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DRD2 and DRD4 genes related 
to cognitive deficits in HIV-infected adults who 
abuse alcohol
Karina Villalba1*, Jessy G. Devieux1, Rhonda Rosenberg1 and Jean Lud Cadet2

Abstract 

Background: HIV-infected individuals continue to experience neurocognitive deterioration despite virologically 
successful treatments. The causes of neurocognitive impairment are still unclear. However, several factors have been 
suggested including the role of genetics. There is evidence suggesting that neurocognitive impairment is heritable 
and individual differences in cognition are strongly driven by genetic variations. The contribution of genetic variants 
affecting the metabolism and activity of dopamine may influence these individual differences.

Methods: The present study explored the relationship between two candidate genes (DRD4 and DRD2) and neuro-
cognitive performance in HIV-infected adults. A total of 267 HIV-infected adults were genotyped for polymorphisms, 
DRD4 48 bp-variable number tandem repeat (VNTR), DRD2 rs6277 and ANKK1 rs1800497. The Short Category (SCT), 
Color Trail (CTT) and Rey-Osterrieth Complex Figure Tests (ROCT) were used to measure executive function and 
memory.

Results: Results showed significant associations with the SNP rs6277 and impaired executive function (odds 
ratio = 3.3, 95 % CI 1.2–2.6; p = 0.004) and cognitive flexibility (odds ratio = 1.6, 95 % CI 2.0–5.7; p = 0.001). The results 
were further stratified by race and sex and significant results were seen in males (odds ratio = 3.5, 95 % CI 1.5–5.5; 
p = 0.008) and in African Americans (odds ratio = 3.1, 95 % CI 2.3–3.5; p = 0.01). Also, DRD4 VNTR 7-allele was signifi-
cantly associated with executive dysfunction.

Conclusion: The study shows that genetically determined differences in the SNP rs6277 DRD2 gene and DRD4 48 bp 
VNTR may be risk factors for deficits in executive function and cognitive flexibility.
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Background
Human immunodeficiency virus (HIV) is a global epi-
demic that affects approximately 36 million people 
worldwide [1]. In addition to its deleterious effects on the 
cell-mediated immune system, HIV can also damage cells 
in the central nervous system and lead to HIV-associated 
neurocognitive disorders (HAND) [2]. The manifesta-
tions of HAND have significantly changed in response 

to the introduction of antiretroviral therapy (ART). For 
example, the incidence of HIV-associated dementia has 
declined. However, the prevalence of asymptomatic and 
mild neurocognitive impairment have increased with 
increased longevity [3]. HAND encompasses a wide 
range of cognitive impairment that includes deficient 
memory and attention, decreased executive function, and 
behavioral changes, such as apathy or lethargy [4].

Cognitive control processes regulating thought and 
action are multifaceted functions influenced by herit-
able genetic factors and environmental influences [5]. 
Individuals increasingly select and modify their experi-
ences partly based on their genetic predispositions [6–
8]. Friedman et  al. indicated that individual differences 
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in executive function including inhibiting dominant 
responses, updating working memory representations, 
and shifting between task sets, are almost 99  % herit-
able [7]. Cognitive neuroscience and pharmacology asso-
ciate dopamine and serotonin as neuromodulators of 
cognition [5]. Furthermore, studies found associations 
between dopamine polymorphisms with sustained atten-
tion, memory, and executive function phenotypes in both 
clinical and non-clinical populations [9–12].

