Date of this Version

2013

Document Type

Article

Abstract

We study atomic coherence and interference in four-level atoms confined in an optical cavity and explores the interplay between cavity QED and electromagnetically induced transparency (EIT). The destructive interference can be induced in the coupled cavityatom system with a free-space control laser tuned to the normal mode resonance and leads to suppression of the normal mode excitation. Then by adding a pump laser coupled to the four-level atoms from free space, the control-laser induced destructive interference can be reversed and the normal mode excitation is restored. When the free-space control laser is tuned to the atomic resonance and forms a Λ-type EIT configuration with the cavity-atom system, EIT is manifested as a narrow transmission peak of a weak probe laser coupled into the cavity mode. With the free-space pump laser driving the cavity-confined atoms in a four-level configuration, the narrow transmission peak of the cavity EIT can be split into two peaks and the dressed intra-cavity dark states are created analogous to the dressed states in free space. We report experimental studies of such coherently coupled cavityatom system realized with cold Rb atoms confined in an optical cavity and discuss possible applications in quantum nonlinear optics and quantum information science.

Comments

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

doi: 10.1088/1742-6596/414/1/012001

Included in

Physics Commons

Share

COinS