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Abstract: In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed 

on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished 

(MEP) surface treatments and commercially available stents by measuring Root-Mean-Square 

(RMS) , Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on 

the alloy surfaces, ranging from (800 x 800 nm) to (115 x 115µm), and (800 x 800 nm) to (40 x 

40 µm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface 

treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest 

roughness when analyzed over (115 x 115 µm). Scanning Electron Microscopy (SEM) and 

Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for 

surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain 

boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface 

micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface 

endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and 

provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable 

device influenced from such surface micro-patterns. 

 

Keywords: AFM; Nano-indentation; EDS/SEM; NiTi; Surface Roughness; Electropolishing 
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1. Introduction 

 

In endovascular therapy, several types of treatments exist for alleviating health 

complications in patients who suffer from vascular diseases. As such, there is a continuous need 

for new and improved biomaterials and treatment processes to maximize its effectiveness and 

minimize any deleterious effects. The bulk properties of a material are contributory criteria in its 

selection for a particular application, while the interfacial surfaces of a material within a given 

environment elicit a more immediate biological response [1-3].     

The alloy Nitinol (NiTi) is a material commonly used for the manufacturing of peripheral 

stents which has recently been considered for the application of cardiovascular stents because of 

its corrosion resistance, biocompatibility, and shape-memory characteristic [4-5]. Varying Ni and 

Ti compositions result in an alloy with the ability to retain a particular shape and recover from 

deformation due to applied stress or temperatures as high as 10% from its equilibrium conditions 

[6]. Nitinol is ideally suited for endovascular treatments because of its self-expanding capability, 

which eliminates the need for post-deployment heating for device positioning.
 
However, because 

of the potential for high Ni ion leaching from NiTi with its cytotoxic effects on cells, ternary 

NiTi-X alloys are being explored with the aim to reduce Ni ion leaching while retaining super-

elastic properties inherent to shape-memory alloys such as NiTi [7]. An example of a ternary 

alloy worth consideration is NiTiCu.  It has been documented that the addition of Cu to binary 

NiTi results in good corrosion resistance, narrow transformation hysteresis, and Ti3Ni4 

precipitation [8-10], which helps to stabilize its super-elastic characteristics. Tantalum, a highly 

radiopaque metal, has been added to binary Nitinol to enable better visualization of the material 

under fluoroscopic, X-ray, MR imaging, and computed tomography (CT) [11-13]. Highly 

passivating elements like Chromium have been added to NiTi in order to improve corrosion 
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resistance [14]. Nitinol was once considered to possess superior adaptability to vessel 

conformation;
 
however, ternary Nitinol alloys have since demonstrated both superior adaptability 

and biocompatibility [12, 15]. Ion leaching is an important contributory factor to a coronary 

stents biocompatibility, and Ni ion leaching from NiTi in vivo is dependent upon the surface 

finishing quality and technique utilized [16]. 
 

Two recently explored techniques to enhance surface quality and deburr surface defects 

produced from the manufacturing process are: Electropolishing (EP) and Magneto-

electropolishing (MEP) [17]. 
 
Electropolishing is a process that is particularly important for the 

manufacturing of medical devices, because it has been shown to improve corrosion resistance, 

biocompatibility, mechanical performance (fatigue/fracture), wear/tribological properties, and 

overall visual appearance [18].
 
MEP is a similar type of surface treatment, except that a magnetic 

field is applied during the electropolishing process [19]. In this technique, the strength of the 

magnetic field serves to either increase or decrease the dissolution rate of the processed material. 

However, the dissolution rate is also dependent on the type of electrolyte used as well as the 

inherent magnetic properties of the material being dissolved [20, 21]. 

 
Encouraging research has supported EP and MEP surface treatments toward the 

application on such alloys used for endovascular treatment because of its ability to create a 

uniform and stable passive film with a preferred low nickel ion concentration on the surface of 

the sample, and by shifting corrosion potentials into the direction of greater corrosion resistance 

[19, 22- 23].   
 

