage on the Automatic Speech Recognition (ASR) system from the HTK

Toolkit [49] of Cambridge University for predicting text output of voice signals, which

is based on the Hidden Markov Models (HMM). The models of HMM are accessed

and trained on Wall Street Journal (WSJ) corpora [50] and the generated tied-state

cross-word triphones are utilized for later recognition purposes. We develop a 3-gram

language model provided in a 1,200 million English Gigaword corpus citecorpus
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indexed with the Linguistic Data Consortium catalogue and also coupled with a

125,000-word CMU pronunciation dictionary [51].

Discourse features

The value of discourse information for emotion recognition has been noted in the lit-

erature, particularly combined with acoustic information to improve the accuracy

[52,53]. In our study, we take a simplified approach by modeling only repetition, which

is found to be the most important indicator of trouble in communication [35]. We

choose from 1-word to 5-word repetitions and formulate the dimensions of discourse

feature set as: number of 1-word repetition, number of 2-word repetitions, and like-

wise. Moreover, we construct another repetition metric as the following:

R =
5∑

i=1

ri ∗ wi

where ri is the number of i-word repetitions and wi represents a proportional weigh-

tage which assigns higher weight to the repetition of longer sequence of words (e.g.,

5-word repetition).

Analysing experimental voice data, we found that participants used words such as

“not able to hear“, “no sound“, “pardon me“, and “please repeat“ more frequently when

they rated the quality as “Bad.” This correlation between the particular repetitive

words and quality category label is automatically analyzed by the discourse module to

improve prediction accuracy. The discourse feature extraction relies on the same auto-

matic speech recognition module as described in the lexical features (Lexical features).

Classifiers

The classifiers form the core component of the framework, which is used to provide

QoE prediction based on an input set of features extracted from previous feature

extraction modules (shown in Figure 2). The original data set contains samples tagged

with user quality feedback, which is divided into training set and testing set. For the

initial training phase, samples of the training set are utilized to build a classifier. Dur-

ing the testing phase, samples of the testing set are fed into the classifier (with user

feedback removed) which will output QoE predictions. Then, the output is used to

compare with the user feedback. Overall, 75% of the data samples are used for training

and the rest 25% for testing.

Two basic types of classifiers are used here, namely Support Vector Machines (SVM)

and k-Nearest Neighbors (kNN). SVM involves the construction of a set of hyperplanes

by maximizing the separating distance between the nearest training data points among

all classes. In contrast, kNN works by computing the k nearest neighbors to the input

sample based on a distance metric (by default, Euclidean) and using a majority vote

among the neighbors to determine the class label of the sample. Our rationale for

choosing SVM and kNN classifiers are mainly due to their effectiveness and perfor-

mance benefit. Though we test various classification methods, our framework does not

depend on any one particular technique.

We make no assumption on the dependency between these features and the user

experience of quality. Instead, we take an unequivocal classification approach, using

the ground truth from the training data. For SVM classifier, we trained our models
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with the radial basis function (RBF) kernel. To identify the optimal values of C (cost)

and Υ (kernel parameter), we apply cross-validation with iteratively refined grid-search

method [30]. The notations of the four different SVM derivatives used in our study are

given as follows.

• SVM: uses fixed training and testing sets.

• SVM-5CV: divides the data into five randomly chosen segments of equal size and

run five times with each run comprising of four segments for training and one seg-

ment for testing (5-fold cross-validation).

• SVM-5WC and SVM-10WC: employs 2-layer hierarchical SVM model that trains 5

and 10 bottom-layer weak classifiers (5WC and 10WC respectively) on different subset

of the training set and the output of each is used to train a top-layer meta-classifier.

For kNN classifier, we trained two derivatives. Their notations are given as follows.

• kNN: similar to that of SVM with k = 10.

• kNN-5CV: similar to that of SVM-5CV with an iterative number of nearest neigh-

bors from k = 1 to 15.

Since we incorporate multiple affective sources (i.e., acoustic, lexical, discourse) in

our framework, we need aggregation scheme to produce a single output. One simple

method is to employ feature-level fusion which merges all features from different

sources into a large feature vector as the input to a single classifier. In contrast, deci-

sion-level fusion takes results from multiple classifiers to compute a single value. We

take the second scheme and calculate the average of results from each classifier as the

final output. As simple as it is, such method achieves pretty good performance [54,55].

For software, we use the tools of libSVM [56] for SVM classifiers and Weka eweka for

kNN classifiers.

