
Florida International University
FIU Digital Commons
Telecommunications and Information Technology
Institute College of Engineering and Computing

4-20-2006

On Optimizing Compatible Security Policies in
Wireless Networks
Scott C-H Huang
Computer Science Department, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, huang@cs.umn.edu

Kia Makki
Telecommunications and Information Technology Institute, Florida International University, Miami, FL

Nikki Pissinou
Telecommunications and Information Technology Institute, Florida International University, Miami, FL

Follow this and additional works at: https://digitalcommons.fiu.edu/it2_fac

Part of the OS and Networks Commons

This work is brought to you for free and open access by the College of Engineering and Computing at FIU Digital Commons. It has been accepted for
inclusion in Telecommunications and Information Technology Institute by an authorized administrator of FIU Digital Commons. For more
information, please contact dcc@fiu.edu.

Recommended Citation
Huang, Scott C-H; Makki, Kia; and Pissinou, Nikki, "On Optimizing Compatible Security Policies in Wireless Networks" (2006).
Telecommunications and Information Technology Institute. 1.
https://digitalcommons.fiu.edu/it2_fac/1

https://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fit2_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/it2_fac?utm_source=digitalcommons.fiu.edu%2Fit2_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/it2_fac?utm_source=digitalcommons.fiu.edu%2Fit2_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/coec?utm_source=digitalcommons.fiu.edu%2Fit2_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/it2_fac?utm_source=digitalcommons.fiu.edu%2Fit2_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.fiu.edu%2Fit2_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/it2_fac/1?utm_source=digitalcommons.fiu.edu%2Fit2_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2006, Article ID 23728, Pages 1–7
DOI 10.1155/WCN/2006/23728

On Optimizing Compatible Security Policies in
Wireless Networks

Scott C.-H. Huang,1 Kia Makki,2 and Niki Pissinou2

1 Computer Science Department, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
2 Telecommunications and Information Technology Institute, Florida International University, 10555 W Flagler Street,
EC 2910, Miami, FL 33174, USA

Received 29 September 2005; Revised 19 January 2006; Accepted 1 February 2006

This paper deals with finding the maximum number of security policies without conflicts. By doing so we can remove security
loophole that causes security violation. We present the problem of maximum compatible security policy and its relationship to
the problem of maximum acyclic subgraph, which is proved to be NP-hard. Then we present a polynomial-time approximation
algorithm and show that our result has approximation ratio 1 + 1/k for any integer k with complexity O(Nk+1).

Copyright © 2006 Scott C.-H. Huang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Security is the basis of any system, and it can be described in
general terms such as confidentiality, integrity, and availabil-
ity, but what we do precisely mean by security for a particular
system varies from system to system and possibly depends on
the situation. The security policies in the army, in a financial
institution, at a university, and in a big corporation are sig-
nificantly different. Each of which has their own needs that
should be reflected in the design of their security infrastruc-
tures. In the army, every document is classified into different
confidential levels. Only authorized persons have the right
to view a document. Also, certain sensitive tasks can only be
executed by authorized personnel. In a financial institution,
each customer has his/her data file, in which some are confi-
dential and some are not. As a whole, there must be a system
to deal with these requirements. Security policies should also
be designed at different layers. This all depends on the actual
data for which security mechanisms are designed. Confiden-
tiality and authenticity of communications are usually clas-
sified at the application layer while authenticity of routing
packets should be at the network layer. Even for confiden-
tiality, there are end-to-end encryption and link-based en-
cryption, which totally depend on system needs. Since the
requirement and design techniques vary quite widely from
layer to layer, we cannot regard them as a whole and not dif-
ferentiate the needs for each layer when designing a system’s
security infrastructure.

A security policy is a description of the security goals
for a system and how a system should behave in order to
meet these goals. It may concern access control, information
flow, and availability. Security policy bridges the gap between
static implementations and the broad and diverse security
requirements of user communities. Security policy becomes
more complicated in heterogeneous environments. When
two or more entities share a security association, they must
reach agreement on a governing policy. An example policy
is that the request for a purchase and its approval must be
by different users. Since the security goals for a system affect
how the security mechanisms on the system are configured,
it is important for the security policy to be stated clearly.
The term security policy may mean different things to dif-
ferent communities. For example, access control policy de-
fines who has access to what and under what circumstances.
Other forms of security policy specify under what conditions
credentials are accepted, or how a firewall is configured. In
its broadest definition, security policy is the specification of
security-relevant system behavior.