Surface roughness is a contributory factor to the biocompatibility of a material as 

governed by its in vivo corrosion behavior. Rougher surfaces tend to increase corrosion rates, 

thereby eluting ions into the implantable environment. Increased ion leaching such as Ni can be 
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toxic to the implantable environment and host [16].  Smoother finished surfaces decrease the 

likelihood of platelet adhesion and thrombus formation, thus reducing major post-treatment risks 

of in-stent restenosis [12]. On the contrary, research has shown that surface modifications which 

induce grooves or macroscopically significant elevations on the surface of a material can 

increase the rate of endothelialization, which has also been shown to reduce in-stent restenosis 

and thrombosis [21, 30- 32].
 
 Recently, in-vitro studies based upon rat aortic endothelial cell 

adhesion and elongation has demonstrated an enhanced growth of the cells on patterned Poly-

dimethyl siloxane (PDMS) surfaces, with a minimum threshold width spacing of 100 nm, and an 

increased nano-scaled surface roughness [24]. This demonstrates that highly micro-patterned 

surfaces enhance the degree of endothelial cell adhesion, reducing post-implantation risks of in-

stent restenosis and thrombus formations [24, 30-32].  

In this study, several ternary NiTi alloys with and without EP and MEP surface 

treatments were analyzed using AFM techniques over various scan sizes to evaluate roughness at 

the micron and nano-scale levels. SEM techniques revealed morphology characteristics which 

were compared with AFM data. Investigating the mechanical and interfacial properties of such 

ternary NiTi alloys at the nanometer and micrometer-level provides information as to the 

influence of surface roughness on protein adsorption, cellular adhesion, and corrosion behavior 

[25]. This can provide insight into clinically relevant in-stent restenosis, thrombocyte adhesion 

sites, and leaching of Ni ions due to corrosion. 

2. Materials and Methods 

 

The addition of a third element to Nitinol enhances certain desirable mechanical 

properties such as Young’s Modulus and Surface Hardness, while preserving the shape-memory 

characteristic. All binary and ternary Nitinol alloys (NiTi, NiTiCr-10 wt%, NiTiCu-10 wt%, 
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NiTiTa-10 wt%) used in this study were manufactured by an Arc-Melting method at the National 

Institute of Standards and Technology (NIST) material science and engineering laboratory. 

Patented and proprietary commercial MEP and EP surface treatments were performed by 

ElectroBright ® (Macungie, PA, USA). The Nitinol stents that were obtained from a commercial 

source were prepared for nanoindentation studies by mounting them in an epoxy resin mold 

using Buehler Buehlermet II Epothin resin, hardener, and release agent.  The surface of the mold 

was then polished using wet [320,400,600] Buehler Buehlermet II Silicon Carbide Abrasive 

paper. Fine comb polishing was also performed using Buehler Metadi Monocrystalline Diamond 

suspensions of 9, 6, and 1µm, respectively.  

Two commercially available endovascular Nitinol stents (UNC-1, COL-1) were also 

studied for comparison with the ternary and binary alloys, as they are representative of 

deliverable commercial products readily used in the health care industry.  All of the ternary and 

binary alloys were analyzed as-received, within their martensitic phase and were ultrasonically 

cleaned in acetone using a Branson ultrasonic cleaner, rinsed with distilled water, and dried with 

N2 gas before any testing. 

 Surface hardness (SH) and Young’s Modulus (YM) for these stents were determined 

using a Hysitron Nanoindenter system with a diamond Berkovich 3-face tip of with a radius of 

100 nanometers. A normal load of 2000 µN was applied, with a loading/unloading rate of 200 

µN/s.   A 3 second dwell at peak loads was also applied.  During tribometeric testing of the 

commercial stents, a normal applied load of 1200 µN was used, as well as an applied loading and 

unloading rate of 120 µN/s. The binary NiTi alloy was used as a reference from which to assess 

the effect of the addition of the ternary element to Nitinol.  
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Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray 

Spectroscopy (EDS) analyses on all samples was conducted using a JEOL JSM 5900LV and 

EDS-UTW Detector system. Images were also analyzed in both secondary electron imaging and 

backscatter imaging modes at an accelerating voltage of 20 KeV. 

