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Abstract      

8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) is the most investigated oxidatively 

damaged DNA lesion product that has been associated with the development of aging, cancer, and 

some degenerative diseases. Here, we present the first LC-MS/MS method that enables the 

simultaneous measurement of its repair products in plasma and saliva, namely 

8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). 

Using this method, we investigated the underlying transport mechanism of oxidatively damaged 

DNA between cellular compartments and biological matrices. Plasma, saliva and urine samples 

were collected concurrently from 57 healthy subjects. Various deproteinization methods were 

evaluated and the precipitants acetonitrile and sodium hydroxide-methanol were respectively 

selected for plasma and saliva samples due to their effect on recovery efficiencies and 

chromatography. The mean baseline concentrations of 8-oxoGua and 8-oxodGuo in plasma were 

demonstrated to be 0.21 and 0.016 ng/mL, while in saliva they were 0.85 and 0.010 ng/mL, 

respectively. A relatively high concentration of 8-oxoGua was found in saliva with a concentration 

factor (CF, concentration ratio of saliva to plasma) of 4 as compared to that of 8-oxodGuo (CF: 

0.6), implying that 8-oxoGua in plasma may be actively transported to saliva whereas 8-oxodGuo 

was most dependent on a passive diffusion. Good correlations between urine and plasma 

concentrations were observed for 8-oxoGua and 8-oxodGuo, suggesting that blood was a suitable 

matrix in addition to urine. Significant correlation between 8-oxoGua and 8-oxodGuo in urine was 

only observed when the concentrations were not corrected for urinary creatinine, raising the issue 
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of applicability of urinary creatinine to adjust 8-oxoGua concentrations.   

 

 

Key words: online SPE LC-MS/MS, oxidatively damaged DNA, plasma, saliva, deproteinization, 
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spectrometry; CF, concentration factor; BER, base excision repair; ELISA, enzyme-linked 

immunosorbent assay; SPE, solid-phase extraction; ESI, electrospray ionization; LOQ, limit of 
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Introduction 

Oxidatively damaged DNA is understood to be involved in the development of aging, cancer, and 

some degenerative diseases (Cooke et al. 2006; Tudek et al. 2010).  

8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) is an important DNA lesion product that can 

be generated in cellular DNA by hydroxyl radicals, singlet oxygen, and one-electron oxidants 

(Cadet et al. 2012). The detection of this DNA lesion product is considered important because of 

its abundance and mutagenic potential through G-to-T transversions during DNA replication 

(Cheng et al. 1992). It is generally accepted that oxidatively damaged DNA can be repaired, and 

the repair products are released into the bloodstream and consequently appear in the urine without 

further metabolism (Fraga et al. 1990). The modified nucleobase 8-oxo-7,8-dihydroguanine 

(8-oxoGua) and modified 2′-deoxyribonucleoside (8-oxodGuo) in urine represent the major repair 

products of oxidatively damaged DNA in vivo, presumably through the base excision repair (BER) 

and sanitization of the 2′-deoxyribonucleotide pool (Evans et al. 2010) although, to date, the 

precise source of urinary 8-oxodGuo remains unclear. Urinary 8-oxodGuo has been widely studied 

and used as a biomarker of oxidative stress (Analysis et al. 2010), whereas limited information is 

available concerning urinary 8-oxoGua. The reasons for this include previous studies which show 

that diet could contribute significantly to its urinary levels (Fraga et al. 1990) and the poor stability 

and solubility of 8-oxoGua which make it difficult to measure accurately (Helbock et al. 1998). 

However, two robust studies in humans have shown that urinary levels of 8-oxodGuo and 

8-oxoGua are not influenced by diet (Cooke et al. 2005; Gackowski et al. 2001) and the stability of 
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8-oxoGua has also been recently examined and found to be fairly stable (∼87 days in water with 

pH of ∼7 or ∼112 days in 5% methanol with pH of 11, at -20 °C) (Hu et al. 2010a). Furthermore, 

several reliable chromatographic-based methods have been developed for its detection in urine (Hu 

et al. 2010a; Roszkowski and Olinski 2012; Svoboda et al. 2006; Weimann et al. 2002). We believe 

that the detection of both 8-oxodGuo and 8-oxoGua in urine may improve the assessment of the 

whole-body burden of oxidative stress. 