In a large enterprise, it is often necessary to manage
a large set of diverse objects across various organization
boundaries. For example, access to the shared resources like
printer, scanner, and so forth needs to be carefully managed.
In such a scenario, conflicts often arise when large sets of ob-
jects across diverse boundaries are being managed. In gen-
eral, finding whether there is a security policy conflict is an
NP-complete problem. If there exists a conflict, then these

2 EURASIP Journal on Wireless Communications and Networking

security policies must be reconciled by removing some part
of the policies. Since the security goals for a system affect how
the security mechanisms on the system are configured, it is
important for the security policy to be stated clearly. Addi-
tional benefit is obtained if the policy can be directly used
to configure the security mechanisms or to formally reason
about the effect of the policy. A common security need is to
restrict access to the resources on a system. This is reflected
in a constraint security policy, which states constraints on the
system.

In this paper, we do not deal with the problem of conflict
resolution (or conflict reconciliation). Previous works about
security policy conflict resolution (Dunlop et al. [1]) or logic
regarding security policies (Abadi [2], Jajodia et al. [3]) all
have the goal to determine a security conflict and resolve it.
Our work is motivated by optimizing security policies with-
out conflicts to achieve maximal benefit instead of trying to
locate conflicts, on which none of the previous works have
addressed. In the discussion about security policies, we par-
ticularly focus on the part of access control in networks. We
seek to maximize the subset of compatible security policies in
a system. If there exists some security loophole in a system, by
using our algorithm we can find the maximum compatible
policies and remove other ones that cause conflict. First we
will present the problem statement and prove this problem is
NP-hard. Then we will present approximation algorithm and
show that our result has approximation ratio 1 + 1/k for any
integer k with complexity O(Nk+1).

2. PROBLEM FORMULATION

We present the standard logic used by Abadi as a basis of
our problem statement. Jajodia et al. also proposed simi-
lar results and this was, in fact, earlier than Abadi’s. Martin
Abadi viewed access control as a description of ternary re-
lation may-access. In addition to the functions Abadi intro-
duced, we also consider two more functions may-not-access
and forbids. May-not-access, as its name suggests, represents
that some principal does not have the right to do something.
Namely, may-not-access(p, o, r) stands for “p” not having the
right “r” on “o.” The function forbids represents that a princi-
pal will forbid another one to do something. Here, this func-
tion is a bit different, as only certain authorized principals,
called the deauthorizer, are allowed to use the forbid func-
tion. Also, u forbids v means that if u does not have access to
something, it will result in v not having access to it either. u
itself cannot make such kind of policy, and this kind of policy
must be made by some deauthorizer other than both u and
v. As for who the deauthorizers are, it totally depends on the
security policy.

We basically use Abadi’s terminology as a basis, and mod-
ify it to best suit our scenario. The building blocks of our no-
tation are as follows.

(1) Access control verifier “may-access”: may-access(p, o, r)
represents that principal “p” has the right “r” on ob-
ject “o.” Here the right “r” can be thought of as the
right “read” or “write” on a file “toad.txt.” The exam-

ple may-access(Alice, toad.txt, read) tells us that Alice
has the “read” authorization on file “toad.txt.”

(2) Authorization function “says”: we also consider the
transfer or recommendation of authorization. In other
words, we allow certain users to authorize others
if they have authorization on something themselves.
This is represented by the function says. For example, p
says may-access(q, o, r) basically means that “p” hands
the right “r” over to “q” or “p” authorizes “q” to ob-
tain the right “r.”

