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ABSTRACT 

Classically, the nucleotide excision repair (NER) of cyclobutane pyrimidine dimers (CPD) is a 

lengthy process (t1/2 > 48 h).  Using the T4 endonuclease V-modified comet assay, we uniquely 

found a far more rapid repair of UVA-induced CPD (t1/2 = 4.5 h) in human skin keratinocytes.  

The repair of UVB-induced CPD began to slow within 1 h of irradiation, causing damage to 

persist for over 36 h.  A similar trend was noted for the repair of oxidatively-modified purine 

nucleobases.  Supportive of this differential repair, we noted an up-regulation of key genes 

associated with NER in UVA-irradiated cells, whereas the same genes were down regulated in 

UVB-irradiated cells.  There were no significant differences in cell viability between the two 

treatments over the first 6 h post-irradiation, but after 24 h apoptosis had increased significantly 

in the UVB-irradiated cells.  The role of apoptosis was confirmed using a pan-caspase inhibitor, 

which increased CPD repair, similar to that seen with UVA.  These data indicate that the 

cellular ‘decision’ for apoptosis/DNA repair occurs far earlier than previously understood, and 

that the induction of apoptosis leads to lesion persistence, and not vice versa.  This also 

highlights a new, potential increased carcinogenic risk from UVA-induced DNA damage as, 

rather than undergoing apoptosis, high levels of damage are tolerated and repaired, with the 

attendant risk of mutation.  
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INTRODUCTION 

Skin cancer has a high incidence in countries with large populations of white skinned 

individuals, including the UK, USA and Australia, and the incidence continues to rise, with 

UVR the principal aetiological agent in most cases (1, 2).  Skin type, hair and eye colour are 

predictive of skin cancer risk, implying protection by constitutive melanin, and greater DNA 

repair may contribute (3).  UVR is a complete carcinogen, both initiating the DNA damage that 

can lead to mutagenesis, and promoting carcinogenesis, for example via immunosuppression 

(1, 2), with consequential mortality (in the case of melanoma) and morbidity (non-melanoma 

skin cancer).  Whilst UVB (280-320 nm) constitutes a maximum of 5% of the UVR reaching 

the earth’s surface, it is widely considered the most mutagenic and carcinogenic component 

(4).  This is largely due to its ability to damage DNA, which directly absorbs UVB, causing 

dimerisation of adjacent pyrimidine nucleobases and forming cyclobutane pyrimidine dimers 

(CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4)PP (5).  Direct evidence for the 

involvement of these lesions in carcinogenesis derives from the significant number of p53 

mutations (TC → TT and CC → TT) detected at bipyrimidine sites in skin cancers.  The 

remaining 95% of solar UVR reaching the earth’s surface is UVA (320-400 nm).  Traditionally, 

there has been less concern over the contribution from UVA to skin carcinogenesis, compared 

to UVB, not least because UVA is extremely poorly absorbed by DNA, and hence unlikely to 

damage DNA directly.  As a result, until relatively recently sunscreens provided predominantly 

UVB protection, unwittingly leading to greater exposure to UVA (6).  The popularity of high 

intensity UVA sources in artificial tanning salons has been proposed as a route to a ‘safe tan’, 

again contributing to greater exposure.  However, UVA can damage DNA via the induction of 

oxidative stress, leading to products such as 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) 

(7).  Whilst such damage may have profound consequences for the cell (8), the failure to match 

the UVA mutation spectrum to that which would be expected for 8-oxodG (a predominance of 
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G:C to T:A transversions) (9, 10) has led to the suggestion that oxidative stress, and oxidatively 

damaged DNA specifically, contributes to post-initiation events in UVR-induced 

carcinogenesis, for example promotion (5) and immunosuppression (11).   

 There are a growing number of studies which have reported the induction of CPD 

[T<>T, >> T<>C > C<>T (12)] by UVA (13-16) in bacteria (17), mammalian cells and skin 

(7, 18-21), via a mechanism proposed to be independent of a cellular photosensitiser i.e. direct 

absorption (22, 23).  Nucleotide excision repair (NER) is a major DNA repair system, in all 

species, and the sole mechanism for bulky adducts (24) such as CPD and (6-4)PP (25).  NER 

operates via two distinct pathways: global genome repair (GGR), for removal of lesions from 

the overall genome; and transcription-coupled repair (TCR) that targets transcribed sequences 

of actively expressing genes (reviewed in (26-28)).  It is well established that the repair of (6-

4)PP is far more effective than the repair of CPD (29-32), with the majority of (6-4)PP being 

removed within 10-12 h (18), whereas >50 % of CPD persist for longer than 48 h (12), 

suggesting a degree of resistance to repair (33).  Indeed, there is a degree of differential repair 

between the different forms of CPD, following UVB irradiation, with T<>T being the slowest, 

followed by C<>C and T<>C equally, and C<>T being the fastest (34).  Lesion structure, and 

hence distortion of the DNA duplex, sequence context and cellular concentration of DNA 

damage-sensing proteins, such as XPC and DDB2, have all been suggested as explanations for 

these differences in repair rates (34).  It is therefore a combination of this resistance to repair, 

propensity for formation, by both UVB and UVA, and mutagenicity which gives T<>T a major 

role in UVR-induced carcinogenesis.  Furthermore, a few early reports have suggested that the 

repair of UVA-induced T<>T is significantly slower than UVB-induced T<>T (12, 35), or even 

absent in the basal layer of the epidermis (16).  Such data emphasise further the importance of 

T<>T, and the health risks posed by UVA.  In an effort to understand better why the same 
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lesion is repaired at different rates, when induced by different wavelengths, we sought to 

investigate these findings in well established, in vitro human skin cell line models. 
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MATERIALS AND METHODS 

DNA repair enzymes T4 endonuclease V (T4endoV), human 8-oxoguanine DNA glycosylase 

1 (hOGG1) and endonuclease ІІІ (endoIII), were purchased from New England-Biolabs 

(Hitchin, UK).  H2O2 was obtained from Sigma-Aldrich (Dorset, UK).  The pan-caspase 

inhibitor, Z-VAD-FMK was obtained from Promega (Madison, WI, USA). 

