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Online solid phase extraction liquid
chromatography tandem mass spectrometry
(SPE-LC-MS/MS) method for the determination of
sucralose in reclaimed and drinking waters and
its photo degradation in natural waters from
South Florida
Sudha Rani Batchu1,2, Natalia Quinete2, Venkata R Panditi1,2 and Piero R Gardinali1,2*

Abstract

Background: Sucralose has gained popularity as a low calorie artificial sweetener worldwide. Due to its high
stability and persistence, sucralose has shown widespread occurrence in environmental waters, at concentrations
that could reach up to several μg/L. Previous studies have used time consuming sample preparation methods
(offline solid phase extraction/derivatization) or methods with rather high detection limits (direct injection) for
sucralose analysis. This study described a faster and sensitive analytical method for the determination of sucralose
in environmental samples.

Results: An online SPE-LC–MS/MS method was developed, being capable to quantify sucralose in 12 minutes using
only 10 mL of sample, with method detection limits (MDLs) of 4.5 ng/L, 8.5 ng/L and 45 ng/L for deionized water,
drinking and reclaimed waters (1:10 diluted with deionized water), respectively. Sucralose was detected in 82% of
the reclaimed water samples at concentrations reaching up to 18 μg/L. The monthly average for a period of one
year was 9.1 ± 2.9 μg/L. The calculated mass loads per capita of sucralose discharged through WWTP effluents
based on the concentrations detected in wastewaters in the U. S. is 5.0 mg/day/person. As expected, the
concentrations observed in drinking water were much lower but still relevant reaching as high as 465 ng/L. In order
to evaluate the stability of sucralose, photodegradation experiments were performed in natural waters. Significant
photodegradation of sucralose was observed only in freshwater at 254 nm. Minimal degradation (<20%) was
observed for all matrices under more natural conditions (350 nm or solar simulator). The only photolysis product of
sucralose identified by high resolution mass spectrometry was a de-chlorinated molecule at m/z 362.0535, with
molecular formula C12H20Cl2O8.
(Continued on next page)
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Conclusions: Online SPE LC-APCI/MS/MS developed in the study was applied to more than 100 environmental
samples. Sucralose was frequently detected (>80%) indicating that the conventional treatment process employed in
the sewage treatment plants is not efficient for its removal. Detection of sucralose in drinking waters suggests
potential contamination of surface and ground waters sources with anthropogenic wastewater streams. Its high
resistance to photodegradation, minimal sorption and high solubility indicate that sucralose could be a good tracer
of anthropogenic wastewater intrusion into the environment.

Keywords: Sucralose; Artificial sweetener; Online SPE; Reclaimed waters; Drinking water; Photo degradation;
Degradation products; High resolution mass spectrometry

Introduction
Artificial sweeteners are widely added to foods, drinks,
personal care products and pharmaceutical formulations
replacing sugar in low calories diet. One artificial sweet-
ener that has gained popularity and has been used in
over 80 countries worldwide is sucralose [1,2]. Sucralose
(4-chloro-4-deoxy-α,D-galactopyranosyl-1,6-dichloro-1,6-
didexoy-β,D-fructofuranoside) is a chlorinated disacchar-
ide which originates from the non-chlorinated compound
sucrose (Additional file 1: Figure S1).
After decades of use of artificial sweeteners, recent studies

have documented their widespread occurrence in various
environmental waters, such as wastewater, groundwater,
surface water, and drinking water [2-9]. Although previous
studies on sucralose have proved its safety for human
consumption they suggest that sucralose it is extremely
persistent, with a half-life in water of up to several years,
depending on pH and temperature [10]. The compound
is thermally stable and not extensively adsorbed or me-
tabolized in humans resulting in the majority (98%) being
excreted unchanged. Sucralose enter the environment
mainly because of incomplete removal during wastewater
(conventional primary and secondary) treatment [1] and
recent publications have shown that sucralose could be a
valuable tracer to monitor impact of wastewaters in the
environment [9].
Due to the unintended but widespread presence in the

aquatic environment and the fact that long-term health
effects resulting from chronic exposure to low levels of
sucralose are largely unknown [6], the presence of μgL-1

concentrations of the sweetener in the environment has
raised concern, especially since it could affect organisms
feeding behaviors [11]. More alarming is the suggestion
that sucralose could interfere with plant photosynthesis
by shutting down CO2 uptake [11]. The ecotoxicological
effects of sucralose still need to be systematically examined
but initial studies with Daphnia magna and gammarids
exposed to increasing concentrations of sucralose (0–
500 μg L-1) showed that both physiology and locomotion
were influenced by exposure to sucralose suggesting
that sublethal effects rather than acute toxicity may be
the mechanism to consider [12]. Although other studies

indicated that sucralose has low toxicity and also did not
bioaccumulate significantly in aquatic organisms [13-15],
its persistence combined with the increasing use of this
substance demands a more detailed ecotoxicological as-
sessment [12].
The literature contains a minimal amount of research