In addition to urinary analysis, several studies reported that the measurement of 8-oxodGuo in 

blood or saliva could also be useful; 8-oxodGuo concentrations in blood (e.g., serum) could 

directly reflect exposure to oxidative stress and subsequent DNA repair in the whole organism 

(Bloomer and Fisher-Wellman 2008; Sova et al. 2010), while salivary 8-oxodGuo could be 

specific for oxidative stress in the buccal cavity (Agha-Hosseini et al. 2012; Sezer et al. 2012) or 

whole organism (Komatsu et al. 2013; Su et al. 2012). However, most 8-oxodGuo measurements 

in blood and saliva have been performed by enzyme-linked immunosorbent assay (ELISA) that is 

known to be limited by a lack of specificity and sensitivity (Barregard et al. 2013). There is only 

one chromatographic-based approach that has successfully quantified 8-oxodGuo in blood and 

saliva (Bogdanov et al. 1999). To the best of our knowledge, there are no literature reports of the 

modified nucleobase 8-oxoGua being quantified in plasma or saliva. A strength of the 

measurement of 8-oxoGua in human body fluids is a much clearer understanding of its source, 

compared to 8-oxodGuo, namely the BER pathways (e.g. via human 8-oxoguanine DNA 

glycosylase 1).   
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Previously, we developed an isotope-dilution LC-MS/MS method coupled with online 

solid-phase extraction (SPE) for simultaneous determination of 8-oxoGua and 8-oxodGuo in urine 

(Hu et al. 2010a). In the present study, we attempted to extend this to the quantification of both 

8-oxoGua and 8-oxodGuo in plasma and saliva. By doing so, we tried (i) to evaluate the feasibility 

of using other biomatrices (i.e., blood or saliva) other than urine, (ii) to investigate the correlation 

between the modified nucleobase 8-oxoGua and the most frequently measured biomarker of 

oxidative stress, 8-oxodGuo, and (iii) to explore the underlying transport mechanism of 

oxidatively damaged DNA in human body fluids. 

 

Experimental 

Chemicals 

Solvents and salts were of analytical grade. Unlabeled 8-oxoGua and 8-oxodGuo were purchased 

from Sigma-Aldrich and the stable isotope internal standard, 

[15N5]-8-oxo-7,8-dihydro-2′-deoxyguanosine ([15N5]-8-oxodGuo) was from Cambridge Isotope 

Laboratories. The [15N5]-8-oxo-7,8-dihydroguanine ([15N5]-8-oxoGua) was synthesized as 

described previously (Hu et al. 2010a).  

 

Subjects and sample collection 

This study was approved by the Institutional Review Board of Chung Shan Medical University. 

Spot urine samples, and corresponding blood and saliva samples were concurrently collected from 
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57 apparently healthy individuals. A questionnaire was used to obtain data on age and body mass 

index (BMI). Blood samples were collected in EDTA vacutainer tubes and centrifuged at 3000 × g 

for 15 min to separate plasma. For saliva collection, all the subjects were asked to rinse their 

mouths with distilled water three times. Saliva was then collected by rolls of cotton wool, followed 

by centrifugation at 3000 × g for 10 min. All samples were kept at 4 °C during sampling and then 

stored at -20 °C prior to analysis.  

 

Simultaneous determination of 8-oxoGua and 8-oxodGuo in urine 

8-OxoGua and 8-oxodGuo concentrations in urine were measured using a validated method of 

LC-MS/MS with online SPE as previously reported by Hu et al. (2010a). Briefly, a 20 μL of urine 

was diluted 10 times with a solution containing 4 ng of [15N5]-8-oxoGua and 0.8 ng of 

[15N5]-8-oxodGuo as internal standards in 5% (v/v) methanol (MeOH)/1 mM ammonium acetate 

(AA). A 50 μL of prepared urine sample was directly injected into the online SPE LC-MS/MS. 