Cell lines and culture conditions.  The human keratinocyte cell line, Human adult low 

Calcium high Temperature (HaCaT), was a kind gift from Professor N.E. Fusenig (Deutsches 

Krebsforschungszentrum, Heidelberg, Germany (36).  This cell line reveals a heteroploid 

stemline with specific stable marker chromosomes, but is not tumourigenic (36).  Cells at 

passage number 50 were grown as a mono-layer in Nunclon culture flasks at 37 °C in a 5% 

CO2 humidified incubator and in medium comprised of 1:1 DMEM/Hams F12 medium 

supplemented with 10% (v/v) fetal bovine serum, 1 mM sodium pyruvate and 2 mM Glutamax.  

Primary adult, human dermal fibroblasts (HDF), isolated from adult skin, were obtained from 

Invitrogen (Paisley, UK).  HDFs were grown as a mono-layer in Nunclon culture flasks at 37 

°C in a 5% CO2 humidified incubator in fresh medium 106 (a liquid medium for the culture of 

human dermal fibroblasts; Invitrogen, UK) supplemented with low serum growth supplement.  

All cell culture materials were purchased from Invitrogen, Paisley, UK. 

Cell treatments and post-irradiation manipulation.  UVA (with a peak spectral 

emission at 355 nm) and UVB (with a peak spectral emission at 310 nm) irradiations were 

performed using a custom made exposure cabinet (Hybec Ltd., Leicester, UK), which contains 

a bank of six Philips Cleo Performance/40W fluorescent tubes, with a Schitt Desag M-UG2 

UVR transmitting absorption glass filter (HV Skan, Solihull, UK) to remove both visible and 

infrared wavelengths, and six Ultraviolet-B TL20W/01 (TL01) fluorescent lamps (Philips) 

which were closely spaced.  The wavelength emission spectra of the lamps (including the 

filtering) were characterised using a single monochromator diode array spectroradiometer, as 
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previously reported (37), together with a Bentham Spectral radiometer (Bentham Instruments 

Ltd, Reading, UK).  Spectral analysis confirmed that Cleo Performance lamps emit a 

broadband UVA spectrum (99.6% UVA, 0.4% UVB) and visible light contamination was 

efficiently removed by the M-UG2 glass filter (Figure 1 A).  This very small, longer 

wavelength UVB (~315-320 nm) contamination in our UVA source is unlikely to have a 

significant biological effect.  Spectral analysis demonstrated that the UVB lamps were 

predominantly UVB (85.9 % UVB, 14.1% UVA; Figure 1 B).  The UVR intensity was 

measured using a UVX Radiometer (Ultra Violet Products, Upland, USA, distributed by Fisher 

Scientific, Loughborough, UK) in conjunction with a UVX-36 sensor for UVA and a UVX-31 

sensor for UVB (Ultra Violet Products, Upland, USA) prior to UVR exposure.  

Sub-confluent HaCaT and HDF cells (n = 30,000 for comet assay; n = 2 x 105 flow 

cytometry; n = 2 x 106 for RNA extraction) were irradiated in suspension in PBS, in a petri 

dish or six well plate with no lid, on ice with 10 J/cm2 UVA or 1 J/cm2 UVB. Control samples 

were sham-irradiated (cells were irradiated whilst covered with aluminium foil).  Following 

irradiation, and prior to various investigations, cells were left in complete medium to repair for 

different time points (0 min, 30 min, 1 h, 6 h, 12 h, 24 h and 36 h) at 37 °C in 5% CO2, 

humidified incubator.  At each time point, the adherent cells were trypsinised and used in 

subsequent assays for DNA damage and repair, viability and gene expression (see below). 

For the treatment of HaCaTs with H2O2, cells were seeded in 12 well plates (Greiner Bio-One 

GmbH, Frickenhausen, Germany) and incubated overnight.  After removing the medium, the 

cells were washed with PBS, and then exposed to freshly prepared H2O2 (100 μΜ, final 

concentration) for 30 min on ice.  After exposure, the H2O2 was removed by washing with 

PBS, medium reintroduced and the cells returned to the incubator and allowed to repair for 

varying timepoints (0 min, 1 h, 3 h, 6 h, and 24 h) prior to analysis by hOGG1- and endoIII-

modified comet assay (see below). 



8 
 

 Where indicated, HaCaTs were treated with various concentrations (0 – 300 µM) of the 

caspase inhibitor Z-VAD-FMK.  Treatment comprised incubation of cells with Z-VAD-fmk 

for both 24 h before and 24 h after UVR exposure (inhibitor-containing medium was removed, 

and irradiation performed with cells suspended in PBS, as described above).  After irradiation, 

cells were returned to the incubator and 24 h allowed for potential repair, prior to analysis by 

T4endoV modified comet assay. 

 T4 endonuclease V modified alkaline comet assay.  DNA damage was assessed using 

T4endoV modified alkaline comet assay which recognises cyclobutane pyrimidine dimers.  