on the degradation of sucralose. Abiotic hydrolysis of su-
cralose does not appear to be a dominate mechanism of
degradation where less than 1% of initial sucralose was
shown to degrade into two chlorinated monosaccharides
(1, 6-dichloro-1,6-dideoxy-D-fructose and 4-chloro-4-de
oxy-D-galactose) after a 1 year incubation in a pH 3 solu-
tion at 25°C [10]. Experiments at higher, more relevant pH
(4 and 6) showed no hydrolysis [10]. The first study to
examine biotic degradation of sucralose found that the
compound could be degraded in soil although the specific
microorganism(s) responsible for the degradation were
not clearly identified [16]. Labare and Alexander found
that sucralose can be mineralized in natural environ-
ments, such as lake sediments (4.4–18.8%, 96–126 days),
sewage (23.2%, 123 days), and surface waters (1.1–4%,
42–132 days) to lesser extents than in soils (32.6–60.4%,
20–101 days) [17,18]. The intermediates of soil micro-
bial degradation of sucralose proposed by Labare and
Alexander [17,18] either the aldehyde or the uronic acid of
sucralose, could not be detected in soil incubation experi-
ments by Soh et al. [13]. The occurrence of such interme-
diates is still to be reported in environmental samples [19].
Incubation experiments with sweeteners in soils, Buerge
et al. reported one of the shortest half-lives (DT50) at
9 days [20]. Previous studies showed that sucralose is not
oxidized by UV light or visible light [13,21]. All these stud-
ies clearly suggest that sucralose is mostly biologically inert
and degrades at a slow but highly variable rate under nor-
mal relevant environmental conditions.
Robust analytical methods for assessing sucralose’s envir-

onmental fate are crucial. To date, artificial sweeteners have
been determined by HPLC with reverse phase chromatog-
raphy using different buffer systems, ion pairing reagents
and specific derivatization procedures [5] and by GC-MS
[2]. More recently, studies employing liquid chromatog-
raphy–electrospray ionization-tandem mass spectrometry
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(LC–ESI-MS/MS) have been published for the analysis of
sucralose in water samples by direct injection (higher de-
tection limits) or offline SPE [3-6,8,22]. Nowadays the use
of online SPE has shown important improvements such as
higher sensitivity, analysis of smaller sample volumes, lim-
ited sample loss, no carry-over and robust and reproducible
detection, while increasing sample throughput [23-27].
Although electrospray ionization is the most applied

technique in LC-mass spectrometry, APCI has been shown
some advantages over ESI, especially in the ionization of
thermally stable polar and non-polar compounds. The ion-
ization process associated with APCI is one of the most ef-
ficient, being considered more energetic or less soft than
ESI, where gas phase reactions leading to the loss of net
charge on the analyte may generate more fragment ions
relative to the parent ion [28]. In fact, for certain classes of
compounds that are traditionally very difficult to ionize or
tend to show low sensitivity in LC-MS/MS techniques,
electron capture negative APCI has provided increased
sensitivity for these ‘tough to ionize’ compounds [24,29].
APCI has been reported to be more sensitive than ESI
for triazines, phenylurea herbicides and organochlorine
pesticides [24,30,31]. Another advantage is that signal
suppression in ESI is significantly more intense than
that occurring in APCI for several compounds in differ-
ent matrices [32], where ionization suppression involves
mainly changes in the droplet solution properties caused
by the presence of non-volatile solutes in ESI ionization
[33]. To this end, we have developed and validated a fast,
reliable and straight-forward analytical method based on
online solid phase extraction atmospheric chemical ioniza-
tion mass spectrometry (SPE)-LC–APCI/MS/MS for the
analysis of sucralose in reclaimed, surface and drinking
waters from South Florida, U.S.A. This method was then
used to evaluate the potential of sucralose photodegra-
dation using multiple light sources and water matrices. To
our best knowledge this is the first report to assess sucral-
ose oxidation under environmentally relevant conditions.

Experimental
Chemicals
Sucralose was purchased from Sigma–Aldrich (Oakville,
ON, Canada). Sucralose- d6 (98% purity) was used as in-
ternal standard and was obtained from Santa Cruz Bio-
technology Inc, (Santa Cruz, CA, USA). Optima LC/MS
grade formic acid, acetonitrile and water were purchased
from Fisher Scientific (Fairlawn, New Jersey, USA). Mem-
brane filters (0.45 μm and 0.2 μm pore size) were pur-
chased from Millipore (Billerica, MA). Ultrapure water
(>18 MΩ cm-1) was generated from a Nanopure Infinity
Ultrapure Water system. Stock solutions of 1 mg/mL were
prepared in acetonitrile for both sucralose and sucralose
d-6. All stock solutions were kept in the dark at −18°C.

Reclaimed water
“Reclaimed water can be defined as the end product of
wastewater reclamation that meets water quality require-
ments for biodegradable materials, suspended matter and
pathogens. Different applications of reclaimed water in-
clude landscape irrigation, agricultural irrigation in both
food and non-food crops, ground water recharge and recre-
ational purposes [34]. Various steps involved in producing
reclaimed water from the wastewater include microfiltra-
tion through a series of membranes (0.1 to 10 μm), reverse
osmosis, treatment with hydrogen peroxide followed by
photolysis with UV light [35]. To date, FIU Biscayne Bay
Campus receives reclaimed water from Miami-Dade North
District Waste Water Treatment Facility, which has a cap-
acity to treat 380,000 m3/day of water. The capacity of
the existing reuse system for FIU irrigation is 1.5 million
gallons per day (MGD) for irrigating 40 acres of land-
scape [36,37]”.

