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Recently, mesh-free methods are increasingly utilized in solving various types of boundary value problems. Much research has
been done on mesh-free methods for solving differential equation problems including crack and also obtained satisfactory results.
Among these methods, reproducing kernel particle method (RKPM) has been used increasingly in fracture mechanic problems.
The 𝐽-integral and the stress intensity factor (SIF) are the most important parameters for crack problems. In this study 𝐽-integral
has been used to calculate the SIF in the crack tip. The mode 𝐼 SIF at the crack tip in a work-hardening material is obtained for
various dilation parameters using RKPM. A comparison between two conventional treatments, visibility and diffraction on SIF and
𝐽-integral value, is conducted. Visibility and diffractionmethods increase the accuracy of RKPM results and effect on the 𝐽-integral
results at the crack tip. In comparing between the visibility and diffraction methods to modify the shape functions, the diffraction
criterion seems to have better results for the 𝐽-integral and SIF value.

1. Introduction

In fracture mechanic problems, the finite element formu-
lations have been well developed and several amounts of
research has been accomplished. Standard finite element
approaches for crack problems are usually ineffective due to
the mesh-based view and propagation of the crack during
the loading process. Mesh-free methods eliminate some or
all of the traditional mesh-based views of the computational
domain and rely on a particle view of the field problem. The
major difference between finite element methods is that the
domain of interest is discretized only with nodes, often called
particles. In recent years, much research has been done on
mesh-freemethods for solving differential equation problems
including crack and also obtained satisfactory results. Among
these methods reproducing kernel particle method (RKPM)
has been used increasingly in fracture mechanic problems.
Boundary value problems (BVPs) often have essential bound-
ary conditions (EBCs) that involve derivatives, for example,
in beams and plates, where slopes are commonly enforced at
the boundaries. Such problems are solved numerically using
mesh-free techniques like the RKPM and the EFGM.

In fracture mechanic problems, the concept of energy
release rate was first introduced by Cherepanov [1] and
Eshelby [2], but it was Rice who first used this independent
path integral in fracture mechanics problems. In 1968, Rice
[3] presented the concept of energy release rate bymeans of 𝐽-
integral.The 𝐽-integral represents a way to calculate the strain
energy release rate, or work (energy) per unit fracture surface
area, in a material. An important feature of the 𝐽-integral is
that it is path independent and it helps to calculate the 𝐽-
integral at a far distance from the crack tip. In linear elastic
fracture mechanics the 𝐽-integral has a direct relationship
with the stress intensity factors (SIFs). In this study the 𝐽-
integral has been used to calculate the SIF at the crack tip.

There have been two widely used criteria, visibility and
diffraction which are used for dealing with the internal
discontinuity in fracture mechanics. A visibility criterion has
been developed by Belytschko et al. in 1994 [4] to modify
the shape function of the particles near to discontinuities
or nonconvex parts such as cracks. Visibility is the easiest
way to introduce discontinuities in mesh-free methods. In
this method, the boundaries of the domain and any internal
discontinuities can be considered as an opaque barrier. Also,
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discontinuity means considering that the influence domain
of a shape function for a particle and the connection line
between this particle and other particles can be assumed as
a light beam in the influence domain of the shape function. A
diffraction criterion has been developed by Belytschko et al.
in 1996 [5] tomodify the shape function of the particles in the
vicinity of the discontinuities such as cracks.

2. RKPM Shape Functions and
Their Derivatives

The reproduced kernel function of 𝑢(𝑥) can be written as

𝑢
𝑅
(𝜉) = ∫

Ω

𝑢 (𝑥) 𝜙 (𝜉; 𝜉 − 𝑥) 𝑑𝑥, (1)

where 𝜙(𝜉; 𝜉 − 𝑥) is the modified kernel function on domain
Ω that is expressed by

𝜙 (𝜉; 𝜉 − 𝑥) = 𝐶 (𝜉; 𝜉 − 𝑥) 𝜙 (𝜉 − 𝑥) , (2)