2.1 AFM Analysis 

In this study, a VEECO Nanoscope IIIa Multimode AFM was utilized.  The cantilevers 

used in this investigation were BudgetSensors Tap300Al-G, equipped with an aluminum reflex 

coating. These cantilevers have a resonant frequency of 300 KHz +/- 100 KHz that is utilized in 

the tapping frequency mode. The tip radius was less than 10 nm, and had a tip height of 17 µm ± 

2 µm. The frequency of oscillation was often optimized in order to obtain the most accurate 

information. Images were mostly obtained with a resolution of 256 x 256 pixels, and high 

resolution images were obtained for 3-dimensional visualization at 512 x 512 pixels.  The scan 

frequency was often changed depending on the topographical features of the sample. The post-

image processing of the data was obtained using NanoScope 5.3r1 software. 

AFM images were obtained within the following dimensions: size I (10 x 10 µm), size II 

(5 x 5 µm), size III (115x 115µm), and size IV (800 x 800 nm). A minimum of 5 images were 

collected from sizes I and III, and 10 images for size ranges II and IV. More images were 

selected from the latter, because the surface artifacts on the alloys were within those dimensions. 

Size III provided an overall perspective of the surface by revealing any surface patterns or 

grooves, whereas, size IV provided finer topographic details that are pertinent at the substrate-

cellular interface level. Height differences between the highest and lowest points in a scan area 

(Rmax) were gathered for scan size III to evaluate the height difference between grain surfaces 

and grain boundary regions. All images were acquired in a non-contact tapping mode; a mode in 
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which the tip oscillates in air in the vicinity of (or as it approaches) the surface of the sample, 

although never contacting the surface. SEM images were taken at a magnification suitable for 

comparing the morphology of the alloys with topographic features displayed by the AFM images 

as shown in Figure 7. 

2.2 Statistical Analysis 

The data collected in this study were processed using the NanoScope V.5.31 data 

processing software, which is part of the metrology package. Statistical analysis was conducted 

to assess whether there was any significant difference between the measurements obtained as a 

result of sample composition, surface treatments, surface measurements, and scan size using a 

general linear ANOVA model (SPSS v.17).  Between subject effects were analyzed using a two-

way ANOVA.  By assuming normality, the initial exponential modeled data was transformed 

into a linear model and all data was found to be within two standard deviations from the mean 

values. Contrasts between subjects were determined and a pair-wise comparison was made 

between subjects. Bonferroni’s post-hoc test was selected as it adjusts degrees of freedom for p-

values, and provides insight into data results. Differences with p values less than .05 were 

considered significant.  

3. Results  

 

  The topography of twelve ternary Nitinol alloys was analyzed by AFM over four 

different scan areas within the nanometer to micrometer range.  A comparison of surface 

roughness by RMS and Ra values for scan size III (115x 115 µm) is shown in Figure 1. This scan 

area represented the largest area over which the topographic analysis was conducted in this study. 

At this size, most topographical patterns are evident. It can be seen that the RMS values were 

slightly higher than Ra values for all alloy samples.  The RMS and Ra for NiTiCu were slightly 
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higher than that of NiTi, which had the lowest RMS and Ra values for all samples tested within 

this range.  Results also revealed that the RMS and Ra values of NiTiTa-EP were marginally 

greater than that of NiTi-MEP. The surface area of the alloys was analyzed over this dimensional 

range where the surface features are dimensionally appropriate for cellular adhesion.  The alloys 

with the lowest surface area were in the order of NiTi, NiTiCr, and NiTiCu with NiTiCu having 

the lowest value at 13270 nm
2
. The surface roughness over the smallest scan size of (800 x 800 

nm) is shown in Figure 2, where it can be seen that NiTiCr-MEP had the highest RMS and Ra, 

while NiTi-MEP had the lowest values amongst all alloys. Surface area results within the nano-

scaled dimension of (800 x 800 nm) revealed that NiTiCr-MEP and NiTiCu-MEP distinctly have 

higher surface areas, as compared with that of the untreated or EP treated alloys. NiTiCr-MEP 

and NiTiCu-MEP had the highest RMS, RA and SA values at both the nano-scale and micro-

scale dimensions. The determination of mechanical properties for the NiTi alloys with and 

without MEP and EP surface treatments is summarized in Table 1, which can be compared to the 

mechanical properties of commercial stents as shown in Table 2. NiTiTa-EP had the greatest 

standard deviation of ± 16 for the YM. NiTiTa had the lowest YM and SH values of 32 ± 5 GPa, 

and 1.2 ± 0.2 GPa, respectively.  NiTiCr, NiTiCr-EP, and NiTiCr-MEP had YM and SH values 

that were relatively the same at 98 GPa. 