After automated sample cleanup, LC-MS/MS analysis was performed using an Agilent 1100 series 

HPLC system (Agilent Technology) interfaced with an API 3000 triple-quadrupole mass 

spectrometer (Applied Biosystems, Foster City, CA, USA) with electrospray ion source (ESI). The 

samples were analyzed in the positive ion multiple reaction monitoring mode, and the transitions 

of the precursors to the product ions were as follows: m/z 168→140 (quantifier ion) and m/z 168→

112 (qualifier ion) for 8-oxoGua, m/z 173→145 for [15N5]-8-oxoGua, m/z 284→168 (quantifier ion) 

and 284→ 140 (qualifier ion) for 8-oxodGuo, and m/z 289→ 173 (quantifier ion) for 
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[15N5]-8-oxodGuo. Urinary creatinine was determined using a HPLC-UV method (Yang 1998). 

 

Simultaneous determination of 8-oxoGua and 8-oxodGuo in plasma and saliva 

For plasma and saliva samples, four different deproteinization methods were evaluated including 

precipitation with organic solvents (MeOH or acetonitrile), zinc sulfate-sodium hydroxide 

(ZnSO4-NaOH) (Polson et al. 2003) and sodium hydroxide-methanol (NaOH-MeOH) (Bogdanov 

et al. 1999). The detailed procedures are given in Supplementary Data I. Among these four 

deproteinization methods, deproteinization by acetonitrile (ACN) and NaOH-MeOH generally 

gave higher peak areas of both 8-oxoGua and 8-oxodGuo in plasma and saliva in the 

chromatograms (as shown in Supplementary Data I, Fig. S1 for plasma and Fig. S2 for saliva). The 

overall process efficiency of each deproteinization method was provided in Supplementary Data I 

(Table S1); the overall process efficiency (combination of the matrix effect and the pretreatment 

process recovery) was calculated from the ratio of the peak area of internal standard 

([15N5]-8-oxoGua or [15N5]-8-oxodGuo) spiked before pretreatments to the peak area of internal 

standard in neat solution multiplied by 100 (Matuszewski et al. 2003). Although deproteinization 

by ACN and NaOH-MeOH gave higher process efficiencies, it was also noted that the retention 

time during chromatography was not stable (it should be the same as that in the neat solution) (see 

Fig. S1 and S2). A manual SPE using C18 cartridge was therefore applied after protein 

precipitation by ACN or NaOH-MeOH to further purify the plasma and saliva samples. 

Supplementary Data I (Table S2) showed the overall process efficiency of [15N5]-8-oxoGua and 
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[15N5]-8-oxodGuo in plasma and saliva after combined pretreatment with protein precipitation and 

manual SPE. Regarding a satisfactory process efficiency and chromatography for both 8-oxoGua 

and 8-oxodGuo, the protein precipitation by ACN and NaOH-MeOH were finally selected and 

applied for plasma and saliva samples, respectively, followed by the manual SPE, as described 

below:  

For plasma analysis, 1 mL of plasma was added with 40 μL of internal standard solution 

containing 4 ng of [15N5]-8-oxoGua and 0.8 ng of [15N5]-8-oxodGuo. After addition of 3 mL of 

ACN, the samples were mixed and centrifuged at 3000 ×g for 10 min. The supernatant was dried 

and resuspended in 1 mL of deionized water. After addition of 0.3 mL of 1 M AA buffer (pH 5.25) 

and vigorous vortexing, the sample was loaded onto a Sep-Pak C18 cartridge (100 mg/1 mL; 

Waters, Milford, MA, USA) preconditioned with 1 mL of MeOH and 1 mL of deionized water. 

The cartridge was then eluted with 1 mL of 40% MeOH. The eluate was dried under vacuum and 

redissolved in 150 μL of 5% (v/v) MeOH containing 1 mM AA. 

For saliva analysis, after addition of 40 μL of internal standard solution, aliquots of 2 mL of 

saliva samples were precipitated with 2 mL of 1 mM NaOH in MeOH and centrifuged for 10 min 

at 3000 ×g. The pellets were resuspended in 2 mL of MeOH and centrifuged for 10 min at 3000 ×g. 

The supernatants were combined, dried and resuspended in 1 mL of deionized water, adjusted to 

pH 7 with HCl. The resulting solutions were then processed for manual SPE as described earlier 

for plasma. 

Pretreated plasma and saliva samples were analyzed using the same validated method of online 
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SPE LC-MS/MS as previously reported by Hu et al. (2010a) with a minor modification in 

chromatography gradient. An injection volume of 70 μL was used for plasma and saliva analysis.  

