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RESEARCH ARTICLE
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Francisco Fernandez-Lima1,2, Fenfei Leng1,2*

1 Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America,
2 Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States
of America

¤ Current address: The Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
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Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a chromosomal archi-

tectural transcription factor involved in cell transformation and oncogenesis. It consists of

three positively charged “AT-hooks” and a negatively charged C-terminus. Sequence analy-

ses, circular dichroism experiments, and gel-filtration studies showed that HMGA2, in the

native state, does not have a defined secondary or tertiary structure. Surprisingly, using

combined approaches of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride

(EDC) chemical cross-linking, analytical ultracentrifugation, fluorescence resonance energy

transfer (FRET), and mass spectrometry, we discovered that HMGA2 is capable of self-

associating into homodimers in aqueous buffer solution. Our results showed that electro-

static interactions between the positively charged “AT-hooks” and the negatively charged

C-terminus greatly contribute to the homodimer formation.

Introduction
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a nonhistone chromo-
somal protein expressed almost exclusively in undifferentiated mesenchymal cells [1]. Disrup-
tion of the normal expression pattern of HMGA2 causes deregulation of the cell growth and
development [1,2]. Work from Chada’s laboratory showed thatHmga2 knock-out mice devel-
oped pygmy phenotype [1]. These mutant mice were severely deficient in fat cells and other
mesenchymal tissues. The same group also demonstrated that disruption ofHmga2 gene
caused a dramatic reduction in obesity of leptin-deficient mice (Lepob/Lepob) in a gene dosage
dependent manner: Hmga2+/+ Lepob/Lepob mice weighed over three times more than Hmga2-/-

Lepob/Lepob animals, and the weight of Hmga2+/- Lepob/Lepob mice was in between [3]. These
results suggest that HMGA2 plays an important role in fat cell proliferation and may be a target
for the treatment of obesity [3,4]. HMGA2 was also directly linked to oncogenesis [5–7]. Aber-
rant expression of the protein has been attributed to the formation of various tumors. These
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tumors include benign tumors, such as lipomas [8], uterine leiomyomas [9], and fibroadeno-
mas [10], and malignant tumors, such as lung cancer [11–13], breast cancer [14], prostate can-
cer [15], and leukemia [16]. Interestingly, the expression level of HMGA2 often correlates with
the degree of malignancy, the existence of metastasis, and a poor prognosis [17,18]. These
results suggest that HMGA2 is a potential therapeutic target of anti-cancer drugs [19,20]. Addi-
tionally, more recent studies showed that HMGA2 was involved in human height [21,22], stem
cell youth [23], and human intelligence [24]. The multi-functionalities of HMGA2 make it one
of the most intriguing proteins studied so far.

HMGA2 is an architectural transcription factor [25] that binds to and modulates DNA con-
formation, thus providing a framework for subsequent transcriptional activities. It binds to
AT-rich DNA sequences using three “AT-hook” DNA binding domains that contain a unique
palindrome sequence, PRGRP, flanked on each side by one or two positively charged amino
acid residues [26,27]. The DNA binding domain, in the absence of DNA, is unstructured
[28,29]. However, when it binds to the minor groove of AT-rich DNA sequences, it adopted a
defined conformation [27,28]. This disordered-to-ordered structural transition provides a
unique opportunity for it adapting to different AT-rich DNA context and participating in vari-
ous nuclear activities [6]. More recently, utilizing a PCR-based systematic evolution of ligands
by exponential enrichment (SELEX) procedure, we identified two consensus sequences for
HMGA2: 50-ATATTCGCGAWWATT-30 or 50-ATATTGCGCAWWATT-30, where W is A or
T [30]. Our results showed that the three segments in the consensus sequences (two AT-rich
segments and one GC-rich segment) are required for high-affinity binding; mutations of these
sequences significantly reduced the DNA binding affinity of HMGA2. These results indicate
that HMGA2 does not randomly recognize any AT-rich sequences. In contrast, it binds and
bends specific AT-rich DNA sequences [30,31].

One intriguing feature of HMGA2 is the asymmetric charge distribution over its primary
structure. In solution, HMGA2 may self-associate to homodimers or homooligomers through
electrostatic interactions, and may bind to DNA as a homodimer. In this paper we employed a
combination of biophysical and biochemical approaches demonstrating that HMGA2, an
intrinsically disordered/unstructured protein (IDP), is capable of self-associating into homodi-
mers in aqueous buffer solution.

