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What google maps can do for biomedical data
dissemination: examples and a design study
Radu Jianu1* and David H Laidlaw2

Abstract

Background: Biologists often need to assess whether unfamiliar datasets warrant the time investment required for
more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for
large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software
systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types
and formats. This may lead to wasted analysis time and discarding of potentially useful data.

Results: We present an exploration of design opportunities that the Google Maps interface offers to biomedical data
visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the
development of biological visualizations which have both low-overhead and sufficient expressivity to support the
exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of
biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our
discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a
protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work
with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and
can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those
less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations
introduce design elements that can benefit visualization developers.

Conclusions: We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar
scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and
intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation
demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to
create such visualizations, and five concrete example visualizations.

Keywords: Bioinformatics, Biological visualization, Data dissemination, Regulation networks, Design guidelines

Background
Scientists today have access to many large datasets that
describe biological processes. Advanced systems for visu-
alizing such data exist but have associated costs that
depend on a scientist’s computer abilities and familiar-
ity with the data type and content. Thus, when handed
unfamiliar datasets, researchers need to assess the time
commitment these require and determine whether the
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analysis costs are justified. This scenario poses two limi-
tations. First, researchers must judge a dataset’s relevance
primarily by relying on textual descriptions and analy-
ses provided by the data publisher. This method does not
scale to large datasets where insights depend on a particu-
lar scientific question. Second, datasets deemed tangential
to a user’s research may be discarded because of a low
reward-effort ratio. These two limitations may lead to
wasted analysis time and discarding of potentially useful
data.

Raw datasets are commonly analyzed in one of the
many stand-alone systems for biological data visualization
developed over the past decade. These include software

© 2013 Jianu and Laidlaw; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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packages targeting microarray expression such as Clus-
terview [1], Hierarchical Clustering Explorer (HCE) [2],
and Spotfire [3], systems for pathway and network analysis
like Cytoscape [4], VisANT [5], Ingenuity [6] and Patika
[7], or genome viewers such as Cinteny [8] and Mizbee
[9]. Most such systems are aimed at complex data explo-
ration and analysis and have associated overhead costs
such as deploying, learning and operating the systems,
data formatting, and adjusting parameters to create views.

Alternatively, large organizations and research groups
sometimes choose to distribute data and analysis utilities
as part of browsable web environments (e.g., tools on the
NCBI website, web-based genome viewers). However, tra-
ditional web visualizations of biological data are restricted
to small data volumes, limited visual encodings and
keyhole analyses due to browser limitations [10]. Some
developers overcame browser constraints by making their
systems available as applets or to be run as client appli-
cations directly from websites [4,11]. However, in such
approaches, users must still cope with overheads inherent
to stand-alone applications such as adjusting visualization
parameters, specifying data queries and learning features.
Moreover, such websites are often difficult to setup and
maintain, thus becoming prohibitively expensive for small
data producers.

In this context we explore the benefits of using a tile-
based approach to distribute raw data along with pre-
rendered visualizations derived from it. Specifically, we
explore the Google Maps API, a tile-based, pan-and-zoom
interface that is well supported and highly familiar. As
we will demonstrate in five examples, integrating our
approach within new or established visualization sys-
tems would allow data producers (e.g., bioinformaticists,
programmers assisting biologists in large labs) to create
meaningful data views offline and easily distribute them
online simply by copying a directory onto a webserver.
Data consumers (e.g., individual researchers) could then
readily access such data views in browsers. This removes
the two limitations described in the previous paragraphs.
First, it offers a simplified way of publishing data by elim-
inating the need for databases and complex client-server
architectures. Second, it enables low-overhead access to
readily analyzable views, thus facilitating lightweight anal-
yses of datasets outside a researcher’s immediate focus.
While perhaps not immediately suited for highly complex
and on-the-fly analyses, we see this approach as particu-
larly useful in augmenting traditional data publication.

Google Maps uses Ajax (asynchronous JavaScript and
XML) technology to display images stored on a web-
server in a user’s browser. This links our approach to
calls for Ajax-based applications in biology [12,13] and
a system implementation demonstrating how rendering
can be performed on the server and resulting images
served asynchronously to the browser [14]. However, the

sole difference between this work and offline visualization
systems is that control and display are done in a sepa-
rate place from rendering and computation. Our research
differs by attempting to reduce regular users’ effort in
creating visualizations by assigning this task to experi-
enced personnel, and by using an approach that rests on
pre-rendered tiled visualizations frameworks such as the
Google Maps API.

Google Maps or other pan and zoom frameworks have
been recently used to display non-cartographic data. Clos-
est to our work are X:MAP [15] and Genome Projector
[16], which present implementations of genome browsers
in Google Maps and CATMAID [17] which provides
tiled imagery derived from microscopy and allows for
annotation and collaborative work. Also similar is ZAME
[18] which uses the zoom-and-pan paradigm to visual-
ize graphs as adjacency matrices and looks similar to
our heatmap representations. We apply the tile-based
approach to a broader array of problems, by offering
five concrete examples and providing evaluations of both
Google-Maps-powered visualizations in general and of
the specific visualization examples presented. It also dif-
fers from CATMAID by enabling the exploration of sig-
nificantly larger data volumes.