Whilst there are no specific data concerning preferential activity towards the potential 

combinations of pyrimidines in CPD, inferences can be made from the ability of the enzyme 

to incise at all combinations of CPD, in plasmids and small bacteriophage vectors, suggesting 

all are equal substrates.  Furthermore, the predominant form of CPD induced by UVA and by 

UVB is T<>T (12).  It has been reported that T4endoV also removes 4,6-diamino-5-

formamidopyrimdine (FapyAde) (38), a hydroxyl radical induced product of adenine, and that 

this is induced by both UVC and UVB (39).  However, with a level of activity (1-3% of its 

activity towards CPD) that the authors conclude may not be biologically relevant in vivo (38).  

This finding is entirely consistent with our studies with T4endoV modified comet assay and 

cells exposed to ionising radiation (data not shown).  On this basis, and under our conditions, 

we conclude that there will be minimal contribution from FapyAde to the measurement of CPD 

by the T4endoV modified comet assay.  UVR may also generate the formation of AP sites, 

which may be detected by the AP lyase activity of T4endoV, which could lead to an 

overestimation of CPD.  However, it is possible to discriminate between AP sites and T<>T by 

plotting data derived from the alkaline comet assay alone (which representing all frank strand 

breaks and those induced by the action of high pH on AP and other alkali-labile sites) versus 

in conjunction with the T4endoV (which includes all of the former strand breaks, plus those 
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induced by the enzyme).  This is a well established approach to determine levels of strand 

breaks and alkali-labile sites (which includes AP sites). 

 The T4endoV modified comet method was performed as described previously (37, 40) 

with specific refinements of the assay for HaCaTs and HDFs.  Both the concentration of, and 

incubation period for, T4endoV were optimised at 0.1 U/µL and 60 min for HaCaTs and 0.02 

U/µL plus 60 min for HDFs, at 37 °C in a humidified atmosphere.  The remainder of the comet 

assay protocol was as described below. 

Human 8-oxoguanine DNA glycosylase 1-modified comet assay.  DNA damage was 

assessed using hOGG1-modified comet assay, as described previously (37, 40) with specific 

refinements of the assay for HaCaTs and HDFs.  hOGG1 recognises 8-oxo-7,8-dihydroguanine 

(8-oxoGua) and 8-oxo-7,8-dihydrodenine, but also two other hydroxyl radical-induced 

products, 2,6-diamino-4-hydroxy-formamidopyrimidine (FapyGua) (41) and, to a much lesser 

extent, FapyAde (42).  For both HaCaTs and HDFs the concentration of, and incubation period 

for, hOGG1 were optimised at 3.2 U/mL and 45 min, at 37 °C in a humidified atmosphere.   

 Endonuclease III-modified comet assay.  DNA damage was assessed using an endo 

III-modification of the previously described alkaline comet assay (37, 40)), with specific 

refinements of the assay for HaCaTs.  Both the concentration of and incubation period for 

endoIII were optimised at 10 U/mL and 45 min, at 37 °C in a humidified atmosphere.  Endo 

III recognises a number of free radical-induced DNA products, which are exclusively 

pyrimidine-derived (e.g. thymine glycol, uracil glycol, 5-hydroxycytosine and 5-

hydroxyuracil) (43), with the exception of FapyAde (44). 

 General comet assay protocol.  At each analysis time point, 3 x 104 cells from each 

treatment were centrifuged at 400 x g for 4 min, then suspended in 200 μL of 0.6% low melting 

point agarose. 80 μL of agarose, containing approximately 12,000 cells, were dispensed onto 

glass microscope slides, pre-coated with 1% normal melting point agarose.  The agarose was 
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allowed to set on ice under a 22 x 22 mm cover slip (VWR International, distributed by Fisher 

Scientific, Loughborough, UK).  The cover slips were then removed carefully, and the slides 

incubated overnight at 4 °C in lysis buffer (2.5 M NaCl, 10 mM Tris–HCl, 100 mM disodium 

EDTA, pH 10 and 1% Triton X-100).  On the following day, the slides were washed once with 

double distilled water, and the cells then incubated with appropriate enzyme under 22 x 22 mm 

cover slips (using the above optimised conditions).  After the incubation period, cover slips 

were removed and the slides placed in a cold (4 °C) electrophoresis tank, filled with cold 

alkaline electrophoresis buffer (double distilled water, 300 mM NaOH, 1 mM disodium EDTA, 

pH ≥ 13), for 20 min and then underwent electrophoresis at 27 V and 300 mA for 20 min.  

Slides were neutralised with 0.4 M Tris–base, pH 7.5 for 20 min, followed by washing with 

double distilled water, and then left to dry at room temperature, in the dark, overnight.  On the 

third day, prior to staining, slides were re-hydrated with double distilled water for 30 min, and 

then covered with 2.5 μg/mL propidium iodide solution (diluted in double distilled water) for 

15-20 min.  Afterwards, the slides were washed again for another 30 min at room temperature 

in dark and allowed to dry.  All procedures were carried out under red light to decrease the 

potential formation of artefactual DNA damage.  Comets were visualised by using a 

combination of an on-line CCD camera, fluorescence microscopy at ×20 magnification, and 

Comet Assay IV software version 4.2 (Perceptive Instruments, Suffolk, UK).  50 cells per gel 

(100 cells in duplicate slides) were scored and the percentage of tail DNA in each comet was 

calculated for each nucleoid image (45).  

 Cell Viability.  Human Annexin V-FITC Apoptosis Kit (Bender Medsystems, Vienna, 

Austria) was used to assess viability of HaCaTs and HDFs at the indicated post-irradiation time 

points.  The cells (2 x 105 cells) were trypsinised and centrifuged at 300 × g for 5 min, prior to 

resuspension in 5 mL of fresh media and incubated at 37 ºC for another 30 min.  Cells were 

then transferred to FACS tubes and centrifuged at 300 × g for 5 min.  The supernatant was 
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discarded and the pellet was resuspended in 1 mL of Annexin buffer, followed by the addition 

of 4 µL of Annexin V-FITC conjugate and incubation at room temperature for 10 min.  

