Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Department

Physics

First Advisor's Name

Misak Sargsian

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Werner Boeglin

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

Lei Guo

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Mirroslav Yotov

Fourth Advisor's Committee Title

Committee Member

Keywords

nuclear, QCD, pQCD, short range correlations, SRC, EMC, vector meson, DGLAP, nuclear physics, nuclear reactions, nuclei

Date of Defense

3-29-2016

Abstract

The environment inside the atomic nucleus is one of the most fascinating arenas for the study of quantum chromodynamics (QCD). The strongly-interacting nature of the nuclear medium affects the nature of both QCD processes and the quark-gluon structure of hadrons, allowing several unique aspects of the strong nuclear force to be investigated in reactions involving nuclear targets. The research presented in this dissertation explores two aspects of nuclear QCD: firstly, the partonic structure of the nucleus itself; and secondly, the use of the nucleus as a micro-laboratory in which QCD processes can be studied.

The partonic structure of the nucleus is calculated in this work by deriving and utilizing a convolution formula. The hadronic structure of the nucleus and the quark-gluon structure of its constituent nucleons are taken together to determine the nuclear partonic structure. Light cone descriptions of short range correlations, in terms of both hadronic and partonic structure, are derived and taken into account. Medium modifications of the bound nucleons are accounted for using the color screening model, and QCD evolution is used to connect nuclear partonic structure at vastly different energy scales. The formalism developed for calculating nuclear partonic structure is applied to inclusive dijet production from proton-nucleus collisions at LHC kinematics, and novel predictions are calculated and presented for the dijet cross section.

The nucleus is investigated as a micro-laboratory in vector meson photoproduction reactions. In particular, the deuteron is studied in the break-up reaction γd → Vpn, for both the ϕ(1020) and J/ψ vector mesons. The generalized eikonal approximation is utilized, allowing unambiguous separation of the impulse approximation and final state interactions (FSIs). Two peaks or valleys are seen in the angular distribution of the reaction cross section, each of which is due to an FSI between either the proton and neutron, or the produced vector meson and the spectator nucleon. The presence and size of the latter FSI valley/peak contains information about the meson-nucleon interaction, and it is shown that several models of this interaction can be distinguished by measuring the angular distribution for the deuteron breakup reaction.

Identifier

FIDC000229

dissertation.zip (19268 kB)
LaTeX files

Included in

Nuclear Commons

Share

COinS