Materials and Methods

Proteins and reagents
HMGA2 was purified as described previously [26]. The mutant proteins HMGA2Δ95–108 and
C41G were made by a PCR-based site directed mutagenesis and purified as described previ-
ously [26]. A peptide containing the negatively charged C-terminus (H-CETEETSSQESAEE-
D-OH)), therefore named the C-terminal peptide (CTP), was custom-synthesized by
Advanced ChemTech, Inc. Tetramethylrhodamine-5-maleimide (TMR), fluorescein-5-malei-
mide (FM), and tris-(2-carboxyethyl)phosphine hydrochloride (TCEP) were fromMolecular
Probes, Inc. Sephacryl S-100 HR and low molecular weight gel filtration calibration kit were
from Amersham Biosciences. 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride
(EDC) was from Pierce Biotechnology, Inc.

Circular dichroism (CD) spectra
Solutions containing 10 μM of HMGA2 in BPES buffer (6 mM Na2HPO4, 2 mMNaH2PO4,
1 mM Na2EDTA, and 185 mMNaCl, pH 7.0) were used for CD measurement. CD spectra
were recorded at 24°C on a Jasco J-720 spectropolarimeter. The molar ellipticity ([θ]) was
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calculated from the equation [θ] = 100θ/cl, where θ is the measured ellipticity in degree, c is the
concentration, and l is the path length. Δε was calculated from the equation [θ] = 3298Δε.

EDC chemical cross-linking experiments
HMGA2 was dialyzed extensively against MES buffer (10 mMMES, pH 5.5, 50 mMNaCl) and
then incubated with 2 mM or the indicated amount of freshly made EDC for 2 hours at 24°C.
The reaction was stopped by adding β-mercaptoethanol (20 mM, final concentration) or Tris
base (100 mM, final concentration). The protein samples were purified using a pre-equilibrated
Sephadex G-50 gel filtration column and analyzed by electrophoresis in 15% SDS-PAGE gels.

Gel filtration experiments
Proteins were resolved in a Sephacryl S-100 HR filtration column (1×50 cm) equilibrated with
BPES buffer. The experiments were performed at 24°C using gravitational force to elute the
proteins. A low molecular weight gel filtration calibration kit containing five protein standards,
ribonuclease A (MW, 13,700), chymotrypsinogen A (MW, 25,000), ovalbumin (MW, 43,000),
albumin (MW, 67,000), and Blue Dextran 2000 was used to calibrate the column in three differ-
ent runs. The fractions at 0.5 ml each were collected; the elution volumes (Ve) of the proteins
were determined by UV absorbance. The Stokes radius (RS) of HMGA2 was estimated from a
plot of the Ve of the four standard proteins vs. their Stokes radii (Ribonuclease A, 16.4 Å; Chy-
motrypsinogen A, 20.9 Å; Ovalbumin, 30.5 Å; Albumin, 35.5 Å). The apparent molecular
weight of HMGA2 was also estimated by a similar method. To determine whether the CTP
binds to HMGA2Δ95–108, the CTP-TMR was incubated with HMGA2Δ95–108 for 30 min-
utes at 24°C, and loaded and resolved by the Sephacryl S-100 HR filtration column (1×50 cm)
equilibrated with BPES buffer.

Sedimentation velocity analysis
HMGA2 was equilibrated by dialysis with BPES buffer. Sedimentation velocity experiments
were conducted at 20°C in Beckman Instruments XLI located in the National Analytical Ultra-
centrifugation Facility at the University of Connecticut Biotechnology Center. The program
Sednterp [32] was used to calculate the following physical constants: Mseq = 11,819 Dalton,
�n200 ¼ 0:7123 g/ml, r200 ¼ 1:00712 g/ml, and Z200 ¼ 0:01002 poise, where Mseq is the molecu-
lar weight calculated from the sequence; �n200 , r200 , Z200 are the partial specific volume, the buffer
density, and the buffer viscosity, respectively, at 20°C. A stock solution containing 270 μM of
HMGA2 was used to prepare three concentrations of the protein containing, respectively, 135,
45, and 13.5 µM of HMGA2. These dilutions were then used in a sedimentation velocity run,
using the 4-hole rotor at 20°C and 55,000 rpm. Synthetic boundary cells (cuvettes in the center-
piece) were loaded with 420 µl of buffer and 410 µl of the appropriate sample solution. The
cells were placed in the rotor and accelerated to 12,000 rpm while monitoring the transfer of
the excess buffer in each cell. Subsequently, the run was stopped and the rotor was gently
inverted to thoroughly mix the contents of the cells. The rotor was then equilibrated in a vac-
uum at 20°C and after a period of 30 min at 20°C the rotor was accelerated to 55,000 rpm.
Interference scans were acquired at 1 min intervals for approximately 6 hours. The data was fit-
ted to two programs Sedfit and Sedanal to determine the protein’s sedimentation coefficient
and molecular weight, which can be used to model the protein’s shape using the program
Sednterp.