Subsequently, 30 µL (0.05 mg/mL) propidium iodide were added and incubated at room 

temperature for 1 min.  Finally, the cells (n=10,000 per treatment) were analysed by flow 

cytometry (FACScan flow cytometer, Becton Dickinson, Oxford, UK) using CellQuest 

software (Becton Dickinson, San Jose, CA).  

RNA extraction.  After irradiation, the HaCaTs were returned to the incubator in fresh 

medium, and allowed to repair for 0 h, 6 h and 24 h, after which the cells were frozen in DMEM 

containing 5% DMSO, until analysis.  Total RNA was extracted from the frozen cells using 

Allprep DNA/RNA/Protein Mini Kit (Qiagen, UK).  RNA concentration was determined by 

Nanodrop (Thermo Scientific, UK, distributed by Labtech International Ltd, Ringmer, UK).  

Expression of genes associated with NER.  Primer sequences were designed using 

Primer 3 software (46) and the specificity of the primers tested using NCBI primer blast tools 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome).  The 

predicted amplification product was then examined for possible primer secondary structures 

and for duplex formation, by testing on DNA mfold 

(http://frontend.bioinfo.rpi.edu/applications/mfold/cgi-bin/dna-form1.cgi) and Vector NTI 

(64) software.  The forward and reverse oligonucleotide sequences were 5’-

TGTGATTGCCTTCTTACAACAGAG-3’ and 5’-TAGGGTTTGCCTTGGTATCTTG-3’ for 

XPA; 5’-CTGCCATCCTTGGGTATTGTCGT-3’ and 5’-

GCCTCACCACTCTTGCTTTCTTCAG-3’ for XPC; 5’-

CTAAGATGTGTATCCTGGCCGACT-3 and 5’-AAGTCCTGCTCTAGCTTCTCCATC -3’ 

for ERCC1; 5’-ATGGGGAAGGTGAAGGTCG-3’ and 5’- 

GGGGTCATTGATGGCAACAATATC -3’ for GAPDH. 
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Two μg of isolated RNA were reverse transcribed into double-stranded cDNA with a mixture 

of random primers and oligo(dT) primer using the cDNA synthesis Kit (Cedar Creek, TX).  

Real-time PCR was performed on a MX4000 spectrofluorometric thermal cycler (Stratagene, 

Amsterdam, The Netherlands) as described elsewhere (47).  The amplification protocol 

consisted of a denaturation step at 95 °C for 4 min and 50 cycles of 95 °C for 30s, 69 °C for 1 

min, and 72 °C for 30 s.  Serial dilutions of a cDNA sample were amplified to generate standard 

curves of amplification for each gene of interest, confirming the linear relationship between 

the threshold cycle and the log (RNA input).  The quantity of each transcript was determined 

against the respective standard curve and normalised against both expression of the 

corresponding NER gene immediately after irradiation, and expression in control sham 

irradiated samples, according to Plaffl (2008) (48). 

 Protein extraction and Western blotting.  After appropriate treatment, cells were 

lysed by the addition of Laemmli buffer (2% SDS, 10% glycerol, 50mM Tris pH6.8), and the 

resulting lysates heated to 94 °C for 5 min before sonication.  The samples were then vortexed, 

centrifuged for 1 min at 16,000 x g and then the protein concentration determined using a Pierce 

BCA Protein Assay Kit (Thermo Scientific, Cramlington, UK), according to the 

manufacturer’s instructions.  The protein samples were loaded onto 4-10% gradient SDS-

PAGE gels and transferred to PVDF membrane (Immobilon–P, Millipore, Watford, UK).  

Once transferred, the membrane was blocked TBS-T-milk [50 mM Tris pH 7.65, 150 mM 

NaCl, 0.1% (v/v) Tween-20, 5% (w/v) fat free milk powder].  The membrane was incubated 

with the primary antibody (Cell Signalling Technology, Berverly, MA, USA), diluted in TBS-

T-BSA [50 mM Tris pH 7.65, 150 mM NaCl, 0.1% (v/v) Tween-20, 5% BSA], then washed 

thoroughly with TBS-T.  The membrane was then incubated with the HRP-labelled secondary 

antibody (Abcam, Cambridge, UK; diluted 1:5000 in TBS-T-milk), prior to washing 
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thoroughly.  Bands were visualised with ECL Western Blotting Substrate (#32106, Thermo 

Scientific, Rockford, USA) according to manufacturer’s instructions. 

Statistical analysis.  Statistical analyses were performed using GraphPad Prism, 

version 6.02 (GraphPad, CA, USA).  For all variants of Comet assay, the data were evaluated 

using non-parametric tests (Mann Whitney) to compare the values between two or more 

groups.  The level of statistical significance was set at p <0.05.  
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RESULTS 

Induction of DNA damage in human skin cells exposed to UVR.  Following optimisation 

of the T4endoV-modified comet assay for HaCaTs, this assay demonstrated that irradiation of 

HaCaTs with 10 J/cm2 UVA or 1 J/cm2 UVB lead to the induction of significant (P < 0.0001) 

levels of CPD over control, sham irradiated cells (Figure 2 A and B).  Performing comet 

analysis in the absence of T4endoV allows for the examination of strand breaks (SB) and, at 

pH >13, alkali-labile sites (ALS), which may include apurinic/apyrimidinic (AP) sites, oxidised 

AP sites and certain modified nucleobases (49)depending upon the DNA damaging system 

used.  We also noted the formation of significant and comparable levels of SB/ALS following 

both treatments, compared to control, sham irradiated cells (Figure 2 A and B).   