 

Statistical methods  

Mean and SD were used to describe the distributions of 8-oxoGua and 8-oxodGuo in urine, plasma 

and saliva as well as the demographic data for study subjects. The data were analyzed using the 

SAS statistical package (SAS, ver. 9.1). Pearson correlation coefficients were used to study the 

relationships between 8-oxoGua or 8-oxodGuo concentrations in urine, plasma and saliva. The 

concentration factor (CF) was used to investigate the possible transport mechanism for 8-oxoGua 

and 8-oxodGuo, by dividing the mean 8-oxoGua (or 8-oxodGuo) concentration in urine (or saliva) 

by its mean concentration in plasma (Haeckel and Hanecke 1996).   

 

Results  

Simultaneous determination of 8-oxoGua and 8-oxodGuo in plasma and saliva using online SPE 

LC-MS/MS 

A representative online SPE LC-MS/MS chromatogram for 8-oxoGua and 8-oxodGuo in saliva of 

a healthy subject is shown in Fig. 1, while a representative online SPE LC-MS/MS chromatogram 

for plasma analysis is in Supplementary Data II Fig. S3. The positive electrospray ionization mass 

spectrum of 8-oxoGua contained a [M+H]+ precursor ion at m/z 168 and product ions at m/z 140 

(quantifier ion, Fig. 1A) and m/z 112 (qualifier ion, Fig. 1B) due to losses of one or two CO groups 
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(28 u or 56 u); a precursor ion at m/z 173 and product ion at m/z 145 characterized the 

[15N5]-8-oxoGua (Fig. 1C). Meanwhile, the [M+H]+ precursor ion of 8-oxodGuo was m/z 284 and 

product ions appeared at m/z 168 (quantifier ion, Fig. 1D) and m/z 140 (qualifier ion, Fig. 1E), 

resulting from loss of the neutral 2′-deoxyribose moiety (116 u) or its combination with CO (28 u); 

a precursor ion at m/z 289 and product ion at m/z 173 characterized the [15N5]-8-oxodGuo (Fig. 1F). 

The retention times were 9 min and 13 min for 8-oxoGua and 8-oxodGuo, respectively.  

The limit of quantification (LOQ) was estimated for a signal-to-noise (S/N) ratio of 10 from 

the sample chromatograms at the lowest validation level tested, using the quantification transition. 

Because 8-oxoGua and 8-oxodGuo are usually present in body fluid, there was no blank matrix 

available. In the present study, LOQ values were estimated from quantified levels present in 

non-spiked blank samples (Gracia-Lor et al. 2011). Using the present method, the LOQs in plasma 

were determined to be 0.04 and 0.008 ng/mL for 8-oxoGua and 8-oxodGuo, respectively, while the 

LOQs in saliva were 0.02 ng/mL for 8-oxoGua and 0.003 ng/mL for 8-oxodGuo. Overall process 

efficiencies (combination of the matrix effect and the pretreatment process recovery, Matuszewski 

et al. 2003) of 8-oxoGua and 8-oxodGuo in plasma were estimated to be 26-35 % and 74-88%, 

respectively, while they were 24-36 % for 8-oxoGua and 61-78% for 8-oxodGuo in saliva. It has to 

be mentioned that any variation in overall process efficiency is well compensated by the use of 

stable isotope internal standards added and therefore will not influence the accuracy of 

measurement. 
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8-OxoGua and 8-oxodGuo concentrations in plasma, saliva and urine 

A total of 57 healthy subjects were recruited into the study. As shown in Table 1, the mean age and 

BMI of the subjects were 30.2 ± 6.9 years and 23.7 ± 5.4 kg/m2, respectively. The overall mean 

concentrations of 8-oxoGua and 8-oxodGuo in plasma were 0.21 ± 0.09 and 0.016 ± 0.005 ng/mL, 

respectively. Salivary concentrations of 8-oxoGua and 8-oxodGuo were 0.85 ± 0.76 and 0.010 ± 

0.007 ng/mL, respectively, while urinary 8-oxoGua and 8-oxodGuo were 11.9 ± 4.1 and 3.6 ± 1.3 

ng/mg creatinine. Concentration distributions of 8-oxoGua and 8-oxodGuo in three matrices are 

plotted in Fig. 2.   