HMGA2 Is a Homodimer
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Labeling of HMGA2 and CTP by TMR or FM
Since HMGA2 and the CTP each contain a cysteine residue, they were labeled using TMR or
FM. For labeling, 100 μM of HMGA2 or the CTP was incubated with 200 μMTMR or FM in
the presence of 400 μMTCEP in 50 mM phosphate buffer (pH 7.2) plus 20 mM NaCl for 2
hours at 24°C. HMGA2-TMR or HMGA2-FM was purified by two consecutive passages
through pre-equilibrated Sephadex G-50 spin columns and dialyzed extensively against the
buffer used for labeling. To purify the CTP-TMR, the labeling mixture was loaded onto a pre-
equilibrated SP-sepharose column (1 ml) and eluted with 50 mM phosphate buffer (pH 7.2)
plus 500 mMNaCl. An extinction coefficient of 95,000 cm-1M-1 at 541 nm in methanol was
used to determine the TMR concentration. An extinction coefficient of 83,000 cm-1M-1 at 492
nm in Tris-HCl (pH 9.0) was used to determine the FM concentration.

Steady-State Fluorescence Measurements
Fluorescence spectra of HMGA2-FM were acquired using a Jobin Yvon FluoroMax-3 spectro-
fluorometer with excitation wavelength of 492 nm. In the fluorescence resonance energy trans-
fer (FRET) titration experiment, 20 nM of HMGA2-FM in Tris buffer (50 mM Tris-HCl (pH
8.0), 50 or 200 mMNaCl) was titrated by increasing concentrations of HMGA2-TMR. The
fluorescence spectra were recorded from 500 to 600 nm.

Trapped Ion Mobility Spectrometry—Mass spectrometry studies
(TIMS-MS)
Details regarding the TIMS operation and specifics compared to traditional IMS can be found
elsewhere [33–37]. Briefly, in TIMS mobility separation is based on holding the ions stationary
using an electric field against a moving gas. The separation in a TIMS device can be described
by the center of the mass frame using the same principles as in a conventional IMS drift tube
[38]. The TIMS analyzer was coupled to a maXis Impact Q-UHR-ToF (Bruker Daltonics Inc.,
Billerica, MA). Data acquisition was controlled using in-house software, written in National
Instruments Lab VIEW (2012, v. 12.0f3), and synchronized with the maXis Impact acquisition
program. TIMS separation was performed using nitrogen as a bath gas at ca. 300 K and typical
P1 and P2 values are 2.6 and 1.0 mbar, respectively. The same RF (880 kHz and 200–350 Vpp)
was applied to all electrodes including the entrance funnel, the mobility separating section, and
the exit funnel. Protein samples were prepared at 1, 10, 50 and 100 μM concentration using
HPLC grade solvents from Thermo Fisher Scientific Inc. (Waltham, MA). An electrospray ion-
ization source (ESI, Bruker Daltonics Inc., MA) was used for all analyses in positive ion mode.

Results

HMGA2 is an intrinsically disordered/unstructured protein (IDP)
Mouse HMGA2 is a 108 amino acid residue protein. Inspection of its primary structure gives
some unique features. It has 25 basic amino acid residues (either Lys or Arg), 12 acidic amino
acid residues (either Glu or Asp), 15 Pro, and 10 Gly. The high contents of the basic amino
acid residues make HMGA2 a high isoelectric point protein (the isoelectric point was estimated
to be about 11; the estimated net charge at pH 7.0 is about +13). The charge distribution of
HMGA2 is asymmetrical, with the positively charged residues mainly concentrated in the cen-
ter of the sequence and the negatively charged residues at the C-terminus (Fig 1A). Several pro-
grams, such as PONDR [39], DISOPRED [40], and GlobPlot [41], were used to predict its
secondary structure. All predicted that HMGA2 in the native state does not adopt a defined
structure. Indeed, our CD studies showed that HMGA2 is an unstructured protein. Fig 1B
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Fig 1. (A) Amino acid sequence of mouse HMGA2. The positively charged “AT hooks” and the negatively
charged C-terminus are highlighted by underlines and a box, respectively. (B) The experimental (open dots
with dotted line) and calculated (solid line) CD spectra of HMGA2 in BPES buffer. The CD spectra were
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PLOS ONE | DOI:10.1371/journal.pone.0130478 June 26, 2015 5 / 18



shows the CD spectrum of HMGA2 in which the strong peak near 200 nm indicates an unor-
dered conformation. The CD results were further analyzed using three CD analysis programs
CONTIN, CDSSTR, and SELCON3 that are included in a downloadable software package
CDPro [42]. These analyses showed that about 80% of HMGA2 is unstructured (Fig 1B; S1
Table, Supplementary data). Interestingly, all programs suggest that HMGA2 has about 20% β-
sheet component. It is possible that part of HMGA2 has an extended structure similar to β
strands. A comparison of the experimental and calculated CD spectra is shown in Fig 1B. Simi-
lar results were obtained in our NMR analyses and DSC experiments [29].