Faster repair of UVA- versus UVB-induced CPD in human skin cells.  Following 

irradiation with the above doses of UVR, we monitored levels of CPD in nuclear DNA of 

HaCaTs over a 36 h time period.  Soon after irradiation, the repair of rate of UVB-induced 

CPD decreased dramatically, with a large amount (38%) of damage still remaining after 36 h 

(Figure 3 A).  This overall slow repair rate is consistent with observations reported by others 

in human skin [e.g. (12, 50, 51)] and cultured cells [e.g. (34, 35)] with a t1/2 > 48 h, which is 

widely regarded to be characteristic of T<>T specifically.  For the UVA-irradiated cells, we 

again noted an initial period of rapid repair (the first ~6 h) similar to that seen for UVB-induced 

CPD (Figure 3 A).  However, in contrast to the UVB-irradiated cells, this faster rate of repair 

was maintained over the subsequent 30 h, with levels of CPD returning to approximately 

baseline (8% damage remaining) at ~24 h (Figure 3 A) and a t1/2 of 4.5 h.  The divergence in 

the rate of repair between UVA- and UVB-induced CPD began as early as 1 h post-irradiation 

(Figure 3 A inset).  As this observation was in contrast to two earlier reports which described 

the repair of UVA-induced CPD to be slower than UVB-induced CPD (12, 35), we considered 

it possible to have been unique to HaCaTs.  We therefore repeated the above experiment using 



15 
 

HDFs, a primary fibroblast culture, to address any potential issues which may be associated 

with using a spontaneously transformed cell line (36).  Experiments with HDFs showed the 

same pattern of results we noted with HaCaTs, with the repair of UVA-induced CPD 

considerably faster than that for UVB-induced CPD, which again showed the characteristic 

pattern of a large amount of T<>T (54%) remaining after 36 h (Figure 3 B).  As noted elsewhere 

(34, 52), we observed slightly faster repair of UVB-induced CPD in keratinocytes, compared 

to fibroblasts and, uniquely to our study, this also applied to UVA-induced CPD (Figure 3 A 

and B).  To demonstrate that the T4endoV modified Comet assay has sufficient dynamic range 

to accurately report the levels of damage noted, we performed a dose-response study.  This 

showed that the number of CPD increased linearly with dose of UVR (Figure 3 C).  It is 

possible that UVR dose, and hence induced levels of damage, affects the rate of repair, although 

in our experiments levels of damage induced by 10 J/cm2 UVA and 1 J/cm2 UVB were 

comparable (Figure 2).  To test this we examined the rate of CPD removal following increasing 

doses of UVB (0.2-1.0 J/cm2), and showed that initial levels of damage had little effect on the 

rate of repair, over the dose range used (Figure 3 D). 

 Induced levels of CPD were lower in HDFs, compared to HaCaTs, following the same 

dose of either UVB or UVA (Figure 4 A and B).  This is contrary to an earlier report, which 

indicated the yield of T<>T and T<>C, specifically, to be higher in primary fibroblasts than 

primary keratinocytes following UVB irradiation (34).  Whilst this was also the case for UVA-

induced SB/ALS (Figure 4 A), there was no difference in levels of SB/ALS between HaCaTs 

and HDFs, following UVB irradiation (Figure 4 B).  To better understand our observation of 

differential CPD repair, we also examined the repair of SB/ALS, noting it to be far more rapid 

than CPD, reaching approximate baseline levels within 24 h, in both HaCaTs and HDFs (Figure 

4 C and D, respectively).  Curiously, the repair of UVA-induced SB/ALS in HDFs was initially 
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faster than that following UVB (Figure 4 D), approaching baseline levels slightly sooner than 

that following UVB.   

Faster repair of UVA- versus UVB-induced oxidised purines.  In order to further 

test the observed differential effect of UVA- and UVB-irradiation on DNA repair, we examined 

the removal of 8-oxoGua, which is predominantly repaired by base excision repair, a process 

distinct from NER.  Using the hOGG1-modified comet assay, we noted induced levels of 8-

oxoGua in HaCaTs, to be significantly greater (P<0.001) following 10 J/cm2 UVA (~30 % tail 

DNA), compared to 1 J/cm2 UVB (~25 % tail DNA) (Figure 5 A).  The hOGG1-modified 

comet assay was also used to assess repair, and we again noted that, after an initial period of 

moderate repair, the rate of 8-oxoGua repair slowed in the UVB-irradiated cells, but remained 

more rapid in the UVA-irradiated cells, an observation reproduced in both HaCaTs (Figure 5 

B) and HDFs (Figure 5 C).   