(3) Negated access control verifier “may-not-access”: this
is actually the negated access control verifier may-
access(p, o, r). In other words,

may-not-access(p, o, r) = ¬(may-access(p, o, r)
)
. (1)

(4) Deauthorization function “forbids”: different to says, u
forbids v means that there is a chain of deassociation
from u to v. If may-access(u, o, r) is false, then may-
access(v, o, r) will be false as well. Note that such a pol-
icy cannot be made by either u or v. Instead, it can only
be made by legal deauthorizers.

2.1. Logical deduction rules

With these two functions may-access and says, we can per-
form logical deductions as follows.

(1) First authorization rule:

(
may-access(p, o, r)

)

∧ (p says may-access(q, o, r)
)

=⇒ may-access(q, o, r).

(2)

Conceptually, this means if “p” has access to “o,” then
p can grant q the same access rights, too. In other
words, the right “r” can be transferred by a user that
has this right.

(2) Second authorization rule:

p says(s1 =⇒ s2) =⇒ (
p says s1 =⇒ p says s2

)
. (3)

This means if something that has an implication such
as having right a will result in having right b, this im-
plied right will be passed on in the case of authoriza-
tion, too. Take the file access rights, for example. If “p”
says that a file allowed to be modified by a user will au-
tomatically have the right to be read by that user too,
then if p authorizes some other user to have the right
of modifying a file, it is implied that p also authorizes
that user to read the file too. This rule is supplemen-
tary, but it allows us to do nested or compound autho-
rization.

(3) Deauthorization rule:

(
p forbids may-access(q, o, r)

)

∧ (may-not-access(p, o, r))

=⇒ may-not-access(q, o, r).

(4)

Scott C.-H. Huang et al. 3

Table 1: Security policy example

(1) may-access(u, o) = true
(2) u says may-access(v, o) = true
(3) u says may-access(w, o) = true
(4) may-not-access(x, o) = true

(or may-access(x, o) = false)
(5) x forbids may-access(y, o) = true

2.2. Security policy graph

Now we introduce the use of security policy graph to trans-
form the problem of security policies into a problem of graph
theory. To simplify the construction, we only consider the
graph representing four functions: may-access, says, may-not-
access, and forbids. Also, to further simplify our discussion,
we do not differentiate different rights, as we can actually rep-
resent them as different objects (i.e., to differentiate the rights
“read,” “write” on a file, we can actually regard them as two
separate objects “read-file” and “write-file”). The construc-
tion of the basic security policy graph G(V ,E) is as follows:
V =“the set of all users, object o and ¬o,” e = (u, v) ∈ E if
and only if one of the following is true:

(1) u is a user, v is an object, and may-access(u, v) = true;
(2) u is an object, v is a user, and may-access(v,u) = false;
(3) u, v are both users and v says may-access(u, o) = true;
(4) u, v are both users, and u forbids may-access(v, o) =

true;
(5) u, v are both objects, and v = ¬u.

Consider the following example of security policy shown in
Table 1, whose corresponding security policy graph will be
Figure 1. There are two objects o and ¬o, and five users u, v,
w, x, y. An arc is added from u to o because of policy 1 on
the table and rule 1. Two arcs from v to u and from w to u are
added according to policy 2, 3 and rule 3. The arc from ¬o
to x is added according to policy 4 and rule 2, while the arc
from x to y is added according to policy 5 and rule 4. Finally,
an arc is added from o to ¬o according to rule 5.

2.3. Properties of security policy graphs

Lemma 1. Let u be a user and o be an object. Then u has access
to o if and only if there is a path from u to o.

Proof. u has access to o ⇔ may-access(u, o) = true ⇔ ∃u1,
u2, . . . ,uk such that

may-access
(
u1, o

)∧ (u1says may-access
(
u2, o

))

∧ · · · ∧ (uk says may-access(u, o)
) = true

(5)

(according to the first authorization rule) ⇔ ∃u1,u2, . . . ,uk
such that (u1, o), (u,uk) ∈ E and (ui+1,ui) ∈ E ∀1 ≤ i <
k ⇔ there is a path from u to o (on which uk,uk−1, . . . ,u1 are
intermediate nodes).