Dopamine neurons are located in the ventral midbrain 
and are involved in several cognitive functions that influ-
ence performance, motor control, reward, and cognition 
[13–15]. Dopamine modulates executive function by 
co-jointly adjusting neurochemical transmission in the 
prefrontal cortex (PFC) [5, 16]. The PFC plays a central 
role in the top-down control of many higher-order execu-
tive tasks. It is involved in learning, memory, categoriza-
tion, inhibition control, and cognitive flexibility [17, 18]. 
Activation of D1, D2, D3, and D4 receptors modulate 
the excitability of receptor cells and PFC neural network 
activity. [19] The SNP rs1800497 (also known as TaqIA) 
of the D2 receptor gene DRD2 is one of the most exten-
sively investigated genes related to neuropsychiatric dis-
orders [19, 20]. This DRD2-associated polymorphism 
is located within the coding region of a neighboring 
gene, ANKK1 and is associated with a reduced number 
of dopamine binding sites in the brain [21]. The SNP 
rs1800497 is located more than ten kilobase-pairs down-
stream from the coding region of the DRD2 gene in chro-
mosome 11q23 and is, therefore, unlikely to alter DRD2 
directly [22]. Proximity of the two genes may reflect func-
tional relationship and may be associated with dopamin-
ergic phenotypes by being in linkage disequilibrium [6, 
23]. Polymorphism DRD2 SNP rs6277 has been reported 
to affect D2 receptor density in the striatum [24]. Sev-
eral studies have shown that SNP rs6277 is associated 
with prefrontal cortex-mediated behaviors including 
attentional control, planning and verbal reasoning [20]. 
A study on cognitive flexibility showed that SNP rs6277 
was a strong predictor of learning from negative reward 
prediction errors by avoiding those responses linked to 
negative outcomes [6, 25].

The dopamine D4 receptor is widely expressed in the 
central nervous system, particularly in the frontal cor-
tex, hippocampus, amygdala and hypothalamus [15, 26]. 
The dopamine D4 receptor DRD4 gene is located on 
chromosome 11p15.5 and has a highly variable number 
of tandem repeats in the coding sequence [27]. The poly-
morphism is a 48 bp VNTR sequence in exon 3, encoding 
the third intracellular loop of D4 receptor [28]. The most 
common polymorphic variants of the receptor are D4.7, 
and D4.4 [29, 30]. Individuals with D4.7 repeat show 

both reduced binding affinities and receptor densities 
for dopamine neurotransmission [31]. The D4.7 repeat is 
correlated with impulsivity and lower levels of response 
inhibition [32]. Several studies have analyzed the asso-
ciation between the D4.7-repeat allele in DRD4 gene and 
attention-deficit hyperactivity disorder (ADHD) [10, 26].

Memory deficits and executive dysfunction are highly 
prevalent among HIV-infected adults [33]. These con-
ditions can affect their quality of life, antiretroviral 
adherence, and HIV risk behaviors [34]. The causes 
of asymptomatic neurocognitive impairment are still 
unclear. However, several factors have been suggested 
including the role of genetics [33]. Cognitive functions 
are influenced by dopamine. Thus, genetic differences in 
the dopamine system genes may exacerbate the develop-
ment of neurocognitive impairment in an individual [5, 
35]. The present study explored potential associations 
with DRD2 rs6277, ANNK1 rs1800497 and DRD4 48 bp 
VNTR polymorphism and cognitive functions in HIV-
infected adults.

Methods
Participants
This study utilized a cross-sectional design, using base-
line data gathered between 2009 and 2012 as part of a 
longitudinal randomized controlled trial for reducing 
risk behaviors among HIV-infected alcohol abusers. The 
main study recruited a total of 379 individuals. However, 
the current study used 267 biologically-unrelated indi-
viduals, because 112 participants declined to provide 
blood samples for genetic testing. Recruitment was made 
in a multicultural, low income, urban areas of Miami-
Dade County, Florida. Participants were between 18 
and 60 years of age, HIV-positive and willing to present 
documentation to confirm serostatus, consumed alcohol 
within the last 3 months, with a history of alcohol abuse 
or dependence within the past 2 years, and, at the time of 
recruitment, were not showing overt signs of major psy-
chiatric disorders. Additionally, availability to provide a 
blood specimen was required. All participants provided 
signed informed consent as approved by the Institutional 
Review Board (IRB) at Florida International University.

