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order to construct a real-time Fast Fourier Transform (FFT) of the voltage and current 

signals, as shown in Figure 12.6.  

 
Figure 12.5. Initial Testing and Power Quality Analysis of the Flywheel. 

 

 
Figure 12.6. Custom LabVIEW Flywheel and Battery Data Acquisition Interface. 

 

As shown previously in Figure 12.3, both the flywheel and lead acid battery are 

supplying a resistive load tuned to draw approximately 3 A at 120 V. The ripple levels are 

then determined at 5%, 25%, and 50% current contribution from the battery. The remaining 

load current is supplied by the flywheel. During this test, the inertia coupled to the machine 

was large enough to supply the load over the entire test period (which is short), thus the 

flywheel does not require charging during the test.  
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Voltage and current were measured through the use of two LEM Hall Effect sensors 

[62],[63]. In order to ensure high precision, a noise bias test was conducted first. To ensure 

the highest fidelity in frequency measurements, the NI-9206 frequency and sampling rate 

are set to their maximum at 10 kHz and 10 kS/s, respectively. Under the Nyquist criterion, 

the configuration provides an accurate Discrete Fourier Transform (DFT) of the signal to 

5 kHz and 5 kS/s [222]. Assuming f(v) to be the continuous voltage signal under 5000 

samples, the DFT or F[n] is: 

ሾ݊ሿܨ ൌ ෍ Vሾ݇ሿ݁ି௝
ଶగ௡
ே்

ேିଵ

௞ୀ଴

where 0 ൑ ݊ ൏ ܰ െ 1																 (12-7)

where v[k] is the discrete voltage sequence, ܰ is the sample window of 5,000 samples, and 

n is the sampling frequency.  

 Experimental Testing 

The HESS is then tested under four different levels of contribution. Traditionally, the 

use of the flywheel in an EV or SPS application with a pulsed load would be expected to 

initially expend a great deal of energy, followed by a relatively short discharge period. This 

is comprehensively investigated in the following experimental study, where a series-

connected lead acid battery bank of 10 batteries at 120 V are connected in parallel with a 

flywheel. The hardware investigation of this study is one of its most important 

contributions, since most of the machine models in commercially available software (such 

as MATLAB) neglect the effect of the internal construction of the machine. The DC output 

of a machine is represented as a clean, pure DC source, which is impractical. The following 

demonstrates battery support at 5%, 25%, and 50% of the total energy delivered to the load.  
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Figure 12.7. Voltage and Current of Flywheel Energy Storage Only. 

12.5.1 Flywheel System Only 

An initial test is conducted where the DC motor is connected directly to the load. The 

bus voltage is regulated near the terminal voltage of the battery bank, or approximately 116 

V. The machine speed in this case was 773 RPM (12.88 Hz). Shown in Figure 12.7, both 

the voltage and current waveforms reveal a high level of noise, however, a closer inspection 

reveals detectable periodic contents. A close-up of the voltage and current in Figure 12.7 

reveals a quasi-periodic square wave. This is a major feature, as it a direct relationship to 

the number of commutator segments in the machine. Figure 12.8 depicts the DFT of both 

the voltage and current waveforms shown under a dB-scale. A close correlation is 

identified between the two waveforms, which is to be expected under a linear load. The 

major difference is a shift in their biases. The current ripple frequencies are 30 dB lower 

than that of the voltage, which places them below the 2%, or -17 dB noise threshold. For 

this reason, as the HESS system is connected, only the voltage frequency spectra will be 

analyzed. A frequency spectra of the voltage in linear scale is shown in Figure 12.8, where 

17 ripple frequencies exceed the 2% threshold.  
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To profile ripple frequencies, the MSM is used and is shown in a linear scale in Figure 

12.9. Table 12-2 provides a summary of all results for each case, where each frequency is 

identified with respect to a classification “ID”. The ID column classifies the MSM into one 

of three categories discussed in Section 11.2, which are a result of DC machine power 

quality factors. IDs are correlated to their MSM and related to: a slot ripple frequency (S), 

non-homogenous flux across the air gap (A), or a result of the commutator (C).  