To confirm the BER rate of 8-oxoGua in HaCaTs, we determined the kinetics of lesion 

loss following H2O2 treatment, as a ‘classical’ inducer of 8-oxoGua, using the hOGG1-

modified comet assay (Figure 5 B).  This showed that repair of H2O2-induced 8-oxoGua was 

similar to that of UVA-induced 8-oxoGua in both HaCaTs and HDFs (Fig 4B and C, 

respectively), approaching baseline at 24 h.  This finding was further supported by examining 

the removal of oxidised pyrimidines in HaCaTs, again induced by H2O2, by following their 

BER using the endoIII-modified comet assay (Figure 5 B) 

UVB irradiation-induced apoptosis is accompanied by a down-regulation of key 

NER genes.  To evaluate the effects of UVR exposure on cell viability, and therefore potential 

to undertake DNA repair, we examined HaCaTs for Annexin V staining, as an early indicator 

of apoptosis, at several timepoints post-irradiation.  Baseline levels of viability were 91%.  One 

hour following irradiation with UVA, this decreased to 77%, and remained at 79% at six and 

24 h post-irradiation (Figure 6 A).  A similar pattern was seen for UVB irradiated cells, with 
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viability of 83% and 84% at one and six hours post-irradiation.  However levels of viable cells 

decreased dramatically to 43%, with a corresponding significant increase in apoptosis at 24 h 

(Figure 6 B).  This result was, to some extent, reproduced in HDFs, although these cells were 

demonstrated to be much more sensitive to both UVB- and UVA-induced apoptosis than 

HaCaTs (Figure 6 C and D).  Indeed, this finding might explain the slower repair kinetics of 

UVA-induced CPD in HDFs (Figure 3 B) compared to HaCaTs (Figure 3 A).   

 Concurrent with the pattern of time-dependent increase in apoptosis following UVB 

irradiation seen in Figure 5 B, we noted significant, time-dependent decreases in the expression 

of key NER genes (XPA, XPC and ERCC1; Figure 6 E).  In contrast, for UVA, following an 

initial small immediate decrease, expression of all three NER genes recovered to baseline levels 

within 24 h (Figure 6 E).  This sustained down regulation of NER gene expression seems likely 

to account for the slower repair of UVB- versus UVA-induced CPD. 

 Inhibition of UVB-induced apoptosis restores DNA repair.  It appeared that DNA 

repair and the induction of apoptosis might be linked mechanistically.  Therefore, to confirm 

that UVB-induced apoptosis contributes to an overall decrease in DNA repair, as measured by 

Comet assay, we investigated whether inhibition of apoptosis modulated levels of damage.  We 

noted a dose-responsive decrease in CPD levels, determined by T4endoV-modified comet 

assay, 24 h post-UVB irradiation (Figure 7 A), following treatment of HaCaTs with increasing 

concentrations of pan-caspase inhibitor Z-VAD-FMK.  This clearly indicated that inhibition of 

apoptosis increased DNA repair activity.  As expected, cleavage of downstream factors in the 

apoptotic cascade e.g. caspase-3, was prevented by Z-VAD-FMK treatment (Figure 7 B), 

together with increasing the number of viable cells following UVB irradiation (Figure 7 C).   

 Taken together these data indicate CPD are more rapidly repaired than reported 

previously, consistent with their potential mutagenicity and the importance for the cell to 

exclude them from DNA.  However, the induction of apoptosis in UVB irradiated cells results 
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in the slow repair of CPD, together with oxidised purines.  Furthermore, the induction of 

apoptosis appears to be independent of the levels of damage generated by irradiation, 

suggesting some other factor is the trigger for apoptosis in UVB irradiated cells. 
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DISCUSSION 

This is the first report of the differential repair, and description of the underlying mechanism, 

of UVA- versus UVB-induced CPD and oxidatively damaged purines.  This adds to a small 

but growing number of reports which describe differential cellular responses to UVA and UVB 

irradiation.  For example, UVA is associated with conferring greater resistance to the induction 

of apoptosis (53); UVA-induced, oxidatively generated purine damage is repaired faster than 

UVB-induced CPD (33); UVB irradiation results in more effective cell cycle arrest, compared 

to UVA (54).  Our results demonstrate profound and fundamental differences in the cellular 

response to UVA and UVB, which are independent of cell type, and confirm that there are 

wavelength-dependant differences in the cellular response to damage.   

 It is conceivable, however unlikely, that subtle differences in experimental design could 

contribute to the results seen here.  These include: spectral characteristics of UVR source, 

damage/repair detection methodology; doses of UVR used and cell type.  The majority of prior 

studies have only reported the peak emission wavelengths, and not described the exact emission 

spectrum, making comparison with our UVR sources difficult. However, our peak emission 

wavelengths for UVA and UVB are entirely consistent with those reported previously.  In order 

to demonstrate that the T4endoV-modified comet assay is appropriate for the study of CPD 

induction and repair, we compared our rate of UVB-induced CPD with that reported in the 

literature.  There would appear to be broad agreement that the repair rate of T<>T, induced by 

solar simulated radiation, leads to ~ 70 % T<>T remaining at 6 h, ~50 % T<>T remaining at 

24 h (51, 55-57), and ~40-47% remaining at 48 h, post-exposure (55, 58, 59), using a variety 

of methods (immunoassay, DNA nicking assay and 32P-postlabelling).  Values, derived using 

HPLC-MS/MS, tend to be higher (80% and 70% T<>T remaining after 24 and 48 h 

respectively), but similarly indicate a protracted time course of lesion removal (12, 34, 35), 

which has become recognised as characteristic of CPD.  Taken together, these values are 
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entirely consistent with our data for the repair of UVB-induced T<>T, indicating that the 

T4endoV-modified comet assay is suitable for the study of CPD induction and repair.  It is 

possible that the induced level of T<>T, prior to repair, may somehow influence the subsequent 

rate of repair, for example, as a consequence of an excess of substrate.  In the studies where 

the repair of UVA-induced T<>T was reported to be slower than that for UVB-induced T<>T, 

initial damage levels were 4.0 T<>T/106 normal bases (induced by UVA), with 20.0 T<>T/106 

normal bases (induced by UVB), a five-fold difference in damage (34); and ~4.0 T<>T/106 

normal bases (induced by UVA), compared to ~4.6 T<>T/106 normal bases (induced by UVB) 

(35).  This indicates that the initial damage level does not influence the rate of repair.  In the 

present study, we examined the repair of 50 %TD (induced by UVA), with 65 %TD (induced 

by UVB), clearly more comparable levels of lesion.  However, on the basis of the literature it 

would appear that, if at all, higher levels of T<>T leads to their faster repair (50).   