Participants were evaluated for alcohol use by the 
Timeline Followback (TLFB) and the Alcohol Use Dis-
orders Identification Test (AUDIT) test. All participants 
were assessed using the same battery of neurocognitive 
tests and in the same order. Nonverbal memory was 
measured with the Rey-Osterrieth Complex Figure Tests 
(RCFT). Cognitive flexibility was measured with the 
Color Trails (CTT B), and executive function was meas-
ured by the Short Category Test (SCT).
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Genotyping
DNA was extracted from whole blood by manual extrac-
tion using the QIAamp DNA Mini Kit (Valencia, CA). 
SNPs rs6277 and rs1800497 were genotyped using the 
TaqMan® SNP Genotyping Assays (Foster City, CA, 
USA). Allelic discrimination analysis was performed on 
the Bio-Rad CFX96™ real-time PCR machine (Hercules, 
CA, USA).

For VNTR D4, Bio-Rad CFX Manager software (ver-
sion 3.0) was used for data acquisition and genotype 
assignment. The primer sequences used for the D4 ampli-
fication were obtained from a previous study [36]. The 
sequence was as follows: 5′ CTGCTGCTCTACTGGGC 
3′ sense and 5′ GTGCACCACGAAGGAAGG 3′ anti-
sense The 25  μl reaction mixture contained: 1× PCR 
amplification buffer (Qiagen, Valencia, CA, USA), 
300 μM dNTPs, 0.5 μM of each primer, 0.5 U Taq DNA 
polymerase (Qiagen) and 50  ng of genomic DNA. The 
temperature cycle consisted of an initial denaturation 
at 94  °C for 5  min, followed by 30 cycles of annealing 
for 40 s at 54 °C, extension for 40 s at 72 °C, denaturing 
for 40 s at 94  °C, and then the final extension for 6 min 
at 72  °C. The amplification products were separated on 
a 3 % agarose gel electrophoresis according to the num-
ber of repeats. The size of the amplified fragments was 
from 500 to 750 bp (2–7 copies of the 48pb repeat). These 
genetic markers were chosen based on prior evidence of 
the SNPs conferring risk to neurocognitive deficits or a 
theoretical association with executive function.

Neurocognitive measures
The neurocognitive test battery included standard-
ized measures of multiple domains of cognitive func-
tion selected for their sensitivity to HIV-associated 
neurocognitive impairment. The neurocognitive tests 
were assessed in the following domains:

1. Visual Memory-Rey ROCT evaluated visuospatial 
construction and nonverbal memory [37]. It consists 
of a complex geometric figure that is copied and then 
redrawn from memory [38]. Copy and accuracy of 
correctly copied or recalled elements were measured 
based on a score from 0 to 36. The figure was divided 
into 18 components. Each piece was evaluated with 
respect to its drawing accuracy with higher scores 
indicating better accuracy.

2. Cognitive flexibility CTT-B evaluated cognitive flex-
ibility. Participants were presented with numbered 
colored circles that required starting with a pink 
colored number one circle and alternating between 
pink and yellow colored circles as fast as possible 
[39]. The test measured time in seconds to complete, 
with higher scores indicating poor performance. 

High test–retest reliability scores ranging from 0.85 
to 1.00 [39].

3. Executive function SCT evaluated executive function. 
It consisted of five booklets with 20 cards per subtest 
and required the individual to formulate an organiz-
ing concept for each subtest. The number of errors 
on each booklet was added and the total number of 
errors determined impairment with lower scores rep-
resenting better executive function [40]. Test–retest 
coefficients range from 0.60 to 0.96 depending upon 
the severity of impairment in the sample.

Neurocognitive tests were completed at baseline. 
Trained personnel administered the tests in the same 
order and according to standardized procedures.

Alcohol use
The TLFB method assessed alcohol use and other drugs 
of abuse. This method obtains estimates of substance use 
by using a calendar format and providing retrospective 
estimates of the participant’s substance use over the last 
3 months [41]. The AUDIT is a screening tool that is sen-
sitive to early detection of high-risk drinking behaviors 
[42].