The correlations between different matrices for 8-oxoGua (or 8-oxodGuo) concentrations were 

analyzed using Pearson correlation coefficients. It was found that the urinary 8-oxoGua 

concentrations were significantly correlated with the 8-oxoGua concentrations in plasma (r = 

0.291, P = 0.028, see Fig. 3A). Urinary 8-oxodGuo concentrations were also correlated with 

8-oxodGuo in plasma (r = 0.737, P < 0.001, Fig. 3B). No significant correlations were found 

between saliva and urine or saliva and plasma for both 8-oxoGua as well as 8-oxodGuo. 

Furthermore, the correlation between 8-oxoGua and 8-oxodGuo in each matrix was also 

investigated. As shown in Fig. 4, the best correlation between 8-oxoGua concentrations and 

8-oxodGuo concentrations was obtained in urine (r = 0.67, P < 0.001), followed by plasma (r = 

0.425, P = 0.001) and then saliva (r = 0.377, P = 0.004).  

 

Discussion 
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We have successfully applied isotope-dilution LC-MS/MS coupled online SPE to quantify both 

8-oxoGua and 8-oxodGuo in three human body fluids. To the best of our knowledge, this is the 

first report describing an assay to simultaneously determine levels of both 8-oxoGua and 

8-oxodGuo in plasma and saliva.  

Previous analytical methods were focused mostly on the quantification of 8-oxodGuo in urine, 

with some attempts to measure the 8-oxodGuo concentrations in blood or in saliva. Breton et al. 

(2003) used HPLC-ECD to measure 8-oxodGuo in human serum but failed to provide a 

satisfactory result due to the lack of validated pretreatment of serum. Lam et al. (2012) used 

UPLC-MS/MS with prior manual SPE purification to determine the 8-oxodGuo concentrations in 

plasma and saliva. The authors found that mean 8-oxodGuo in plasma was 0.04 ng/mL whereas the 

8-oxodGuo in saliva was not detectable. In the present study, we have simultaneously quantified 

the 8-oxodGuo and 8-oxoGua both in saliva and plasma. This success is partly attributed to the use 

of our online SPE system, but also effective sample pretreatment which removed interfering 

compounds and decreased possible matrix effects.    

The mean baseline plasma concentrations of 8-oxodGuo detected in this study (~0.016 ng/mL) 

for healthy adults were similar to the findings obtained by HPLC-ECD and LC-MS/MS (~ 

0.013-0.040 ng/mL) (see Table 2), whereas they were considerably lower than those obtained by 

ELISA kits (up to ~5.9 ng/mL) (Pan et al. 2008; Sato et al. 2010). A similar discrepancy was also 

noted for salivary 8-oxodGuo analysis (~0.016 ng/mL in this study vs. up to 42.7 ng/mL by ELISA 

kit) (Su et al. 2009). The latest report by the European Standards Committee on Urinary (DNA) 
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Lesion Analysis (ESCULA) clearly demonstrates that ELISA kits are not specific for 8-oxodGuo 

in urine, giving urinary 8-oxodGuo values 2–6 times higher than those measured by 

chromatographic methods (Barregard et al. 2013). This study further suggested that the 

overestimation of 8-oxodGuo by ELISA assay may be more severe in plasma or saliva samples by 

over hundred times higher than those measured by chromatographic methods. Such phenomena 

could be due to extremely low concentrations of 8-oxodGuo, coupled with the presence of high 

molecular weight compounds, such as carbohydrates or proteins, which may interfere with the 

ELISA, as suggested elsewhere (Evans et al. 2008). 

Despite the clear provenance of 8-oxoGua in body fluids, from the BER of DNA, its presence 

in body fluids has been much less studied, compared to 8-oxodGuo. Possible contributions from 

diet or RNA notwithstanding, this could be partly related to analysis of 8-oxoGua being more 

technically challenging than 8-oxodGuo. Furthermore, no ELISA kit exist for 8-oxoGua, whereas a 

number of commercial kits are available for 8-oxodGuo, which are relatively cheap and do not 

require specific technical skills or equipment. Nevertheless, recent studies have suggested that 

urinary excretion of 8-oxoGua is a promising biomarker of oxidatively damaged DNA. For 

instance, Loft et al. (2012) showed an increased risk of developing lung cancer among 

non-smokers with high excretion of 8-oxoGua. Increased 8-oxoGua excretion has been associated 

with exposure to air pollution, toxic metals, tobacco smoke and low plasma antioxidant levels 