Experimental design
We designed the user study experiment for the examination of the following research

hypothesis:

H: The user perception of voice communication quality is correlated to his/her affec-

tive response, which will vary across networking conditions.

The main purpose of the experiment was to collect two types of data: audio signal of

user conversation and the user quality feedback. For that purpose, we engaged two

participants in natural conversation through a VoIP connection. During thetest, we

tuned the QoS parameters of delay, loss rate and bandwidth to simulate various net-

working conditions. We expect that the affect state of user as reflected from his/her

voice will change accordingly, as well as his/her subjective perception of the communi-

cation quality. Thus, we recorded the voice conversation and asked the user to rate the

quality. The collected data were used for training and testing by the affect analysis fra-

mework in the next stage (Related work).

Networking

We installed two desktop computers with Intel i686 Core 2 Quad CPU 32-bit (2.39

GHz) and 2 GB RAM running Linux kernel (Ver. 2.6.31.5) as each end of a VoIP con-

nection. The two computers were placed in two separate and quiet rooms of our

department building (one in the second floor and the other in the third floor). During
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the experiment, no other person was allowed inside the room to avoid any psychologi-

cal influence on the participants.

We configured a third computer (with similar hardware settings and the same oper-

ating system) to be used as a layer-2 bridge. The bridge computer had two network

interface cards to connect with the two VoIP end computers. We installed the Linux

brctl utility on the bridge computer to form a LAN: (VoIP end computer 1) ↔ (bridge

computer) ↔ (VoIP end computer 2). All physical connections were based on dedi-

cated wired lines with no interference from external network traffic. To simulate var-

ious networking conditions, we instrumented the traffic flow between the two VoIP

end computers by applying dummynet [57] on the bridge computer. The dummynet

software allows us to tune the network condition with different delay, loss rate and

bandwidth settings.

Voice channel

Each VoIP end computer was equipped with a Logitech headset with speaker/micro-

phone for voice capturing, playback, and recording. We used the library of PortAudio

[58] to record audio signals from the microphone into wav files that can be further

processed by the feature extraction modules. For simplicity, each end only records its

local signal for QoE evaluation. The interplay between local and remote signals would

be an interesting topic for future research. We deployed PJSIP [59] as the VoIP soft-

ware with G.711 codec. It is an open-source, comprehensive, and highly portable sys-

tem with a small memory footprint. Although PJSIP contains lots of features, it is

console-based and the basic command set is very simple. After a few minutes’ instruc-

tion, all participants were capable of operating it. To facilitate the experiment, we auto-

mated the communication and session management process for call initiation,

connection, and recording, so that two end users only need to press a few keys to

launch a test session.

Sample collection

We organized each test session based on a maximum 15-min run. The limit here was

chosen basically due to our observation that it was not natural to engage two strangers

in a phone conversation for over-stretched duration. Thus, to improve the efficiency of

every test we divided a run into multiple 20-s intervals. Timescale of each interval is

an important issue for QoE evaluation which is justified in Timescale. Each interval

corresponded to a fixed setting of QoS parameters. We adopted the approach of One-

Click [15] in the sense that at the end of each interval a console prompt was shown to

ask for user input of quality. Different from OneClick, we employed a trichotomous or

3-point scale decision ofquality levels: “Good“, “Average“, and “Bad“. Although this

experimental methodology still bears some intrusiveness, it is unavoidable in the initial

study since we need user feedback for training and testing the affect analysis frame-

work. The complete establishment of the framework will eventually eliminate the need

of user feedback.

The interval was saved as one sample after it was tagged with QoS parameters and

user feedback. Then, a different set of QoS parameters was configured into the net-

work and the next interval was started (shown in Figure 3). All the stepswere automa-

tically synchronized. Besides pressing a key every 20 s, there was no extra distraction
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to the end user. Overall, one test run provided 90 samples (i.e., 45 samples from each

end).

Timescale

It has been recognized that user perception of speech quality varies under different

temporal scale [46]. For example, in short-term test (≈30 seconds) the beginning por-

tion (at least >8 seconds) of the speech sample carries the greatest weight in the overall

rating of MOS (primary effect) [60], while in long-term test (≥ 60 seconds) the last

portion carries the greatest weight (recency effect) [61]. Regarding its psychological

merit of human memory mechanism, these findings give us the guideline for deciding

the timescale of test interval. Because user feedback is requested at the end of each

interval, we should choose short duration for each interval to leverage on primary

effect (but not too short). On the other hand, since the QoS parameters are fixed in

one interval, there is no need to apply long duration due to the recency effect. Consid-

ering previous research results and the possible interference to the user, we chose 20 s

as the fixed timescale for each test interval.a

QoS classes

We employed delay (d), bandwidth (b) and loss rate (l) as the basic QoS parameters.