  SEM images revealed several distinct patterns for all alloys, which are schematically 

represented in Figure 3. All untreated alloys (NiTi, NiTiCr, NiTiCu, NiTiTa) revealed a flat 

morphology and lower Rmax values when compared to the MEP and EP treated alloys.  NiTi-

MEP and EP were also visually flat. NiTiCr-MEP revealed elevated grain boundaries, while 

NiTiCr-EP had depressed grain boundaries. Both NiTiCu-MEP and NiTiCu-EP had depressed 

grain boundaries. NiTiTa-MEP had a flat morphology, while NiTiTa-EP revealed elevated belts 
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which appeared not to be confined at the grain boundaries. NiTi-MEP and NiTiCu-MEP had 

higher Rmax values when compared with NiTi-EP and NiTiCu-EP, while NiTiTa-MEP was 

relatively flat. NiTiCr-EP had a higher Rmax value of 1010 nm, as compared with NiTiCr-MEP 

of 755 nm Rmax value.  

  EDS analysis revealed an aggregation of ternary elements (Cr, Cu) at grain boundaries in 

MEP, EP, and untreated ternary alloys (Figure 4). NiTiCr grain regions possessed low weight 

percentages of the untreated, MEP and EP surfaces (6.05 wt%, 4.43 wt%, and 4.13 wt%, 

respectively). When grain regions were compared with that of the grain boundaries, Cr weight 

percentages at grain boundaries increased substantially to 19.81 wt%, 19.25 wt%, and 19.88 wt%, 

respectively. 

  Lastly, Ra, RMS, and SA were determined for the interior and exterior surfaces of two 

commercially available stents UNC-1 and COL-1. As seen in Figure 5, the interior and exterior 

Ra and RMS of COL-1 were greater than those of UNC-1. Furthermore, the exterior surface of 

stent COL-1 was rougher than the interior surface. An examination of the surface area of the 

UNC-1 stent revealed that its interior surface area was greater than that of its exterior surface. A 

summary of the surface roughness analysis, Ra, RMS, and SA for dimensions I (10 x 10 µm) and 

II (5 x 5 µm) are shown in Table 3. Three-dimensional AFM images of the inner and outer 

surfaces of stents UNC-1 and COL-1 for a scan area of at (40 x 40 µm) scan sizes are shown in 

Figure 6. 

  Generally, the surface roughness (Ra and RMS) of all alloys increased with either EP or 

MEP surface treatments at both the nano and micro scale. There was no significant difference in 

surface area of the treated and untreated alloys at the micro scale. However, there was an 
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appreciable increase in the surface area for the MEP surface treated alloys of NiTiCr-MEP and 

NiTiCu-MEP at the nano-scale dimension. 

3.1 Discussion 

 

Depending upon the methodology used, manufacturing processes and surface finishing 

techniques greatly influence the performance, integrity and quality of the implantable biomaterial 

[26, 27]. Of particular importance is the interaction between the biomaterial and its implanted 

environment. Most important biological responses to an implant are: carcinogenicity, 

cytotoxicity, inflammatory reaction and coagulation [28].
 
   

Human platelet cells are approximately 3.2 – 3.6 µm in diameter and 0.92 - 1.1 µm thick 

[29]. Cells with these dimensions can easily adhere on the rough surfaces of both the bare metal 

stent samples and ternary Nitinol alloys as revealed by the RMS values for all specimens at all 

scan dimensions.  Supporting research has shown that the shapes of Rat Derived Fibroblasts 

