FCE LTER Journal Articles


The extraction of climatic signals from time series of biogeochemical data is further complicated in estuarine regions because of the dynamic interaction of land, ocean, and atmosphere. We explored the behavior of potential global and regional climatic stressors to isolate specific shifts or trends, which could have a forcing role on the behavior of biogeochemical descriptors of water quality and phytoplankton biomass from Florida Bay, as an example of a sub-tropical estuary. We performed statistical analysis and subdivided the bay into six zones having unique biogeochemical characteristics. Significant shifts in the drivers were identified in all the chlorophyll a time series. Chlorophyll a concentrations closely follow global forcing and display a generalized declining trend on which seasonal oscillations are superimposed, and it is only interrupted by events of sudden increase triggered by storms which are followed by a relatively rapid return to pre-event conditions trailing again the long-term trend.


Post Print Version

Copyright © 2010 Springer.

The definitive publisher-authenticated version is available online at http://dx.doi.org/10.1007/s12237-009-9189-1

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.