Improving Current-Asymmetry of Metal-Insulator-Metal Tunnel Junctions

Aparajita Singh, Florida International University


In this research, Ni–NiOx–Cr and Ni–NiOx–ZnO–Cr metal-insulator-metal (MIM) junction based tunnel diodes have been investigated for the purpose of a wide-band detector. An MIM diode has a multitude of applications such as harmonic mixers, rectifiers, millimeter wave and infrared detectors. Femtosecond-fast electron transport in MIM tunnel diodes also makes them attractive for energy-harvesting devices. These applications require the tunnel diodes to have high current-asymmetry and non-linear current-voltage behavior at low applied voltages and high frequencies. Asymmetric and non-linear characteristics of Ni–NiOx-Cr MIM tunnel diodes were enhanced in this research by the addition of ZnO as a second insulator layer in the MIM junction to form metal-insulator-insulator-metal (MIIM) structure. ^ Electrical characteristics were studied in a voltage range of ±0.5 V for the single-insulator Ni–NiOx–Cr and double-insulator Ni–NiOx–ZnO–Cr tunnel diodes. Since the electrical characteristics of the diode are sensitive to material selection, material arrangement, thickness, deposition techniques and conditions, understanding the diode behavior with respect to these factors is crucial to developing a robust diode structure. Thus, ZnO insulator layer in MIIM junction was deposited by two different techniques: sputtering and atomic layer deposition (ALD). Also, the optical properties were characterized for the sputter deposited NiOx insulator layers by ellipsometry and the impact of annealing was explored for the NiOx optical properties. ^ The Ni–NiOx–Cr MIM tunnel diodes provide low resistance but exhibit a low (~1) current-asymmetry. Asymmetry increased by an order of magnitude in case of Ni–NiOx–ZnO–Cr MIIM tunnel diode. The sensitivity of the MIM and MIIM diodes was 11 V-1 and 16 V-1, respectively. The results suggest that the MIIM diode can provide improved asymmetry at low voltages. The tunneling behavior of the device was also demonstrated in the 4–298K temperature range. It is hypothesized that the improved performance of the bilayer insulator diode is due to resonant tunneling enabled by the second insulator. Finally, the MIM and MIIM devices were investigated for wide-band detection up to 50GHz (RF) and 0.3THz (optical).^

Subject Area

Electrical engineering|Materials science

Recommended Citation

Singh, Aparajita, "Improving Current-Asymmetry of Metal-Insulator-Metal Tunnel Junctions" (2016). ProQuest ETD Collection for FIU. AAI10743972.