The highest ripple frequency is present at the commutator multiple, or 72, producing 

240% of the DC component. This is shown on the top plot in Figure 12.9, where the 

remaining ripple frequency magnitudes are significantly lower than that of the commutator. 

This scale is reduced below in Figure 12.9 to highlight the remaining components. In Table 

12-2, each MSM investigated is shown in terms of each flywheel-battery combination. As 

the flywheel speed varies, the frequency shifts in a linear fashion across the chart, 

confirming the geometric correlation associated with each of the causal IDs. 

 
Figure 12.8. Discrete Fourier Transform of the Voltage and Current of the Flywheel 

Energy Storage. 
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Figure 12.9. Voltage Ripple Distortion versus Percentage of the DC Component. 

 

12.5.2 5% Battery / 95% Flywheel Current Contribution 

The first test quantifies ripple frequency reductions under a minimum battery injection 

current. In this case, the flywheel is sourcing 95% of the load (2.65 A), while the battery 

bank contributes a mere 5% (139 mA). The machine speed is held close to that of the 

flywheel-only case at 772 RPM (12.86 Hz). This already reveals a huge impact in reducing 

the magnitude of the ripple frequencies under a similar speed. Figure 12.10 depicts the 

original spectra to 5 kHz in black, and the new HESS spectra in red.  Figure 12.11 depicts 

the ripple voltage frequencies on the linear MSM scale, where the 2% threshold is 

identified. One can observe a 10 dB decrease in the overall ripple frequency noise bias. In 

Table 12-2, a column depicted the associated MSM frequencies, as well as the new voltage 

percentages at each multiple with respect to the fundamental value. A drastic reduction is 

observed in the commutator MSM, where its percentage is reduced from 87% to 7%. Figure 

12.12 highlights the ripple voltage percentage versus the DC component, as compared to 

the 2% threshold. A close-up depicts all frequencies that have fallen below this reference.
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Table 12-2. Power Quality Analysis of the Voltage at the Load. 

MSM ID 

Flywheel 
Only 

773 RPM (12.88Hz) 

95% Flywheel 
5% Battery 

772 RPM (12.86 Hz) 

75% Flywheel 
25% Battery 

751 RPM (12.52 Hz) 

50% Flywheel 
50% Battery 

729 RPM (12.15 Hz) 
f % ஽ܸ஼ f % ஽ܸ஼ Δ% ஽ܸ஼ f % ஽ܸ஼ Δ% ஽ܸ஼ f % ஽ܸ஼ Δ% ஽ܸ஼ 

8 A 103 87.9910 103 7.1228 -80.868 100 1.0808 -86.910 97 0.2579 -87.733
20 S 257 4.3640 258 0.2716 -4.092 251 0.0820 -4.282 243 0.0075 -4.356
38 S 489 6.1330 490 0.5282 -5.604 477 0.0421 -6.090 462 0.0122 -6.120
52 S 669 5.6630 671 0.2309 -5.432 652 0.0579 -5.605 632 0.0054 -5.657
64 A 824 53.4310 825 1.0518 -52.379 803 0.4834 -52.947 778 0.1049 -53.326
72 C 927 240.5100 929 3.4926 -237.017 903 1.2199 -239.290 875 0.5039 -240.006
80 A 1030 142.2700 1032 2.1355 -140.134 1004 0.5905 -141.679 973 0.1183 -142.151
92 S 1184 17.3290 1186 0.0816 -17.247 1154 0.0375 -17.291 1119 0.0093 -17.319

