Date of this Version

7-22-2014

Document Type

Article

Abstract

The enzymatic biofuel cells (EBFCs) are considered as an attractive candidate for powering future implantable medical devices. In this study, a computational model of EBFCs based on three-dimensional (3-D) interdigitated microelectrode arrays was conducted. The main focus of this research is to investigate the effect of different designs and spatial distributions of the microelectrode arrays on mass transport of fuels, enzymatic reaction rate, open circuit output potential and current density. To optimize the performance of the EBFCs, numerical simulations have been performed for cylindrical electrodes with various electrode heights and well widths. Optimized cell performance was obtained when the well width is half of the height of the 3-D electrode. In addition, semi-elliptical shaped electrode is preferred based on the results from current density and resistive heating simulation.

Comments

Originally published in Energies.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).