Finally, from a theoretic and conceptual point of view,
our work implements a range of aspects from the the
Space-Scale diagram framework described by Furnas and
Bederson [19], work which has inspired several results
on multi-scale visualization systems [20], semantic zoom-
ing [21], and navigation paradigms for large zoomable
spaces [22].

The work we present here was motivated and vali-
dated by collaborating on the Immgen project, a sci-
entific effort aimed at generating a compendium of
gene expression in immune cells. Our goal was to dis-
seminate the project’s microarray data on the Imm-
gen website. A collaborative design process revealed
that the pre-rendered browser approach worked well
here: data comes in large quantities, benefits from
exploration, and requires hyperlinking to other data
sources, biologists use well established visualizations,
many of which 2D and requiring little interaction, and
lab researchers are rarely eager to install and learn new
applications. Finally, our collaborators were excited about
replacing their database-driven, query-oriented website
with something easier to maintain and more visually
expressive.

The contributions of this paper lie in an evaluation
across multiple visualizations of how Google Maps can
help the biological domain, an exposition of design ele-
ments for building such visualizations, and a few algo-
rithmic elements specific to each of our example viewers.
Several of the elements featured in our work have been
previously investigated by other authors but mostly in
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isolation. We also mention that we have described several
of the visualization components featured in this article
in other publications. Specifically, in [23] we describe
the use of Google Maps to view genomic co-regulation
data, in [24] we use Google Maps to increase the acces-
sibility of visualizations of white matter structures in the
brain, while in [25] we discuss how to display node-link
diagrams of protein-protein interactions using a static
map interface. These publications provide valuable details
about the implementation of these visualizations and are
featured as examples in this paper. Here we give a uni-
fied discussion of the use of Google Maps for visualizing

biomedical data and provide an encompassing evalua-
tion. As such, this is the first paper that approaches the
use of Google Maps with an emphasis on evaluation and
general design.

Methods
This section introduces the Google Maps interface and
five examples we have implemented using this tech-
nology. These examples are demonstrated in Additional
file 1. Discussion of several design elements is deferred to
the results section, which gives a more unified exposition
on using Google Maps to display non-geographic data.

Figure 1 Co-expression map of 23k genes over 24 cell types of the B-cell family. The top view illustrates how maps are combined with
client-side graphics: the map is at the center of the display while selecting genes on the map generates the heatmap on the right. Maps have
multiple levels of zooming (bottom row), each with a potentially different representation. For example, genes are drawn as heatmap glyphs at the
high zoom (lower right), and as dots at low zoom. Expression profiles of collocated genes are aggregated and displayed as yellow glyphs over the
map. As zoom increases, expression profiles are computed for increasingly smaller regions. Interactions are not limited to zooming and panning;
pop-up boxes link out to further data sources and selections of genes bring up a heat map (top panel).
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Google Maps
We use the Google Maps API, an Ajax tile-based frame-
work used to render large maps, to display our visualiza-
tions. It receives as input image data in the form of a set of
small images, called tiles, that when assembled form the
different zoom levels of the map. Each zoom level consists
of a rectangular grid of tiles of size 2zoom × 2zoom. The API
decodes the zoom level and coordinates of the currently
viewed map region to retrieve and display the visible tiles.
The developer can load a custom set of tiles in the API by
implementing a callback function that translates numer-
ical tile coordinates and zoom level into unique paths to
the custom tiles. The API provides basic functionally such
as zooming and panning and allows programmatic exten-
sion or customization with markers and polyline over-
lays, information pop-ups and event management. The
API can be easily integrated into any Javascript-powered
web page.

Gene co-expression map
In [23] we introduced a Google Maps browser viewer that
displays co-regulation of large numbers of genes. Specif-
ically, given genes with expression measurements over

multiple cell types, we construct 2D projections that place
genes so that their proximity is proportional to the simi-
larity of their expression profiles (see Figure 1). In essence
this is a dimensionality reduction problem similar to that
proposed by Skupin [26,27].

We used a custom planar embedding algorithm inspired
by HiPP [28] that introduces discrete cluster boundaries
in the visualization (Figure 1). This addressed user feed-
back indicating that the lack of visible clusters detracts
from analysis. In our implementation genes form groups
based on their planar location. Such groups are enclosed
by bounding curves and glyphs depicting the average-
expression profile of each group are superimposed at the
group’s location. The specificity of groupings is linked
to zoom level (groups become smaller and tighter when
zooming in). Similarly to [26] this was achieved by super-
imposing a hierarchical clustering and zoom-linked cut
levels. As seen in Figure 1, we couple a standard Google
Map implementation to client-side graphics (Protovis
[29]) to display expression heatmaps of selected genes on
demand. Users have the possibility to search for genes and
highlight them via markers, and retrieve gene metadata in
information pop-ups.

Figure 2 Heatmap representation. A heatmap representation is displayed as a map, with gene and cell-type axes implemented in Protovis
attached at right and bottom. The axes are linked to the map’s zooming and panning so that users can identify which genes and cells they are
looking at. Selection of an area of interest prompts the highlighting of the corresponding cell types and genes.
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Gene expression heatmaps
Given genes with multiple expression measurements over
multiple cell types, we construct rectangular heatmaps.
Each row corresponds to a gene and each column to a
condition and each cell is a color-coded expression value.
Rows and columns are arranged to place co-regulated
genes and conditions together.