(Suzuki et al. 1995; Yoshioka et al. 2008; Foksinski et al. 2007). Svoboda et al. (2006) showed that 

urinary excretion of 8-oxoGua was associated with life span and further suggested that urinary 
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8-oxoGua may be a better marker of oxidative stress than urinary 8-oxodGuo. In the present study, 

in addition to urinary 8-oxoGua, we also reported mean baseline concentrations of 8-oxoGua in 

plasma and saliva (Table 2), with this being the first report of salivary 8-oxoGua levels in the 

literature. 

It was noted that the mole ratios of 8-oxoGua to 8-oxodGuo varied greatly among the three 

body fluids (see Table 1). For instance, the mole ratio of 8-oxoGua to 8-oxodGuo was 23.5:1 in 

plasma whereas it was lower (5.8:1) in urine. This suggested that 8-oxodGuo was excreted more 

efficiently from blood by the kidney than 8-oxoGua; the CF of 58 and 238 can be obtained for 

8-oxoGua and 8-oxodGuo, respectively, by dividing the mean 8-oxoGua (or 8-oxodGuo) 

concentration in urine by its mean concentration in plasma (Supplementary Data III, Fig. S4).  

Interestingly, the mole ratio of 8-oxoGua to 8-oxodGuo was much higher in saliva (217:1) than 

that of in plasma (23.5:1). Because the 8-oxodGuo concentrations in saliva were similar to those of 

in plasma (CF: 0.6), we propose that passive diffusion could be the major transport route for 

8-oxodGuo passing between plasma and saliva. Although a recent review has suggested that 

endogenous and exogenous compounds transferred into saliva by passive diffusion show the 

strongest correlation between plasma and saliva concentrations (Michalke et al. 2014), such 

correlation between plasma and saliva concentrations for 8-oxodGuo was not observed in our 

study. One of reasons could be possibly due to that 8-oxodGuo is weakly acidic with pKa of 8.6 

(Culp et al. 1989), and small changes of salivary pH during sampling will affect ionization and the 

distribution of such weak acid across the epithelial membrane (Haeckel 1993), influencing the 



 16 

correlation between plasma and saliva concentrations. In contrast to 8-oxodGuo in saliva, much 

higher concentrations of 8-oxoGua were found in saliva with a CF of 4 (Supplementary Data III, 

Fig. S4), implying a different transport mechanism for 8-oxoGua. There may be three possible 

explanations for this; (i) a proportion of 8-oxoGua in saliva could derive from BER in cells of the 

oral mucosa, (ii) part of 8-oxoGua in saliva might also result from the degradation of oral mucosa 

cells during cell turnover since turnover rate of oral mucosa is approximately 2-3 times higher than 

that of epidermis of the skin (Winning and Townsend 2000), and (iii) 8-oxoGua is actively 

transported from plasma to saliva. It is difficult to prove that the BER reaction of oral mucosa 

could contribute to the 8-oxoGua in saliva. To test the other two hypotheses, two experiments were 

conducted (Supplementary Data IV and V). As DNA, released during cell turnover, might be 

further degraded to nucleobases by processes present in saliva, we therefore incubated calf thymus 

DNA (or 8-oxodGuo standard) with saliva at 37 °C for 4 h to investigate whether the enzymes in 

saliva are able to degrade the calf thymus DNA (or 8-oxodGuo standard) into nucleobases and 

consequently release 8-oxoGua. The results showed that after a 4 h incubation at 37 °C 8-oxoGua 

concentrations in saliva spiked with calf thymus DNA (or 8-oxodGuo standard) were similar to 

those of saliva without spiking (Supplementary Data IV, Table S3). This result demonstrated that if 

oral mucosal cells were degraded during cell turnover, the enzymes in saliva are not able to release 

8-oxoGua from DNA (or 8-oxodGuo) and therefore could not contribute the 8-oxoGua in saliva. 