106 S 1364 14.1000 1367 0.3774 -13.722 1330 0.0353 -14.064 1289 0.0080 -14.092
126 S 1622 2.1500 1625 0.0435 -2.106 1581 0.0033 -2.146 1532 0.0052 -2.144
144 C 1854 29.9800 1857 0.1632 -29.816 1807 0.0249 -29.955 1751 0.0046 -29.975
162 S 2085 6.4480 2089 0.0049 -6.443 2032 0.0038 -6.444 1970 0.0032 -6.444
178 S 2291 7.3700 2296 0.0691 -7.300 2233 0.0039 -7.366 2164 0.0039 -7.366
196 S 2523 3.6320 2528 0.0197 -3.612 2459 0.0038 -3.628 2383 0.0014 -3.630
216 C 2780 9.2500 2786 0.1811 -9.068 2710 0.0579 -9.192 2626 0.0113 -9.238
268 S 3450 2.5890 3456 0.0067 -2.582 3363 0.0021 -2.586 3259 0.0006 -2.588
288 C 3707 8.4010 3714 0.0329 -8.368 3613 0.0030 -8.398 3502 0.0026 -8.398

 

*CODES FOR DESCRIBING RIPPLE FREQUENCY CAUSAL ID: 

A (Non-homogeneous Flux across air gap), S (Slot), C (Commutator)* 
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Figure 12.10. Discrete Fourier Transform of Load Voltage with 5% Battery Current 

Contribution. 
 

 
Figure 12.11. Voltage Percentage versus DC Component under 5% Battery Current 

Contribution. 

 
Figure 12.12. Departure of Ripple Voltage at each MSM from 2% Compliance under 5% 

Battery Current Contribution. 

 

12.5.3 25% Battery / 75% Flywheel Current Contribution 

In this case, the flywheel speed is reduced to allow for the battery bank current to begin 

injecting 25% of the load current. The flywheel current is reduced to 2.10 A (75%), while 

the battery bank increases its loading to 660 mA (25%). This results in a reduction of the 

machine speed to around 751 RPM (12.52 Hz). Figure 12.13 and Figure 12.14 once again 
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depict the original spectra to 5 kHz in black, and the new HESS spectra under 25% battery 

current contribution in red. Figure 12.13 features the magnitude reduction of each ripple 

voltage frequency in log scale, where Figure 12.14 displays the ripple voltage percentage 

versus the DC component over the new linear MSM scale. The 2% threshold marker is 

once again shown in blue. 

Under a relatively small level of current, the overall spectral comparison reveals a 20 

dB magnitude decrease in the overall ripple bias. Table 12-2 confirms that all ripple voltage 

percentages have been further reduced to meet the 2% threshold, as depicted in these 

figures. Figure 12.15 highlights the ripple voltage percentage versus the DC component, 

as compared to the 2% threshold. A close-up highlights that all frequencies have been 

reduced by >0.5% from the threshold. 

 
Figure 12.13. Discrete Fourier Transform of Load Voltage with 25% Battery Current 

Contribution. 
 

 
Figure 12.14. Voltage Percentage versus DC Component under 25% Battery Current 

Contribution. 
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Figure 12.15. Departure from 2% Compliance under 25% Battery Contribution. 

 

12.5.4 50% Battery / 50% Flywheel Current Contribution 

The final case provides an equally-shared HESS energy supply case, where both the 

flywheel and battery are supporting 1.35 A (50%), respectively. The machine speed is 

further reduced to 729 RPM (12.15 Hz) to maintain the energy output required. Figure 

12.16 and Figure 12.17 depict the original spectra to 5 kHz in black, and the new HESS 

spectra under 50% battery current contribution in red. The overall spectral bias is shown in 

Figure 12.16, revealing a 30 dB reduction from the case with the flywheel only. Figure 

12.17 displays the ripple voltage percentage versus the DC component over a linear MSM 

scale. Since no frequencies approach 2%, a threshold marker is not shown in this figure. 

Although a 30 dB reduction is observed from the base flywheel case, when viewing 

this in the linear MSM scale in Figure 12.17, one can observe that this reduction does not 

provide a notable advantage except for in highly sensitive applications. This could be 

particularly of interest in some SPS, as some navy equipment and navigation electronics 

can be highly harmonic-sensitive [223]. From Table 12-2, one can see that all ripple 

frequencies have once again been reduced below 1%, but only the 8th and 72nd MSM 

magnitudes have a noticeable decrease. 
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Figure 12.16. Discrete Fourier Transform of Load Voltage with 50% Battery Current 

Contribution. 
 