(RFDs) can self-modify according to geometric patterns found on the surface to which they may 

adhere to. RFDs can modify their shape and orientation down to a threshold value of 100 nm in 

width and 70 nm in depth, but no cellular accommodation was seen at dimensions less than 35 

nm [30]. Dimensions for such surface features are most comparable to the micro-patterned 

surfaces created by electrochemical surface treatments on the binary and ternary NiTi alloys, 

which can guide endothelial cell adhesion, growth, and reduce the likelihood of in-stent 

restenosis [24, 30 - 32]. Determination of an optimum threshold surface roughness value for 

vascular biomaterials is important, as a surface too rough may rupture the wall of a vessel at the 

implant-wall interface. This need is essential regardless of whether evaluating a bare metal stent 

or drug-eluting/polymer coated stent, as both material types will have a significant variation of 

surface roughness.      
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A worthy consideration is whether the surface roughness of the implantable material 

significantly alters the fluid dynamics within the vasculature. The Reynolds number (NR) which 

is the ratio of convective inertia force to shear force, is used to characterize different flow 

patterns within a vessel [33]. Lower NR values are generally laminar flow patterns, whereas 

higher NR values approach turbulent flow. The Reynolds number is influenced by the vessel 

radius, mean velocity of fluid flow, and the surface roughness of the vessel wall [33]. If an 

implantable device within the vessel has a high surface roughness, the Reynolds number within 

proximity of the implant would increase, influencing the transition zone at which fluid flow is 

changed from being laminar to turbulent. Rougher interior surfaces of an intravascular stent 

would disrupt the laminar boundary layer creating a region of separation from the streamline 

flow and the vessel wall or stent surface. Ultimately, as the region of separation increases, 

turbulent flow would increase, causing the velocity of the fluid in the region of separation to 

slow down and the pressure within the intima to increase [33]. This would further contribute to 

vascular ailments. Clinically, such a phenomenon would resemble symptoms of atherosclerotic 

plaques and artery stenosis; these would be unfavorable effects from intravascular stents with 

large micro-patterned surfaces.   

The presence of deformations on the surface of the material due to precipitate formation 

caused by the inhomogeneity of the material matrix, causes localized stress points throughout the 

material. Such precipitates can be heavily seen on the surface of NiTiTa, NiTiTa-MEP and 

NiTiTa-EP (Figure 7).  It has been shown that such stress points strongly influence the different 

phase transformations for super-elastic materials at different transformation temperatures [34]. 

The characterized roughness on the ternary NiTi alloys could expectedly influence such phase 

transformations due to the higher stress fields within the material induced by the electrochemical 
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MEP and EP surface treatments. Such stress points have also been attributed to the change in 

mechanical properties seen after the MEP and EP surface treatments on the NiTiTa alloys. MEP 

and EP surface treatments have acted in some instances to increase the surface roughness and 

surface area as in NiTiCu, and NiTiCr. This is counter-design intention, as these surface 

treatments are intended to smoothen and reduce the roughness of a material [18-20]. Rmax 

values between grain and grain boundaries showed an increase for magneto-electropolished 

samples NiTi-MEP and NiTiCu-MEP, while electropolished samples NiTiCr-EP, and NiTiTa-EP 

showed an increase in Rmax. This can be attributed to two factors: (1) influence of magnetic 

field during electrochemical treatment, and (2) thermodynamic preferential dissolution of grains 

or grain boundaries due to the electrochemical surface treatment. Accumulation of magnetic 

elements Cu and Cr at grain boundaries produced two different surface morphologies when MEP 

and EP effects were compared (Figure 3). NiTiCr-MEP produced grain boundaries that were 

elevated, while in the absence of a magnetic field the NiTiCr-EP revealed grain boundaries that 

were depressed. However, this was not the case in NiTiCu, which contains a slightly magnetic 

ternary element that becomes more magnetic when alloyed with Ni. In both cases for NiTiCu, 

MEP and EP produced grain boundaries that were depressed. Tantalum being paramagnetic, also 

reacted to the influence of a magnetic field during the MEP surface treatment and resulted in a 

much smoother surface for NiTiTa-MEP (590 nm) when compared to that of NiTiTa (1282 nm) 

and NiTiTa-EP (1699 nm). 

RMS values gathered from all alloys at scan dimensions of (115 x 115 µm) are 

comparable to the RMS values recorded for the interior and exterior surfaces of commercially 

available stents which were analyzed (Figures 1, 5). Interior surface elevations on the stents were 

a maximum of 2 µm in depth, which indicated that they have the potential to alter laminar flow 
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patterns once implanted within a vessel (Figure 6). MEP and EP surface treatments on 

endovascular materials may also disrupt flow regimes within the vessel; however, such grooves 

will allow for enhanced endothelial cell adhesion preventing in-stent restenosis, and reduce the 

risk of thrombogenicity [24, 30- 32]. Laminar flow patterns may be re-established once 

endothelialization of the coronary stent implant is complete.   