𝜙
𝑎
(𝜉 − 𝑥

𝑖
) =

1

𝑎
𝜙(
𝜉 − 𝑥
𝑖

𝑎
) , (3)

where 𝜙
𝑎
(𝜉−𝑥) is window function,𝐶(𝜉; 𝜉−𝑥) is a correction

function, and 𝑎 is the dilation parameter of the kernel func-
tion. Dilation parameter is defined in order to make more
flexibility for the window function and this parameter will
control the expansion of the window function on the domain.
The correction function 𝐶(𝜉; 𝜉 − 𝑥) proposed by Liu et al. is
shown by a linear combination of polynomial including some
unknown coefficients. These unknown coefficients will be
computed after imposing the boundary conditions. In order
to get the equations for reproducing an arbitrary function,
consider the following Taylor series expansion:

𝑢 (𝑥) =

∞

∑

𝛼=0

(−1)
𝛼

𝛼!
(𝜉 − 𝑥)

𝛼
𝑢
(𝛼)
(𝜉) . (4)

Substituting (4) into (1) leads to

𝑢
𝑅
(𝜉) =

∞

∑

𝛼=0

(−1)
𝛼

𝛼!
(∫
Ω

(𝜉 − 𝑥)
𝛼
𝜙 (𝜉; 𝜉 − 𝑥) 𝑑𝑥) 𝑢

(𝛼)
(𝜉) .

(5)

In order to simplify (5), the 𝛼th degree moment matrix of
function 𝜙

𝑎
(𝜉, 𝜉 − 𝑥) is defined by

𝑚
𝛼 (𝜉) = ∫

Ω

(𝜉 − 𝑥)
𝛼
𝜙
𝑎
(𝜉; 𝜉 − 𝑥) 𝑑𝑥. (6)

Then (6) will be rewritten in the form of

𝑢
𝑅
(𝜉) = 𝑚0 (𝜉) 𝑢 (𝜉) +

∞

∑

𝛼=1

(−1)
𝛼

𝛼!
𝑚
𝛼 (𝜉) 𝑢

(𝛼)
(𝜉) . (7)

In order to exactly reproduce the 𝑛th order polynomial
function, the following conditions need to be satisfied:

𝑚
𝑜 (𝜉) = 1,

𝑚
𝛼 (𝜉) = 0, 𝛼 = 1, 2, . . . , 𝑛.

(8)

Or in summary:

𝑚
𝛼 (𝜉) = 𝛿𝛼𝑜; 𝛼 = 0, 1, 2, . . . , 𝑛. (9)

If a correction function including 𝑛+1 unknown coefficient is
defined, 𝑛+1 equations of (9) can be satisfied simultaneously.
The correction function is defined by

𝐶 (𝜉, 𝜉 − 𝑥) =

𝑛

∑

𝛼=0

𝛽
𝛼 (𝜉) (𝜉 − 𝑥)

𝛼
. (10)

It can be also expressed in matrix form:

𝐶 (𝜉; 𝜉 − 𝑥) = 𝑃
𝑇
(𝜉 − 𝑥) 𝛽 (𝜉) , (11)

where 𝑃𝑇(𝜉 −𝑥) is a set of basic functions and including 𝑛+1
components and 𝛽(𝜉) is a set of unknown coefficient. Sub-
stituting (11) into (9) and considering definition of moment
matrix in (6) lead to

∫
Ω

⟨(𝜉 − 𝑥)
𝛼
(𝜉 − 𝑥)

𝛼+1
⋅ ⋅ ⋅ (𝜉 − 𝑥)

𝛼+𝑛
⟩𝜙
𝑎 (𝜉 − 𝑥) 𝑑𝑥

×

{{{{

{{{{

{

𝛽
𝑜 (𝜉)

𝛽
1 (𝜉)

...
𝛽
𝑛 (𝜉)

}}}}

}}}}

}

= 𝛿
𝛼𝑜
, 𝛼 = 1, 2, . . . , 𝑛.

(12)

From (12) the unknown coefficient sets of 𝛽
𝑖
(𝜉) are obtained.

