Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Department

Biology

Advisor's Name

Dr. Craig Layman

Keywords

Common Snook, Lionfish, Eastern Oyster, Estuary, Restoration, Invasive Species, Freshwater Inflow, Disturbance

Date of Defense

3-25-2014

Abstract

With the majority of Earth’s population living in coastal areas, estuarine ecosystems have been particularly affected by anthropogenic disturbances. My dissertation research focused on three interrelated types of human disturbance that affect estuaries: Anthropogenic alteration of freshwater inflow, the introduction of invasive species, and habitat alteration. Using the LoxahatcheeRiver(Jupiter, FL) as a model system, my goal was to understand how these disturbances affect estuarine organisms, particularly fishes. One of the most ecologically harmful disturbances affecting estuaries is anthropogenic alteration of freshwater inflow (and resulting changes in salinity patterns). To identify effects of freshwater inflow on the behavior of an ecologically and economically important fish (common snook Centropomus undecimalis), I conducted a 19-month acoustic telemetry study. Common snook were more abundant and made more frequent upstream migrations during the wet season, but freshwater inflow did not appear to be the proximate cause for these behaviors. Increased estuarine salinity resulting from anthropogenic flow alteration may have facilitated the second type of disturbance that I address in this dissertation; the invasion of non-native Indo-Pacific lionfish into estuarine habitats. During the course of my dissertation research, I documented the first ever estuarine invasion by non-native lionfish. Using mark-recapture, I identified high site fidelity in lionfish, a trait that may aid future control efforts. The extremely low minimum salinity tolerance that I identified in lionfish appears to have allowed the species to colonize far upriver in estuaries with anthropogenically modified salinity patterns. Anthropogenic salinity alteration has also led to a severe degradation of oyster reef habitats in theLoxahatcheeRiver. As a foundation species, oysters provide food, shelter, and nursery habitat for a wide variety of estuarine organisms, including many ecologically and economically important fishes. Increasingly, degraded oyster reef habitats have been the focus of restoration efforts. I identified a relatively rapid (< 2 years) convergence between restored and natural oyster reef communities, and documented the importance of vertical relief in restoration success. My dissertation research is critical for the management and conservation of coastal rivers inFlorida, while more broadly informing restoration and management decisions in many other estuarine and coastal ecosystems.