Analysis
Since 112 (29 %) individuals did not to participate in this 
study, thus, data were evaluated for potential selection 
bias. Statistical analyses were performed using Stata v.11 
(StataCorp, College Station, TX, USA). Logistic and lin-
ear regression methods were used to calculate crude and 
multifactorial (self- reported ethnicity/race, alcohol use 
severity, viral load, CD4 count, cannabis and cocaine use) 
adjusted odds ratios (OR), including a 95  % confidence 
intervals (CIs) and test for interaction. All statistical tests 
were two-tailed, and the threshold for statistical sig-
nificance was set at P < 0.05. Ethnic and gender -specific 
associations were calculated through stratified analyses. 
Genotyping counts were tested for Hardy–Weinberg 
equilibrium using an exact test. For the DRD4 polymor-
phism, the Pearson’s X2 and Student’s t test were used 
to compare group differences. For DRD4 48  bp VNTR, 
alleles were grouped in short (S; <7 repeat) and long (L; 
≥7 repeat) as described in previous studies [43, 44]. For 
statistical analysis, participants were placed in one of two 
genotype groups 7-allele present (homozygous for the 
short allele) or 7-allele absent (heterozygous or homozy-
gous for the long allele).

To standardize cognitive measures for this study, 
standardized T-scores were developed by using multi-
ple linear regression methods analyzing the influence of 
age, sex, education, and ethnicity on each cognitive test 
score. Each of the cognitive domains was included as 
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dependent variables. The continuous predictor was age, 
and the categorical predictors were sex, education and 
race/ethnicity. For each regression, all the predictors 
were included in the model, retaining only the variables 
that significantly contributed to the prediction of cogni-
tive test score. The β weights of each of these predictors 
in the final model, as well as the standard error of each 
regression model, were used to calculate predicted scores 
on each test. These predictive scores were subtracted 
from each individual actual composite score to calculate 
residual scores. Residual scores were then converted to 
T-scores (mean 50; SD = 10). T-scores were used to deter-
mine cognitive impairment according to the Frascati cri-
teria [45], as shown in Table 1. For the cognitive domains, 
scores were developed as follows: executive function 
(SCT), visual memory (RCFT) and cognitive flexibility 
(CTT-B).

Results
Of the 379 participants recruited for the main study, 70 % 
(N = 267) provided blood samples. The participants were 
94 (34 %) females and 173 (65 %) males. The average age 
in the sample was: (males: mean 45.1 SD = 7.1; females: 
mean 45.3 SD = 65.9). The majority of participants self-
identified as African-American 203 (76  %), followed by 
Hispanic 43 (16  %) and Caucasian 21 (8  %). A total of 
190 (69 %) had completed high school. At baseline, par-
ticipants provided recent (within one month from intake) 
lab tests of CD4 count and viral load. Lab reports showed 
viral load as undetectable for 128 (48  %) of the sample 
and an average CD4 count of 440 cells/mm3 (SD = 287). 
The overwhelming majority of participants, 219 (81  %) 
reported current use of antiretroviral medications, 
including Combivir, Emtriva, Epivir, Epzicom, Retrovir, 
Trizivir, Truvada, Videxec, Viread, Zerit, Ziagen, Crixi-
van, Invirase, Kaletra, Lexia, Novir, Prezista, Reyataz, 
Viracept, Intelence, Rescriptor, Sustiva and Viramune. 
Selection bias was not observed when participants’ char-
acteristics in the main study were compared to those in 
the present study. Results suggest that participants were 

similar in age, education, sex, ethnicity and HIV clinical 
characteristics as shown in Table 2.

Alcohol and other drugs of abuse
The TLFB determined alcohol and other drugs use. 
Questions included a total number of standard drinks 
consumed in the last 90 days, the total number of heavy 
drinking days (<5 standard drinks) in the last 90  days, 
and lifetime alcohol use. A standard drink is defined as 
12 oz of beer, 5 oz of wine, 1.5 oz of liquor all of which 
contain approximately 13.6  g of absolute alcohol [46]. 
Results showed a mean AUDIT score of 16, which is cate-
gorized as a harmful drinking level. In addition, a total of 
101 (38 %) of the participants scored >20 which is indica-
tive of possible alcohol dependence. Lifetime alcohol use 
averaged 23.8  years for this sample. Additional detailed 
information on other substance use was also assessed. 
The main drugs used, besides alcohol, were cocaine and 
marijuana, with an average use in the last 90 days of 33 
and 25 times, respectively.