 
Figure 12.17. Voltage Percentage versus DC Component under 50% Battery Current 

Contribution. 
 

 
Figure 12.18. Departure from 2% Compliance under 50% Battery Current Contribution. 

 

Shown in Figure 12.17, only four spectral frequencies (other than the DC component) 

are easily identified with the remaining components below 0.1%. Figure 12.18 highlights 

the ripple voltage percentage versus the DC component, as compared to the 2% threshold, 

where the peak ripple voltage magnitude falls 1.5% below the threshold. This case proves 

that extracting more than 25% energy from the battery bank is unnecessary to significantly 
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improve the power quality of the HESS unless sensitive applications are at stake. A 

correlation of these results to the ripple voltage requirement of the load can help to better 

balance the current contribution when operating a flywheel and battery HESS.  

 Summary 

This chapter introduced the concept of FESS, as well as the advantages in the 

integration of a lead acid battery in parallel to form a HESS. In this chapter, the purpose of 

integrating a HESS took on a new approach, highlighting the advantage in integrating a 

battery to assist in improving the power quality. Voltage and current ripple frequencies 

induced while connected to a 3 A load were investigated. Common geometric and 

electromagnetic causes in generating these frequencies were discussed, while multiples of 

the flywheel rotation speed were interpreted by a new metric called the Machine Speed 

Multiple to explain the presence, location, and reduction of voltage ripple. Voltage ripple 

spectra from a flywheel-only system was compared to three different current contribution 

cases, including a battery bank connected in parallel. The ripple frequency reduction was 

identified at different MSMs, discovering that only a small contribution from a battery bank 

could result in a significant improvement in the power quality delivered to the load. Using 

the MSM as a frequency profiler, additional features could be added to an advanced 

controller such as the ESMC to correlate the target voltage ripple frequencies to the 

required design specification. In light of this study, a best combination and control scheme 

could be determined to reduce the overall voltage ripple frequencies for the HESS. 
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 Conclusions 

The contributions of this dissertation are present in a wide range of areas related to 

modeling and control of energy storage (ES) and hybrid ES systems (HESS). With the 

advent of the Energy Storage Management Controller (ESMC), a number of avenues were 

opened in not only improving models of ES devices, but also the optimal selection and 

management of ES devices in HESS. The ESMC circuit topology along with many 

software solutions were developed and tested to manage individual ES devices, while 

providing total isolation by means of a bypass circuit. Meanwhile, the extracted ES can be 

connected to a dedicated charging circuit or fully extracted to conduct maintenance. A 

comprehensive analysis of the ESMC prototype, its components, and control were then 

assessed for their implementation into a comprehensive commercialized platform. 

Development of the ESMC established a unique hardware and software platform that 

was vital in test and evaluation of not only sole ES devices, but particularly in complex 

HESS. In the first test scenario, testing was conducted upon lead acid batteries, where its 

features were demonstrated as well as what can be accomplished by providing individual 

ES charging terminals. Using unique capabilities of ESMC charging controller, a pulsed 

charging process was demonstrated to improve the SoH of a lead acid battery module. 

Without individual charging terminals and the capability to isolate and control individual 

modules, this process would not have been possible in an application that was also able to 

maintain system operation with remaining ES modules in the network. 
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In the following chapters, a focus was placed upon how the software of the ESMC 

could be enhanced to provide better measures to estimate the State of Health (SoH) and 

State of Charge (SoC) of ES devices. An introduction to the direct method of acquiring a 

real-time equivalent circuit through the use of electrochemical impedance spectroscopy 