HMGA2 was also studied by gel-filtration experiments. Fig 1C shows the gel filtration pro-
file of HMGA2. We calculated the Stokes radius (RS) of HMGA2 using globular proteins with
known hydrodynamic dimensions as standards. The calculated RS of 30.2 Å for HMGA2 is
much too large for a protein with a molecular weight of 12,000 Daltons. In comparison, the RS

of ribonuclease A, a monomeric globular protein with a similar MW (13,700 Daltons), is 16.4
Å. These results suggest that HMGA2 is either a homodimer (or homo-oligomer) or an
extended unfolded non-globular protein or both. The RS calculated from gel filtration studies is
almost the same with that calculated from sedimentation velocity analyses (see below for
details). Based on the results discussed above, we conclude that HMGA2 is an IDP. This con-
clusion is consistent with previous studies, which demonstrated that a similar protein,
HMGA1a, is an IDP [28,43].

HMGA2 is a homodimer in aqueous buffer solution
In the process of purifying and characterizing HMGA2, we found that a small amount, but var-
iable of HMGA2 always migrates as a dimeric form on SDS-PAGE gels (data not shown). We
also found that HMGA2 readily forms an interstrand disulfide bond through C41 in the
absence of a reducing reagent such as β-mercaptomethanol or DTT. Furthermore, HMGA2
aggregates under certain conditions, e.g. at high protein concentrations or in the presence of
nucleic acids. As discussed above, one of the unique characteristics of HMGA2 is the asymmet-
rical charge distribution in the primary structure. We therefore reasoned that the protein
might exist as a homodimer or a homo-oligomer in aqueous buffer solution.

The oligomeric state of HMGA2 was first analyzed using EDC chemical cross-linking exper-
iments. EDC is a zero-length cross-linker that reacts with closely contacted carboxyl and
amino groups. For proteins, the carboxyl groups come from the side chains of Glu and Asp res-
idues or from the unmodified C-terminus; the amino groups come from the side chains of Lys
residue or the unmodified N-terminus. HMGA2 has 11 Glu and 1 Asp residues of which seven
are located in the C-terminus (Fig 1A). It also has 13 Lys residues whose amino groups on the
side chain can be cross-linked to the carboxyl groups by EDC. Fig 2 is a typical EDC chemical
cross-linking experiment in which EDC efficiently cross-linked HMGA2 into homodimers
(compare lanes 3–6 with lane 2, approximately 60–70% of HMGA2 was cross-linked into
dimers). These results suggest that some residues between the subunits of HMGA2 homodi-
mers are in very close proximity to one another. Interestingly, after the cross-linking reaction,
the protein samples still had a significant amount of monomers that migrated faster than the
protein in the control lane (compare lane 2 with lanes 3–6 of Fig 2). These results suggest that
the negatively charged C-terminus may also interact with other parts of HMGA2 in the same

calculated by the program CONTIN as described in the text. The solid dots are residuals. (C) Gel filtration
chromatography profile of HMGA2 in solution.Recombinant HMGA2 was resolved by gel filtration in the
Sephacryl S-100 column as described under “Materials and Methods.” V0 is the void volume; A, C, and R
represent the elution volume of albumin, chymotrypsinogen A, and ribonuclease A, respectively.

doi:10.1371/journal.pone.0130478.g001
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subunit. When the HMGA2 concentration was increased in the cross-linking reactions, other
homo-oligomers were also formed (Lanes 4 to 6 of Fig 2; they were assumed to be trimers or
tetramers based on migration rates on the SDS-PAGE gels). Ionic strength has no apparent
effects on the EDC chemical cross-linking reactions (data not shown). Similar results were
obtained using disuccinimidyl suberate (DSS) and dimethyl suberimidate (DMS) as chemical
cross-linking reagents that cross-link two primary amines (data not shown). However, the
cross-linking efficiency of DSS and DMS is significantly lower than that of EDC. A cysteineless
mutant protein, HMGA2C41G, which cannot form a disulfide bond, was also efficiently cross-
linked into homodimers by EDC (data not shown).