Equation (12) can also be rewritten as

⟨𝑚𝛼 (𝜉) 𝑚𝛼+1 (𝜉) ⋅ ⋅ ⋅ 𝑚𝛼+𝑛⟩

{{{{

{{{{

{

𝛽
𝑜 (𝜉)

𝛽
1 (𝜉)

...
𝛽
𝑛 (𝜉)

}}}}

}}}}

}

= 𝛿
𝛼𝑜
. (13)

Or it can be shown in matrix form as (14) and (15):

[
[
[
[

[

𝑚
𝑜 (𝜉) 𝑚

1 (𝜉) ⋅ ⋅ ⋅ 𝑚
𝑛 (𝜉)

𝑚
1 (𝜉) 𝑚

2 (𝜉) ⋅ ⋅ ⋅ 𝑚
𝑛+1 (𝜉)

...
... ⋅ ⋅ ⋅

...
𝑚
𝑛 (𝜉) 𝑚𝑛+1 (𝜉) ⋅ ⋅ ⋅ 𝑚2𝑛 (𝜉)

]
]
]
]

]

{{{{

{{{{

{

𝛽
𝑜 (𝜉)

𝛽
1 (𝜉)

...
𝛽
𝑛 (𝜉)

}}}}

}}}}

}

=

[
[
[
[

[

1

0

...
0

]
]
]
]

]

,

(14)

𝑀(𝜉) 𝛽 (𝜉) = 𝑃 (0) . (15)

Moment matrix𝑀 can be shown as

𝑀(𝜉) = ∫
Ω

𝑃 (𝜉 − 𝑥) 𝑃
𝑇
(𝜉 − 𝑥) 𝜙𝑎 (𝜉 − 𝑥) 𝑑𝑥. (16)

Since the window function is always positive, all the com-
ponents of moment matrix are linearly independent with
respect to 𝜙

𝑎
. Therefore, the moment matrix is nonsingular.
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Hence, simultaneously solving (15), the unknown coefficient
sets of 𝛽

𝑖
(𝜉) are obtained:

𝛽 (𝜉) = 𝑀
−1
(𝜉) 𝑃 (0) . (17)

After obtaining the unknown coefficient sets 𝛽
𝑖
(𝜉) the cor-

rection function can be easily calculated from (10). After
obtaining the unknown coefficient sets of 𝛽

𝑖
(𝜉), the correc-

tion function is determined and the function 𝑢(𝑥) or its
derivatives can be obtained using the reproducing function.
Equation (17) can be discretized in order to apply to various
problems. Equation (18) is the result of the discretization
in the reproducing equation using the trapezoid integration
method:

𝑢
𝑅
(𝜉) = ∫

Ω

𝑢 (𝑥) 𝜙 (𝜉; 𝜉 − 𝑥) 𝑑𝑥 =

NP
∑

𝑖=1

𝑢 (𝑥) 𝜙 (𝜉; 𝜉 − 𝑥) Δ𝑥,

(18)

where NP is the total number of particles distributed
throughout the domainΩ. Equation (18) can be rewritten as

𝑢
𝑅
(𝜉) =

NP
∑

𝑖=1

𝜓
𝑖 (𝜉) 𝑢𝑖, (19)

and 𝜓
𝑖
(𝜉) is called shape function:

𝜓
𝑖 (𝜉) = 𝑃

𝑇
(𝜉 − 𝑥

𝑖
) 𝛽
𝑖 (𝜉) 𝜙𝑎 (𝜉 − 𝑥𝑖) Δ𝑥𝑖, (20)

where 𝑖 is the particle number on the domain, 𝑥
𝑖
is the

coordinate of that particle, 𝜙
𝑎
(𝜉 − 𝑥) is the kernel function,

and 𝜓
𝑖
(𝜉) is defined as the shape function of particle 𝑖 with

coordinate of 𝜉. Two most regular kernel functions which
are used in mesh-free methods are Gaussian and spline
functions. All the spline functions are symmetric around 𝑥 =
0 axis. In this study, we employ the cubic spline function as
the kernel function, which is

𝑆
3
(𝑥) =

{{{{{{{

{{{{{{{

{

2

3
− 4𝑥
2
− 4𝑥
3

0 ≤ 𝑥 <
1

2
4

3
− 4𝑥 + 4𝑥

2
−
4

3
𝑥
3 1

2
≤ 𝑥 < 1

0 𝑥 ≥ 1.