Lemma 2. Let u be a user and ¬o be the negation of an object.
Then u has no access to o if and only if there is a path from ¬o
to u.

o ∼o

u x

yv w

Figure 1: Security policy graph.

Proof. u has no access to o ⇔ may-not-access(u, o) = true ⇔
∃u1,u2, . . . ,uk such that

may-not-access
(
u1, o

)

∧ (u1 forbids may-access
(
u2, o

))

∧ · · · ∧ (uk forbids may-access(u, o)
) = true

(6)

(according to the deauthorization rule) ⇔ ∃u1,u2, . . . ,uk
such that (¬o,u1), (uk,u) ∈ E and (ui,ui+1) ∈ E ∀1 ≤ i < k
⇔ there is a path from ¬o to u (on which u1,u2, . . . ,uk are
intermediate nodes).

Definition 1. A set of security policies is said to have a secu-
rity conflict if there exists at least one user u and an object o
such that may-access(u, o) =may-not-access (u, o) = true.

Theorem 1. There is a security conflict if and only if the corre-
sponding security policy graph has a (directed) cycle that con-
tains the edge from an object to its negation.

Proof (forward direction). If there is a security conflict, then
by definition there exists a user u such that may-access(u,
o) = may-not-access(u, o) = true. Because may-access(u, o) =
true, by Lemma 1, there is a path from u to o with in-
termediate nodes uj ,uj−1, . . . ,u1. On the other hand, be-
cause may-not-access(u, o) = true, there is a path from
¬o to u with intermediate nodes u′1,u′2, . . . ,u′k. {u,uj ,
uj−1, . . . ,u1, o,¬o,u′1,u′2, . . . ,u′k} thus forms a cycle that con-
tains (o,¬o). Backward direction: if there is a cycle contain-
ing (o,¬o), pick a user v on the cycle. There must be a path
from either v to o or from o to v because it is a cycle. How-
ever, there cannot be any outgoing edge from o to anything
other than¬o, so this path must be from v to o. By Lemma 1,
may-access(v, o) = true. Similarly, there must be a path from
¬o to v because ¬o cannot have any incoming edge except
from o. By Lemma 2, may-not-access(v, o) = true.

3. THE MAXIMUM COMPATIBLE SECURITY
POLICY PROBLEM

Our main motivation is to find the maximum subset of com-
patible security policies (i.e., in which there is no conflict).

4 EURASIP Journal on Wireless Communications and Networking

Theorem 1 gives us a necessary and sufficient condition for
whether or not a conflict exists in a set of security poli-
cies. In light of this theorem, finding the maximum subset
of compatible security policies is equivalent to finding the
maximum acyclic subgraph (with certain property) in its se-
curity policy graph. In general, the maximum acyclic sub-
graph problem is NP-hard, but the maximum compatible se-
curity policy problem is a special case of it. In this section, we
introduce the maximum acyclic subgraph problem and show
that it is NP-hard by reducing 3-SAT to it. First we define the
maximum acyclic subgraph problem as follows.

Maximum acyclic subgraph problem

Given a directed graph G = (V ,E), find a subset E′ ⊂ E of
maximum cardinality such that G = (V ,E′) is acyclic.

3-SAT (maximization version)

Given a formula F = {C1,C2, . . . ,Cm} of clauses on a finite
set U of variables such that |Ci| = 3 for 1 ≤ i ≤ m, find
a subcollection S (of F) of maximum cardinality such that
there is a truth assignment for S.

3-SAT≤P max-acyclic-subgraph

(This reduction is based on Newman [4], though quite dif-
ferent from it.) Given a 3-SAT formula F with n variables and
m clauses, we construct a corresponding multigraph G using
the following rules.

(1) For each variable x ∈ F, we create 2 vertices x1 and x2.
These two vertices will form the variable gadget for the
variable x.

(2) For each clause Ck ∈ F, we create a directed 6-cycle
and label each of 3 alternating edges with a distinct lit-
eral from the clause Ck. This will be the clause gad-
get for the clause Ck as shown in Figure 2. Each of the
three literals corresponds to an arc in the 6-cycle, and
the other 3 arcs are used to connect them.