HMGA2 as a homodimer was confirmed by sedimentation velocity analyses, which may
also be used to derive the self-association constant for the dimerization process. Three concen-
trations of HMGA2, 13.5, 45, and 135 μMwere used. The sedimentation velocity data were
first individually fitted using two programs Sedfit V8.7 [44] and Sedanal V3.45 [45] using the
model of a single non-interacting discrete species. The results of the individual fits are summa-
rized in Table 1 for the program Sedfit and S2 Table (Supplementary data) for the program
Sedanal. The slight trend of increasing sedimentation coefficient with increasing concentration
may be indicative of either an association reaction taking place, albeit very weak (this result is
consistent with our EDC chemical cross-linking studies in which higher oligomers are formed
upon increasing the concentration of HMGA2 (Fig 2)), or possible dissociation of the dimer
upon dilution. All attempts to fit the data to either an association or dissociation scheme failed.
S1 Fig (Supplementary data) shows the individual fit of the time-difference data for three con-
centrations of HMGA2 using finite-element numerical solutions of the Lamm equation. The

Fig 2. Chemical cross-linking HMGA2 into homodimers with EDC.Chemical cross-linking reactions with
EDC in MES buffer were performed as described under “Materials and Methods.” Cross-linked protein
samples were analyzed by electrophoresis in a 15% SDS-PAGE gel and stained with Coomassie Brilliant
Blue R-250. Lane 1 contained molecular standards; lane 2 contained HMGA2 in the absence of EDC; lanes 3
to 6 contained, respectively, 29, 39, 58, and 116 μMHMGA2 in the presence of 2 mM EDC. M, monomer; D,
dimer; T3, trimer; T4, tetramer.

doi:10.1371/journal.pone.0130478.g002
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data for all three concentrations was also analyzed globally, i.e. all three data sets fitted simulta-
neously, using Sedanal V 3.45, which allows the use of fitting models to directly fit the data to
various association schemes using multiple data sets. The global fit for the sample datasets to
the model of a single ideal species yielded a value for s of 1.711 S [95% confidence intervals:
1.708 S, 1.715 S] and a value for MW of 23.5 kDa. This value for the molecular weight agrees
well with that predicted for a homodimer of HMGA2. With the knowledge of s and molecular
weight of HMGA2, we predicted that HMGA2 is an elongated, non-globular homodimer
(Table 2).

The self-association of HMGA2 was further studied by fluorescence resonance energy trans-
fer (FRET) titration experiment. In this experiment, HMGA2 was labeled with fluorescein-
5-maleimide (FM) or tetramethylrhodamin-5-maleimide (TMR) to produce HMGA2-FM or
HMGA2-TMR. If HMGA2 self-associates into homodimers or homooligomers, FRET should
be detected using the FM donor/TMR acceptor fluorophore pair. Fig 3 shows the fluorescence
spectra of HMGA2-FM in the presence of increasing concentrations of HMGA2-TMR for two
different salt concentrations, 50 mM (Fig 3A and 3B) and 200 mMNaCl (Fig 3C and 3D). The

Table 2. Hydrodynamic properties of HMGA2 calculated from sedimentation velocity results by pro-
gram Sednterp.

s20,W 1.7731S
aMw 23.5 kDa

Hydration 0.4866 g/g

f/f0 1.7987
aRStokes 3.39 nm
bMw 45.0 kDa
bRStoke 3.02 nm

Cylindrical model, L 18.024 nm

d 1.823 nm

L/d 9.889

aThe apparent molecular weight (Mw) and Stokes’ radius (RStokes) of HMGA2 was calculated according to

sedimentation velocity studies.
bThe apparent Mw and RStokes of HMGA2 were calculated according to gel-filtration results. In this table,

we assume that HMGA2 is a cylinder. Two parameters, L, the length of the cylinder and d, the diameter,

are required to calculate the hydrodynamic model. The following three equations are used to compute L

and d: s ¼ Mð1�nrÞ
N0 f

; f ¼ 3pZL

ln L
dþ 0:312þ0:561d

L þ0:1ðdLÞ
2½ �
�� ; V ¼ Md1

N0r
þ M n

N0
¼ pðd

2
Þ2L, where M, s, f, v-bar, and N0 are the

molecular weight of the solute (protein), the sedimentation coefficient, the friction coefficient, the partials

specific volume of the protein, the buffer density, the buffer viscosity, and Avogadro’s number, respectively.

doi:10.1371/journal.pone.0130478.t002

Table 1. Results for individually fitting the sedimentation velocity data to the model of a single ideal species by the program Sedfit (version 8.7).

Concentration (μM) s (Svedbergs) [95% CI]a Mw (kDa) [95% CI]b RMSD of fit (μM)

13.5 1.641 [1.636, 1.656] 20.6 [19.9, 21.9] 0.15

45 1.682 [1.679, 1.691] 20.5 [20.0, 21.1] 0.26

135 1.705 [1.701, 1.709] 22.1 [21.5, 22.6] 0.82

aIn this table, s represents the sedimentation coefficient of HMGA2 at 20°C; Mw represents molecular weight; RMSD of fit is the root-mean-square

deviation of the fit.
bValues in parentheses are the 95% confidence interval (CI) for the molecular weight and sedimentation coefficient.