(21)

By considering (19) and deriving from (20) with respect to
𝑥
𝑘
, the definition of the derivative of the 𝐼th shape function

becomes

𝜓
𝑖,𝑥𝑘 (𝜉) = {𝑃

𝑇
,xk (𝜉 − 𝑥𝑖) 𝛽𝑖 (𝜉) 𝜙𝑎 (𝜉 − 𝑥𝑖)

+ 𝑃
𝑇
(𝜉 − 𝑥

𝑖
) 𝛽
𝑖,𝑥𝑘 (𝜉) 𝜙𝑎 (𝜉 − 𝑥𝑖)

+𝑃
𝑇
(𝜉 − 𝑥

𝑖
) 𝛽
𝑖 (𝜉) 𝜙𝑎,𝑥𝑘 (𝜉 − 𝑥𝑖)} Δ𝑥𝑖.

(22)

3. Calculation of Multidimensional Shape
Functions in RKPM

In what proceeded, the relationships needed to reproduce
the desired function and its derivatives in a continuous and

discrete computational domain. Now, the shape functions
will be calculated for the multidimensional problems. The
kernel function in one-dimension was

𝜙
𝑎
(𝜉 − 𝑥

𝐼
) =

1

𝑎
𝜙(
𝜉 − 𝑥
𝐼

𝑎
) . (23)

By multiplying the above kernel function in each dimension,
the multidimensional kernel function is obtained:

𝜙
𝑎
(𝜉 − 𝑥

𝐼
) =

nsd
∏

𝑗=1

1

𝑎
𝑗

𝜙(
𝜉 − 𝑥
𝐼/𝑗

𝑎
𝑗

) , (24)

where nsd is the number of dimensional Euclidean space
and 𝑎

𝑗
is dilation parameter for 𝑗th dimension. The multi-

dimension correction function is defined based on (11),
where 𝑃 is based multidimensional vector function which is
included in

𝑃
𝑇
(𝜉 − 𝑥

𝐼
)

= [1 𝜉1 − 𝑥𝐼/1 𝜉2 − 𝑥𝐼/2 ⋅ ⋅ ⋅ (𝜉nsd − 𝑥𝐼/nsd)𝑁]
(25)

which is obtained by applying the condition of completeness:

𝛽 (𝜉) = 𝑀
−1
(𝜉) 𝑃 (0) , (26)

where𝑀 is

𝑀(𝜉) = ∫
Ω

𝑃 (𝜉 − 𝑥) 𝑃
𝑇
(𝜉 − 𝑥) 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥nsd. (27)

So the correction function will be

𝐶 (𝜉; 𝜉 − 𝑥
𝐼
) = 𝑃
𝑇
(0)𝑀

−1
(𝜉) 𝑃
𝑇
(𝜉 − 𝑥

𝐼
) . (28)

And the modified kernel function will be

𝜙
𝑎
(𝜉; 𝜉 − 𝑥

𝐼
) = 𝐶 (𝜉; 𝜉 − 𝑥

𝐼
) 𝜙
𝑎
(𝜉 − 𝑥

𝐼
) . (29)

And finally, themultidimensional reproducing function form
will become

𝑢
𝑅
(𝜉) = ∫

Ω

𝜙
𝑎
(𝜉; 𝜉 − 𝑥) 𝑢 (𝑥) 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥nsd. (30)

And it will be discretized to determine the shape function:

𝜓
𝑖 (𝜉) = 𝜙𝑎 (𝜉; 𝜉𝐼 − 𝑥𝐼3) Δ𝑉𝐼,

𝜓
𝑖 (𝜉) = 𝑃

𝑇
(0)𝑀

−1
(𝜉) 𝑃 (𝜉 − 𝑥𝐼) 𝜙𝑎 (𝜉 − 𝑥𝐼) Δ𝑉𝐼,

(31)

where Δ𝑉
𝐼
is the corresponding volume of the 𝐼th particle

and, in two-dimensional problems, is each particle’s ration
area.