Sample collection sites
Reclaimed water samples (n = 56) were collected at least
twice monthly at Florida International University (FIU)
Biscayne Bay Campus (North Miami, Florida, USA) from
January 2011 to December 2011 except February2011, where
only one sample was collected per month. All samples were
taken directly from the sprinkler systems after they were
flushed for at least 5 minutes. Drinking/Tap water samples
(n = 43) were collected from residents’ homes and shopping
centers located in the Miami-Dade County area. After col-
lection, all samples were immediately transported on ice to
the laboratory, filtered through a 0.45 μm glass fiber filter
and then through a 0.2 μm membrane filter to minimize
any potential biodegradation. Filtered samples were stored
in the dark at −18°C until analysis.
Photodegradation experiments were performed using

the two most common end members for treated waste-
water releases, natural canal water and seawater. Canal
water was collected from Tamiami Canal at its confluence
with the Miami River. Seawater was taken from the shore at
Bill Baggs state park at Key Biscayne, Miami, FL. Canal and
seawater properties are shown in Additional file 1: Table S1.
Environmental waters used to prepare the photo degrad-
ation experimental solutions were filtered twice using a 0.2-
micron 47 mm glass fiber filter to remove any particles and
microorganisms and then stored in the dark at <4°C until
experiment was performed, typically within a week.

Online preconcentration
AThermo Equan online SPE system was used for the deter-
mination of sucralose in reclaimed and drinking waters. An
Accela 1000 was used as analytical HPLC pump and an
Accela 600 was used as loading pump (Thermo Scientific,
San Jose, CA, USA). The analytical separation was carried
out using a Hypersil Gold PFP column (100 mm× 2.1 mm,
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1.9 μm) while the SPE pre-concentration column was a
HyperSep Retain PEP (20 mm× 3.0 mm I.D) (Thermo Sci-
entific, San Jose, CA, USA). Instrument control and data
acquisition was performed using the software Xcalibur 2.1
(Thermo Scientific, USA). An HTC-PAL autosampler
(Thermo Scientific, San Jose, CA, USA) was set to perform
up to 10 mL injections. The automated online SPE clean-
up and pre-concentration step was performed using only
10.0 mL of untreated water samples with little sample
preparation. Two six-port switching valves were used for
all analysis. Drinking and reclaimed water samples were
prepared by adding 10 μL of 500 ng/mL sucralose-d6 and
the final volume was made up to 10.5 mL with the sample.
The online procedure consists of a divert valve on the

mass spectrometer which is programmed by the data sys-
tem to control the loading and elution of the two LC col-
umns. In the Load Position, 10.0 mL of sample was injected
into a 10.0 mL loop and then loaded onto a SPE column by
the loading LC pump (Accela 600), followed by a wash step
to remove interferences (flow rate 2 mL min-1). The target
compounds were retained in the SPE column and the
matrix that is not retained during the extraction process
was directed to waste while simultaneously the analytical
pump equilibrates the analytical column in the starting gra-
dient conditions. After 5.3 min, when the valve was
switched to Inject Position, the solvent flow through the
HyperSep Retain PEP column is reversed, and the analytes
were then backflushed onto a Hypersil Gold PFP column
for separation and quantitation by APCI-MS/MS. After
10 min, the switching valve was returned to the loading
position to allow the extraction column to be re-
equilibrated with water (A). Valve switching events as well
as the gradient program are summarized in Additional file
2 for both drinking and surface waters. The samples were
kept at 10°C in the autosampler. The total run time per
sample was 12 min.

Direct injection LC-MS/MS method
A direct injection method was used for the analysis of
photodegradation samples. Separation was performed on
a Hypersil Gold PFP column (100 mm× 2.1 mm, 1.9 μm)
in 11 minutes with a flow rate of 250 μL/min using a bi-
nary gradient mobile phase consisting of acetonitrile (B)
and 0.1% formic acid (C) in water according to the follow-
ing program: gradient from 10% to 90% C in 6.0 min and
held it for 2 min, and gradient back to 10% C in one min
and held the gradient for 2 min. Column effluent was
diverted to waste for the first 2.2 minutes in order to flush
out the salt from the samples.

MS/MS detection
In both methods analytes were detected on a TSQ
Quantum Access QqQ Mass spectrometer equipped with
an Atmospheric Pressure Chemical Ionization (APCI)

source (Thermo Scientific, San Jose, CA, USA) operated
in the negative mode. Preliminary tests on sucralose stan-
dards through direct injection into the LC/MS/MS were
performed using HESI and APCI sources. The APCI
source showed better sensitivity than HESI, moreover ESI
and/or HESI spectrum generally contains abundant and
extensive series of adducts ions with methanol and inor-
ganic ions [24,38]. The APCI source was then selected
and carefully optimized to produce reproducible spectra
of the target compound. The optimized MS parameters
were obtained by direct infusion of 10 μg/mL of stand-
ard solutions through a syringe pump at a flow rate of
50 μL min−1. The standard solution was mixed with the
mobile phase using a T-connector before being introduced
into the APCI source. The APCI vaporizer temperature
and capillary temperature were 350 and 300°C respec-
tively, with a discharge current of 5 kV. Sheath gas and
auxiliary gas (N2) were used at a flow rate of 35 and 10 ar-
bitrary units, respectively, and collision gas (Ar) pressure
of 1.5 mTorr. The two transitions monitored for sucral-
ose were 397 → 361 (CE, 13, for quantitation) and 397 →
359 (collision energy CE, 12, for confirmation) and for
sucralose-d6 were 403→ 367 (CE, 12, for quantitation)
and 403 → 365 (CE, 15, for confirmation). Instrument
control and data acquisition was performed using Xcalibur
2.1 software (Thermo Scientific, San Jose, CA, USA).