In Figure 7, (10 x 10 µm)
 
AFM sections were compared to large scaled SEM images 

showing the general surface features for all of the electrochemically treated alloys. It can be seen 

that AFM images at the (10 x 10 µm)
 
scan dimensions showed rougher surface textures which 

were correlated with SEM images. NiTiCr-MEP AFM images show a very rough surface with 

elevations. This can be compared to its SEM image which shows elevated grain boundaries 

induced by the MEP surface treatment. Likewise, NiTiCu-MEP, NiTiCu-EP, and NiTiCr-EP 

AFM images all show the (10 x 10 µm) regions with reduced roughness which can be correlated 

to depressed grain boundaries as seen in their respective SEM image. NiTiTa-MEP and NiTiTa-

EP SEM images both show a high degree of precipitate formation due to the inhomogeneity of 

Nickel-Titanium-Tantalum. These precipitates can also be seen as cylindrical columns in the (10 

x 10 µm)
 
AFM images. NiTiTa and NiTiTa-EP samples also reveal to have the highest Ra and 

RMS values at the (10 x 10 µm)
 
and (5 x 5 µm)

 
scan dimensions, which has been attributed to 

the high frequency of surface precipitates (Table 3).  

The inhomogeneous multi-phased material formation with NiTiTa has also been 

attributed to the large change in mechanical properties seen after MEP and EP surface treatments 

which could potentially lend to a preferential dissolution of grain or grain boundary regions. 

Likewise,  materials with higher Ra and RMS values, affect corrosion parameters such as icorr and 
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Ecorr , which would effectively increase the corrosion current and free corrosion potential shifts to 

more positive values, thus increasing the rate of corrosion [35].  

YM and SH were determined for all NiTi alloys and are summarized in Table 1. There is 

a linear relationship between the SH and YM for the values as seen for both the different NiTi 

alloys and the commercial stents (Table 2). Generally, a higher surface hardness value tends to 

correlate to a higher YM value. This is a reasonable expectation as explained by Hertzian contact 

mechanics, which produces a relationship between tip geometry, contact area for tip radius and 

specimen surface, and the applied load to the indenter [36]. From the nano-indentation testing, 

the area of contact is determined from the indentation depth and the geometry of the tip [36]. As 

a load is applied to the surface of the material, the resistant force produces the surface hardness 

data. The elastic modulus is determined from the elastic recovery phase during the unloading of 

the indenter from the specimen surface [37].   NiTiTa-EP and NiTiCr, NiTiCr-MEP, and NiTiCr-

EP, have higher YM and SH values when compared to other ternary surface treated alloys and 

NiTi (Table 1). The increase in surface hardness values is most likely due to the presence of 

ternary elements like Ta and Cr.  RMS values tend to be directly proportional with YM and SH 

values at the (10 x 10 µm) and (5 x 5 µm) scan dimensions for NiTiCr-MEP, NiTiCr-EP, 

NiTiTa-EP, NiTiCu, NiTiCu-MEP, and NiTiCu-EP. However, because this trend was not 

consistent amongst all of the data, it is not conclusive. Such variation in data measurements 

could be attributed to the super-elastic nature of these materials, as they readily undergo phase 

transformations at different temperatures. Therefore, the experimental values for YM, SH, as 

well as Ra, SA, and RMS values reported by AFM testing, might change as environmental 

temperatures vary leading to some instances where the determination of the mechanical 

properties for the different binary and ternary alloys may be contradictory [38].   
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Surface characterization of implantable materials is especially influential for therapies 

involved in a direct interface with flowing blood. A rough surface promotes faster blood 

coagulation than a surface that is highly polished [39-40]. Again, this can be explained by 

regions of blood flow separation. If the interior surface of a stent is rough, there would be a 

reduction in the velocity of blood in the separated regions of flow causing points of stagnation 

near the boundary layer on the surface of the implant, thus leading to more blood being 

coagulated [33]. In this study, it is evident that the addition of copper to Nitinol yielded lower 

surface roughness and surface area values when analyzed at scan areas of (115 x 115 µm). Such 

smoother surfaces may lead to reduced corrosion, and reduced risks of thrombosis [41-43].   