doi:10.1371/journal.pone.0130478.t001
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fluorescence intensity at 518 nm decreased with increasing HMGA2-TMR concentrations. The
decrease saturated at high HMGA2-TMR concentration, indicating that HMGA2-TMR binds
to HMGA2-FM. Interestingly, we observed some difference between the two FRET experi-
ments. For the FRET experiment in the presence of 50 mMNaCl, the fluorescence decrease sat-
urated at 5 to 10 nM of HMGA2-TMR and increased again after adding more than 20 nM of
HMGA2-TMR (Fig 3B). For the FRET experiment in the presence of 200 mMNaCl, the fluo-
rescence decrease saturated at 20 nM of HMGA2-TMR, indicating a 1:1 molar ratio of
HMGA2-FM/HMGA2-TMR (Fig 3B). We also observed the fluorescence increase at 588 nm
and an isobestic point for the experiment in the presence of 200 mMNaCl (Fig 3C). In addi-
tion, we found that the quench magnitude is different. For the 50 mM case, more than 50% of
HMGA2-FM fluorescence was quenched by HMGA2-TMR (Fig 3A); for 200 mM case, only
about 10% of HMGA2-FM fluorescence was quenched by HMGA2-TMR (Fig 3C). These
results suggest that the self-association of HMGA2 is salt-dependent and the electrostatic inter-
action plays an important role in the self-association process.

Fig 3. Self-association of HMGA2 was demonstrated by the FRET experiments. (A) and (C), respectively, represent fluorescence spectra of
HMGA2-FM in the presence of increasing concentrations of HMGA2-TMR in 50 mM Tris-HCl (pH 8.0) and 50 mM (A) or 200 mM (C) NaCl. (B) and (D) are
the difference in fluorescence intensity at 518 nm (ΔF) as a function of HMG-TMR concentration was shown for the FRET experiment in panelA and panel C
respectively. The fluorescence spectra of HMGA2-FM (20 nM; λexcitation = 492 nm) were recorded as described under “Materials & Methods.”

doi:10.1371/journal.pone.0130478.g003
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Mass spectrometry studies
The analysis of 2D IMS-MS contour plots (Fig 4) showed the separation in mobility and m/z
domains of the [M+nH]+n and [2M+nH]+n monomer and dimer charge state distributions,
respectively. Close inspection of the 2D IMS-MS plots shows that the for odd charge state of
the [2M+nH]+n series, a clear separation of the dimer component can be achieved, since there
is no equivalent m/z on the [M+nH]+n monomer series. In addition, the IMS-MS plots permit
the measurements of the relative abundance of each series without the interferences from other
m/z. Analysis of the relative abundances of the dimer series relative to the monomer series as a
function of the protein concentration in the ESI starting solution shows that as the concentra-
tion increases, the dimer formation increases. In particular, dimer observation is significant at
concentrations larger than 10 μM.While the mechanism of dimer formation maybe be contro-
versial (i.e., pre-formed in solution or formed during ESI process in the gas-phase), our experi-
mental data from previous experiments (see above) suggest that dimers are pre-formed in
solution and remain intact during the ESI process (soft ionization). The lack of trimer, tetramer
and higher order oligomers typically observed during ESI condensation at high sample concen-
tration in the IMS-MS data also supports this hypothesis.

The role of the C-terminus in dimer formation
We next investigated what factors are critical to HMGA2 homodimer formation. One possible
factor is electrostatic interactions between the positively charged “AT-hooks” and the nega-
tively charged C-terminus. We therefore made a mutant HMGA2Δ95–108 that lacks the nega-
tively charged C-terminus, and reasoned that it should not form homodimers. Indeed, our
EDC chemical cross-linking experiments showed that HMGA2Δ95–108 could not form homo-
dimers (compare lanes 2 & 3 with lanes 5 & 6 of Fig 5). These results suggest that the negatively
charged C-terminus is required for the dimer formation. We then, used tetramethylrhoda-
mine-5-maleimide (TMR) to label a 14 amino acid residue C-terminal peptide (the CTP) of

Fig 4. (A) A typical 2D IMS-MS contour plot showing the monomer and dimer signals at 100 μM.Notice the overlap at even charge states in the MS
domain for the monomer and dimer peaks. (B) Relative abundance of the dimer formation as a function of the concentration for the odd charge
states.

doi:10.1371/journal.pone.0130478.g004
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HMGA2 to produce the CTP-TMR. The CTP-TMR was incubated with HMGA2Δ95–108 and
subjected to a pre-equilibrated gel filtration column. Fig 6 shows the elution profile of the gel
filtration experiment. Our results demonstrated that the CTP-TMR was co-eluted with
HMGA2Δ95–108. Interestingly, there are two co-elution peaks (Fig 6). Possibly, the first peak
represents two CTP-TMR molecules binding to one HMGA2Δ95–108 and the second peak
represents one CTP-TMRmolecule binding to one HMGA2Δ95–108. An alternative possibility
would be that the first peak contains one molecule of the CTP-TMR binding to two molecules
of HMGA2Δ95–108 and the second peak corresponds to one molecule of the CTP-TMR bind-
ing to one molecule of HMGA2Δ95–108. Further studies are required to determine the binding
stoichiometry.