UV photolysis
Photodegradation experiments were conducted using
Rayonet UV photochemical reactors (Southern New
England Ultraviolet Co., Branford, CT) capable of ir-
radiating samples at two different wavelengths (254 nm
and 350 nm). Black light phosphor bulbs in the Rayonet
UV reactor give out a spectrum from 320 nm to 380 nm,
with a maximum at 365 nm. This band is comparable to
the range of UVA region (315–400 nm) of sunlight and
hence commonly used to predict the photodegradation of
pharmaceutical compounds in solutions and in the envi-
ronment [39]. UV 254 nm generated by mercury vapor
lamps is the most widely used light source to induce pho-
tolysis of a wide variety of organic compounds and com-
monly used as advanced water treatment process in
domestic wastewater and drinking water treatment plants.
The experimental solution of sucralose was prepared by
diluting the stock solution to 0.2 μg/mL with three types
of water: reverse osmosis-deionized water (RODW), nat-
ural freshwater from the Tamiami canal (CW) and sea-
water from Key Biscayne (SW). Three 30 ml- quartz tubes
were used for the kinetic experiments. The first tube filled
with 30 ml of RODW was used as blank. The control tube
contained sucralose but was totally covered with alu-
minum foil to prevent light exposure. The third tube was
left uncovered and exposed to light. All the tubes were
placed on a merry-go-round to ensure uniform irradiation
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in the Rayonet UV photochemical reactor chamber. At spe-
cified time intervals, 380 μL of the samples were transferred
to a 2 mL LC amber vial, and fortified with sucralose- d6
internal standard (20 μL of 10 μg/mL) to a final volume of
400 μL. Samples were thoroughly mixed and analyzed dir-
ectly by LC-MS/MS. Degradation curves assuming first
order decay were plotted as [ln (Ct/C0)] versus time (hrs)
using the Sigma Plot software v 11.0.

SunTest photodegradation
Sunlight plays an important role in determining the per-
sistence and environmental fate of organic contami-
nants. However the intensity of natural sunlight depends
mainly on the weather [40]. The intensity measured on
sunny day differs from that on cloudy day and it also
changes with latitude. The variable intensity of sunlight
makes the kinetic parameters to vary constantly and
greatly affects experimental reproducibility and interpre-
tation. Hence experiments were conducted on a SunTest
device, which is a surrogate of real sunlight. The spectra
of natural solar spectrum and the SunTest are compared
in Additional file 1: Figure S2. The wavelength distribution
and the intensity of the Xenon lamp are very similar to
those of natural sunlight [41]. Compared with the spec-
trum of real sunlight measured on a sunny day at Miami,
FL, the light distribution of SunTest xenon lamp matched
sunlight very well, especially in the 300 nm-400 nm range.
A SunTest XLS Tabletop Xenon Exposure System

(ATLAS Material Testing Technology LLC, Chicago,
Illinois, USA) was used to predict the degradation rates
of sucralose in natural sunlight under environmental
conditions. The SunTest XLS produces continuum of
wavelengths from 300 nm to 800 nm by using a properly
fitted Xenon lamp on the top of the exposure chamber
(Additional file 1: Figure S2). The xenon lamp was used
with its maximum abundance intensity (750 W/cm2). Test
solutions of sucralose (0.2 μg/mL) were prepared in three
different water matrices i.e. RODW, CW and SW. In this
part of the study, 25 mL of the experimental solutions were
placed in three polyethylene bags (Nasco WHIRL-PAK 2
OZ.), which were previously tested to be UV transparent.
Similarly to UV photolysis experiments 1 control bag was
kept in the dark by covering it with aluminum foil (dark
control) and one was left uncovered. One bag filled with
RODW acts as blank. Bags were then floated in a water
bath to keep the solution at a constant temperature (25°C)
when exposed under the Xenon lamp in the SunTest. The
sampling interval and analytical procedures were identical
as those for the Rayonet reactor experiment.

Results and discussion
Method development
The initial online SPE LC-APCI-MS/MS developed for
determination of sucralose produced MDLs of 2.7 μg/L

for reclaimed waters and 0.7 μg/L for drinking waters
using 1 mL sample volume. These MDLs are adequate
for wastewaters but not for surface and drinking waters.
Therefore, the method was further optimized for detec-
tion of sucralose in the ppt levels (ng/L) normally ob-
served in U.S. drinking waters [6].
During the optimization process it was observed that

the combination of water and formic acid was causing
adverse ion suppression in the negative mode. This ef-
fect was also observed for several other compounds such
as Endosulfan [24,42]. Therefore formic acid was elimi-
nated and the mobile phase was switched to acetonitrile
and water resulting in a 20-fold increase in sensitivity.
Moreover, the sample volume was increased to 10 mL.
The method was then able to detect sucralose at ng/L levels
for all matrices. This is the first method to achieve these
levels without the use of any modifier. When applying the
methodology for tap water and reclaimed water samples,
it was observed a high co-eluting interference with the
analyte, which was not seen when formic acid was used
(Additional file 1: Figure S3). In LC-MS water, no interfer-
ences were observed (Figure 1a). Separation of the inter-
ference peak from the analyte was performed by the use
of a differential flow rate (Figure 1b, c). Typical chromato-
grams of sucralose in LC-MS water, tap water and
reclaimed water can be seen in Figure 1.

