FCE LTER Journal Articles


There is an increasing recognition that the influence of extreme climate events (ECE) can be more significant in structuring ecosystem dynamics than the gradual effects of climate change. Still, our understanding of the effects of climate extremes on ecosystem services such as marine fisheries lags behind those of effects of gradual change. The significance of ECEs depends on the severity of the disturbance event and the resilience of a fish community. South Florida experienced an extreme cold spell in 2010 that provided the opportunity to study recreational fisheries resilience to ECEs. Our main goal was to examine how recreational fishing catch structures responded to the cold spell, and illustrate any spatial-specific recovery trajectory dynamics after extreme ecological responses. To address this, we implemented multivariate and nonlinear statistics on fishing guide reports for 20 recreational species. A significant shift in the catch structure occurred after the event, suggesting a high sensitivity of fish populations and fisheries in the region to ECEs. All fishing regions considered were affected, but the trajectory of the response and recovery varied across study areas. While some fish species experienced an expected decline (due to mortality), other species manifested an increase in catch. Of the main seven species considered in nonlinear models, three experienced a decline (bonefish, snook, goliath grouper), two experienced an increase (red drum, gray snapper), and the two had various weak trends (tarpon, spotted seatrout). Three years after the event, the catch structure has not returned to the original state, indicating a possible state shift, whose stability needs to be determined in future tracking of affected populations. Future work should also address the extent to which harvest may interfere with resilience to ECEs. Our work highlights the need to account for rare environmental forcing induced by ECEs to ensure the ecological and economical sustainability of key services such as recreational fisheries.


© 2016 Santos et al. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/ecs2.1335

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DEB-1237517, #DBI-0620409, and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Included in

Life Sciences Commons