4. Ration Area of Each Particle in
Two-Dimensional RKPM

Ration area in two-dimensional problems for each particle is
shown by Δ𝑆

𝐼
which is

Δ𝑉
𝐼
= Δ𝑆
𝐼
. (32)
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Figure 1: Determination of ration area for each node.

The ration area is considered one in element-free Galerkin
method (EFG). EFG method was introduced by Belytschko
and Tabbara in 1992 [6] but it is not accurate because for
all particles the ration area is one. But in RKPM the ration
area of each particle is calculated separately and is different
for each particle. Initially, all the particles which are scattered
in the domain are connected to each other. Then for each
particle perpendicular lines between the particles with other
particles are drawn, and the area of the polygons trapped for
each particle is considered as Δ𝑆

𝐼
(Figure 1).

In the FORTRAN programming that has been developed
in this study a different method has been used to calculate
the ration area of each particle. First the domain has been
divided into small raster rectangular (1000∗2000). The dis-
tance between coordinates of the center of each rectangular
is compared with all particles. The rectangle which has the
smallest distance from each particle is allocated to the ration
area of that particle.

5. Display of Two-Dimensional Shape
Functions and Their Derivatives

A 5×5 plate including 2500 particles is selected.The particles
are uniformly scattered on the plate. The dilation parameter
is considered to be equal to one. Figures 2, 3, and 4 show
the two-dimensional shape functions and their derivatives for
different particles.

6. Modification of RKPM Shape Functions
Using Visibility and Diffraction Criteria

Through engineering problems, the domain of the problem
may contain nonconvex boundaries, particularly the fracture
ones having discontinuous displacement fields. In such con-
ditions, the shape functions associated with particles, whose
supports intersect the discontinuity, should bemodified. One
of these criteria is the visibility introduced by Belytschko
et al. [4] and Krysl and Belytschko [9]. In this approach,
if the assumed light beam meets the discontinuity line, the

shape function after the barrier will be cut. Therefore, a
discontinuity is applied to the geometry. For example, if a
crack is considered, the influence domain of particles 𝐼 and
𝐽 close to the crack tip using visibility criterion can be shown
as Figure 5. As can be seen, the particles that at particles 𝐼 or
𝐽 cannot be seen by an observer will be removed. In other
words, the shape function of the particles which the crack or
discontinuity prevent from reaching the light beam will be
modified to amount to a zero.

Figures 6(a) and 6(b) show thewindow function of a node
next to the crack using visibility criterion [7].

Diffraction criterion (Belytschko et al. in 1996 [5]) is
based on the bending of the light beam which has been
described in the visibility criterion around a tip discontinuity.
Consider the end of the discontinuity line in Figure 7. If the
distance between the crack tip and the end of the arc is called
𝑑 for particle 𝐼, then a circle with the center being the crack tip
and radius of 𝑑 is drawn. Areas outside the circle and behind
the discontinuity are removed and the amount of the shape
function in these areas will be zero (Figure 7).

Figures 8(a) and 8(b) show thewindow function of a node
next to the crack using visibility criterion [7].

7. SIF and 𝐽-Integral

The main purpose of fracture mechanics is to determine
the status of cracks in different loading conditions. Stress,
strain, displacement, and energy fields are required to obtain
a driving force for crack growth. SIF and 𝐽-integral are two
important concepts of crack problems. SIF is used to quantify
the stress field around the crack tip. Many methods have
been developed to determine the stress intensity factor. One
of these methods to calculate the stress intensity factor is 𝐽-
integral.Thematerial can be cracked in three different modes
including opening, shearing, and tearing mode.

The first mode is related to the tensile stress which is
orthogonal to the page and is called opening mode. The
second mode is applied in the same way as shear stress on
the page and is called shearing or sliding mode. The third
mode which includes out-of-plane shear stress of the crack
is called tearing mode. Other situations of the loading are
combinations of these three modes. If a node is considered
with distance 𝑟 and angle of 𝛼 with the 𝑥-axis in the vicinity
of the crack edge (see Figure 9), then the stress field in this
node is calculated according to the Irwin method in different
crack modes. Therefore, stress field in the crack tip for linear
elastic materials is calculated by