Method performance- online SPE-LC-MS/MS
The online SPE LC/MS/MS method for waters samples
was validated in terms of specificity, linearity, limit of de-
tection, matrix recoveries and inter-day precision of the
technique.
The chlorine-isotopic pattern for a molecule containing

three chlorine atoms such as sucralose results in four
spectral peaks that differ in mass by 2 Da. The specific
chlorine-isotopic pattern of the sucralose molecule was
observed (m/z 395, 397, 399 and 401). The most abundant
ion that was capable of giving a product ion spectrum was
chosen (m/z 397). Two SRM transitions were monitored
for accurate identification and quantification of sucralose.
An 8 point calibration was prepared by spiking varying

levels of sucralose working standard solution in LC/MS
grade water in the concentration range of 10 ng/L to
2000 ng/L. Calibration curves were built with the rela-
tive response ratio (area of sucralose divided by area of
sucralose-d6) as a function of the analyte concentration.
Linear response was observed in all cases (R2 > 0.99).
Method detection limit (MDL) was calculated from the

standard deviation of seven spiked reclaimed and drinking
water samples. Standard deviation of seven replicates was
multiplied by the student t value at the 99% confidence
interval (six degrees of freedom, t value, 3.143), according
to procedures outlined by the US-EPA [43]. The matrix
was spiked (n = 7) at 50 ng/L, 100 ng/L and 200 ng/L with
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the resulting MDLs of 4.5 ng/L, 8.5 ng/L and 45 ng/L in
deionized water, drinking and 1:10 diluted reclaimed wa-
ters, respectively. Using this method, the MDL for the de-
termination of sucralose in reclaimed waters improved by
6-fold. Matrix matched recoveries (n = 5) were assessed by
spiking drinking and reclaimed and water at 50 ng/L and
200 ng/L, respectively. Because real sample matrices may
contain target analytes, non-spiked samples were also ana-
lyzed and the concentration found was subtracted from
the spiked sample concentration. Recoveries ranged from
91 to 108% (96.7 ± 5.27), 85 to 107% (96.2 ± 10.9) and 85 to
113 (97 ± 9.7) in deionized water, drinking and reclaimed
waters, respectively.
For a repeatability study of the LC-MS method, dupli-

cates and replicate determinations of spiked standard mix-
ture were carried out on the same day (intra-day analysis)
and on different days (inter-day analysis). The calculated
relative standard deviation (RSD) ranged from 3 to 13%
and 9 to 12% for intra-days and the inter-days in drinking
water and reclaimed water, respectively.
Previous studies using offline sample preparation in sur-

face water, drinking water, groundwater and sewage efflu-
ents reported MDLs in the range of 10 ng/L to 25 μg/L
[3-6,8,9,22], which are consistent with the present study.

Heeb et al. and Neset et al. have previously reported an
online SPE LC-MS/MS determination of sucralose in
wastewater, surface and drinking water; however present-
ing higher detection limits [26] or similar detection with
larger volume of sample (20 mL) [25].

Applicability of the method to environmental samples
The developed online-SPE-LC-MS/MS methods were ap-
plied for the analysis of reclaimed water (n = 56) and drink-
ing water samples (n = 43). Concentrations below MDL
were considered as not detected for the purpose of average
calculation. Average concentrations and frequency of de-
tection of sucralose in reclaimed water are presented in
Table 1. Sucralose was detected in 82% of the reclaimed
water samples with concentrations ranging from 4.1 μg/L
to 18 μg/L. The monthly average concentration was 9.1 ±
2.9 μg/L. The concentrations found in reclaimed water are
comparable with previously published levels of sucralose in
wastewater [8,22] and at least 10 times higher than concen-
trations found in surface and groundwaters [3-6,8,9]. Based
on the results obtained, month wise distribution of sucral-
ose in reclaimed water was uniform; with no observed
temporal trend and statistically difference between the wet
season (April to October) and the dry season (November

Figure 1 LC-MS/MS chromatograms of sucralose in LC-MS, tap and reclaimed water. a) LC-MS water fortified with sucralose at 100 ng/L b)
unfortified tap water with a positive detection of sucralose c) unfortified reclaimed water with a positive detection of sucralose.
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to March) as seen in Figure 2. This result indicates that
conventional Wastewater Treatment Plants (WWTP)
are not efficient in removing sucralose. In fact, previous
study by Brorstrom-Lunden et al. reported removal effi-
ciency <10% for sucralose in corresponding wastewater
samples [1]. The chlorinated structure of the sucralose
seems to be resistant to microbial degradation even in
the mixed media of a sewage treatment facility, which
explains its persistence through wastewater treatment
processes in municipal plants [13,21]. High consump-
tion of sucralose in recent years along with its high per-
sistence might explain the high concentrations observed

in reclaimed water. Mass loadings (mg/day) of sucralose
was calculated by multiplying its average concentration
and daily flow rate of the STP effluent during the sam-
pling period (380 000 m3/day). Based on the serving
population of Miami Dade North District [44] the mass
load per capita of sucralose was 4.37 mg/person/day,
which is in good agreement with the U. S. average.
There is a growing concern related to the artificial sweet-