Figure 2 exemplifies a low-cost Google Map implemen-
tation using our collaborators’ color conventions. Protovis
was used to attach at the right and the bottom of the
map axes gene and condition labels. These are synchro-
nized to the map’s zoom and pan so that labels for the
currently viewed region of the heatmap remain within
view. Mouse-over is used to display the gene-cell combi-
nation at a given heatmap cell while information pop-ups
can be used to retrieve more detailed metadata. This
representation is deployed and in use on the Immgen
website.

Genome browser
Given expression values over a set of conditions for any
gene, we create color-coded expression glyphs at genes’
genomic coordinates (see Figure 3). Such representations

can answer questions about correlations between gene
function and genomic location.

Heatmap glyphs color-coding expression in multiple
cells are created for each gene, using our collaborators’
color convention. A gene-name label is included for each
gene. Chromosomes are arranged vertically, each extend-
ing horizontally. In response to user feedback, no space
warping or distortions, such as in [9,30], have been used.
The expression glyphs are mapped onto this space based
on gene location. We use no aggregation of expression for
different zoom levels because our collaborators felt that
expression variability in co-located genes is sufficient to
render aggregations meaningless.

Genes are not uniformly distributed on chromosomes;
instead, regions with high and low gene density alter-
nate. In high-density regions the space available to render
a gene, assuming finite zooming, is limited and often
insufficient to ensure visibility of the glyph elements. We
therefore spread gene glyphs apart and anchor them with
a leader line to their true genomic positions.

Gene search and highlighting of sets of genes are
supported. The highlighting marker is an image with
high alpha in the center and fading alpha towards the

Figure 3 Genome viewer as Google Map. Gene expression data measurements over eight cell types of the entire mouse genome are mapped
onto genome coordinates. The top view shows the general analysis framework as presented on the Immgen website; zoomed-in views appear at
the bottom. Three types of visual queries can be performed, depending on the zoom. At an overview, lists of relevant genes can be highlighted
using Google markers with custom icons - white lines with alpha gradients on each side - marking regions with interesting expression
characteristics. At an intermediate zoom (lower left), regions with similar expression can be identified: a blue low-expression region is visible at
center right. At a zoomed-in level individual expression values and gene names can be identified.
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boundaries, so that the closer two highlighted genes are,
the more their markers amplify each other. This ensures
that regions with a high density of marked genes stand out
in overview zooms (Figure 3).

Protein interaction networks
In a fourth example we display protein interaction
networks from online databases in browsers, using
pre-rendered tiled visualizations. Such representations
let proteomicists understand experimental data in the
context of available information. The complete tech-
nical details of our implementation can be found
in [25].

Network information is not intrinsically spatial, so that
zooming and panning do not necessarily define useful
data queries. Specifically, layout algorithms may place
connected proteins far apart and zooming then splits
them across multiple views. As described in [25] we use

vertex splitting, a process which untangles graph lay-
outs by duplicating nodes, to ensure that linked-proteins
are co-located. Vertex splitting has been originally intro-
duced by Eades and Mendonca [31] and revisited more
recently by Henry et al [32] as node duplication. As a
further design choice we use the city-versus-town dis-
tinction in a map analogy to filter out unimportant
proteins at overview zoom levels. As in [33], this rel-
evance measure is computed as a function of a pro-
tein’s intrinsic relevance and a relevance diffused from
neighboring nodes.

As shown in Figure 4, we use polyline overlays to show
selected proteins, information pop-ups to display meta-
data, and markers to highlight experimentally derived
proteins. Vertex splitting generates multiple copies of the
same protein. A window on the side of the map lists copies
of selected proteins: clicking on list-items causes a jump
to that copy’s location. Finally, proteomic experimental

Figure 4 Analysis of quantitative proteomic data in the context of a protein interaction network. The top panel shows an overview of the
analysis setup. Time-course proteomic data is displayed on the lower left. The experimental protein selected in the list is highlighted on the map. A
second protein selected on the map has its interactors and meta-information displayed. All instances of this protein are listed on the upper left,
together with their interactors. Three additional zoom levels are shown on the lower row; as zoom level increases, less relevant proteins are added
to the display.
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data can be loaded and displayed as heatmaps on the
left-hand side of the map.

Neural projections
In [34] we show how to construct planar representations
of white-matter structures in the brain, starting from con-
ventional 3D tractograms. Specifically, we cluster tracts
using a curve-similarity measure, select centroid tracts
for each cluster, and project these onto three princi-
pal projection planes: sagittal, coronal and transverse.
These projections completely describe white matter in
the brain and can be distributed as Google Maps.
They enable scientists to navigate through sets of trac-
tograms, analyze characteristics of major white-matter
structures and find datasets exhibiting desired statistical
properties.

As seen in Figure 5, tracts can be selected and high-
lighted on the projection map using polyline overlays.
Selections rely on tract trajectory information that is
exported along with the pre-rendered visualizations.
Statistics in both textual and image form are pre-
computed for each tract cluster, when the visualization is
created, as are a few 3D poses as animated GIF images.
This information can be retrieved in information pop-ups.

While this application domain is not tightly related
to those of our other visualizations, its implementation
furthers the design discussion that follows. Additionally,
its evaluation brings to light several limitations of this
approach that are perhaps peculiar to domains other than
genomics or proteomics.