For notation, each networking configuration is denoted as a tuple of <d,b,l>. Because

the space of possible configurations isquite large, we applied a selection procedure to

pick the most “distinctive“value set. In the pilot experiment, we performed the empiri-

cal study to pick up a meaningful range for each parameter. First, we set the best con-

figuration as gle50 ms, 100 Kbps, 0.06>. Then the worst configuration of each

parameter was determined incrementally while keeping the other two as the best until

the quality became intolerable. In such a way, the worst delay was set as 1200 ms,

worst bandwidth 52 Kbps, and worst loss rate 0.3. Next, we picked 5 values from each

parameter range evenly and aligned them together from best to worst and generated 5

Q o S classes.

• C1: <d = 50 ms, b = 100 Kbps, l = 0.06>

• C2: <d = 300 ms, b = 88 kbps, l = 0.12>

d1, b1, l1

feedback1

d2, b2, l2

…

dn, bn, lnd3, b3, l3

test session

d, b, l : d – delay, b – bandwidth, l – loss rate
feedback: Good / Average / Bad

feedback2 feedback3 feedbackn

Figure 3 The organization and sample collection procedure within one test session.
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• C3: <d = 600 ms, b = 76 kbps, l = 0.18>

• C4: <d = 900 ms, b = 64 kbps, l = 0.24>

• C5: <d = 1200 ms, b = 52 kbps, l = 0.3>

For further validation, we asked a few graduate students to run MOS-based test to

rate the quality for each configuration. The test was done in a random and blind way

(i.e., the students were not aware of the configuration). The average rating resultscon-

firmed clearly the quality difference between each configuration.

Participants

We recruited 15 participants from two mid-level undergraduate classes, namely, Java

Programming and Computer Networks [1]. We found that selecting students from

same classes provided better conversation control, for example, the familiarity and the

common interest (details in Conversation). All students were proficient with English

language (6 native, 7 advanced and 2 intermediate speakers). Among them, 11 were

male and 4 were female, between 18-38 years of age (M = 25.54, SD = 3.38). They had

a mean of 3.67 years of using VoIP service and all claimed to have been using at least

one VoIP service in the past (with the most popular being Skype followed by GTalk).

For better control of the test (more in Conversation) and regarding the difficulty of

accommodating each participant’s schedule, in each test session a graduate student

was assigned to play one VoIP end with another undergraduate student at the other

end (i.e., the real participant). So there were totally 15 test sessions. For statistic valid-

ity, the samples from the graduate student were discarded. Participation in the experi-

mental study was considered as a benefit by the students and no monetary

compensation was involved, since the conversation topics were chosen from course

materials as discussed later.

Questionnaire

Before the experiment, each participant was introduced with the experimental details

following IRB required procedures. Then he/she was asked to complete an Entry Ques-

tionnaire at the beginning of the study for collecting background/demographic infor-

mation, and their previous experience with VoIP if any. Exit Questionnaires were also

provided at the end of each session to elicit subjective experience of the user for the

entire audio conversation. The questionnaire gathered information on the subjective

quality perception and the evaluation criterion, as well as the participant’s view of the

importance of affective feedback regarding the usability and ethical outcome (for IRB

purposes). Some of the questions are listed below:

Q: What is your overall perception of the system?

Q: Did the system perform as per your expectation?

Q: Were you able to interact with the system without any problems?

Q: Did you feel any external or environmental influence during the experiments?

Q: Did you expect any more help from the system?

Conversation

Since conversational materials are highly correlated to the quality metrics [62], a care-

ful design of dialog exchange is important for the experiment. We wanted to invoke

natural conversation from the participants. Initially, we thought about selecting a few
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topics. However, the cultural and emotional influence of the topic on each user would

be hard to predict and may interfere with his/her experience. The ITU recommenda-

tion also suggests that the content should be “neither so interesting nor so disagreeable

or boring” [63]. To make the communication more controllable, we decided to give

quiz-like conversation formed using course-related materials with low-level difficulty.