ener sucralose in the United States and Canada. Sucralose
has become the most detected unregulated chemical
and artificial sweetener in wastewater, surface water and
groundwater samples [19].
A worldwide comparison of the occurrence of sucral-

ose in STPs and wastewaters is presented in Table 2 and
the mass load per capita in the different countries were
estimated [1,4,8,9,20-22,25,45-49]. The average effluent
daily flow for China and European Union (EU) was cal-
culated based on the general guideline suggested by
Imhoff (1985), which estimates that 200 L of waste is
produced per capita [26,50,51]. The estimated mass load
per capita (mg/person/day) was high for U.S.A (5.0),
moderate for the EU (2.1) and very low for China (0.37).
The higher value observed for U.S. can be explained based
on higher consumption of sucralose and its early intro-
duction into market (1998) compared to other countries
(Switzerland: 2005; Sweden: 2004; Germany: 2005; China:
2009) [19]. The mass load per capita on a global scale
(2.1) was calculated similarly and is comparable to EU and
lower than US.
The drinking water samples were collected from areas

served by three major drinking water treatment plants in

Table 1 Average concentration and frequency of
detection of sucralose in reclaimed water samples

Month Samples/
month

Frequency of
detection (%)

Monthly
averages (μg/L)

Jan-11 5 80 8.00 ± 3.44

Feb-11 1 100 10.19

Mar-11 8 88 9.63 ± 4.05

Apr-11 4 100 6.96 ± 1.18

May-11 8 100 9.32 ± 2.85

Jun-11 9 89 8.53 ± 2.02

Jul-11 6 33 5.89 ± 2.47

Aug-11 4 75 10.65 ± 6.35

Sep-11 2 50 12.08 ± 1.98

Oct-11 2 100 9.42 ± 1.16

Nov-11 4 100 10.09 ± 1.34

Dec-11 3 67 8.92 ± 2.75

Figure 2 Distribution of sucralose in reclaimed waters in various seasons. The boundaries of box plot cover 25th-75th percentile, the center
line indicates median of the sample population, error bars (whiskers) above and below the box refer to 90th and 10th percentiles. The blue line in
each box plot indicates mean of the sample population.
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Miami-Dade, Hialeah and John E. Preston plant (n = 24),
Alexander Orr Jr. plant (n = 14) and South Dade water
supply system (n = 5). The Hialeah and John E. Preston
plant serves most Miami-Dade residents living between
the Miami-Dade-Broward County line and SW 8th Street.
The Alexander Orr, Jr. water treatment plant, serves most
County residents living between SW 8th Street and SW
264th Street. The other drinking water treatment plant is
South Dade Water Supply System, which is comprised of
five smaller water treatment plants that serve residents
south of SW 264th Street in the unincorporated areas of
the County [52]. The most commonly used treatment pro-
cesses include filtration, flocculation and sedimentation,
and disinfection. Some treatment plants also use ion ex-
change and adsorption. However, the exact treatment
process employed in each drinking water treatment plant
is not readily available. The high concentrations of su-
cralose in reclaimed water could be an indication that
filtration by activated charcoal is not employed by these
treatment plants; since previous literature showed that
sucralose was effectively removed by granular activated
carbon [53]. Spatial distribution of sucralose concentration
in various drinking water sample locations are shown in
Figure 3, with different colors ranging from white (<MDL)
to red (>250 ng/L). Sucralose was frequently detected (88%)
in drinking water samples with an average concentration
of 111 ± 95 ng/L. The highest concentration observed in
drinking water was 465 ng/L. No specific trend was ob-
served between the concentration of sucralose in drinking
waters and sampling location. Furthermore, means of
Hialeah and John E. Preston plant samples and The

Alexander Orr, Jr. plant samples were compared using a
t-test and results indicated that the means of the two
drinking water treatment plants were not statistically
different (P = 0.142). Thus the source of variation in the
concentration of sucralose among samples might be caused
by the time of sample collection, residence time of the wa-
ters before distribution in drinking water treatment plant
and most likely be by point sources of contamination.
Levels of sucralose in drinking water samples were

similar to surface and groundwater in Europe [3,4,6,8].
Recent reports on U.S. ground and drinking waters [5,6]
showed concentration of sucralose in the μg/L range,
relatively higher than those reported in Europe and in
the present study. For results obtained in U.S. waters,
the concentrations reported here in drinking water sam-
ples (up to 465 ng/L) were lower than in surface water
(up to 10,000 ng/L), drinking water (up to 2400 ng/L)
and groundwater (up to 2400 ng/L) from previous stud-
ies [2,5,6,9]. These results suggest that levels of sucralose
found in drinking and ground waters are comparable to
surface water, demonstrating that this compound can be
of great concern even for Drinking water Treatment
Plants (DWTPs) with groundwater sources.
The occurrence of sucralose in groundwater and there-

fore drinking water would likely be an effect of surface
water, contaminated with a nearby WWTP, being drawn
into alluvial wells [5]. Therefore, it is reasonable to expect
that human exposure to sucralose through tap water con-
sumption may be widespread in the U.S.