Results
This section documents the main results of our work: a
comprehensive evaluation demonstrating the benefits of
using tile-based interfaces to disseminate biological data

and a set of design guidelines for software designers who
wish to build on this approach.

Evaluation
An evaluation by domain experts of the viewers described
in the previous section reveals strengths and limitations
of the general approach as well as of each individual visu-
alization example. We start with details about the eval-
uation procedure, then present feedback concerning the
approach as a whole, and end with comments on each of
the five visualizations.

Methodology
Twelve domain experts were involved in our evalua-
tion. Four proteomic researchers from two separate labs
evaluated the protein network. Five geneticists studying
immune cells evaluated the co-regulation viewer, heatmap
and genome browser. One of them, the Immgen coordi-
nator, collaborated with us during the design and imple-
mentation of these three visualizations. Finally, three neu-
roscientists gave us input on the neural projections.

We showed the viewers to individual subjects and col-
lected feedback. We first explained the visual encodings of
the data and demonstrated the interactive features of the
visualizations. We then let the subjects use the visualiza-
tions and encouraged them to give us their impressions
during the process. Questions prepared in advance were
also asked explicitly if our subjects didn’t touch on them
during conversation. Open-ended questions were asked
first, followed by more concrete inquiries on potential
drawbacks or advantages.

Evaluation summary
This section presents feedback on the pre-rendered
browser approach as a whole.

Figure 5 DTI tractography data projected onto the transverse, coronal and sagittal planes. Major tract bundles are represented schematically
by their centroid tract; individual tracts in bundles are linked from the centroid bundle to their projected endpoints. Bundles can be selected and
precomputed statistical data along with 3D poses of the tract bundle can be displayed.
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Ease of use: Subjects rated ease of use higher than
for other systems they were familiar with. They were
excited to visualize data in browsers. The
proteomicists in particular stated that this setup
makes them more likely to use the visualizations,
remarking that they prefer not to spend time
installing software and learning new features.
Users: Potential users were identified as scientists
lacking access to a computational infrastructure and
those analyzing unfamiliar datasets. Our geneticists
noted that new Immgen members spend
considerable time becoming accustomed to data, and
that such visualizations would support this process.
One subject, contemplating her post-graduation life,
removed from the bioinformatics support of
Immgen, realized how helpful it would be if data was
generally presented in this form.
Use: Unlike advanced analysis systems, we targeted
exploratory, preliminary and casual browsing of data.
Our subjects suggested using these visualizations to
learn new datasets and for casual analysis while
commuting or at home. Another suggestion was to
use such applications to create small customized
datasets from larger data volumes. Our subjects were
most excited about the intuitiveness and low
overhead and several noted that the interaction set
was sufficient for their analysis tasks.
Workflows: The main workflow we identified was
projecting familiar data elements onto existing data
spaces. Geneticists would highlight their genes of
interest into the co-regulation viewer; proteomicists
would load experimental datasets and explore their
interaction neighborhood in the interaction network.
Interactivity: Most subjects remarked that the
implementations demonstrated were sufficiently
complex for quick data analysis. Most were content
with the feature sets, interaction and visualization
provided, while some asked for more hyperlinking
and metadata features.
Drawbacks: Perhaps unsurprisingly, it was the static
nature of our approach that drew the most criticism.
Even so, those expressing concern were in the
minority: one geneticist and all three neuroscientists.
The geneticist said the inability to customize what
the visualization is showing would impede his
analysis. He was, however, interested in
disseminating his data in this form, indicating that he
found the approach useful. This subject was a senior
lab member highly familiar with the Immgen data
used for the demonstration, which may explain his
desire for flexibility. All three neuroscientists said
that interactive fiber-tract selection mechanisms are
indispensable in clinical white matter studies. Since
selections in our visualization are restricted to

pre-computed fiber clusters, they are insufficiently
flexible. However, they noted that the approach is
ideal for searching data repositories for candidate
datasets for studies and for casually browsing data.
Summary: The most tangible feedback we received
was the decision of the Immgen coordinator to
switch the lab’s database-driven distribution system
to our pre-rendered tile approach. He commented on
the benefits of accompanying raw data with relevant
visualizations. An important factor in his decision
was the minimal overhead of both maintaining and
using the systems.

Evaluation of individual viewers
Here we present feedback received for each of the five
individual viewers.