6
𝑖𝑗
=

𝐾

√2𝜋𝑟
𝑓
𝑖𝑗 (𝜃) , (33)

where𝐾 parameter is the SIF for different modes in the crack
tip, and shown 𝐾

𝐼
, 𝐾
𝐼𝐼
, and 𝐾

𝐼𝐼𝐼
are for the first, second,

and third modes. Values of these coefficients are determined
according to the dimensions and loading condition of the
problem. Therefore, the SIF relationship is calculated from
the analysis of the geometrical and loading condition.𝐾

𝐼
,𝐾
𝐼𝐼
,

and 𝐾
𝐼𝐼𝐼

are physically the intensity of force transfer at the
crack tip due to the creation of the crack in the material. SIF
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Figure 2: Shape functions of a vertex particle.
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Figure 3: Shape functions of a central and a middle particle.
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Figure 4: Derivatives of the shape function for central particle along the 𝑌 and𝑋 direction.
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Node I

Crack A
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C

Figure 5: Modified influence domain of the particle next to the line
of discontinuity using visibility criterion.

plays an important role as a failure parameter. Rice [3] also
showed that this integral has linear elastic attitude with the
energy release rate and was independent of the path around
a crack. The two-dimensional 𝐽-integral was defined as [10]

𝐽 = ∫
Γ

(𝑊𝑑𝑥
2
− 𝜎
𝑖𝑗
𝑛
𝑗
𝑢
𝑖,1
𝑑𝑠) , 𝑗 = 1, 2, (34)

where 𝑊 is strain energy density, 𝜎 is stress tensor, 𝑛 is the
normal to the curve Γ, and 𝑢 is the displacement vector. The
strain energy density is given by

𝑊 = ∫

𝜀𝑖𝑗

0

𝜎
𝑖𝑗
𝑑𝜀
𝑖𝑗
. (35)

Also, 𝐽-integral can be obtained in terms of SIF of the first,
second, and third modes:

𝐽 =
1

𝐸󸀠
(𝐾
2

𝐼
− 𝐾
2

𝐼𝐼
) +

1

2𝜇
𝐾
2

𝐼𝐼𝐼
,

𝐸
󸀠
=
{

{

{

𝐸

1 − ]2
plane strain

𝐸 plane stress,

(36)

where 𝜇 is shear modulus, 𝐸󸀠 is modulus of elasticity, and ] is
Poisson ratio. An important feature of the 𝐽-integral is that it
is path independent and this helps to calculate the 𝐽-integral
in a far distance from the crack tip. If Γ is considered as path
independent around an inclined crack tip which has angle of
𝛼with the𝑥-axis, then 𝐽-integral can be shown inmatrix form
as

𝐽 = ∫
Γ

𝑊𝑑𝜂 − ∫
Γ

{𝜎𝑛 𝜏𝑛}
[
[
[

[

𝜕𝑢
𝑛

𝜕𝜉

𝜕𝑢
𝑛

𝜕𝜉

]
]
]

]

𝑑𝑠, (37)

and 𝜎
𝑛
and 𝜏
𝑛
are the stresses in an arbitrary direction which

has angle of 𝛼 with 𝑥-axis:

𝜎
𝑛
= 𝜎
𝑥𝑥
cos2𝛼 + 𝜎

𝑦𝑦
sin2𝛼 + 𝜏

𝑥𝑦
sin𝛼 cos𝛼,

𝜏
𝑛
= (𝜎
𝑦𝑦
− 𝜎
𝑥𝑥
) sin𝛼 cos𝛼 + 𝜏

𝑥𝑦
(cos2𝛼 − sin2𝛼)

(38)

𝑢
𝑛
and ]
𝑛
are displacement in the same direction:

𝑢
𝑛
= 𝑢 cos𝛼 + V sin𝛼,

𝑉
𝑛
= −𝑢 sin𝛼 + V sin𝛼.

(39)

Substituting (38) and (39) in (37) the 𝐽-integral will be easily
calculated. Figure 10 shows that 𝑄

1
𝑄
2
𝑄
3
𝑄
4
is considered as

a path for the 𝐽-integral in a fully elastic domain. First, the
shape of the integral path is described and then the value
of integral is calculated on each separate path for two plane
stress and plane strain conditions.

