Date of this Version

6-17-2019

Document Type

Article

Abstract

Crowdsourced data can effectively observe environmental and urban ecosystem processes. The use of data produced by untrained people into flood forecasting models may effectively allow Early Warning Systems (EWS) to better perform while support decision-making to reduce the fatalities and economic losses due to inundation hazard. In this work, we develop a Data Assimilation (DA) method integrating Volunteered Geographic Information (VGI) and a 2D hydraulic model and we test its performances. The proposed framework seeks to extend the capabilities and performances of standard DA works, based on the use of traditional in situ sensors, by assimilating VGI while managing and taking into account the uncertainties related to the quality, and the location and timing of the entire set of observational data. The November 2012 flood in the Italian Tiber River basin was selected as the case study. Results show improvements of the model in terms of uncertainty with a significant persistence of the model updating after the integration of the VGI, even in the case of use of few-selected observations gathered from social media. This will encourage further research in the use of VGI for EWS considering the exponential increase of quality and quantity of smartphone and social media user worldwide.

Originally Published In

Geo-spatial Information Science

DOI

10.1080/10095020.2019.1626135

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Life Sciences Commons

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).