Spectroscopy of Electroproduced Light to Medium Mass Lambda Hypernuclei

Pavlo Baturin, Florida International University

Abstract

The E01-011 experiment at Jefferson Laboratory (JLab) studied light-to-medium mass Λ hypernuclei via the AZ + eAL Z-1 + e' + K+ electroproduction reaction. Precise measurement of hypernuclear ground state masses and excitation energies provides information about the nature of hyperon-nucleon interactions. ^ Until recently, hypernuclei were studied at accelerator facilities with intense π+ and K- meson beams. The poor quality of these beams limited the resolution of the hypernuclear excitation energy spectra to about 1.5 MeV (FWHM). This resolution is not sufficient for resolving the rich structure observed in the excitation spectra. By using a high quality electron beam and employing a new high resolution spectrometer system, this study aims to improve the resolution to a few hundred keV with an absolute precision of about 100 keV for excitation energies. ^ In this work the high-resolution excitation spectra of B12L, H7Le , and A28Ll hypernuclei are presented. In an attempt to emphasize the presence of the core-excited states we introduced a novel likelihood approach to particle identification (PID) to serve as an alternative to the commonly used standard hard-cut PID. The new method resulted in almost identical missing mass spectra as obtained by the standard approach. An energy resolution of approximately 400–500 keV (FWHM) has been achieved, an unprecedented value in hypernuclear reaction spectroscopy. For B12L the core-excited configuration has been clearly observed with significant statistics. The embedded Λ hyperon increases the excitation energies of the 11B nuclear core by 0.5–1 MeV. The H7Le spectrum has been observed with significant statistics for the first time. The ground state is bound deeper by roughly 400 keV than currently predicted by theory. Indication for the core-excited doublet, which is unbound in the core itself, is observed. The measurement of A28Ll provides the first study of a d-shell hypernucleus with sub-MeV resolution. Discrepancies of up to 2 MeV between measured and theoretically predicted binding energies are found. Similar disagreement exists when comparing to the S28Li mirror hypernucleus. Also the core-excited structure observed between the major s-, p- and d-shell Λ orbits is not consistent with the available theoretical calculations. ^ In conclusion, the discrepancies found in this study will provide valuable input for the further development of theoretical models.^

Subject Area

Physics, Radiation|Physics, Elementary Particles and High Energy

Recommended Citation

Pavlo Baturin, "Spectroscopy of Electroproduced Light to Medium Mass Lambda Hypernuclei" (January 1, 2010). ProQuest ETD Collection for FIU. Paper AAI3431315.
http://digitalcommons.fiu.edu/dissertations/AAI3431315

Files over 15MB may be slow to open. For best results, right-click and select "Save as..."

Share

COinS