It is obvious that stress is 𝜎 = 𝐷 ⋅ 𝜀 in elastic condition
and it can be stated in matrix form:

{

{

{

𝜎
𝑥𝑥

𝜎
𝑦𝑦

𝜎
𝑥𝑦

}

}

}

=[

[

𝐷
11
𝐷
12

0

𝐷
12
𝐷
22

0

0 0 𝐷
11

]

]

.
{

{

{

𝜀
𝑥𝑥

𝜀
𝑦𝑦

𝜀
𝑥𝑦

}

}

}

=[

[

𝐷
11
𝜀
𝑥𝑥
+ 𝐷
12
𝜀
𝑦𝑦

𝐷
12
𝜀
𝑥𝑥
+ 𝐷
22
𝜀
𝑦𝑦

𝐷
33
𝜀
𝑥𝑦

]

]

.

(40)

Then strain energy density is calculated from

𝑊 =
1

2
𝜎
𝑇
𝜀. (41)

Substituting (40) in (41), strain energy density will be

𝑊 =
1

2
𝜀
𝑥𝑥
(𝐷
11
𝜀
𝑥𝑥
+ 𝐷
12
𝜀
𝑦𝑦
)

+
1

3
𝜀
𝑦𝑦
(𝐷
12
𝜀
𝑥𝑥
+ 𝐷
22
𝜀
𝑦𝑦
) +
1

2
𝐷
33
𝜀
2

𝑥𝑦
,

𝑊 =
1

2
𝐷
11
𝜀
2

𝑥𝑦
+
1

2
𝐷
22
𝜀
2

𝑦𝑦
+ 𝐷
12
𝜀
𝑥𝑥
𝜀
𝑦𝑦
+
1

2
𝐷
33
𝜀
2

𝑥𝑦
.

(42)

And the 𝐽-integral on the closed path is

𝐽 = ∫𝑄
1
𝑄
2
+ ∫𝑄

2
𝑄
3
+ ∫𝑄

3
𝑄
4
+ ∫𝑄

4
𝑄
1
. (43)

Then SIF is calculated from (44) for plane-stress and plane-
strain conditions

𝐽 =
𝐾
2

𝐸
󳨐⇒ 𝐾 = √𝐽𝐸 plane-stress

𝐽 =
𝐾
2

𝐸
(1 − ]2) 󳨐⇒ 𝐾 = √

𝐽𝐸

1 − ]2
plane-strain.

(44)

8. Edge Crack Modeling in RKPM

With what was stated previously and using a FORTRAN
program that was written for solving the liner elastic on a
steel plate with specified dimension using RKPM, the stress,
strain, and displacement field in 𝑥 and 𝑦 directions in all
computational particles and calculation of SIF under plane-
stress and plane-strain conditions were obtained. Penalty
method is used to apply the boundary conditions. Penalty
coefficient, 𝛽, is adopted as 106𝐸, in which 𝐸 is Young’s
modulus. A rectangular steel plate is selected with size of
3 × 10ft2 (0.91 × 3.05m2). An edge crack is considered
with a length of 7 inch (0.178m) in the middle of the plate.
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Figure 6: Modified window function of a node next to the crack using visibility criterion [7].

Node I

C A

BLine of discontinuity

Figure 7:Modified influence domain of the particles next to the line
of discontinuity using diffraction.

A tensile stress of 35 ksi (241.3MPa) is applied at the bottom
and the top of the plate. The loading increment is assumed
7 ksi (48.3MPa). Roller constraint is used for the plane in
front of the crack and pin constraint is used for the front face
of the plate (Figure 11). Spline 3rd degree is used as a window
function.

The modulus of elasticity of the plate is 30,000 ksi
(207,000MPa), Poisson ratio of 0.3, and hardening parameter
is 10. The problem geometry is included 752 particles uni-
formly scattered on the surface of the plate and 73 particles
positioned on the circles with angles of 30 degrees around the
crack tip as shown in Figure 12.