Gene co-expression viewer: Subjects found the
co-expression projections useful in identifying how
sets of genes of interest co-regulate in various cell
combinations, and in finding other genes that exhibit
expression patterns similar to known ones. One
subject would also look for global patterns of
co-regulation, possibly over multiple maps, and
suggested we link maps in separate browser tabs.
The visualization was deemed intuitive and easy to
use. Two users particularly liked the superposed
expression profiles, stating that they summarized
data well and could guide exploration. Users were
also happy with the heatmap-upon-selection
mechanism and with the ability to export selected
sets of genes. Three out of five users were content
with the pre-defined cell configurations imposed by
the static visualization. The other two would have
preferred to customize the cell types over which
genes are projected, but noted that in their domain
only a few cell subsets were biologically meaningful
(e.g. corresponding to cell families or lineages).
Gene expression heatmap: Our collaborators often
publish static heatmap images as large as 2000 rows
by 500 columns. The absence of any interaction,
however, is an important limiting factor, which is
what motivated our implementation. Only two of our
five evaluation subjects used heatmaps at this scale in
their analysis and were able to provide feedback.
They were excited about our visualization and noted
that the mouse-over functionality, information
pop-ups, and sticky axes were sufficient for their
analytic needs. A single extension was
recommended: zooming along a single dimension
(genes or cells) to create a visual aggregation effect
that could answer some scientific questions. Our
collaborators adopted the interactive heatmaps and
made them operational on the Immgen website.
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Genome browser: Initial feedback identified the
need for an overview analysis of gene expression in
the genome space, in particular the extent to which
adjacent genes share expression patterns.
The viewer does not employ semantic zooming such
as aggregating expression values over contiguous
genomic regions. Instead we relied on additive visual
cues of individual items that create salient expression
patterns when zoomed out. Our collaborator
suggested this design to avoid erroneous aggregation
effects and subsequent feedback suggested that it was
indeed effective. The ability to highlight genes
identified by specific queries (Figure 3) was also
considered useful. Using it, our subjects observed
that genes with comparable patterns of activity tend
to be dispersed and that co-regulated clusters exist
but are relatively rare, contrary to their prior beliefs.
This feedback was provided by two subjects
interested in overview analyses of regulation patterns.
Our other three subjects were less interested in
genomic mappings were unable to comment on the
usefulness of this particular visualization.
Protein interaction networks: Our proteomicists
were excited about looking at interaction networks in
their browsers. The consensus was that the setup is
highly effective and that they would choose it over
other systems they were familiar with. The
interactivity of the system was judged appropriate,
with more metadata the feature most commonly
requested.
Our subjects’ unanimous opinion was that relevance
filtering was intuitive. They noted that it
corresponded to how they normally approach a new
network: identify important or familiar proteins and
then drill down to learn more about their neighbors.
Another comment was that seeing familiar proteins
and connections early reinforces their confidence in
the visualization. All subjects thought that the
heuristics used to compute the relevance of proteins
were appropriate. Three subjects stated that multiple
copies of proteins resulting from vertex splitting
would not obstruct their analysis. One even said he
liked the approach because it made proteins’
interaction neighborhoods more apparent. The
fourth subject said that protein duplicates are
undesirable but acceptable as long as they can be
easily explored. He noted that the copies-list on the
left (Figure 4) lets him to do this efficiently.
Neural projections: The neuroscientists we
interviewed commented that quantitative clinical
studies on white-matter tractograms require precise
bundle selections, thus rendering interactivity
indispensable. However, they pointed out the unique
opportunities offered by our visualizations:

collaborating with other scientists by sending links,
being able to look at datasets anywhere, any time,
and browsing through datasets before importing a
model into a desktop application. The evaluation led
us to conclude that static maps are less suited for the
3D domain where complex interactions are needed,
but can occupy a task-specific niche such as
collaborative work and casual analysis.

Design
Here we describe how to leverage the features of the
Google Maps API in the context of data visualization.
The design elements we present are a distillation of the
feedback presented in the previous section and of the
design and development that produced the visualizations
featured here.

Overview
Data size and specification: To compensate for
their static nature, pre-rendered visualizations
should en-compass all data associated with a
scientific problem. Thus, a visualization can be useful
for many queries, since data specification can be
done during visualization through zooming, panning
and highlighting. Individual visualizations sometimes
need to be adapted to suit this approach. Our protein
interaction networks use vertex splitting to enable
queries by zoom-and-pan and a zoom-linked filter to
address clutter. Our co-regulation map uses
expression glyphs that guide users towards gene
groups with specific expression patterns.
Use: Unlike advanced analysis systems, we have only
targeted exploratory, preliminary and casual
browsing of data or lightweight analysis tasks. It is
thus hard to determine how suited this approach is in
the context of more complex functionality.
Users: Users can be divided into data consumers and
data producers. In our experience, the former often
perceive a dataset to have a low reward-effort ratio
because they are unfamiliar with the type of data, are
generally computer averse or lack access to a
computational infrastructure. The browser
visualizations targeting such users should be sparse
and intuitive. This may seem self-evident, but
state-of-the-art visualization systems commonly
require scientists to understand visualization-specific
jargon (e.g., select a specific graph-drawing
algorithm). Data producers want to distribute
visualizations along with their raw data so that fellow
researchers need not run their own analysis. Data
producers will use an interactive system to create the
browser visualizations. The assumption is that they
are specialists in the data they are distributing, so
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that a system can use more complex visualization
metaphors.
Development overhead: Development overhead can
vary greatly among visualizations: our heatmaps are
just static images augmented with basic interactivity,
co-regulation information had to be first projected in
2D, and protein interaction networks required an
entirely new drawing algorithm. A simple heuristic is
that the overhead depends on the effort required to
planarize the information displayed (e.g., relational
data is harder than projected multidimensional data)
and on the amount of data shown.
Deployment: Google Maps visualizations can be
designed to work without dependencies on databases
and server-side scripting. In such cases they can be
deployed by simply copying a directory structure to a
web server. This was an important factor for our
collaborators in deciding to adopt this mode of
representation.

Interactivity
While reiterating that complex interactions are not the
focus of this approach, we give below a few interaction
patterns common in visualization that are possible in
implementations based on Google Maps.