The Frascati criteria were used to measure asympto-
matic neurocognitive impairment, (1 standard deviation 
below the mean in at least 2 cognitive domains). Results 
for the neurocognitive measures were below average 
(T-score: mean 50; SD = 10). The cognitive domains with 
the lowest average scores were cognitive flexibility (mean 
45.7; SD  =  10.8) and executive function, (mean 45.2; 
SD = 10.9).

DRD2 polymorphism and cognitive flexibility
Results of the analyses are presented in Tables  3 and 4. 
All SNPs were in Hardy–Weinberg equilibrium. The SNP 
rs6277 of DRD2 gene showed an overall association with 
impaired cognitive flexibility (odds ratio =  1.6, 95  % CI 
1.2–2.6; p  =  0.004) and with executive function (odds 
ratio = 3.3, 95 % CI 2.0–5.7; p = 0.001). The association 
between SNP rs1800497 and cognitive flexibility was 
non-significant. Results were stratified by sex and race 
for cognitive flexibility and executive function. Testing 
showed an increased risk for executive function impair-
ment in African Americans (odds ratio =  3.1, 95  % CI 

Table 1 Categories of HIV-associated neurocognitive disorder according to Frascati criteria

SD standard deviation
a Neurocognitive testing should include an assessment of at least five domains, including attention–information processing, language, abstraction-executive, 
complex perceptual motor skills, memory (including learning and recall), simple motor skills, or sensory, perceptual skills
b No agreed measures exist for HIV-associated neurocognitive disorder criteria

Neurocognitive statusa Functional statusb

Asymptomatic neurocognitive impairment 1 SD below the mean in 2 cognitive domains No impairment in activities of daily living

Mild neurocognitive impairment or disorder 1 SD below the mean in 2 cognitive domains Impairment in activities of daily living

HIV-associated dementia 2 SD below the mean in 2 cognitive domains Notable impairment in activities of daily living
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2.3–3.5; p =  0.001), and an even greater risk for males 
(odds ratio = 3.5, 95 % CI 1.5–5.5; p = 0.008). There was, 
a significant gender interaction for cognitive flexibility 
(pinteraction = 0.013 for sex), but not for executive function 
(pinteraction =  0.35 for sex). At total of 40 (16  %) of par-
ticipants carried SNPs rs6277 and rs1800497. Interaction 
with alcohol was not significant (p = 0.32) and no signifi-
cant gene–gene interactions for DRD4 and DRD2 were 
found (results not shown).

DRD4 48 bp VNTR polymorphism and executive function
The allele frequencies for DRD4 48  bp VNTR were 
similar to those observed in African populations in 
other studies [47, 48]. In this study, the most frequently 
detected alleles of the 48  bp VNTR of the D4 receptor 
were for DRD4-allele 4 (353/484, 72.9  %), and DRD4-
allele 7 (66/484, 13.7 %). To a lesser degree DRD4-allele 
2 (38/484, 7.8  %), DRD4-allele 3 (7/484, 1.5  %), DRD4-
allele 5 (11/484, 2.3 %), and DRD4-allele 6 (9/484, 1.8 %) 
were also present. The nine and ten repeat alleles were 
not detected in this study population. The genotype dis-
tribution of the 242 participants is shown in Table  5. 
One hundred and eighty-six participants were grouped 
into the 7-absent allele group (<7 repeats), and 56 were 
grouped into the 7-present allele group (≥7 repeats). 
When comparing allele groups, the 7-allele present and 
7-allele absent groups did not differ in sex, race/ethnic-
ity, alcohol use or CD4 count. The 7-absent allele group 
mean score was associated with a higher rate of error in 
the Short Category Test measuring executive function 
than the 7-present group (mean 0.17, 95 % CI 1.17–1.29; 
p = 0.008). In addition, a multiple linear regression with 
executive function as the dependent variable and age, 
sex, alcohol use, genotype group and race/ethnicity as 
the independent variables showed that DRD4 7-absent 
allele and age had a significant effect on executive func-
tion. Whereas, sex, alcohol use and race/ethnicity did not 
show a significant effect (data not shown).