(3) Each clause gadget is linked up to the variable gadgets
as follows. (1) For an arc (i, j) corresponding to x (the
positive form of a variable) in the clause gadget, we add
a directed edge from vertex i to vertex x1, an edge from
x2 to j, and a 2-cycle between x1, x2. (2) For an arc (i, j)
corresponding to x (the negated form of a variable), we
add a directed edge from vertex i to vertex x2, an edge
from x1 to j, and a 2-cycle between x1, x2 (we allow
multiple occurrences).

(4) Then in every 6-cycle we remove each arc that corre-
sponds to each literal.

Note that this graph has 15 m edges in total: in each clause
gadget, there are 6 edges from it to its 3 corresponding vari-
able gadgets, 6 edges within its corresponding variable gad-
gets (because we allow multiple occurrences), and 3 edges
within it. There are thus 15 m edges in total, as each clause
gadget contributes to 15 edges and there are m clauses. Now
we need to make a definition.

x

∼ y

z

x1

y1

z1

x2

y2

z2

(a)

(b)

Figure 2: Clause and variable gadgets. Top part represents the
clause (x + ¬y + z). Note that the clause and variable gadgets are
linked together.

Definition 2. A feedback arc set is a set of arcs that makes a
graph acyclic when removed.

The minimum feedback arc set is a feedback arc set of
minimum cardinality. It has the following properties.

Lemma 3. A minimum feedback arc set is acyclic.

Proof. An acyclic graph can be viewed as an ordering of the
vertices such that all the arcs are in the forward direction,
that is, for each arc (i, j), i comes before j in the ordering.
Given a feedback arc set, consider such an ordering for the
acyclic graph obtained upon deleting the feedback arc set.
If the feedback arc set has any edges in the forward direc-
tion, then it is not minimum (such an edge can be added
to the acyclic graph without creating any cycles). Thus the
feedback arc set consists only of backward edges and hence is
itself acyclic.

Lemma 4. The minimum feedback arc set either has all the
edges from xi1 to xi2 and none of the edges from xi2 to xi1 or vice
versa, for all i.

Proof. If we include any edges from xi1 to xi2 and even one
edge from xi2 to xi1 in the minimum feedback arc set, then it
would not be acyclic, which is a contradiction to Lemma 3.

Scott C.-H. Huang et al. 5

If we do not include all the edges from one of the sets in the
minimum feedback arc set, then we will not have an edge
from every cycle in the minimum feedback arc set, which is
also a contradiction.

Theorem 2. The minimum feedback arc set for the graph G
contains 3 m + u edges, where u is the minimum number of
unsatisfied clauses of the formula F.

Proof. This theorem will be proved as a consequence of two
claims: (i) given an assignment for the variables in F that re-
sults in u unsatisfied clauses, we can construct a feedback arc
set of size at most 3 m+u; (ii) conversely, given a feedback arc
set of size 3 m+u, we can find an assignment for the variables
of F such that no more than u clauses are satisfied.

First we observe that the graph G consists of lots of 12-
cycles and many arcs within the variable gadgets (so the only
possible cycles are those 12-cycles and the 2-cycles within the
variable gadgets). Each 12-cycle contains 3 arcs within the
clause, 2 arcs to and from each variable gadget (thus 6 arcs in
total), and 2 arcs within each variable gadget (6 arcs in total
too). The graph G thus has m 12-cycles as there are m clauses
and each clause corresponds to a cycle. Now if we remove
certain arcs within each variable gadget, then both the 12-
cycles and the 2-cycles will be made acyclic.

(i) Given an assignment for the variables in F, we will
show that we can find a feedback arc set including exactly 3
arcs from each satisfied clause and exactly 4 arcs from each
unsatisfied clause. We construct the feedback set as follows:
if xi is set to TRUE, then we include all the arcs from xi1 to
xi2; if it is set to FALSE, we include all the arcs from xi2 to
xi1. In addition, we include one arc in the clause gadget cor-
responding to an unsatisfied clause. The resulting subset is a
feedback set for the following reasons:

(1) including all arcs from xi1 to xi2 or from xi2 to xi1
will break all 2-cycles;

(2) in a satisfied clause, at least one literal will be true
and the way we connect the clause gadget to it will
break the 12-cycle;

(3) in an unsatisfied clause, including one more arc in
the clause gadget will break the 12-cycle.