The graduate student (actually the TA of the class) presented some questions and dis-

cussed with the student. This kind of conversation can be easily engaged and the topic

is neutral. Moreover, to avoid over-burdening the participants, we embedded some

brief comments on general topics or short riddles from time to time to provide cogni-

tive relief.

It is observed that in some cases the conversation itself might have invoked emo-

tional responses that are not related to communication quality perception. In the

experiment, we attempted to reduce this kind of effect by preferring neutral conversa-

tional content as described. However, in the real scenario, people do engage with

heated conversational dialog among themselves. In our preliminary experiment, we

tried to filter out “emotional noise” from the perspective of conversational content by

considering lexical and discourse features such as salient words and repetitions. Note

that, such drawback is inherent in any type of subjective assessment including MOS.

This challenging issue deserves further study which is the focus of our future work.

Results
In this section we present the experimental results of our study based on test sessions

collected from 15 subjects. One finding of interest is the performance of QoE predic-

tion where we compared the output from the affect-based framework with the user

feedback (both on a 3-point scale of quality levels). We also highlight other results and

implications regarding the interaction between QoS setting, user feedback and quality

prediction.

Performance of estimation

We conducted a comprehensive study of estimation accuracy along three dimensions

as introduced in Affect analysis framework: (1) different classifiers of SVM and kNN,

(2) different combinations of affective sources (acoustic: A, lexical: L and discouse: D),

and (3) different feature selection schemes (Base, f10, f15, and PCA), which are shown

in Figure 4. The overall findings are summarized as follows: (a) combining other affec-

tive sources with acoustic features consistently improves the performance where the

best results appear from the aggregation of all sources (A + L + D), (b) considering

single source, QoE prediction based on acoustic source is more accurate than the

other two whereas the performance of lexical source is slightly better than that of dis-

course source, and (c) the performance impact of different feature selection schemes is

less noticeable in kNN classifiers than SVM classifiers.

Table 1 shows the cross-view of the results based on all affective sources (A + L +

D) with different feature selection schemes and classifiers. In all cases, the PCA feature

selection scheme provides the highest performance. The f10 and f15 feature selection

schemes provide comparable accuracy which is consistently higher than the base fea-

ture set. Comparing different classifiers, it is observed that SVM with 5-fold cross-vali-

dation (SVM-5CV) gives the highest accuracy. As a short summary, the best
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performance is achieved with SVM 5-fold cross-validation and PCA-based feature

selection, which gives an accuracy of 67.9%.

QoS distribution

We next examine the distribution of QoS classes among various user quality ratings.

Recall that, each conversation interval is initialized by applying a particular QoS class

(i.e., C1, C2, C5, QoS Classes) to set the networking condition and a quality rating is

recorded from the user feedback at the end of theinterval. Figure 5 shows the
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Figure 4 Classification accuracy for different combinations of affective sources (A = Acoustic, L =
Lexical, D = Discourse), feature selection schemes (Base, f10, f15, PCA) and different classification
techniques of (a) xtitSVM, (b) SVM-5WC, (c) SVM-10WC, (d) SVM- 5CV, (e) kNN, and (f) kNN-5CV.

Table 1 Classification accuracy with different feature sets versus varying classifiers from
the combination of all affective sources (A+L+D)

Classifier Model Base f10 f15 PCA

SVM 57.3 61.1 62.5 65.7

SVM-5WC 58.7 62.3 62.7 64.8

SVM-10WC 58.9 61.5 62.4 65.2

SVM-5CV 60.6 63.7 64.1 67.9

kNN 49.7 52.8 53.1 54.3

kNN-5CV 53.5 54.2 54.9 57.4
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distribution of the five different QoS classes with respect to the user feedback for

“Good“, “Average“, and “Bad“ quality ratings. As seen, the highest portion of “Good“

quality rating is associated with QoS class C1 (42.0%), and the overall trend is decreas-

ing from C1 to C5. However, quite interestingly the results also show that C3 contri-

butes morefor “Good“ quality rating (30.0%) in comparison with C2 (20.0%). In a

similar way, C4 takes the highest distribution for “Bad“ quality rating (34.0%) which is

more than C5 (30.67%). For the “Average” case, the quality rating is more evenly dis-

tributed across all QoS classes. Although more rigorous study is still needed, the find-

ing of our preliminary study does imply that the correspondence between different

quality ratings and networkQoS classes does not always bear a close coherent relation-

ship. This seems to validate our previous observation that solely QoS-based estimation

is not sufficient for QoE prediction as discussed in related work.