To explore the final hypothesis, we measured the structural analogs of 8-oxoGua and 8-oxodGuo, 

respectively, namely guanine (Gua, the native nucleobase) and 2′-deoxyguanosine (dGuo, the 
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native 2′-deoxyribonucleoside) in plasma, saliva and urine, to investigate whether the structural 

analogs of 8-oxoGua or 8-oxodGuo were higher in saliva than that of in plasma, implying an 

active transport mechanism. Interestingly, the result (Supplementary Data V, Table S4) showed that 

the mean concentration of Gua in saliva (mean: 59 ng/mL) was also higher than that of in plasma 

(mean: 16 ng/mL) with a CF of 3.7 (Supplementary Data V, Fig. S5), which was similar to that 

observed for 8-oxoGua (CF: 4, Supplementary Data III, Fig. S4). These results implied that both 

native and oxidized Gua are actively transported from plasma to saliva. Meanwhile, we found that 

the mean concentration of Gua (59 ng/mL, Supplementary Data V, Table S4) is only 69-times 

higher than 8-oxoGua (0.85 ng/mL in Table 1) in saliva. This result also supports our above 

finding that the degradation of oral mucosa cells cannot be the primary source of salivary 

8-oxoGua; otherwise the ratio between native and oxidized bases would be similar to that seen in 

cells, reportedly anywhere between 0.3-6 8-oxoGua/106 Gua (Gedik et al. 2005; Dziaman et al. 

2009). Taken together, the most likely explanation for the high concentration of 8-oxoGua 

measured in saliva could be due to the active transportation for 8-oxoGua (and Gua) from plasma 

to saliva, but the possibility cannot be ruled out that 8-oxoGua in saliva could originate from BER 

in the cells of the buccal cavity.  

As shown in Fig. 2, we noted that the distribution range of 8-oxoGua concentration in plasma 

was narrow but became relatively wide in urine when adjusted for urinary creatinine. However, 

this phenomenon was not observed for 8-oxodGuo as the concentration distributions in plasma and 

urine displayed a comparable distribution range. Moreover, Fig. 3A showed only a modest 



 18 

correlation between 8-oxoGua concentration in plasma and in urine adjusted with urinary 

creatinine (r = 0.291; P = 0.028), whereas a strong correlation was observed for 8-oxodGuo 

concentration in plasma and in urine adjusted with urinary creatinine, as shown in Fig. 3B (r = 

0.737; P < 0.001). The above findings indicated that the use of urinary creatinine to adjust urinary 

flow for urinary 8-oxoGua concentration could be questionable, but it is appropriate for urinary 

8-oxodGuo concentration. This result, showing that the suitability of using creatinine 

concentration for urinary 8-oxodGuo, is consistent with a previous finding reported by Barregard 

et al. (2013). The inapplicability of creatinine for urinary 8-oxoGua correction may also explain 

why a satisfactory correlation between 8-oxoGua and 8-oxodGuo in urine was only observed 

without adjustment for urinary creatinine (Fig. 4C). There was no correlation between 8-oxoGua 

and 8-oxodGuo after adjustment for urinary creatinine (data not shown, P = 0.09).   

 

Conclusion 

We have successfully quantified both 8-oxoGua and 8-oxodGuo in plasma, saliva and urine 

samples using online SPE LC-MS/MS. Among these three biomatrices, urine, being non-invasive, 

easy to collect and handle (less biohazard than blood sample), together with its direct measurement 

should be considered the best specimen, especially in large-scale studies. Alternatively, plasma 

samples may also be considered applicable as the concentrations of 8-oxoGua (or 8-oxodGuo) in 

plasma were significantly correlated with those in urine (see Fig. 3) although additional sample 

pretreatment is required. However, a previous report has suggested that plasma levels of 
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8-oxodGuo are not valid measures of oxidative stress (Poulsen et al. 2014). The authors state that 

because the level in plasma is determined mainly by the kidney function and not by the level of 

oxidative stress. Therefore when comparing different individuals the measure will not provide 

information about oxidative stress, but kidney function. We suggest that because molecules are 

excreted into the urine mainly by an active transport mechanism, impaired kidney function will not 

only influence the plasma level but also the urinary level, even a 24 h urine sample is collected. 