(EIS) was explored, providing an overview of the challenges involved in its effective 

implementation on a real-time controller. A potential solution and circuit topology was 

proposed for its future implementation with the EMSC. Next, an alternative and low-cost 

equivalent circuit acquisition solution was proposed and tested using a pulsed load. There 

is an imperative need to provide a bridge between the depth of the electrochemical physics 

of the battery and the power engineering sector, a feat which was accomplished over the 

course of this work. Derived and verified through the utilization of pseudo 2D (P2D) 

physics-based models (PBM) of both lead acid and lithium ion batteries, a comprehensive 

hardware and software platform generated a tool to acquire a dynamic 1st order equivalent 

circuit model that could also autonomously determine the battery chemistry. This battery 

management system was not limited to simply chemistry and equivalent circuit acquisition, 

but introduced a comprehensive operating platform that assessed SoH in two ways: through 

tracking of the equivalent circuit model cycle-to-cycle and tracking the latest usable 

energy. SoC metrics for both lead acid and lithium ion batteries were enhanced as well, 

with a particular focus upon improving the initial voltage-based SoC estimation. 

Utilization and experimental fitting of the P2D PBM for each battery provided the basis 

to extend the lithium ion model into a comprehensive 3D PBM. In this work, the 

computational investment, accuracy, and unique capabilities provided by the 3D model 

were evaluated side-by-side with the P2D PBM. The 3D PBM provided a mechanism to 
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study an aspect of battery ageing, or a reduction of the SoH, by visualizing and quantifying 

the generation of undesired gradient currents across the lithium ion cell surface when 

operating at high levels of normalized cell current, or Columbic rates (C-rates). High C-

rates are common in shipboard power system (SPS) and electric vehicle (EV) applications, 

thus it is imperative to further understand the impacts from these operational scenarios. 

The development of gradient currents contribute to uneven thermodynamic and material 

stress, which can have long-term health impacts on a battery cell. 

Next, many of the lessons learned from not only experimentation with EIS but also 

deployment of a pulsed load to extract equivalent circuit parameters, a dynamic 2nd order 

equivalent circuit model was developed for a 51.8V 21 Amp-hour (Ah) lithium ion battery 

module. This 2nd order dynamic model was able to capture a “fingerprint” of the battery so 

accurate simulations could be conducted for a wide range of applications, demonstrated 

particularly on an EV. The all-inclusive model does not carry with it a great deal of 

computational overhead and was implemented within the MATLAB/Simulink 

environment as a drop-in replacement for the SimPowerSystems battery block. 

The dissertation then began to shift toward the development and implementation of 

HESS. This first studied basic interfacing power electronic converters between single ES 

devices, eventually honing in upon how the eventual replacement of legacy silicon-based 

switches with Gallium Nitride High Electron Mobility Transistors (GaN HEMT) could 

improve the system efficiency and performance. A PBM was developed and utilized to 

study how material and geometric adjustments to the switch structure could result in these 

devices handling higher voltage levels, which would lead to the application of GaN HEMT 

in many future applications. Next, three HESS applications were evaluated in detail 
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utilizing features of the ESMC, which was tested and validated with the addition of lithium 

ion batteries, SC, and FESS.  First, a major contribution integrated, modeled, tested, and 

evaluated three unique series-configured HESS to handle SPS loads using lead acid 

batteries, lithium ion batteries, and SC. The uniqueness in this work was in the development 

of specialized software that was able to apply a new control scheme called “rolling 

charging” to coordinate charging and discharging of individual ES units while in operation 

to extend the runtime while acknowledging SoH trade-offs.  

SoH trade-offs remained a common theme in the following work, which studied the 

implementation of the lithium ion battery and SC HESS for EV applications. A particular 

focus was placed upon reducing the cycling of the lithium ion battery under traction 

applications involving both drive and regenerative braking (charge) currents. Once again, 

the ESMC was utilized, this time in a parallel-configured system, with specialized software 

to employ the Hybrid Pulsed Power Characterization (HPPC) test sequence representing 

an industry standard for EV ES and HESS performance evaluation. In addition to 

improving the SoH of the lithium ion battery, the control metric resulted in an increased 

energy harvesting efficiency from regenerative braking as well. 

In the final work, a HESS consisting of a FESS and lead acid battery was tested and 

evaluated for its capability to improve the power quality over simply a FESS-only system. 