Discussion
This study provides evidence that suggests genetically 
determined differences in DRD2 gene polymorphism 

Table 2 Demographic and  clinical characteristics of  main 
study and current study participants

Main study Current study P values
n = 112 N = 267

Age, mean (SD) 44.1 (7.7) 45.1 (7.1) 0.66

Sex, no (%) 0.72

 Male 67 (60) 173 (65)

 Female 45 (40) 94 (34)

Education no (%) 0.24

 8th grade or less 13 (12) 19 (7)

 High school diploma 73 (65) 190 (69)

 Some college 26 (23) 57 (24)

Race/ethnicity no (%) 0.26

 Caucasian 17 (15) 21 (8)

 African–American 80 (72) 203 (76)

 Hispanic 15 (13) 43 (16)

Alcohol use, mean (SD)

 Number of standard drinks 
(past 90 days)

100 (50.1) 190 (100.1) 0.10

 Lifetime 22 (10.5) 23.8 (10.9) 0.24

 AUDIT score 14 (7.5) 16 (8.0) 0.09

Other drugs, mean (SD)

 Number of times cocaine use 
(past 90 days)

23.5 (16.8) 33.5 (19.8) 0.25

 Number of times marijuana 
use (past 90 days)

19.3 (12.5) 25.6 (20.9) 0.63

HIV characteristics, mean (SD)

 CD4 count 412.9 (318.4) 441.4 (286.9) 0.73

Viral load no (%) 0.16

 Undetectable 45 (40) 128 (48)

 50–10,000 39 (35) 80 (30)

 10,001–30,000 8 (7) 29 (11)

 30,000 or more 20 (18) 29 (11)

 Taking ART 76 (68) 216 (81) 0.84

Cognitive measures, mean (SD)

 Executive skills T-scores 50.1 (9.0) 45.2 (10.9) 0.93

 Memory skills (learning) 
T-scores

45.9 (10.1) 48.2 (9.1) 0.18

 Memory skills (recall) T-scores 48.1 (9.8) 40.0 (10.5) 0.11

 Cognitive flexibility T-scores 40.4 (10.4) 45.7 (10.8) 0.09

 Visual memory T-scores 47.9 (11.9) 43.1 (13.8) 0.09

Table 3 DRD2 and ANKK1 associations with cognitive domains

ORs adjusted for self-reported ethnicity/race, alcohol use severity, viral load, CD4 count, cannabis and cocaine use

MAF minor allele frequency
a OR per allele (ORallele) for the additive model

Chr. Position Gene Variant Minor Allele A/A A/B B/B MAF Domain ORa
allele (95 % CI) P value

11 11:113412737 DRD2 rs6277 T 80 118 60 0.23 Cognitive flexibility 1.6 (1.2–2.6) 0.004

11 11:113412737 DRD2 rs6277 T 80 118 60 0.23 Executive function 3.3 (2.0–5.7) 0.001

11 11:113400106 ANKK1 rs1800497 T 102 117 40 0.16 Cognitive flexibility 1.1 (0.7–1.8) 0.71
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(rs6277) and DRD4 gene (48 VNTR) are associated 
with impaired executive function and cognitive flex-
ibility. However, no associations were found with SNP 
rs1800497. It is well-recognized that genes are likely to 
affect more than one cognitive function, and variations 
in cognitive functions are likely to be influenced by more 
than one gene [49]. Similarly, this study showed that the 
DRD2, SNP rs6277 is associated with impairment in two 
cognitive domains: executive function and cognitive 
flexibility. Conversely, executive function is influenced 
by DRD2 and DRD4 genetic polymorphisms. Although 
recent publications stress the need to consider gene–
gene interactions, our results showed no such interac-
tions [49].