Photodegradation study of sucralose
The photolysis decay curves of sucralose at UV 254 nm,
UV 350 nm and SunTest are shown in Figure 4 and the
kinetic parameters obtained are shown in Table 3. Re-
sults clearly indicate that in all light sources, the extent
of sucralose degradation is mainly dependent on the type of
matrix used i.e. highest rate in RODW and lowest in salt
water. In the most energetic light source used in the study
(UV 254 nm) no degradation was seen in SW (Figure 4a).
Similar results were observed by Torres et al. [21] i.e. min-
imal degradation (<8%) of sucralose in phosphate buffer
was seen within 24 hours of exposure under UV 254 nm.
Pronounced stability of sucralose was also evident in the
UV treatment of wastewaters [21], where no sucralose de-
graded even after 24 hrs at 254 nm. At UV 350 nm and in
Sun Test (Intensity: 750 W/cm2), sucralose was persistent
to photolysis in both natural water matrices (SW and CW).
Soh et al. reported that no degradation was seen for 1 μM
of sucralose exposed to UV 254 and 320–380 nm for
5 hours [13]. After one month of continuous irradiation
only <16% degraded indicating that sucralose will be ex-
tremely persistent under natural conditions (Figure 4b, c).
Predicted kinetic parameters are shown in Table 3 and were

Table 2 Comparison of studies on sucralose detection in
sewage effluents and wastewaters

References Average concentration
detected (ng/L)

Country

Bronstrom-Lunden et al. 2008 3500 Sweden

Bronstrom-Lunden et al. 2008 4900 Sweden

Neset et al. 2010 2400 Sweden

Buerge et al. 2009 4470 Switzerland

Scheurer et al. 2009 800 Germany

Torres et al. 2011 2800 USA

Ordonez et al. 2012 49600 Spain

Oppenheimer et al. 2011 27000 USA

Scheurer et al. 2011 18000 Germany

Morlock et al. 2011 6449 Germany

Minten et al. 2010 11000 Sweden

Berset and Ochsenbein 2012 3641 Switzerland

Gan et al. 2013 1850 China

Current study 9100 USA

Average of all studies 10394
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calculated based on the regression equation obtained from
kinetic plots.

Identification of photolysis products
Kinetic photo degradation experiments showed that su-
cralose can be significantly degraded (t1/2 = 5.3 hrs for
RODW) when irradiated at 254 nm. Because of that,
those conditions were used to identify major degradation
products. Identification of photodegradation products
was carried out using high resolution mass spectrometry.
A 5 μg/mL solution of sucralose was prepared in two
different water matrices, RODW and SW and the spiked
solutions along with blank and dark control were irradi-
ated under 254 nm for one week and were analyzed by
LC-MS/MS. Separation of the analytes was carried out on
the same analytical column (Hypersil Gold PFP column)
using a binary gradient mobile phase consisting of aceto-
nitrile (B) and 0.1% formic acid (C) in water according to
the following program: 100% C for the first min, gradient

from 0% to 10% B in 2.0 min, then to 90% in 7.0 min, held
it for 1 min, and returned back to 100% C in one min and
held the gradient for 2 min. Samples were analyzed by di-
rect injection of 20 μL of the irradiated solutions.
Quantitation was performed on a QExactive mass spec-

trometer (Thermo Scientific, San Jose, CA, USA) equipped
with a APCI source operating in the negative ionization
mode, using the following parameters: sheath gas flow:
35 arbitrary units; auxiliary gas flow: 10 arbitrary units;
discharge voltage: 5 v; capillary temperature: 300°C; S-
lens RF level: 90; vaporizer temperature: 350°C. Accur-
ate mass spectra were recorded in Full scan in the range
100 to 500 m/z at a resolution of 70,000. The calculation of
exact masses from elemental compositions was carried out
using ChemDraw ultra 8.0. High resolution extracted ion
chromatograms of the sucralose and its potential photo
transformation products were obtained by processing the
full scan data using Metworks 1.3 software (Thermo Scien-
tific, San Jose, CA) with a 5 ppm mass tolerance. A signal,

Figure 3 Distribution of sucralose in Miami-Dade County drinking waters.
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increasing with irradiation dose, was found at 4.4 min
(0.7 min earlier than the parent molecule), with a m/z
361.0463 (C12H19Cl2O8-,-0.4 ppm) corresponding to the
dechlorinated sucralose. HRMS spectra of this peak showed

characteristic chlorine isotopic pattern for 2 chlorines i.e.
m/z 361.0463, 363.0433 and 365.0396 with 100, 63 and
10% relative abundance, respectively as seen in Figure 5.
Similar to sucralose, the photolysis product also produced

Figure 4 Kinetic profile of sucralose in various light sources. a) UV 254 nm light source b) UV 350 nm light source c) Sun Test.
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a formate adduct (m/z 407.0518) with similar isotopic pat-
tern as the parent molecule. A possible structure for su-
cralose degradation product (by the loss of chlorine from
the six membered ring) was proposed (not shown here)
based on the full scan HRMS.