Thus, it is a feedback set having a total of 3m + u arcs.
(ii) Given a feedback arc set, we now show how to con-

struct an assignment from it. First we delete edges from the
feedback arc set until it is minimum. Then we assign each
variable xi in F a value depending on which set of edges with
endpoints in {xi1, xi2} is included in the feedback arc set. If
all the edges from xi1 to xi2 are in the feedback arc set, the
variable xi is set to FALSE. Otherwise all the edges from xi2
to xi1 are in the feedback arc set, and then xi is set to TRUE.
Now we look at each clause and its corresponding variable
gadgets. If the 12-cycle is broken because of at least one re-
versed arc in one variable gadget, then it must be a satisfied
clause and exactly 3 arcs are added in the minimum feed-
back arc set. If, in one clause gadget, no reversed arc exists in
any of the corresponding variable gadgets, then there must
be another arc taken out and there must be exactly 4 arcs in

the minimum feedback arc set. Therefore, if the feedback arc
set has 3m + u arcs, the assignment leaves at most u clauses
unsatisfied.

Corollary 1. The maximum acyclic subgraph for G is of size
11m+s where m is the number of clauses and s is the maximum
number of satisfied clauses.

4. APPROXIMATING MAX-COMPATIBLE SPP

In this section we are going to provide an efficient algorithm
for approximating the maximum compatible security policy
problem. Actually, it is not clear whether it is NP-hard or not
because of its limitations (though we believe so). Our algo-
rithm has approximation ratio 1 + 1/k for any given integer
k. The computational complexity for our algorithm isO(Nk).
Our algorithm has three parts: (1) k-cycle removal, (2) mark-
ing of vertices, (3) arc removal.

4.1. Our algorithm

k-cycle removal

In this part, any cycle with degree less than or equal to k that
contains the arc from an object to its negation will be re-
moved. This can be done trivially for the following reason.
To remove all j-cycles, we can generate all possible sequences
of (j−1) vertices and check whether they (along with the spe-
cial arc) form a cycle or not. In a graph that has N vertices,
such an attempt will take O(N j) time. Therefore, to remove
all j-cycles, for all j ≤ k, it will take O(Nk) to do so.

Marking of vertices

After executing the k-cycle removal part, we are sure that
there are no cycles of order less than or equal to k. Now we
mark all vertices as follows.

(1) Starting from the negated object. We mark it 0.
(2) If there is an arc that goes directly from the negated

object to a vertex, we mark it 1.
(3) If there is an arc from a marked vertex to an unmarked

one and the mark of that vertex is i, then we mark the
other vertex i + 1.

(4) If there is an arc from a marked vertex (with mark i) to
a marked one (which has been marked by some other
vertex), then we compute its new mark (i+1) and com-
pare with its old mark. If the new mark is smaller than
the old mark, then we remark that vertex with i + 1.
Otherwise, do nothing.

(5) If all vertices have been marked already, we stop.

Arc removal

Now we look at the mark of the object. Since there is no k-
cycle containing the special arc after executing the first part,
we know that its mark is at least k. Let its mark be l (l ≥ k).
Now we look at the relation between an arc and its vertices.

6 EURASIP Journal on Wireless Communications and Networking

For an arc e = (v1, v2), there are only two cases:

(1) m(v2) = m(v1) + 1, where m(v) stands for the mark of
v;

(2) m(v2) ≤ m(v1).

Note that m(v2) cannot be greater than m(v1)+1 because that
way it would have been remarked m(v1) + 1 according to step
4 of the marking algorithm. Now we group all of the arcs into
S1, S2, . . . , Sl as follows:

Sj := {e ∈ E | e = (u, v), m(v) = m(u) + 1 = j
}
. (7)

Let T = {e ∈ V | e = (u, v), m(v) ≤ m(u)}, then these Sj ’s
have the following properties:

(1) Si ∩ Sj = ∅ if i �= j;
(2) Si ∩ T = ∅ for all i;
(3)

(⋃l
i=1

)∪ T = E.

