Insulin-like growth factor-I gene expression as a growth indicator in Nile tilapia Oreochromis niloticus L.

Emmanuel Manalad Vera Cruz, Florida International University

Abstract

Somatic growth in fishes is regulated by a variety of hormones. A central step in this hormonal network is the growth hormone-insulin-like growth factor-I (IGF-I) axis. Studies conducted evaluated the relationship of hepatic IGF-I (hIGF-1) mRNA with growth as affected by feeding regimes (satiation or restricted level; daily or alternate-day feeding), temperatures (high, ambient, low) and by social stress. ^ To develop a cellular means for the quantification of hIGF-I mRNA levels in O. niloticus, hIGF-I cDNA was isolated and cloned. The partial sequence of IGF-I cDNA encodes for signal peptide, mature protein and a portion of the E-domain. A sensitive TaqMan quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed based on the mature IGF-I. Using the developed qRT-PCR assay a significant positive correlation was observed between hIGF-I mRNA levels and growth rate of fish reared under different feeding regimes (r = 0.64) and temperature conditions (r = 0.64). ^ On the dynamics of hIGF-I gene expression in response to elevated temperature, hIGF-I mRNA levels were significantly elevated after at least 2 days of exposure to warm temperature. This validates the concept that hIGF-I gene expressions are sufficiently sensitive to be used as a rapid growth rate indicator for O. niloticus. The hIGF-I levels have a significant positive correlation with specific growth rate (length; r = 0.92), and with condition factor (r = 0.55). ^ On the effect of social stress, differential alterations in growth rates between the dominant and subordinates were observed which was attributed more to behavioral changes as transduced by physiological regulators. The fish's relative position in the social hierarchy was consistently reflected in the levels of hIGF-I mRNA and the eye color pattern. Subordination depressed hIGF-I levels while dominance stimulated it. ^ These findings have shown that hGF-I level remained positively correlated to growth rate as affected by feeding regime, temperature and social stress. This suggests that hIGF-I plays a key role in controlling growth in O. niloticus and indicates that IGF-I mRNA quantification could prove useful for the rapid assessment of growth rate in this species of fish. ^

Subject Area

Biology, Molecular|Biology, Physiology

Recommended Citation

Vera Cruz, Emmanuel Manalad, "Insulin-like growth factor-I gene expression as a growth indicator in Nile tilapia Oreochromis niloticus L." (2006). ProQuest ETD Collection for FIU. AAI3249722.
http://digitalcommons.fiu.edu/dissertations/AAI3249722

Share

COinS