FCE LTER Journal Articles

Title

The role of economic, policy, and ecological factors in estimating the value of carbon stocks in Everglades mangrove forests, South Florida, USA

Abstract

Old growth mangroves in existing protected areas store more carbon than restored forests or plantations. Carbon storage in such forests has economic value independent of additionality, offering opportunities for policy makers to ensure their maintenance, and inclusion in climate change mitigation strategies. Mangrove forests of the Everglades National Park (ENP), South Florida, though protected, face external stressors such as hydrological alterations because of flooding control structures and agriculture impacts and saltwater intrusion as a result of increasing sea level rise. Moreover, decreased funding of Everglades’ restoration activities following the recent economic crisis (beginning 2008) threatens the restoration of the Greater Everglades including mangrove dominated coastal regions. We evaluate several economic and ecological challenges confronting the economic valuation of total (vegetation plus soil) organic carbon (TOC) storage in the ENP mangroves. Estimated TOC storage for this forested wetland ranges from 70 to 537 Mg C/ha and is higher than values reported for tropical, boreal, and temperate forests. We calculate the average abatement cost of C specific for ENP mangroves to value the TOC from $2–$3.4 billion; estimated unit area values are $13,859/ha–$23,728/ha. The valuation of the stored/legacy carbon is based on the: 1) ecogeomorphic attributes, 2) regional socio-economic milieu, and 3) status of the ENP mangroves as a protected area. The assessment of C storage estimates and its economic value can change public perception about how this regulating ecosystem service of ENP mangrove wetlands (144,447 ha) supports human well-being and numerous economic activities. This perception, in turn, can contribute to future policy changes such that the ENP mangroves, the largest mangrove area in the continental USA, can be included as a potential alternative in climate change mitigation strategies.

Comments

http://dx.doi.org/10.1016/j.envsci.2016.09.005

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DEB-1237517, #DBI-0620409, and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

This document is currently not available here.

Share

COinS