Now we choose one Si of the smallest cardinality and
call it S∗. From the above properties, we know that |S∗| ≤
(1/l)|E|. Now we remove S∗ from E and the rest of the arcs
cannot have any cycle containing the special arc.

Lemma 5. No cycle containing the arc from the object to its
negation can be in E − S∗.

Proof. Suppose there exists a cycle (v1, v2, . . . , vm) (m ≥
l) that contains the special arc. Consider their marks
m(v1),m(v2), We know that m(vi+1) = m(vi) + 1 or
m(vi+1) ≤ m(vi) for all 1 ≤ i < m, so if we take a tour from v1

to vm and look at their marks, at each step the mark cannot
increase by 2 or more. We also know that S∗ = Sp for some
1 ≤ p ≤ l. Then, at some point, there must be some vi such
that m(vi) = p. Since marks cannot increase by 2 or more,
m(vi−1) must be p − 1. Then (vi−1, vi) ∈ Sp = S∗, which
should have been removed. There is a contradiction.

4.2. Performance analysis

Approximation ratio

Since |S∗| ≤ (1/l)|E| and l ≥ k, we know that |S∗| ≤
(1/k)|E|. It follows that |E − S∗| ≥ (1 − 1/k)|E| ≥ (1 −
1/k)|OPT | (where |OPT | is the size of the optimal so-
lution). Then |E − S∗|k/k − 1 ≥ |OPT |. Finally we get
|E − S∗|(1 + 1/k − 1) ≥ |OPT |. Since k is a dummy vari-
able, given any integer k, we can choose k − 1 in the first
place. Therefore the approximation ratio is 1 + 1/k for any
integer k.

Computational Complexity

We already know that the first part of our algorithm takes
O(Nk+1) time (since we choose k as k − 1 now). Both the
second and the third are involved in going through all the
arcs once, so the time complexity is O(|E|), where |E| is the
number of arcs in the graph. If a directed graph has N ver-

tices, then the number of arcs is 2
(
N
2

)
= N(N − 1), which is

also a polynomial of N . It follows that the time complexity of

the second and the third part cannot exceed O(N2). Overall,
the time complexity of our algorithm is of order O(Nk+1).

5. RELATED WORK

Jajodia et al. [3] pointed out the problem that specification
of security requirement may be quite complex in a large-
scale system and proposed a logical language that deals with
security policies. Dunlop et al. [1] and Abadi [2] used differ-
ent graph-based approaches to locate and resolve a security
conflict in a set of security policies. Schneider [5] addresses
the questions for the class of enforcement mechanisms that
work by monitoring execution steps of some target and ter-
minating the target’s execution if it is about to violate the
security policy being enforced. Walker [6] talked about cer-
tified code for enforcing security properties. In his scheme,
untrusted agent code carries annotations that allow a host to
verify its trustworthiness. He used the host to check the an-
notations and proved that they imply the host’s security pol-
icy. Hoagland et al. [7] also use directed graphs to represent
security policies. They designed LaSCO, the language for se-
curity constraints on objects, to express many of the security
policy situations and the composition of policies. Works [8–
10] focused on access control policy (i.e., who has access to
what and under what circumstances). Blaze et al. [11] speci-
fied under what conditions credentials are accepted. Bartal et
al. [12] mentioned how a firewall is configured according to
different security policies.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented the maximum compatible
security policy problem and its relationship to the maxi-
mum acyclic subgraph problem. We have proved that, in gen-
eral, the maximum acyclic subgraph problem is NP-hard. We
have also designed a polynomial time approximation algo-
rithm and have shown that our result has approximation ra-
tio 1 + 1/k for any integer k with complexity O(Nk+1). How-
ever, it is still not clear whether the maximum compatible se-
curity problem is NP-hard or not, nor is it clear whether there
exists a better algorithm that can achieve a tighter bound.
These will be interesting topics to dig in more.

