Document Type

Thesis

Degree

Master of Science (MS)

Department

Statistics

First Advisor's Name

B. M. Golam Kibria

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Zhenmin Chen

Third Advisor's Name

Sneh Gulati

Fourth Advisor's Name

Dinesh Sharma

Date of Defense

7-9-2008

Abstract

This thesis proposes some confidence intervals for the mean of a positively skewed distribution. The following confidence intervals are considered: Student-t, Johnson-t, median-t, mad-t, bootstrap-t, BCA, T1 , T3 and six new confidence intervals, the median bootstrap-t, mad bootstrap-t, median T1, mad T1 , median T3 and the mad T3. A simulation study has been conducted and average widths, coefficient of variation of widths, and coverage probabilities were recorded and compared across confidence intervals. To compare confidence intervals, the width and coverage probabilities were compared so that smaller widths indicated a better confidence interval when coverage probabilities were the same. Results showed that the median T1 and median T3 outperformed other confidence intervals in terms of coverage probability and the mad bootstrap-t, mad-t, and mad T3 outperformed others in terms of width. Some real life data are considered to illustrate the findings of the thesis.

Identifier

FI13101599

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).