Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Department

Materials Science and Engineering

Advisor's Name

Norman Munroe

Advisor's Title

Committee Chair

Advisor's Name

Kuang-Hsi Wu

Advisor's Name

Hua-Tay Lin

Advisor's Name

Kinzy Jones

Advisor's Name

Anthony McGoron

Keywords

Magnesium, Biodegradable, Electrochemical, Anodization, Hydroxyapatite, Electrochemical Impedance Spectroscopy, Corrosion, Cytotoxicity

Date of Defense

5-11-2012

Abstract

Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.

Files over 15MB may be slow to open. For best results, right-click and select "Save as..."

Share

COinS