Selection/Brushing: For selection, positions of
selectable elements have to be exported in data files,
along with the pre-rendered visualization. This
information is used to translate coordinates of mouse
events into selections. In the co-regulation viewer
and heatmap, users select genes by drawing enclosing
rectangles. In the white-matter visualization we
export curve trajectories for each tract-cluster, and
use the proximity of a mouse click to a curve as a
selection heuristic.
Highlighting: Elements selected through interaction
or search can be highlighted using markers or
polylines (traditionally used to highlight routes in
digital geographic maps). Figure 1 illustrates a group
of selected genes identified by markers. Polylines are
used to implement Munzner’s constellation
technique [35] on the protein interaction network
(see Figure 4) and highlight tract-cluster trajectories
on the white-matter visualization. Finally, images
shown as markers can be customized to create more
complex effects. In the genome browser for instance,
multiple co-located markers with alpha gradients
create an additive visual effect.
Semantic zooming: Our protein interaction
network illustrates semantic zooming by displaying
additional proteins with each increase in zoom level.
The map framework allows developers to show
different images at each zoom level. A scene can thus

be pre-rendered at different zoom levels, each with
its own visual abstractions. Two important factors to
consider are that a visualization can have only as
many abstractions as zoom levels and that exported
images double in pixel size with each additional
zoom level. This should be taken into consideration
in designing the number of abstractions, as
thirteen-level visualizations are infeasible to
distribute (see next section).
Filtering: Semantic zooming can be used to
implement filtering. As mentioned before, our
protein interaction network (Figure 4) illustrates this
concept. While not implemented in any of our
visualizations filtering could also be achieved by
rendering multiple complete tile-hierarchies for
pre-determined filtering conditions. Completely
dynamic filtering is infeasible using pre-rendered
visualizations.
Data aggregation/abstraction: In our co-regulation
viewer we average expression values over groups of
genes at varying levels of specificity. In the genome
viewer we contemplated displaying aggregated
expression values over larger genome regions at
overview zooms to deal with gene density, but chose
a different approach following user feedback.
Semantic zooming is, however, a good way to
implement varying degrees of data abstraction.
Another way is to use combinations of markers with
custom icons to create glyphs that show aggregated
data; this has the advantage that such effects can be
created programmatically at run time. A simple
example is seen in our genome browser where
selection glyphs create an aggregated visual effect.
Details on demand: Figures 1, 2, 4 and 5 illustrate
how information popups are used to retrieve
information about visualization elements. Figure 5
shows how pre-computed statistical data and
3D-poses can even offer different perspectives of
selected data subsets. A second detail-on-demand
implementation is shown in Figure 2: mouse hovering
generates a tooltip overlay. For more interactivity,
browser-side graphics can be coupled with Google
Maps. The co-regulation map (Figure 1) uses
Protovis to show expression values of user-selected
genes as heatmaps. We note that information used in
the detail views (e.g. expression values, 3D-poses etc)
must be exported along with the rendered tiles.
Overview+Detail: The implicit Overview+Detail
mechanism in Google Maps is the mini-map.
However, more complex interactions can be
achieved with browser-side graphics or multiple
synchronized Google Maps on the same page. The
closest feature to this in our implementations is the
dynamically generated heatmaps in the co-regulation
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viewer. However, it would be easy to extend the
protein interaction network by a linked Protovis
viewer that displays local network information for
selected proteins.
Brushing and Linking: Two of our evaluation
subjects noted that linking several of our
visualizations together can be beneficial. For example,
linking co-expression views (e.g. for different cell
families) can answer questions about conservation of
gene function over multiple conditions. This
functionality was implemented for the co-expression
maps using browser cookie-polling, as shown in
Figure 6. We also hypothesize that such brushing and
linking functionality could be used to link data maps,

Figure 6 Linked co-regulation maps of the T-cell (top) and B-cell
(bottom) families. A selection in the T-cell viewer is reflected in the
B-cell viewer. A few groups of genes that are co-regulated in both cell
families appear in the upper part of the B-cell map.

external data sources, and other analytic web services
together to create more complex environments.

Improving performance
Below are a few considerations for improving the perfor-
mance of tiled visualizations.

None of our visualizations required more than nine
zoom levels. Assuming a tile size of 256 pixels, these trans-
late into square images with 28 ∗ 256 = 65536 pixels on
the side, at the largest zoom level. Furthermore, the num-
ber of tiles quadruples at each additional zoom level such

that these visualizations consisted of
8∑

i=0
2i ∗ 2i = 87381

image files. Efficient image compression is desirable to
reduce space requirements and speed up tile loading. Tile
numbers can also be reduced by exploiting that visual-
izations often contain areas of empty background. Thus,
many tiles can be represented by a single background-tile.
Coordinates of background tiles are exported at the time
of rendering and subsequently decoded by the Javascript
implementation. Empty tiles are usually compressed into
smaller files by default (due to uniform coloring) and
their number is visualization dependent. Still, perfor-
mance gains remain meaningful and typically grow con-
siderably with increases in a visualization’s zoom levels.
Table 1 summarizes these improvements on several of our
visualizations.