We showed that SNP rs6277 C/C-carriers were less 
efficient in task switching as it took them more time to 
complete the Color Trails Test than T/T and C/T car-
riers. Similarly, the total number of errors in the Short 
Category Test was higher for C/C-carriers representing 
poorer executive function. Our results are in line with 
others that reported an association between C-homozy-
gotes and poorer executive functioning and memory [50, 

51], and lower cognitive ability in C/C-carriers measured 
in five different cognitive domains [52]. However, other 
studies showed that T-homozygotes are associated with 
dysfunctional impulsivity [53] and that carriers of at least 
one T-allele showed a significantly poorer performance 
in the identification of T1 in the Attentional Blink phe-
nomenon [54]. These differences may be related to SNP 
rs6277 in the DRD2 gene that changes the receptor’s 
affinity and regulates the DRD2 availability, but its effect 
differs depending on the brain region under investigation 
[55, 56].

The clinical implications for the role for the DRD2 SNP 
rs6277 has been associated to learning [57], reward sensi-
tivity [58], substance abuse [59–61], nicotine modulation 
of working memory [62], pharmacological interventions 
[63, 64] as well as in schizophrenia [24, 65, 66]. Alto-
gether, this evidence suggest a reasonably and significant 
role for the SNP rs6277 in psychiatric disorders. Thus, 
DRD2 SNP rs6277 may also play a role in executive func-
tion and cognitive flexibility in patients with HAND.

The DRD4 48 bp VNTR polymorphism has been pre-
viously linked to Attention-deficit/hyperactivity disorder 
(ADHD) phenotypes [10, 67–70]. In particular, the spe-
cific allele (7-repeat) of the 48pb VNTR polymorphism 
in the coding region of DRD4 may be a risk factor in the 
development of ADHD [10]. ADHD is known to alter 
prefrontal cognitive functions that are often related to 
dopaminergic dysfunction [71]. Thus, following previous 
studies on ADHD, this study sought to assess whether 
cognitive functions (cognitive flexibility and executive 
function) were associated with the DRD4 48  bp VNTR 
polymorphism in HIV-infected adults. Results showed 
that the 7-absent allele group was significantly associ-
ated with executive dysfunction. The effect of the DRD4 
VNTR on executive function reported herein is com-
parable with a familial study that reported a significant 
association between the 7-absent allele group and lower 
scores in working memory and executive function [67]. 
Similarly, several studies on DRD4 VNTR showed that 
DRD4 7-absent allele group was associated with worse 
cognitive functioning than the DRD4 7-present allele 
group [69, 72]. However, the results of this study are in 

Table 4 DRD2 associations with cognitive flexibility and executive function in gender, race/ethnicity groups and alcohol 
use (ORs and 95 % CIs)

Females Males Hispanics African American Alcohol use

DRD2 rs6277  
(executive function)

1.3 3.5 (1.5–5.5)
p = 0.008

2.6 3.1 (2.3–3.5)
p = 0.01

2.6

pinteraction = 0.35 pinteraction = 0.05

DRD2 rs6277  
(cognitive flexibility)

0.9 1.8 (1.2–2.9)
p = 0.01

1.9 1.5 1.6 (1.4–2.4)
p = 0.03

pinteraction = 0.013 pinteraction = 0.72 pinteraction = 0.32

Table 5 D4 Receptor 48 bp repeat genotype group classi-
fication

Group 1 7-absent group: <7-fold repeat of the 48 bp repeat of D4 receptor, Group 
2 7-present group: ≥ 7-fold repeat of the 48 bp repeat of D4 receptor

