Document Type

Dissertation

Degree

Doctor of Philosophy

Department

Biology

Advisor's Name

Maureen A. Donnelly

Advisor's Title

Committee Chair

Advisor's Name

Craig Guyer

Advisor's Name

Thomas Philippi

Advisor's Name

Joel Heinen

Advisor's Name

Michael Heithaus

Date of Defense

5-20-2011

Abstract

Amphibian populations are declining even in pristine areas in many parts of the world, and in the Neotropics most such enigmatic amphibian declines have occurred in mid- to high-elevation sites. However, amphibian populations have also declined at La Selva Biological Station in the lowlands of Costa Rica, and similar declines in populations of lizards have occurred at the site as well. To set the stage for describing amphibian declines at La Selva, I thoroughly review knowledge of amphibian decline and amphibian conservation in Central America: I describe general patterns in biodiversity, evaluate major patterns in and ecological correlates of threat status, review trends in basic and applied conservation literature, and recommend directions for future research. I then synthesize data on population densities of amphibians, as well as ecologically similar reptiles, over a 35-year periods using quantitative datasets from a range of studies. This synthesis identifies assemblage-wide declines of approximately 75% for both amphibians and reptiles between 1970 and 2005. Because these declines defy patterns most commonly reported in the Neotropics, it is difficult to assess causality evoking known processes associated with enigmatic decline events. I conduct a 12-month pathogen surveillance program to evaluate infection of frogs by the amphibian chytrid fungus, an emerging pathogen linked to decline events worldwide Although lowland forests are generally believed to be too warm for presence or adverse population effects of chytridiomycosis, I present evidence for seasonal patterns in infection prevalence with highest prevalence in the coolest parts of the year. Finally, I conducted a 16-month field experiment to explore the role of changes to dynamics of leaf litter, a critical resource for both frogs and lizards. Population responses by frogs and lizards indicate that litter regulates population densities of frogs and lizards, particularly those species with the highest decline rate. My work illustrates that sites that are assumed to be pristine are likely impacted by a variety of novel stressors, and that even fauna within protected areas may be suffering unexpected declines.