As mentioned in the previous section, interaction and
data on demand rely on exporting additional informa-
tion at rendering time that must be fetched and used by
the browser visualization. Loading this data at once, dur-
ing initialization, can freeze the visualization and result
in large memory loads. Instead, in line with the tile
approach, the information should be split in multiple files
and retrieved only when an interaction demands it. For
example, information about the shape of the curves in
the white-matter visualization is split over a 10 × 10
grid spanning the visualization. Upon a mouse click, the

Table 1 Number of tiles and disk space analysis

All tiles Non-empty tiles

PNG JPG PNG JPG

Co-reg. (5461 37.6) (5461 39.9) (3505 35.1) (3505 30.2)

Heatmap (5461 23) (5461 29.4) (2811 12.7) (2811 19)

Networks (5461 32.2) (5461 33.6) (4620 29.8) (4620 25.3)

Brain (5461 37.6) (5461 39.9) (3505 34.1) (3505 32.2)

Genome (5461 35.1) (5461 38) (4051 27.1) (4051 30.3)

Genome* (87381 263.4) (x x) (17630 100) (x x)

Number of tiles and disk space(MB) for the five visualizations with different
image compression (PNG vs. JPG) and all tiles vs. non-empty tiles. First five rows
stand for visualizations with 7 zoom levels; the last row corresponds to a 9 level
genome browser.
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corresponding cell content is fetched and tested for inter-
sections. If an intersection with a tract cluster is found,
a file containing information about this cluster (e.g., clus-
ter trajectories for highlighting, metadata to be displayed
in information pop-ups) is retrieved. This ensures that
visualizations remain responsive during interactive tasks.

Discussion
There are several differences between traditional visu-
alizations and the tile-based design we explored in this
paper. First, instead of the data-query-specification/re-
computed-visualization paradigm, our examples con-
tained most data associated with a biological problem,
and querying was essentially done through zooming
and panning. Second, while traditionally end users are
responsible for constructing visualizations, our evalua-
tion suggests that in some cases placing the construction
of visualizations in the hands of bioinformatics staff in
larger labs, such that they are computed only once and
become readily available for users to analyze, can be use-
ful in several scenarios. Finally, we showed that fast and
intuitive access to visual perspectives of a dataset, even if
less flexible then complex systems in terms of interaction
and queries, can help in some cases accelerate analysis.

As suggested by our evaluation, the low-overhead tile
based approach we exemplify seems to be particularly
attractive to researchers lacking access to a strong com-
putational infrastructure, for unfamiliar datasets, and for
casual data browsing. Our evaluation of the white matter
visualization shows that in other domains this approach
might be more narrowly useful. From our experience, the
Google Maps API can also be a useful medium for gath-
ering feedback on visual encodings, possibly developed as
part of another system. Collaborators are more likely to
provide feedback on visualizations that they can access
and use with minimal overhead than on ones they must
install and learn. Furthermore, concerns such as deploy-
ment and platform, rendering speed and interactivity, GUI
and data formats become non-issues.

This work explores only the Google Maps API. However,
we hypothesize that other Ajax tiled approaches would

probably also be suitable for this approach. More gen-
erally, zoom-and-pan frameworks (e.g. Bing Maps API,
Silverlight, OpenZoom) can be used in conjunction with
a subset of the design elements discussed in this paper to
develop similar visualization. Moreover, the development
of a tiled frame-work designed to support data visualiza-
tion rather than geographical maps could prove useful.
Such a framework, if open source, would also alleviate
concerns about licensing, support and stability associated
with commercial products. Principles of sparsity and intu-
itiveness should remain the foundation of tile frameworks,
since the proposed browser visualizations should not seek
to rival complex systems.

We have tested our approach by extending an existing
visualization environment with Google Maps capabilities.
This process involved adapting existing viewers to the par-
ticularities of Google Maps using the design guidelines
described in this paper and extending rendering such that
it could be performed offline, on tiles, rather than just on
the screen. This process is shown in Figure 7. We note
that any visualization system or visualization framework
(e.g. Cytoscape [4], Prefuse [36]) could be augmented with
the capabilities of outputing Google Maps rendering. Our
particular system has not yet been released but our results
suggest that scientists would benefit if more established
visualization systems, such as the ones mentioned, would
incorporate methods of exporting user created views as
GoogleMaps. As a future direction we envision a web-
service, extensible by modules, that would not only allow
data producers to upload readily created data maps, but
also enable individual researchers to upload their data and
have visualizations created and published on the fly.

Users in our evaluation were excited about the collab-
oration facilities offered by maps. Exchanging interactive
images rather than static ones and sending links rather
than datasets was positively received. Pre-rendered visu-
alizations are well suited for collaborative work, since they
ensure that each user has the same view of the data and
that shared comments target the same visualization ele-
ments. We would like to add annotation capabilities to our
maps to let researchers exchange ideas.

Figure 7 Creating GoogleMap visualizations. Raw data is entered into a stand-alone visualization system which outputs Google Maps as an
image tile pyramid, a set of javascript webpages, and a set of data files to support Google Maps interactivity.
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Finally, an important component of visualization
research is understanding how visualizations are used.
Due to the minimal interaction advocated, maps should be
easy to instrument. In fact, our deployed maps have been
instrumented using the Google Analytics framework.

