Date of this Version

11-1-2017

Document Type

Article

Rights

default

Abstract

In this paper we successfully developed a procedure to generate the (+) supercoiled (sc) plasmid DNA template pZXX6 in the milligram range. With the availability of the (+) sc DNA, we are able to characterize and compare certain biochemical and biophysical properties of (+) sc, (-) sc, and relaxed (rx) DNA molecules using different techniques, such as UV melting, circular dichroism, and fluorescence spectrometry. Our results show that (+) sc, (-) sc, and rx DNA templates can only be partially melted due to the fact that these DNA templates are closed circular DNA molecules and the two DNA strands cannot be completely separated upon denaturation at high temperatures. We also find that the fluorescence intensity of a DNA-binding dye SYTO12 upon binding to the (-) sc DNA is significantly higher than that of its binding to the (+) sc DNA. This unique property may be used to differentiate the (-) sc DNA from the (+) sc DNA. Additionally, we demonstrate that E. coli topoisomerase I cannot relax the (+) sc DNA. In contrast, E. coli DNA gyrase can efficiently convert the (+) sc DNA to the (-) sc DNA. Furthermore, our dialysis competition assays show that DNA intercalators prefer binding to the (-) sc DNA.

DOI

10.1016/j.bpc.2017.08.008

Identifier

28887044

Comments

Biophys Chem. Author manuscript; available in PMC 2018 Nov 1. Published in final edited form as: Biophys Chem. 2017 Nov; 230: 68–73. Published online 2017 Sep 1. doi: 10.1016/j.bpc.2017.08.008

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).