Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Major/Program

Chemistry

First Advisor's Name

Fenfei Leng

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Lou W. Kim

Third Advisor's Name

Zhongwei Li

Fourth Advisor's Name

Joong-ho Moon

Fifth Advisor's Name

Kathleen Rein

Keywords

Transcription-coupled DNA supercoiling; Promoter strength; E. coli topA strains; Twin-supercoiled-domain model of transcription; Hypernegatively supercoiled DNA

Date of Defense

12-5-2012

Abstract

Transcription by RNA polymerase can induce the formation of hypernegatively supercoiled DNA both in vivo and in vitro. This phenomenon has been explained by a “twin-supercoiled-domain” model of transcription where a positively supercoiled domain is generated ahead of the RNA polymerase and a negatively supercoiled domain behind it. In E. coli cells, transcription-induced topological change of chromosomal DNA is expected to actively remodel chromosomal structure and greatly influence DNA transactions such as transcription, DNA replication, and recombination.

In this study, an IPTG-inducible, two-plasmid system was established to study transcription-coupled DNA supercoiling (TCDS) in E. coli topA strains. By performing topology assays, biological studies, and RT-PCR experiments, TCDS in E. coli topA strains was found to be dependent on promoter strength. Expression of a membrane-insertion protein was not needed for strong promoters, although co-transcriptional synthesis of a polypeptide may be required. More importantly, it was demonstrated that the expression of a membrane-insertion tet gene was not sufficient for the production of hypernegatively supercoiled DNA. These phenomenon can be explained by the “twin-supercoiled-domain” model of transcription where the friction force applied to E. coli RNA polymerase plays a critical role in the generation of hypernegatively supercoiled DNA.

Additionally, in order to explore whether TCDS is able to greatly influence a coupled DNA transaction, such as activating a divergently-coupled promoter, an in vivo system was set up to study TCDS and its effects on the supercoiling-sensitive leu-500 promoter. The leu-500 mutation is a single A-to-G point mutation in the -10 region of the promoter controlling the leu operon, and the AT to GC mutation is expected to increase the energy barrier for the formation of a functional transcription open complex. Using luciferase assays and RT-PCR experiments, it was demonstrated that transient TCDS, “confined” within promoter regions, is responsible for activation of the coupled transcription initiation of the leu-500 promoter. Taken together, these results demonstrate that transcription is a major chromosomal remodeling force in E. coli cells.

Identifier

FI13042332

Included in

Biochemistry Commons

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).