Targeted MS/MS experiments were performed on both
sucralose and its photolysis product at 35,000 resolution
using normalized collision energy (% NCE) ranging from
10–100. When operated in negative ion mode, even at
the lowest NCE used (10%), excessive fragmentation

Table 3 Kinetic parameters of photodegradation experiments

Light source Matrix k (h-1) r2 t1/2 (h) % degradation after a month

UV 254 nm RODW 0.1290 0.991 5.37 100

UV 254 nm CW 0.0530 0.948 13.1 100

UV 254 nm SW 0.0001 0.053 >200 0

UV 350 nm RODW 0.0006 0.984 1155 33

UV 350 nm CW 0.0002 0.464 >750 16

UV 350 nm SW 0.0002 0.818 >750 12

SunTest RODW 0.0003 0.979 2310 18

SunTest CW 0.0000 0.218 NA 0

SunTest SW 0.0000 0.021 NA 0
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Figure 5 Chlorine isotopic pattern of sucralose photolysis product detected in negative ionization mode.
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was produced, making it impossible to obtain any struc-
tural information on the photodegradation product. Alter-
nately, Full scan and MS/MS experiments were performed
using in-source collision induced dissociation (CID), which
will fragment all ions after the first quadrupole. The sam-
ple was run in the full scan mode (m/z 100–500) with 3
different CIDs i.e. 0, 15 and 25 eV while monitoring the
decrease of the parent ion (m/z 395.0072) and the increase
of the photo-product (m/z 361.0463) and their formate
adduct ions intensity (m/z 441.0130 and 407.0518). When
the CID was increased from 0 to 15 eV, the abundance of
both formate adduct ions decreased while the intensity of
m/z 395.0072 and m/z 361.0463 increased. However, when
the CID was ramped to 25 eV, the intensity of all formed
ions decreased.

The same samples were then run in the positive ion-
ization (PI) mode with same source and mobile phase con-
ditions. Sucralose was detected in PI mode as the sodium
adduct at m/z 419.0045, which is in good agreement with
the results shown by Ferrer et al. 2010 [5]. However, the
sensitivity in PI mode was 10–20 fold lower than in nega-
tive mode. The photolysis product identified at 4.4 min
in negative mode was also identified in PI mode at the
same retention time, but as a sodiated molecule at m/z
385.0428. This structure is produced by the loss of one
chlorine from sucralose and corresponds to the molecular
formula C12H20Cl2NaO8

+ (+0.25 ppm). The chromato-
grams of sucralose and its photolysis product in PI mode
are shown in Figure 6. The HRMS spectrum of the pho-
tolysis product obtained at 35,000 resolution displayed the
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characteristic chlorine isotopic pattern consistent with the
parent molecule and is shown in Figure 7.
MS/MS information on the photolysis product was

obtained at 20% NCE with an isolation window of 1 m/z
and is used to elucidate the possible structure out of 3
possible ones (A, B or C) (Figure 8).
The major MS/MS fragment at m/z 238.9842 with

relative abundance of 70%, indicates that the Structure
A is the most possible photodegradation product of su-
cralose. The MS/MS spectrum of the photolysis product,
m/z 385.0428 with estimated mass errors on parent and
fragments is presented in Figure 9. Chlorine isotopic
pattern on MS/MS fragments was not observed due to
the small isolation window selected on the parent ion
(m/z 385.0428). Reclaimed water with positive detection
of sucralose was run using the same method and the photo
transformation product was not detected, suggesting that
dechlorination of sucralose is not a preferred metabolic re-
action and will occur only under prolonged UV irradiation.

Conclusion
An automated online SPE LC-APCI/MS/MS was devel-
oped and validated for the determination of sucralose at
low ng/L levels in water samples. The method was suc-
cessfully applied to drinking and reclaimed waters from
South Florida, U.S.A. The method detection limits were
8.5 ng/L and 2.7 μg/L in drinking and reclaimed waters,
respectively. In all matrices tested, the recovery of su-
cralose ranged from 85-113%. Sucralose was frequently
detected (> 80%) in all studied samples with concentra-
tions as high as 18 μg/L. The mass load per capita of su-
cralose released by the WWTP effluent by taking into
consideration all the studies published to date was esti-
mated as 5.0 mg/day/person in the U.S. and is two times
higher than the global and European Union. The maximum
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product detected in positive ionization mode.
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concentration of sucralose detected in drinking waters was
465 ng/L. Based on a study conducted by Fujimaru et al. it
has been estimated that 79.5 mg of sucralose is required to
make 1 L of water weakly sweet [54]. Thus, considering
the calculated global mass load of sucralose discharged
by the WWTPs it would still take 8.43.E + 13 years to
make the ocean waters become sweet. The ubiquitous-
ness of sucralose in the aquatic environment is however
of great concern, especially since little information is known
to date about its potential long term ecological effects.
Photodegradation of sucralose was minimal at environ-
mental relevant conditions. Its high resistance to photo-
degradation, minimal sorption and high solubility could
explain the high frequency of detection and levels found in
this and other studies. These results corroborate with previ-
ous findings indicating that sucralose could be a good tracer
of anthropogenic wastewater intrusions into the environ-
ment. The new photolysis product identified in this study is
likely produced by the loss of a chlorine directly from su-
cralose. To our best knowledge this is the first time that a
photodegradation product of sucralose was identified.

Additional files

Additional file 1: Figure S1. Structure of sucralose. Figure S2.
Comparison of emission spectrum of a group of 254 nm light source,
350 nm light source and Sun Test versus natural sun light. Figure S3.
LC-MS water fortified with sucralose at 200 ng/L (top) LC-MS water
fortified with sucralose-d6 (internal standard) at 50 μg/L (bottom).
0.1% formic acid in LC-MS grade water was used as modifier. Table
S1. Characteristics of canal water and sea water used in the
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