Discussion
HMGA2, a member of the HMGA family [46] is a classic example of IDP [39,47–49]. It has a
characteristic of low overall hydrophobicity and high net charge [48]. Hydrodynamic proper-
ties obtained from gel-filtration (Fig 1C) and sedimentation velocity studies (Table 1) showed
that HMGA2 is an unfolded, extended, and non-globular protein (Table 2). CD and NMR
spectroscopic measurements reveal little secondary or tertiary structure [29]. The key discovery
of this study is that HMGA2 is a homodimer under physiological conditions. Not only was a
significant amount of HMGA2 cross-linked into dimers by a zero length chemical cross-linker,
EDC (Fig 2), but also results from several biophysical methods, such as sedimentation velocity,
FRET, and mass spectrometry, demonstrated that it is a stable homodimer in aqueous buffer
solution (Figs 3 and 4 and Table 1). An intriguing and important question is: how could an
intrinsically unstructured HMGA2 gain quaternary structure, i.e. form homodimers?

Our preliminary results showed that the quaternary structure stems from electrostatic inter-
actions between the positively charged “AT-hooks” and the negatively charged C-terminus. As
described above, the charge distribution of HMGA2 is asymmetrical (Fig 1A). This unique

Fig 5. Chemical cross-linking of HMGA2 and HMGA2Δ95–108 with EDC.Chemical cross-linking
reactions with EDC in MES buffer were performed as described under “Materials and Methods.” Cross-linked
protein samples were analyzed by electrophoresis in a 15% SDS-PAGE gel and stained with Coomassie
Brilliant Blue R-250. Lane 1 contained HMGA2Δ95–108 in the absence of EDC; lanes 2 and 3 contained
40 μMHMGA2Δ95–108 in the presence of 2 mM EDC; lane 4 contained HMGA2 in the absence of EDC;
lanes 5 and 6 contained 40 μMHMGA2 in the presence of 2 mM EDC; lane 7 contained molecular standards.

doi:10.1371/journal.pone.0130478.g005
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property provides an opportunity for the protein to self-associate. As demonstrated in Fig 5,
HMGA2Δ94–108, a mutant protein without the negatively charged C-terminus, cannot be
cross-linked into dimers by EDC. The CTP containing the negatively charged C-terminus
tightly binds to HMGA2Δ94–108 (Fig 6). Moreover, we showed that the negatively charged C-
terminus binds to the second “AT-hook” (data not shown) therefore promoting the dimer for-
mation. A possible mechanism would be that the dimer association process is initiated by the
charge neutralization and subsequently enforced by the hydrophobic interaction and hydrogen
bonding from the peptide backbone. Fig 7 is a schematic graph explaining this mechanism.

Fig 6. The CTP-TMR and HMGA2Δ95–108 co-eluting in gel-filtration chromatography. The CTP-TMR
was prepared as described under “Materials and Methods” and incubated with HMGA2Δ95–108 at 24°C for
30 min in BPES buffer. The CTP-TMR and HMGA2Δ95–108 mixture was then subjected to a Sephacryl S-
100 HR filtration column (1×50 cm) equilibrated with BPES buffer. Gel filtration profile of the CTP-TMR
binding to HMGA2Δ95–108 was monitored by a graph of OD556 versus elution volume (A) and a 15% SDS
PAGE gel (B). Lanes 1 to 8 of the SDS-PAGE gel (B) correspond to the fractions 1 to 8 labeled in panel a.
Free HMGA2Δ95–108 and the CTP-TMRwere eluted at 22 and 30 ml respectively in the column.