REFERENCES

[1] N. Dunlop, J. Indulska, and K. Raymond, “Methods for con-
flict resolution in policy-based management systems,” in Pro-
ceedings of 7th IEEE International Enterprise Distributed Ob-
ject Computing Conference (EDOC ’03), pp. 98–109, Brisbane,
Queensland, Australia, September 2003.

[2] M. Abadi, “Logic in access control,” in Proceedings of 18th An-
nual IEEE Symposium on Logic in Computer Science, pp. 228–
233, Ottawa, Ontario, Canada, June 2003.

[3] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A logical lan-
guage for expressing authorizations,” in Proceedings of IEEE
Symposium on Security and Privacy, pp. 31–42, Oakland, Calif,
USA, May 1997.

[4] A. Newman, “Approximating the maximum acyclic subgraph,”
M.S. thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cam-
bridge, Mass, USA, 2000.

Scott C.-H. Huang et al. 7

[5] F B. Schneider, “Enforceable security policies,” ACM Transac-
tions on Information and System Security, vol. 3, no. 1, pp. 30–
50, 2000.

[6] D. Walker, “A type system for expressive security poli-
cies,” in Symposium on Principles of Programming Languages
(POPL ’00), pp. 254–267, Boston, Mass, USA, January 2000.

[7] J. A. Hoagland, R. Pandey, and K. N. Levitt, “Security policy
specification using a graphical approach,” Tech. Rep. CSE-98-
3, University of California, Davis Department of Computer
Science, Davis, Calif, USA, July 1998.

[8] D. E. Bell and L. J. LaPadula, “Secure computer systems:
mathematical foundations and model,” Tech. Rep. M74-244,
MITRE Corporation, Bedford, Mass, USA, 1973.

[9] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based access control models,” Computer, vol. 29, no. 2,
pp. 38–47, 1996.

[10] R. S. Sandhu and P. Samarati, “Access control: principles and
practice,” IEEE Communications Magazine, vol. 32, no. 9, pp.
40–48, 1994.

[11] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust
management,” in Proceedings of IEEE Symposium on Security
and Privacy, pp. 164–173, Oakland, Calif, USA, May 1996.

[12] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: a novel
firewall management toolkit,” in Proceedings of IEEE Sympo-
sium on Security and Privacy, pp. 17–31, Oakland, Calif, USA,
May 1999.

Scott C.-H. Huang received his B.S. degree
in mathematics from National Taiwan Uni-
versity in 1998, and his Ph.D. degree in
computer science from University of Min-
nesota in 2004. He was a Postdoctoral Re-
searcher at Florida International University
from 2004 to 2005 and in 2005 he moved
to City University of Hong Kong as a Re-
search Fellow. His research area includes ad
hoc and sensor networks, network security,
and combinatorial optimization.

Kia Makki received his Ph.D. degree from
University of California, Davis. He is cur-
rently a Chair Professor at Florida Interna-
tional University. His research area includes
network security and multicasting, wire-
less networks, intrusion detection, adaptive
routing and forwarding protocols, flow and
congestion control, and information assur-
ance.

Niki Pissinou received her Ph.D. degree
from University of South California and she
is currently a Professor and Director of IT2
at Florida International University. Her re-
search area includes network centric mid-
dleware components, wireless information
networks, distributed and wireless systems,
and networked databases for newly emerg-
ing applications.

	Florida International University
	FIU Digital Commons
	4-20-2006

	On Optimizing Compatible Security Policies in Wireless Networks
	Scott C-H Huang
	Kia Makki
	Nikki Pissinou
	Recommended Citation

	Introduction
	Problem Formulation
	Logical deduction rules
	Security policy graph
	Properties of security policy graphs

	The Maximum Compatible Security Policy Problem
	Maximum acyclic subgraph problem
	3-SAT (maximization version)
	3-SAT P max-acyclic-subgraph

	Approximating Max-Compatible SPP
	Our algorithm
	k-cycle removal
	Marking of vertices
	Arc removal

	Performance analysis
	Approximation ratio
	Computational Complexity

	Related Work
	Conclusion and Future Work
	REFERENCES