Correlation in QoS classes

From another angle, the results of correlation between the user quality feedback and

the quality prediction are given for each QoS class in Table 2 using different calcula-

tion methods (Pearson, Kendall and Spearman). It is observed that different network

QoS classes have varied correlation impact: QoS classes of C1 and C5 demonstrate the

highest correlation, C2 and C4 stay as the intermediate cases, while C3 has the lowest

correlation. The implication wecan draw here is that QoE prediction tends to be more

accurate if the underlying networking condition is either very good or very bad, and

becomes less accurate for mid-range networking conditions. The finding also suggests

that we should be more careful to apply QoS-based estimation. The usage of such

methods need to take into account of different QoS contexts (e.g., extreme vs. average

conditions).
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Implication of quality ratings

Finally, we examine the interaction between user quality ratings and the predictions

made by the affect analysis framework. We refer to the results of SVM-5CV only since

it is the classifier of the best performance as observed in Section fsubsec:accuracy. The

testing samples are plotted in Figure 6 which shows the values of user quality rating as

well as the prediction. For better visualization, the testing samples are ordered with

respect to the user quality ratings from “Good“, “Average“, to “Bad.”

Table 3 summarizes the number of user ratings in each quality level and the corre-

sponding prediction accuracy. Some of the observations from the table are as follows:

(a) though the number of “Good“ quality ratings are low but it still has a high degree

of prediction accuracy (80%), (b) the number of “Bad“ quality ratings are much more

in number with a comparable degree of prediction accuracy (77.78%), and (c) the

“titAverage” quality ratings have a relatively low degree of accuracy (58.67%) compared

to the other two but it has the most number of cases. The study shows that quality

rating of “Average“ seems to be more ambiguous than the ratings of”Good“ and “Bad.”

The reason may be that people tend to rate “Average“ more frequently across different

network conditions (also shown in other studies as well).

Conclusions
We have presented a user study experiment to evaluate an affect-based approach of

QoE evaluation in voice communication, which represents a new and unexplored area.

The purpose of the study is to examine how user affective behavior changes with the

communication quality as mediated through different network QoS conditions, and

how such changes can be detected and used to predict QoE from the user perspective.

We evaluated the effectiveness of this approach by using classification techniques

based on SVM and kNN to discriminate different quality perceptions and compare

with user feedback. The accumulated evidence supports our initial hypothesis of

Table 2 Correlation tests of the quality prediction from the testing samples

Selection Pearson Spearman Kendall

C1 0.8068 0.7856 0.784

C2 0.5424 0.5338 0.507

C3 0.1026 0.0871 0.0752

C4 0.5572 0.4766 0.4743

C5 0.7321 0.7319 0.7325

Overall 0.5697 0.5351 0.5608
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Figure 6 Comparison of the distribution of different quality levels for the testing samples with
respect to the user feedback and predicted values for SVM-5CV.
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exploiting affective responses as the predictor of subjective experience of quality due to

its correlation with human cognitive perception. Our best performance achieves a pre-

diction accuracy of 67.9%. Although we refrain from claiming that our methodology

can cover the entire spectrum of QoE evaluation factors, our study provided contribu-

tory illustrations for affective information to be considered as a relevant indicator.

Since our work represents the first attempt in this area, a cross comparison with

related existing approaches will be difficult. For example, our system is not directly

comparable to QoS-based estimation methods because the latter provides objective

measures. The QoE estimation will be the same for one single QoS setting which

ignores the variation of the user group. We are aware that our present study still has

certain limitations such as the potential emotional influence. It seems likely that in

some cases the conversation itself might have invoked emotional responses that are

not related to communication quality perception. We are presently working on this

aspect to filter out the “emotional noise.”

We plan to continue our current research along the following possible directions in

the future: (a) to study other affective cues (e.g., laughter and sigh) on the subjective

quality of experience, (b) to integrate other discourse related attributes (e.g., rephrase,

reject and ask over) in the present framework for further evaluation, (c) to improve the

implementation for real-time processing, and (d) to investigate an integration of both

subjective and objective QoE evaluation methods. Finally, our testing method applies

QoS settings to the communication channel in a random fashion, which could be

improved by following real Internet traces to simulate a more realistic testing environ-

ment [64,65].

Endnote
aThe ITU-T recommendation for the subjective assessment of sound quality also sug-

gests the clip duration from 15 to 20 s, and the minimum number of participants in

an experiment to be between 10 and 20 [63].
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