A metric was established to quantify and track ripple voltage frequencies on a primary DC 

network and use it to target and reduce electrical noise from the FESS. The ESMC software 

was once again extended to include a Fast Fourier Transform to conduct a live frequency 

analysis, where a linear load was utilized as reference to balance the current contribution 

between the battery and FESS. The lead acid battery contribution was tested at multiple 
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levels of current concluding that even modest assistance to serve a load from the lead acid 

battery can result in a dramatic improvement of the power quality, particularly in harmonic-

sensitive applications. 

 Future Work 

In this section, the doctoral work outlined in this dissertation is evaluated for both 

specific future research goals as well as large research areas that could continue work in 

this important field of study. With respect to large areas, a greater variety of HESS need to 

be tested and evaluated for their strengths and weaknesses beyond their basic 

characteristics as outlined in Chapter 1. The FESS, in particular, has not been exposed to a 

unique loading profile or comprehensively modeled in the simulation domain. In addition, 

there is always a desire to continuously increase the power and energy capacity of ES 

devices and HESS to exceed the typical laboratory-scale environment. As more realistic 

voltage and current levels can be achieved, a deeper and more accurate analysis of the 

system performance can be conducted. Furthermore, in much larger systems with 

thousands of battery cells or SC modules, not only would the behavior change, but this 

setup could expose new challenges that will need to be solved in future applications. 

Lithium Ion Battery Performance and Degradation over its Full Lifespan: The evaluation 

of a full lithium ion battery lifespan can be accomplished in many ways, but in this case 

two approaches in particular can be taken. First, and the most simple, is applying 

accelerated ageing to the lithium ion battery through a high speed charging and discharging 

system. In this case, standard charging and discharging cycles could progress to more 

typical loading and charging scenarios. However, it is important to mention that even 

accelerated ageing does not capture the full story. Unfortunately, the most accurate 
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procedure is to operate a battery from the beginning of its lifespan until its end with data 

recording. In this way, the most realistic loading and charging profiles, representative of 

real operating and environmental conditions, can give insight into how capacity fluctuation 

and impulse response of the battery voltage will change over time. This is already in 

progress, where a Samsung Galaxy S7 phone has been recording voltage and current data 

since it was first purchased in May 2017. A comprehensive performance evaluation and 

comparison of its charging and discharging cycles can be compared at the end of its life. 

Further Enhancements of the ESMC Device: This general category opens the avenue to 

many new research areas. First, the comprehensive autonomous battery management 

system platform from Chapter 5 could be implemented on the ESMC in conjunction with 

support for other ES devices. Second, a continued focus upon improving SoH estimation 

could include an extension socket or alternative version that includes on-board EIS 

measurements for either a full 1st order equivalent circuit or at a minimum, the internal 

resistance of the ES device using the methods established in Chapter 4. Third, the ESMC 

has yet to be tested for other battery chemistries such as nickel-metal hydride, nickel-

cadmium, sodium sulfur, or emerging types of Lithium ion chemistries. Furthermore, 

integration with a unidirectional fuel cell could be evaluated as well. Finally, testing and 

development of the commercialized ESMC can be accomplished. Using the 

commercialized system with onboard microcontrollers, an extension can then be made into 

zonal platforms, where ES devices are located in multiple remote regions across a SPS 

platform or utility system.  

Long-term SoH correlation to Lithium Ion Batteries: In Chapter 6, a 3D PBM visualized 

and quantified the generation of gradient currents on the lithium ion battery, which 
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becomes apparent when the cell is operating at high C-rates. The long term impacts of 

gradient currents need to be evaluated as the battery ages, including how the magnitude 

and origin of these currents change, how operating voltage levels change, and how 

thermodynamic cycling will impact the active materials. A correlation between the 

thermodynamic cycling and material degradation models could enable a way to capture the 

thermodynamic expansion of each material inside the battery. This analysis, conducted 

over time, can help to estimate how active materials of the battery crack and eventually 

degrade. This would not only allow engineers to view how each material cracks and its 

thermodynamic stress independently, but also pinpoint how operating conditions (such as 

gradient currents) will contribute to nonlinear fracturing. In this way, one could forecast 

which materials would fail first.  