Dilation parameter has a great impact on the performance
of the RKPM and especially on the shape function. The
main duty of this parameter is determining the extent of the
window function on the computational domain. Also, the
window functions with smaller influence domain will have
better performance in a continuousmode.Window functions
with a very small range of influence domain will only include
the same particle that has been defined on it, inwhich case the
answers will not be sustainable.The dilation parameter needs
to be defined such that it covers two particles of the domain.
This is due to the fact that the window functions which

cover just one particle will lead to numerical instability in the
reproducing relations in the discrete case. Generally, it is hard
to find any relation between a dilation parameter and Δ𝑥, Δ𝑦
(distance between particles in 𝑥 and 𝑦 directions), and the
optimized dilation parameter might be different for different
problems. Here, we compare the results of SIF for various
dilation parameters between RKPM and analytical solution.

To analyze a plate with elastic-plastic behavior under
static load, a force has to be applied in consecutive phases. At
each phase, the amount of strain is obtained, and, with having
all the parameters required in the previous stage, the status of
the plate is determined in the newphase. By status of the plate,
it is meant the stress in the plate and the amount of plastic
strain. For this plate, dilation parameters are compared for
two visibility and diffraction criteria.TheGaussian number is
considered to be equal to 3. Figures 13 and 14 show SIF results
versus dilation parameter for both RKPM and analytical
methods. It can be concluded that diffraction criterion has
the better results and closer results to the analytical solution.

The FORTRAN program developed for the elastic-plastic
material is also able to recognize the yielded particles accord-
ing to Von-Mises criterion. For the same plate with dimen-
sions 3 × 10ft2 including 825 particles, 𝐽-integral diagram is
shown for plane-strain conditions. The crack tip region was
refined using more particles in the circle arrangements. In
this problem, dilation parameter is 0.1 for the refined particles
and is 0.13 for the rest of particles. Tensile stress of 35 ksi
(241.3MPa) is applied at the bottom and the top of the plate.
In each 7 ksi (48.3MPa) loading increment, the 𝐽-integral
values are calculated. Figures 15 and 16 show the 𝐽-integral
values versus tensile stress for plane-strain condition. From
Figures 15 and 16, it can be concluded that there is an almost
parabolic relationship between 𝐽-integral value and far-field
tensile stress.Diffraction criterion seems to have better results
for the 𝐽-integral versus tensile stress. Also, the result of 𝐽-
integral value in diffractionmethod is almost 10 percentmore
than visibility method as shown in Figure 17.
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Figure 8: Modified window function of a node next to the crack using diffraction criterion [7].
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9. Conclusions

(1) When the dilation parameter increases for all particles
in plastic analysis, the difference of the 𝐽-integral
in fully plastic regions and fully elastic regions will
increase. The reason for this is that when the crack
is analyzed in the elastic-plastic condition, for the
particles in crack tip with less dilation parameter 𝐽-
integral is calculated in fully plastic and domain of
influence domain does not enter to elastic region.
Also, the SIF versus dilation parameter graphs show
that increasing the density of particles at the crack tip
using a circle or a star arrangement will result inmore
realistic answers for SIF.

(2) The 𝐽-integral, which is the energy discharge rate
for a fully elastic analysis, is less than the elastic-
plastic analysis, using the Ramberg-Osgood model.
The reason is that, in the elastic-plastic condition,

Γ

Q1 Q2

Q3Q4

2b

2b

Figure 10: 𝐽-integral path at the crack tip.

𝜎

𝜎

3

10

Figure 11: Domain and boundary conditions.
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Figure 14: SIF versus dilation parameter using diffraction criterion.

the material at the crack tip experiences more strain
than in the fully elastic condition and more energy
discharge per very small crack growth.

(3) In comparing between the visibility and diffraction
methods to modify the shape functions, the diffrac-
tion criterion seems to have better results for the SIF
in both the elastic and plastic analysis.

(4) There is an almost parabolic relationship between 𝐽-
integral and far-field tensile stress for mode 𝐼 edge
crack and plane strain condition.
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Figure 15: 𝐽-integral values versus tensile stress using visibility
criterion.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40

Diffraction

RKPM

𝜎 (ksi)

J
(lb

f/i
n2

)

Figure 16: 𝐽-integral values versus tensile stress using diffraction
criterion.
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