doi:10.1371/journal.pone.0130478.g006
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The “unstructured”monomers (Fig 7A) interact with each other to form a homodimer (Fig 7B
and 7C) through electrostatic interactions between the highly charged “AT-hooks” (red rectan-
gle with two red circles) and the highly charged C-terminus (yellow oval). The homodimers do
not have regular secondary structure and are composed of an ensemble of different conformers
with distinct and dynamic and angles [39,47,50]. They may have local and limited residual
structure that is critical for self-association. This dimerization process is reminiscent of the ini-
tial step of the amyloid aggregation of a large number of neurodegenerative diseases including
Alzheimer’s disease and Parkinson’s disease. In these cases the proteins change their random
coil to amyloidenenic β-sheet conformation therefore leading to self-association [51–53]. As
demonstrated previously, any generic proteins including intrinsically unstructured proteins
have the potential to form amyloid aggregates under suitable conditions [54,55]. This property
results from the inherent physicochemical properties of the polypeptide backbone (hydropho-
bicity and hydrogen bonding) rather than the specific interaction between the side chains
[54,56,57]. Although charge was considered to be the key parameter to prevent protein associa-
tion or aggregation [58], HMGA2 has an asymmetrical charge distribution that would promote
self-association. Indeed, recent evidence showed that the electrostatic interaction can promote
protein or polypeptide’s self-association. Tjernberg et al.[59] showed that peptides as few as 4
residues can form well defined amyloid fibril. Both charge attraction and hydrophobic interac-
tion are required. Goers el al. showed that several unstructured polycations, such as spermine,
polylysine, polyarginine, and polyethyleneimine tightly bind to -synuclein, an IDP, and cata-
lyze its oligomerization [60]. This process was mediated by the electrostatic interaction
between the negatively charged C-terminus and the polycations, and may be enforced by the
hydrophobic interaction and hydrogen bonding of the peptide backbone [48]. These studies
suggest that the intrinsically “unstructured” proteins or polypeptides can interact with each
other to form higher structures.

Fig 7. A possible model for the HMGA2 homodimerization. Blue lines represent the protein backbone.
Electrostatic interactions between the positively charged “AT hooks” (red rectangle with two red circles) and
the negatively charged C-terminus (yellow oval) coordinate the dimer formation. (A) represents HMGA2
monomers. (B) and (C) represent different interchangeable conformations of HMGA2 homodimers. (C) is
more consistent with our EDC cross-linking and sedimentation velocity results. The HMGA2 homodimers
may be an ensemble of different conformers.

doi:10.1371/journal.pone.0130478.g007
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Our conclusion that HMGA2 is a homodimer in solution is further supported by previous
observations. Yie et al. showed that HMGA1a, another member of HMGA family, interacts
with itself in a glutathione S-transferase (GST)-pull down experiment and the minimal region
required for the self-association contains the last basic repeat and the acidic C-terminus (Fig 1
of reference[61]). The self-association may be entirely caused by the electrostatic interaction
between the unstructured “AT hooks” and the C-terminus; however, a possible involvement of
the well-folded GST in the pull-down experiment would complicate the interpretation of the
results. In a separate study, Padmanabhan et al. demonstrated thatMyxococcus xanthus tran-
scription factor CarD, a HMGA-like protein containing both the “AT-hook” DNA-binding
domain and the acidic regions, is a homodimer [62]. Sedimentation equilibrium analysis con-
firmed that CarD is a homodimer. However, because “the inherent difficulty in pinpointing the
mechanism of HMGA cooperativity has been noted before and attributed to, among others, its
lack of defined structures [62],” it is difficult to determine whether the “AT hooks” and the
acidic domain were involved in the dimer formation. In contrast, this study implied that the
unstructured “AT-hooks” were not required for the dimer formation. Here, using several bio-
chemical and biophysical methods we demonstrated that the “AT-hook” DNA binding pro-
teins, although without a defined secondary or tertiary structure, form higher structures such
as homodimers.

It has been demonstrated recently that other IDPs are also capable of self-associating into
homodimers [63–67]. For instance, the cytoplasmic region of the T cell receptor subunit, an
IDP is able to self-associate into homodimers [63]. Interestingly, NMR studies showed that the
dimerization was not accompanied by a disorder-to-order transition, suggesting that specific
interactions exist between two unstructured subunits [68]. Another example is the intrinsically
disordered N-terminal domain of ultraspirale from Aedes aegypti (aaUsp-NTD) [67]. In solu-
tion, it self-associated into homodimers as well [67]. It is possible that many other IDPs can
self-associate into homodimers and the homodimerization is critical for their biological
functions.

As mentioned above, HMGA2 is a DNA-binding protein and specifically recognizes the
minor groove of AT-rich DNA sequences. Since many promoter regions usually contain multi-
ple AT-rich sites [69,70]. It is possible that HMGA2 cooperatively binds to these regions as a
homodimer, and thus modulates the DNA conformation, providing a framework for organiz-
ing functional transcription machinery.

Supporting Information
S1 Fig. A plot of the individual fits of the sedimentation velocity data to the model of a sin-
gle ideal species by the program Sedanal (version 3.45). Panels A to C represent the sedimen-
tation velocity experiments performed for HMGA2 concentrations of 135, 45, and 13.5 μM,
respectively. The sedimentation velocity results are shown by the black dotted lines plotted as
the concentration difference between pairs of interference scans against radial distance. The
red curves are calculated fits. The blue lines are the residuals. Fifty pairs of scans were used in
the fitting but only three pairs are shown.
(TIF)

S1 Table. Secondary structure fractions of HMGA2 analyzed by three software programs,
CONTIN, CDSSTR, and SELCON3.
(DOCX)
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