 Given the ‘classical’ understanding that the NER of CPD is slow, compared to the NER 

of (6-4)PP or BER of oxidised purines and pyrimidines (33), the faster repair of UVA- versus 

UVB-induced DNA damage, and CPD in particular, represents new and, perhaps surprising, 

information.  To the best of our knowledge, the only other description of the repair kinetics of 

UVA-induced CPD are two reports from Douki’s group (12, 35).  In both articles, the authors 

note the apparent slower repair of UVA-induced CPD (T<>T, specifically), compared to UVB-

induced T<>T, in contrast to our findings.  Collectively, these results suggest an intrinsic 

difference in how UVA-induced CPD/T<>T are processed by the cell, perhaps related to the 

mechanism by which they are formed.  Indeed, it has been suggested that their mechanism of 

formation differs, UVB-induced CPD being generated from direct absorption by DNA (4), and 

UVA-induced CPD being formed indirectly via a photosensitisation reaction; although this has 

been challenged recently (22).   
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The basis for this differential rate of repair appears to relate to the cellular response to 

UVA or UVB irradiation.  The initial rate of CPD repair is equally rapid, irrespective of 

whether induced by UVA or UVB, consistent with the activation of the DNA damage response 

(DDR).  However, one hour post-irradiation a difference in the rate of repair begins to become 

apparent.  The expression of NER genes shows a down regulation following both UVA and 

UVB irradiation, which would lead to a decrease in de novo synthesis of repair proteins, and 

limiting the effectiveness of the DNA repair response.  However, unlike the expression of NER 

genes in UVB irradiated cells, whose down regulation continued to increase with time, UVA 

irradiated cells produce a markedly more rapid recovery in expression, returning to baseline 

levels of expression within 24 h, which is entirely consistent with the faster repair of CPD.   

Our data show clearly that the slower NER of UVB-induced CPD, and indeed BER of 

UVB-induced oxidatively damaged DNA, is due to the induction of apoptosis, and that 

rescuing cells from apoptosis allows repair to occur.  The conclusion is that UVB-induced 

apoptosis significantly attenuates, but does not entirely inhibit, repair.  Indeed it has been 

suggested that single- and double-strand breaks (not necessarily induced by apoptosis) can lead 

to the impairment of NER (60).  The link between apoptosis and DNA repair is not entirely 

clear.  Our data show that the early induction of apoptosis causes repair to slow.  However the 

prevailing view appears to be that (i) DNA repair is the determinant for whether or not 

apoptosis is induced, for example the efficient repair of CPD leads to the avoidance of apoptosis 

(61, 62) and NER-deficient cells being extremely sensitive to UVR-induced cell death 

[reviewed in (63)]; and (ii) a period of ~ 24 h is required for the cell to determine whether or 

not sufficient DNA repair can occur to prevent apoptosis (64).  In contrast to the above, we 

propose that there is an early trigger for apoptosis which occurs shortly after UVB irradiation, 

and has the effect of slowing repair which is evident within one hour.  Supportive of this, 

expression of NER genes is down-regulated (and remains down-regulated), soon after UVB 
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irradiation.  Despite this, and consistent with other studies, levels of apoptosis do not become 

significant until 24 h post-irradiation, despite using Annexin V, which is a sensitive, early 

marker of apoptosis.  This would appear to have a more methodological, rather than biological 

basis, as apoptosis is a process which requires time to become evident.  Simply because 

significant levels cannot be measured soon after irradiation does not demonstrate the process 

has not begun.   

Taken together these data indicate that the cellular decision whether to undergo 

apoptosis or DNA repair is made upstream of these two processes and involves the signal 

transduction of the DDR (65) e.g. via PARP-1 (66) DDB2 and XPC (67).  Apoptosis and DNA 

repair appear to be linked, in part, via the central role of cross-talk between histones to recruit 

repair and pro-apoptotic proteins (68) and we propose that factors associated with chromatin 

remodelling, or levels of binding of the above DDR elements, determine whether DNA is 

repaired, or apoptosis is triggered, and our evidence indicates this to be a very early event in 

the cellular response to UVR.  Interestingly, recent evidence links PARP-1 with NER capacity 

and chromatin remodelling (66), together with earlier evidence of a role in signalling for 

apoptosis [reviewed in (69)]. 

 The implications of this work are several-fold.  Firstly, the increased cell death seen 

following UVB-, compared to UVA-, irradiation may have implications for the reports which 

examined DNA repair of CPD in situ in skin.  Unlike in cell culture, dying and non-viable cells 

cannot be easily identified in situ, and therefore their failure to repair lesions will contribute to 

lesion persistence and the apparent, exaggeration of the slow rate of repair.  Secondly, UVB-

induced apoptosis in keratinocytes is understood to be a protective function against skin 

carcinogenesis.  Despite the faster repair reported here, the absence of apoptosis following 

UVA irradiation, represents a potential increased health risk, particularly following exposure 

to predominantly UVA sources, such as those in tanning booths, or certain therapeutic 
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applications.  Coupled with a report that describes UVA-induced CPD as more mutagenic than 

