FCE LTER Journal Articles

Abstract

The elemental (C, N, and P) and isotope (δ13C, δ15N) content of leaves of the seagrasses Thalassia testudinum, Halodule wrightii, and Syringodium filiforme were measured across a 10 000 km2 survey of the seagrass communities of South Florida, USA, in 1999 and 2000. Trends at local and broad spatial scales were compared to examine interspecific variation in the seagrass characteristics often used as ecological indicators. The elemental and stable isotope contents of all species were variable and demonstrated marked interspecific variation. At broad spatial scales, mean N:P ratios were lowest for T. testudinum (36.5 ± 1.1) and S. filiforme (38.9 ± 1.3), and highest for H. wrightii (44.1 ± 1.8). Stable carbon isotope ratios (δ13C) were highest for S. filiforme (–6.2 ± 0.2‰), intermediate for T. testudinum (–8.6 ± 0.2‰), and lowest for H. wrightii (–10.6 ± 0.3‰). Stable nitrogen isotopes (δ15N) were heaviest for T. testudinum (2.0 ± 0.1‰), and lightest for H. wrightii (1.0 ± 0.3‰) and S. filiforme (1.6 ± 0.2‰). Site depth was negatively correlated to δ13C for all species, while δ15N was positively correlated to depth for H. wrightii and S. filiforme. Similar trends were observed in local comparisons, suggesting that taxon-specific physiological/ecological properties strongly control interspecific variation in elemental and stable isotope content. Temporal trends in δ13C were measured, and revealed that interspecific variation was displayed throughout the year. This work documents interspecific variation in the nutrient dynamics of 3 common seagrasses in South Florida, indicating that interpretation of elemental and stable isotope values needs to be species specific.

Comments

Post Print Version.

Copyright © 2009 Inter Research.

The definitive publisher-authenticated version is available online at http://dx.doi.org/10.3354/meps08093

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.



Files over 15MB may be slow to open. For best results, right-click and select "Save as..."

Share

COinS