 It should be noted that in-vitro and in vivo data with materials containing copper, have 

shown copper’s toxicity and role in the mechanism of Alzheimer’s disease [44]. While excessive 

amounts of copper within the body are toxic to cells, the addition of Cu to NiTi has been shown 

to control the transformation hysteresis which super elastic materials readily undergo [45]. 

Therefore, material designs including Cu should be strictly controlled.  The application of 

polishing has increased the surface roughness of ternary NiTiCu, relative to the unpolished 

NiTiCu. Copper’s readiness to dissolve from the NiTi matrix provides probable insight into the 

increased cytotoxicity and poor cell adhesion and activity of Human Fibroblast cells when 

fixated on NiTiCu as reported during in-vitro studies [45]. NiTiCu was the smoothest alloy, 

while NiTiTa and NiTiTa-EP had the highest RMS values often reaching statistical significance.  

 Analyzing RMS, SA, and Ra values at scan dimensions of (800 x 800 nm), (5 x 5 µm), 

(10 x 10 µm), and (115 x 115 µm), provided a conceptualization of cell-to-surface area ratio for 

possible protein adsorption and cellular binding regions. Scan dimensions at (800 x 800 nm)
 
and 

(115 x 115 µm)
 
are at the extremes of analysis. RMS and SA data for each analysis dimension 
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greatly vary due to the localized surface roughness. At (115 x 115 µm), scans were made to 

evaluate a broader scope of the surface, which would account for the micrometer changes in 

vertical displacement between the grains and the elevated or depressed grain boundaries due to 

the MEP and EP surface treatments. RMS values gathered from the (800 x 800 nm)
 
scan 

dimension are more representative of a protein binding site, which is small enough to be 

measured on the surface of an elevated or depressed grain boundary, or on the surface of the 

grain itself [1]. In Figure 4, it can be seen that the surface area is higher for the (800 x 800 nm)
 

scan dimension as compared to the (115 x 115 µm) scan dimension.  

This can be explained by the RMS measurement of surface roughness. In the (115 x 115 

µm)  scan dimension, the variability of roughness is much higher because the difference between 

high and low regions on the surface is greater, but fails to translate into a larger surface area 

(Figure 11-A). Rather, if the variability of surface roughness is less, but the frequency of 

variance is higher, then a region with a higher surface area would result as seen from analysis at 

the (800 x 800 nm) scan dimension (Figure 11-B). 

4. Conclusions 

  

 Atomic force microscopy provides a powerful tool for analyzing the surface of alloys at 

the micrometer and sub-micrometer scale. In terms of the biocompatibility of an implant, such 

analysis allows for predictive inferences on the interaction between the implant surface, blood 

proteins, and cellular interactions. Results from experimentation revealed a positive correlation 

between surface roughness and available surface area. Reported RMS values were nearly always 

higher than surface roughness (Ra) values for all alloys, except in the case of NiTiCu-EP. EP and 

MEP treated alloys had higher RMS values in scan dimensions I, II, III, and IV. Alloys without 

MEP or EP surface treatments exhibited a flat 2-D profile, while NiTiCu showed depressed grain 
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boundaries relative to grain regions after MEP and EP treatments, and NiTiCr-MEP showed 

elevated grain boundaries when compared with that of NiTiCr-EP. EDS analysis revealed an 

accumulation of ternary elements (Cr, Cu) at the grain boundaries in substantial amounts, while 

grain regions contained minimal weight percentages. MEP surface treatments were effective in 

increasing surface roughness for ternary alloys with magnetic elements like Cu and Cr, whereas 

EP surface treatments were marginally less effective on binary and ternary Nitinol alloys without 

a magnetic ternary element. Ternary NiTiCr with/without MEP and EP were tested to be more 

consistent than other alloys, as roughness measurements were consistently higher, independent 

of scan dimension, and elemental phase separation was minimal. NiTiCr alloys developed well-

defined elevated grain boundaries with an MEP surface treatment and depressed grain 

boundaries with an EP surface treatment, thus creating a micro-patterned surface in favor of 

accelerated endothelialization, reducing the likelihood of post-treatment in-stent restenosis and 

thrombosis.  
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