Conclusions
A series of cognitive studies led Hegarty et al [37] to
conclude that “cognitive science research indicates that
the most effective visual representations are often sparse
and simple. When given control over interactive visu-
alizations, people do not always use these technologies
effectively or choose the most effective external represen-
tations for the task at hand.” We presented a low-overhead
approach that can facilitate browsing for a range of unfa-
miliar scientific datasets, that relies on pre-computed
visualizations carefully prepared by data experts for dis-
tribution with sparse interactions, so that end users can
access readily analyzed views of scientific data. We build
on the familiarity of the Google Maps framework and
leverage its functionality to distribute those views. Our
primary contributions are an evaluation demonstrating
the validity and opportunities of this approach and a set
of design guidelines benefiting those wanting to create
such visualizations. Additional contributions include five
concrete example visualizations.
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collaborative annotation toolkit for massive amounts of image
data. Bioinformatics 2009, 25(15):1984.

18. Elmqvist N, Do TN, Goodell H, Henry N, Fekete JD: ZAME: Interactive
large-scale graph visualization. In Visualization Symposium, 2008.
PacificVIS’08 IEEE Pacific: IEEE; 2008:215–222.

19. Furnas GW, Bederson BB: Space-scale diagrams: Understanding
multiscale interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: ACM Press/Addison-Wesley Publishing Co.;
1995:234–241.

20. Bederson BB, Hollan JD, Perlin K, Meyer J, Bacon D, Furnas G: Pad++: A
zoomable graphical sketchpad for exploring alternate interface
physics. J Vis languages Comput 1996, 7:3–32.

21. Hornbæk K, Bederson BB, Plaisant C: Navigation patterns and usability
of zoomable user interfaces with and without an overview. ACM
Trans Comput-Human Interact (TOCHI) 2002, 9(4):362–389.

22. Jul S, Furnas GW: Critical zones in desert fog: aids to multiscale
navigation. In Proceedings of the 11th Annual ACM Symposium on User
Interface Software and Technology ACM; 1998:97–106.

23. Jianu R, Laidlaw DH: Visualizing gene co-expression as google maps.
In International Symposium on Visual Computing, Proceedings 2010:
Springer; 2010:494–503.

24. Jianu R, Demiralp C, Laidlaw DH: Exploring brain connectivity with
two-dimensional neural maps. Vis Comput Graph, IEEE Trans 2012,
18(6):978–987.

25. Jianu R, Laidlaw DH: Visualizing protein interaction networks as
google maps. In IEEE Infovis 2010, Poster Compendium: IEEE; 2010.

wwww.hprd.org
http://www.biomedcentral.com/content/supplementary/1756-0500-6-179-S1.htm
http://www.Spotfire.com
http://www.ingenuity.com/


Jianu and Laidlaw BMC Research Notes 2013, 6:179 Page 14 of 14
http://www.biomedcentral.com/1756-0500/6/179

26. Skupin A: A cartographic approach to visualizing conference
abstracts. IEEE Comput Graphics Appl 2002:50–58.

27. Skupin A, Fabrikant S: Spatialization methods: a cartographic research
agenda for non-geographic information visualization. Cartography
Geogr Inf Sci 2003, 30(2):99–120.

28. Paulovich F, Minghim R: HiPP: A novel hierarchical point placement
strategy and its application to the exploration of document
collections. IEEE Trans Vis Comput Graph 2008, 14(6):1229–1236.

29. Bostock M, Heer J: Protovis: a graphical toolkit for visualization. IEEE
Trans Vis Comput Graph 2009, 15(6):1121–1128.

30. Circos. http://mkweb.bcgsc.ca/circos/
31. Eades P, de Mendonça N C: Vertex splitting and tension-free layout. In

Graph Drawing. Springer; 1996:202–211.
32. Henr N, Bezerianos A, Fekete JD: Improving the readability of clustered

social networks using node duplication. Vis Comput Graph, IEEE Trans
2008, 14(6):1317–1324.

33. van Ham F, Perer A: “Search, show context, expand on demand”:
supporting large graph exploration with degree-of-interest. IEEE
Trans Vis Comput Graph 2009, 15(6):953–960.

34. Jianu R, Demiralp C, Laidlaw DH: Exploring brain connectivity with
two-dimensional neural maps. IEEE TVCG 2011. [In Review].

35. Munzner T, Guimbretière F, Robertson G: Constellation: a visualization
tool for linguistic queries fromMindNet. In IEEE Symposium on
Information Visualization, 1999. (Info Vis’ 99) Proceedings; 1999:132–135.

36. Heer J, Card SK, Landay JA: Prefuse: a toolkit for interactive
information visualization. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems ACM; 2005:421–430.

37. Hegarty M: Dynamic visualizations and learning: Getting to the
difficult questions. Learn Instr 2004, 14(3):343–352.

doi:10.1186/1756-0500-6-179
Cite this article as: Jianu and Laidlaw: What google maps can do for
biomedical data dissemination: examples and a design study. BMC Research
Notes 2013 6:179.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://mkweb.bcgsc.ca/circos/

	Florida International University
	FIU Digital Commons
	5-4-2013

	What Google Maps can do for Biomedical Data Dissemination: Examples and a Design Study
	Radu Jianu
	David H. Laidlaw
	Recommended Citation


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Google Maps
	Gene co-expression map
	Gene expression heatmaps
	Genome browser
	Protein interaction networks
	Neural projections

	Results
	Evaluation
	Methodology
	Evaluation summary
	Evaluation of individual viewers

	Design
	Overview
	Interactivity
	Improving performance


	Discussion
	Conclusions
	Availability of supporting data
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