UVB (54), the absence of apoptosis would mean no backup mechanism for any cells for which 

repair was not entirely effective, and the potential for them to become cancerous.  Finally, it is 

clear that there is more to determining the fate of a cell, following genotoxin exposure, than 

the simply the induced levels of damage.  We propose that the presence or indeed persistence 

of the reportedly pro-apoptotic CPD is not sufficient alone to induce apoptosis, and that early 

changes in chromatin remodelling, following irradiation, are a more plausible trigger. 
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Fig 1 Spectral analysis of (A) Cleo performance lamps through M-UG2 glass filter, and (B) 
TL01 lamps. 
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Fig 2  Induction of CPD (+T4endoV) and SSB/ALS (-T4endoV) in HaCaTs following 

irradiation with (A) 10 J/cm2 UVA, or (B) 1 J/cm2 UVB, determined by T4endoV-modified 

comet assay immediately after irradiation.  Control, sham irradiated (CSI) samples were not 

irradiated.  Error bars represent for mean + SEM of 300 individual determinations, from three 

independent experiments. 
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Fig 3  Repair kinetics of UVA- and UVB-induced CPD repair in (A) HaCaTs, and (B) HDFs, 

determined by T4endoV-modified comet assay.  Cells were irradiated with 10 J/cm2 UVA or 

1 J/cm2 UVB.  *** represents P<0.0001 comparing UVA treated vs. UVB treated cells.  Fig. 

2A (inset) represents repair kinetics of UVA- and UVB-induced CPD in HaCaTs over the first 

one hour post-irradiation.  Error bars represent mean +/- SEM of 300 individual determinations, 

from three independent experiments.  Figure 3 C illustrates the dose-response for UVB-induced 

CPD, determined by T4endoV-modified comet assay, for doses used in Fig. 2D.  Fig. 2D 

represents the kinetics of CPD repair, with increasing UVB dose; 200 individual comets from 

two independent experiments were scored to generate each mean data point. 
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Fig 4  Induction of CPD (+T4endoV) and SSB/ALS (-T4endoV) in HDFs following irradiation with (A) 10 J/cm2 UVA, or (B) 1 J/cm2 UVB, 

determined by T4endoV-modified comet assay, immediately after irradiation.  Control, sham irradiated (CSI) samples were not irradiated.  Error 

bars represent for mean + SEM of 300 individual determinations from three independent experiments.  Repair kinetics of UVA- and UVB-induced 

SSB/ALS repair in (C) HaCaTs, and (D) HDFs, determined by alkaline comet assay.  Cells were irradiated with 10 J/cm2 UVA or 1 J/cm2 UVB.  

Error bars represent for mean + or +/- SD of 300 individual determinations from three independent experiments. 
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FIG 5  (A) Induction of oxidised purines§ (+hOGG1), predominantly 8-oxoGua, and SB/ALS (-hOGG1) in HaCaTs following irradiation with 10 

J/cm2 UVA, or 1 J/cm2 UVB, determined by hOGG1-modified comet assay.  Control, sham irradiated (CSI) samples were not irradiated.  Error 

bars represent mean + SEM of 300 individual determinations, from three independent experiments.  Repair kinetics of UVA- and UVB-induced 

oxidised purines in (B) HaCaTs, and (C) HDFs, determined by hOGG1-modified comet assay.  Cells were irradiated with 10 J/cm2 UVA or 1 

J/cm2 UVB.  Error bars represent mean +/- SD of 300 individual determinations, from three independent experiments.  *** represents P<0.0001 

comparing UVA treated vs. UVB treated cells.  (D)  Repair kinetics of oxidised purines and oxidised pyrimidines§ in HaCaTs, determined by 

hOGG1- and endoIII-modified comet assay, respectively, following exposure to 100 µM H2O2 for 30 min.  Error bars represent mean + or +/- SD 

of 300 individual determinations, from three independent experiments 

§ Oxidised purines is a general term to describe the oxidatively generated nucleobase products recognized by hOGG1.  We note that although the 

formation of FapyGua and FapyAde are ultimately reduction products, their formation is initiated by an oxidation step.  Similarly oxidised 

pyrimidines is a general term to describe the oxidatively generated nucleobases products recognized by endoIII, which are exclusively pyrimidine-

derived, with the exception of FapyAde. 
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FIG 6 Cell viability, determined by flow cytometry, and gene expression analysis.  HaCaTs 

were irradiated with (A) 10 J/cm2 UVA or (B) 1 J/cm2 UVB, and HDFs were irradiated with 

(C) 10 J/cm2 UVA or (D) 1 J/cm2 UVB, and then allowed to repair.  At time points indicated, 

cells were stained with Annexin V and propidium iodide and analysed with Cell Quest 

software.  Control sham irradiated (CSI) samples were not irradiated.  (E)  Post-irradiation 

changes in the expression of three key genes involved in NER (XPA, XPC and ERCC1, 

normalised to the expression of GAPDH), determined by qPCR in HaCaTs treated as in (A) 

and (B).  Results represent the mean of (+ SD) of two independent experiments 
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FIG 7  (A)  Effect of Z-VAD-FMK concentration on CPD repair in HaCaT.  Cells were 

incubated with Z-VAD-FMK (0-300 µM) for 24 h prior, exposure to 1 J/cm2 UVB.  After a 

period of 24 h, to allow for potential DNA repair, cells were then analysed for CPD 

(+T4endoV) by T4endoV-modified comet assay.  Each bar indicates mean + SEM for 200 

determinations, n=2 experiments.  (B)  Representative Western blot analysis of protein extract 

performed as described for (A), showing effect of Z-VAM-FMK treatment upon protein 

expression.  Indicated on the figure is the position of the 17-kDa cleaved caspase 3 band.  (C) 

Cell viability, determined by flow cytometry with Annexin V and propidium iodide staining 

and analysis with Cell Quest software, for two experiments performed as described in (A).  

Each bar indicates mean + SEM   
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