Therefore, if the kidney argument holds true for plasma, then it also applies to urine. This 

reiterates the importance of kidney function and determining urinary creatinine values as a 

surrogate for function. Saliva samples are not recommended for oxidative stress assessment in this 

study, because the source of oxidative DNA lesion products in saliva is not fully understood so far, 

especially for 8-oxoGua. As the concentrations of 8-oxoGua are highly correlated with 8-oxodGuo 

either in plasma or in urine (see Fig. 4), both lesion products and matrices should be considered to 

be good biomarkers of oxidative stress in humans. The greater 8-oxoGua concentration in plasma 

and urine (compared to 8-oxodGuo) is an additional advantage to its accurate measurement, but 

concerns remain over its correction by creatinine in urine. In addition to providing the analytical 

techniques in plasma and saliva analysis, the findings obtained in this study may help to add new 

insights into the transport of oxidatively DNA lesions between cellular compartments and 

biological matrices.  
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Table 1 Demographic characteristics and mean 8-oxoGua/8-oxodGuo concentrations of study 

subjects 

Variable Subjects (n = 57) 

Age (y)  30.2 ± 6.9 

BMI (kg/m2) 23.7 ± 5.4 

In plasma (ng/mL),  

8-oxoGua 

8-oxodGuo  

8-oxoGua/8-oxodGuoa 

 

0.21 ± 0.09 

0.016 ± 0.005 

23.5 ± 10.4 

In saliva (ng/mL),  

8-oxoGua 

8-oxodGuo  

8-oxoGua/8-oxodGuo 

 

0.85 ± 0.76 

0.010 ± 0.007 

217 ± 127 

In urine (ng/mg creatinine), 

8-oxoGua 

8-oxodGuo 

8-oxoGua/8-oxodGuo 

 

11.9 ± 4.1 (12.2 ± 6.5)b 

3.6 ± 1.3 (3.8 ± 2.5) 

5.8 ± 1.9 

a The ratio expressed in mol/mol  
b as expressed in ng/mL   



 25 

Table 2 Concentrations of 8-oxoGua and 8-oxodGuo in various biomatrices for healthy subjects in the literature, as measured by chromatographic based 

methods. 

Matrix 8-oxoGua  8-oxodGuo  Methods References 

Plasma/serum 

(ng/mL) 

-a 

0.160  

- 

- 

0.21 ± 0.09 

0.0134 ± 0.002 

- 

0.022 ± 0.009  

0.040 ± 0.014 

0.016 ± 0.005 

HPLC-ECD 

HPLC-ECD 

Online SPE LC-MS/MS 

UPLC-MS/MS 

Online SPE LC-MS/MS 

Bogdanov et al. (1999) 

Shin et al. (2001) 

Hu et al. (2010b) 

Lam et al. (2012) 

This study 

Saliva 

(ng/mL) 

- 

- 

0.85 ± 0.76 

0.0153 ± 0.003 

0.005 ± 0.003  

0.010 ± 0.007 

HPLC-ECD 

Online SPE LC-MS/MS 

Online SPE LC-MS/MS  

Bogdanov et al. (1999)  

Hu et al. (2010b) 

This study 

Urine 

(ng/mg creatinine) 

11 ± 2.4 

11.4 

3.9 ± 2.0 

3.5 

HPLC-ECD 

HPLC-GC/MS 

Svoboda et al. (2006)  

Obtulowicz et al. (2010) 

11.9 ± 4.7 

11.9 ± 4.1 

4.4 ± 2.1 

3.6 ± 1.3 

Online SPE LC-MS/MS 

Online SPE LC-MS/MS 

Hu et al. (2010a) 

This study 
a Not measured 
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Figure legends  

Fig. 1. LC-MS/MS coupled with online SPE chromatograms for 8-oxoGua (A-C) and 8-oxodGuo 

(D-F) in human saliva. Selected reaction-monitoring transitions of (A) m/z 168→140 and (B) m/z 168

→112 for 8-oxoGua, (C) m/z 173→145 for [15N5]-8-oxoGua, (D) m/z 284→168 and (E) m/z 284→

140 for 8-oxodGuo, and (F) m/z 289→173 for [15N5]-8-oxodGuo. cps, counts per second. 

 
Fig. 2. Distribution of 8-oxoGua and 8-oxodGuo concentrations in urine, plasma and saliva. 

 

Fig. 3. Correlations between plasma and urine concentrations for (A) 8-oxoGua and (B) 8-oxodGuo. 

 

Fig. 4. Correlations between 8-oxoGua and 8-oxodGuo in (A) plasma, (B) saliva and (C) urine. 
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