Document Type

Dissertation

Degree

Doctor of Philosophy

Department

Mechanical Engineering

First Advisor's Name

Norman D. H. Munroe

First Advisor's Title

Committee Chair

Second Advisor's Name

Arvind Agarwal

Second Advisor's Title

Committee Member

Third Advisor's Name

Chaouki Ghenai

Third Advisor's Title

Committee Member

Fourth Advisor's Name

Cheng-Xian Lin

Fourth Advisor's Title

Committee Member

Fifth Advisor's Name

Yiding Cao

Fifth Advisor's Title

Committee Member

Keywords

Nonpremixed Flame, Soot volume fraction, Carbon Black, Ethylene Flame, Pulsed flame, Laser Induced Incandescence, LII, Soot, Diffusion flame, Time Resolved Laser Induced Incandescence

Date of Defense

3-29-2006

Abstract

Combustion-generated carbon black nano particles, or soot, have both positive and negative effects depending on the application. From a positive point of view, it is used as a reinforcing agent in tires, black pigment in inks, and surface coatings. From a negative point of view, it affects performance and durability of many combustion systems, it is a major contributor of global warming, and it is linked to respiratory illness and cancer.

Laser-Induced Incandescence (LII) was used in this study to measure soot volume fractions in four steady and twenty-eight pulsed ethylene diffusion flames burning at atmospheric pressure. A laminar coflow diffusion burner combined with a very-high-speed solenoid valve and control circuit provided unsteady flows by forcing the fuel flow with frequencies between 10 Hz and 200 Hz. Periodic flame oscillations were captured by two-dimensional phase-locked LII images and broadband luminosity images for eight phases (0°- 360°) covering each period. A comparison between the steady and pulsed flames and the effect of the pulsation frequency on soot volume fraction in the flame region and the post flame region are presented. The most significant effect of pulsing frequency was observed at 10 Hz. At this frequency, the flame with the lowest mean flow rate had 1.77 times enhancement in peak soot volume fraction and 1.2 times enhancement in total soot volume fraction; whereas the flame with the highest mean flow rate had no significant change in the peak soot volume fraction and 1.4 times reduction in the total soot volume fraction. A correlation (ƒv Reˉ1 = a+b· Str) for the total soot volume fraction in the flame region for the unsteady laminar ethylene flames was obtained for the pulsation frequency between 10 Hz and 200 Hz, and the Reynolds number between 37 and 55. The soot primary particle size in steady and unsteady flames was measured using the Time-Resolved Laser-Induced Incandescence (TIRE-LII) and the double-exponential fit method. At maximum frequency (200 Hz), the soot particles were smaller in size by 15% compared to the steady case in the flame with the highest mean flow rate.

Share

COinS