Further Testing and Utilization of Experimentally Acquired Battery Models: In Chapter 7, 

a comprehensive 2nd order dynamic battery equivalent circuit was acquired for a 51.8 V 21 

Ah lithium ion battery module. The long-term degradation of this module should be 

evaluated to provide a mechanism to capture the long-term impacts and include them in 

the final battery model. For EVs, the end of life is usually designated as a 30% loss of 

capacity [210]. A function could enhance this model to include a capacity loss trend 

equation, which provides a “fingerprint” for how this specific module will age. In this same 

analysis, the thermal impacts and its correlation to the 2nd order dynamic equivalent circuit 

should be evaluated as well as how these would also impact the degradation model. Using 

the same hybrid procedure, hardware, and data acquisition platform to obtain the lithium 

ion cobalt module dynamic equivalent circuit, models for different types of lithium ion 

batteries (e.g. lithium ion phosphate) of similar voltage and capacity can be made in order 
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to provide a performance evaluation between the two. This could also increase the number 

of lithium ion battery options for future utility grid, EV, and SPS applications. Moreover, 

there may also be a need to perform the same modeling for alternative chemistries as well. 

Extended Analysis of the Lithium Ion Battery and SC HESS: On the health front, an 

extension to the lithium ion battery and SC HESS work in Chapter 11 would apply the 

Hybrid Pulsed Power Characterization (HPPC) EV ES and HESS performance evaluation 

profile to the enhanced PBM. This research left off using a basic full charge and discharge 

cycling profile on the lithium ion battery as a basic metric to evaluate its cycling life. By 

including the additional physics element to model the degradation of the battery over time 

through the increase of thickness in the solid electrolyte interface (SEI) layer, the cycle life 

for the common lithium ion cobalt battery was depicted. This was initially used to 

demonstrate capacity loss over time. In a future work, the lithium ion battery can be 

coupled to the HPPC profile over time to evaluate how many cycles the battery can 

withstand under the charging and discharging HPPC profile over time. In the next step, the 

HESS can be tested under the same profile by either developing a PBM of the SC or 

through the extraction of the current profile placed on the battery as acquired by behavior 

acquired from previous experimentation.  

Stronger Correlation between Gallium Nitride PBMs and Physical Switches: Future work 

needs to provide a better correlation between the GaN HEMT PBM and its power 

electronics Simulation Program with Integrated Circuit Emphasis (SPICE) models. This 

would begin with a particular study upon correlating the GaNSys GS66508T device to an 

accurate PBM. As mentioned in Chapter 9, this is challenging because specific 

dimensioning and material structures would need to be provided from the manufacturer. 
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Work of this nature would require either working directly with the GaNSys fabrication 

team, or working with another company or agency that can provide these. In this way, a 

direct relationship could be made between the design and fabrication of the device and the 

PBM. Furthermore, an exchange could be accomplished between the PBM, as various other 

combinational structures could be simulated, similar to the process in Chapter 9, and 

returned to the same agency as a recommendation over how to fabricate the next device. 

Finally, with a strong correlation between the experimental and PBM, a version of the PBM 

could be used to replace legacy SPICE models in future power system simulations. 

Enhancing HESS Design and Analysis for SPS Applications: HESS SPS models can be 

extended to not only evaluate series-configured systems, but also parallel-configured. In 

addition, other ES devices can be tested as well including not only various types of other 

battery chemistries, but also FESS. Furthermore, with such a drastic difference in the 

energy density between the FESS and SC, an optimal sizing method could be established 

to better pair these devices with traditional batteries. The load side should be analyzed as 

well, looking at not only more types of pulsed loads that include more realistic loading 

profiles and sequences for naval equipment, but a more realistic representation of the hotel 

load as well and how minor variations in the profile can have impacts on the overall SPS. 

Since another aspect of this research provided an option that performed “rolling charging” 

only on the SC to protect the life of the battery ES devices, physics-based degradation 

models for both the lithium ion and lead acid could further quantify these impacts. This 

may also provide insight into the optimal rolling charging sequence. All of these different 

aspects could contribute to a variety of new test cases.  
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