D4 receptor 48 bp  
repeat genotype

N % Genotype 
group

2/2 8 3.3 1

2/3 2 0.8 1

2/4 20 8.4 1

3/4 2 0.8 1

3/6 3 1.0 1

4/4 140 57.8 1

4/5 5 2.0 1

4/6 6 2.6 1

4/7 40 16.7 2

5/7 6 2.4 2

7/7 10 4.2 2
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conflict with the findings of other similar studies. One 
study found poorer inhibitory performance in the 7-pre-
sent allele group versus the 7-absent allele group [68]. 
Another, found that 7-present allele group performed 
better that the 7-absent allele group on verbal memory, 
but for visuo-constructive ability and set shifting the 
7-absent allele group performed better than the 7-pre-
sent allele group [73]. This poses important questions 
with respect to the relationship between genetic risk and 
neurocognitive performance. There are several poten-
tial explanations for these conflicting results. Including 
higher and lower than average levels of synaptic dopa-
mine may lead to neurocognitive impairment [74]. This 
is a particularly interesting since the 7-present allele is 
associated with reduced receptor functioning [73]. The 
combinations of certain risk genotypes rather than one 
single risk genotype may lead to the presence of cognitive 
dysfunction [75]. These relationships have not been fully 
tested and require further research, especially since cog-
nitive endophenotypes are important for HIV-associated 
neurocognitive impairments.

It is important to note limitations that restricted con-
clusions in certain areas. First, due to the exploratory 
nature of the study, multiple statistical comparisons 
were made. Because of the low power of the study to 
detect smaller effect sizes, some important associations 
may not have emerged as statistically significant. These 
results should be viewed with caution and should be 
replicated before a definitive conclusion can be drawn. 
Second, due to the vast number of HIV antiretroviral 
drugs used by study participants, we did not adjust for 
HIV medication type. Since certain HIV antiretroviral 
drugs may also affect cognition, this may potentially con-
found the results. Third, two main approaches are used 
to approximate individual ancestry in association stud-
ies, self-reported race and ancestry informative mark-
ers. We did not use ancestry informative markers due 
to DNA requirements. Instead, we used self-reported 
ancestry that may capture common environmental influ-
ences as well as ancestral background. However, self-
identified racial categories may not always consistently 
predict ancestral population clusters. Finally, since this 
was a cross-sectional study stemming from a behavio-
ral intervention trial of HIV-infected subjects, we did 
not have a healthy control group. Although we adjusted 
for alcohol and drug use, the results may not adequately 
explain whether impairments in cognitive flexibility and 
executive function were correlated with the presence of 
SNP rs6277 and VNTR 7-absent allele or mediated by 
HIV and alcohol/drug use. Nonetheless, these results 
may serve as an initial point for future research in cog-
nitive phenotypes for HAND in adults. Molecular genet-
ics, as applied in the present study, offers further analytic 

insight beyond behavioral assessment and neuroimaging, 
and may present a reasonable instrument for the differ-
entiation of executive control processes.

This study may pave the way for future research inte-
grating the examination of genetic factors in behavioral 
prevention interventions with HIV-infected populations. 
Studies that incorporate genetic factors in combina-
tion with neurocognitive testing would benefit from also 
including the effects of genetic factors on cognitive func-
tioning in healthy individuals since gene-by-disorder 
interactions might be expected. Furthermore, it would be 
beneficial to investigate haplotypes rather than genotypes 
in studies on cognitive performance in HAND. Since 
most of the polymorphisms have a small relative effect 
on cognition, to detect an effect, a larger sample is opti-
mal. In addition to the genes analyzed in this study, other 
genes related to cognitive function should be included.

In summary, the present study provides evidence that 
genetically determined differences in genes DRD2 SNP 
and DRD4 48  bp VNTR may contribute to deficits in 
executive function and cognitive flexibility for patients 
with HAND. Additionally, rs6277 showed an association 
with impairment in two cognitive domains (executive 
function and cognitive flexibility) while executive func-
tion seemed to be influenced by DRD2 and DRD4 genetic 
polymorphisms. Finally, DRD4 48  bp VNTR (7-allele 
absent group) was associated with executive dysfunction, 
which is in line with the recent suggestion that either 
higher or lower levels of synaptic dopamine may lead to 
neurocognitive impairment.
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