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ABSTRACT OF THE DISSERTATION 

ADVANCED OXIDATION PROCESSES OF PROBLEMATIC TOXIN AND WATER 

CONTAMINANTS: CYLINDROSPERMOPSIN, IOPAMIDOL, 4-METHYL 

CYCLOHEXANE METHANOL AND PROPYLENE GLYCOL PHENYL ETHER  

By 

Cen Zhao 

Florida International University, 2015 

Miami, Florida 

Professor Kevin E. O’Shea, Major Professor 

The occurrences of cyanotoxin and organic contaminants threaten drinking water 

sources and are a serious human health and environmental concern. The control and 

remediation of the potent contaminants are critical for ensuring safe drinking water to 

significant populations. Advanced oxidation processes (AOPs) have received 

considerable attention as a potential water treatment for various pollutants. In this 

dissertation, advanced oxidative degradation of four problematic water toxic 

contaminants (cylindrospermopsin, iopamidol, 4-methylcyclohexanemethanol and 

propylene glycol phenyl ether) were studied to develop the fundamental understanding 

required to assess AOPs as a potential water treatment process. 

UV and visible light activated (VLA) TiO2 photocatalysis using nitrogen and 

fluorine-TiO2 (NF-TiO2), phosphorus and fluorine-TiO2 (PF-TiO2) and sulfur-TiO2 (S-

TiO2) were employed for the degradation of 6-hydroxymethyl uracil (6-HOMU), a model 

compound for the potent cyanotoxin cylindrospermopsin (CYN). NF-TiO2 is the most 

photoactive, followed by marginally active PF-TiO2 and inactive S-TiO2 under visible 
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light irradiation. Our results indicate that O2
-• plays an important role in VLA TiO2 

photocatalysis.  

Fe (VI), an environmentally friendly oxidant, was employed for the degradation 

of CYN and 6-HOMU over a range of solution pH (7 ~ 9.5). The second order rate 

constants for the reaction of Fe (VI) with CYN decrease from 38.8 ± 0.1 M-1s-1 at pH 7 to 

5.0 ± 0.1 M-1s-1 at pH 9.5. Fe (VI) mediated reactions primarily occur via oxidation of the 

uracil ring in CYN. ELISA results demonstrate that Fe (VI) oxidation process leads to a 

significant decrease in the bioactivity of CYN as a function of treatment time. 

Fe (III)-oxalate/H2O2 process was employed for the remediation of iopamidol, a 

model for ICM, to determine the formation rates and steady concentrations of •OH and 

O2
-• under UV and visible light irradiation. Reduction by CO2

-• and oxidation by •OH 

contribute to the degradation pathways. 

Pulse and gamma radiolysis of 4-methylcyclohexanemethanol (MCHM) and 

propylene glycol phenyl ether (PPh) were studied to determine the hydroxyl radical 

bimolecular rate constants and reaction pathways. •OH addition to ortho and para 

positions in PPh are the predominant reaction pathways; H-abstraction are the primary 

reaction mechanisms for ·OH mediated oxidation of MCHM. 
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CHAPTER 1 

General Introduction 
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1.1 Toxic water contaminants 

The World Health Organization reports that one out of every five children and 

more than one billion people have not access to clean drinking water. With the increasing 

world population, the demand for clean water continues to increase while 

industrialization of developing countries decreases the clean water supplies because of 

the associated pollution.  Water contamination also occurs during Harmful Algae Blooms 

(HABs), which have increased in recent years because of global warming and increased 

eutrophication of natural water systems. Seventy percent of HABs produce potent natural 

cyanotoxins (Codd 1995, Ho et al. 2006), which can lead to serious health problems, even 

death, and have forced the closure of large drinking water sources. The need for effective 

economical environmentally friendly water treatment is critical to Earth’s sustainability 

and is also a global challenge.   

1.1.1    Cyanotoxin cylindrospermopsin  

Cyanobacteria known as blue-green algae commonly exists in drinking water 

sources and can lead to harmful algae blooms (HABs). Seventy percent of HABs produce 

potent toxins (Codd 1995, Ho et al. 2006), which pose a tremendous risk to humans and 

the environment. Ingestion of water contaminated by cyanotoxins can lead to serious 

health problems, including acute gastro-intestinal disorders, acute skin eruptions (Stewart 

et al. 2006), inhalational problems (Codd et al. 1999, Turner et al. 1990) and even death 

in humans and animals. 

Cyanbacteria can produce a range of cyanotoxins (Fig 1.1) from relatively simple 

structures, such as domoic acid, a glutamate antagonist, to microcystin heptapeptides that 

inhibit protein phosphatase. The proposed study focuses on cylindrospermopsin (CYN), 
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an alkaloid toxin with a tricyclic guanidine group and uracil ring (Fig 1). CYN was first 

isolated and identified in 1992 (Ohtani et al. 1992). At ambient temperature and the pH of 

natural water, cylindrospermopsin is zwitterionic, water-soluble and stable (Chiswell et al. 

1999). Cyanobacteria, Cylindrospermopsis, Anabaena, Umezakia and Aphanizomenon, 

are known to produce CYN (Falconer 2005). The occurrence of CYN has been reported 

in tropical and subtropical areas of Australia, Israel, New Zealand, Brazil and Florida, 

USA (de la Cruz et al. 2013). While the presence of CYN has been primarily limited to 

warm regions, recent reports confirm that occurrences of CYN extend to more temperate 

regions in Europe, such as Italy, Germany and France. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1 The structures of domoic acid, cylindrospermopsin and microcystins. 
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Human exposure to CYN occurs through ingestion of CYN contaminated food or 

water, or during recreational activities during HABs in lakes and fresh water ways. CYN 

has been showed to be genotoxic (Humpage et al. 2000), and carcinogenic (Falconer and 

Humpage 2001). The toxic activity of CYN partly results from the uracil moiety which 

inhibits protein translation or it bands to DNA to cause strand breakage (Banker et al. 

2001). The most notable incident of CYN on human health was discovered on Palm 

Island, Australia in 1979, which led to hepatoenteritis in 138 children and 10 adults 

(Griffiths and Saker 2003). “The Palm Island Mystery” was the result of an outbreak of 

algae blooms in Solomon Dam, the source of local drinking water. Upon treatment with 

copper sulphate, the algae died leading to the rapid release of the toxin into water 

(Bourke et al. 1983). Exposure to CYN from the Palm Island incident led to severe 

damage in the kidneys and gastrointestinal lining, and bloody urine resulting in fluid and 

electrolyte loss in the patients. There were the most typical acute clinical symptoms of 

CYN exposure (Bourke et al. 1986, Falconer 1998). 

CYN also has a pronounced biological impact on wild and domestic animals. 

CYN poisoning of livestock from drinking C. raciborskii-contaminated water in 

northwest Queensland, resulted in deaths of a significant number of cattle. 

Histopathological examination of the livers of deceased cattle revealed pale and swollen 

tissues with extensive bile duct proliferation. Extensive epicardial hemorrhaging was 

discovered in the heart and subserosal hemorrhaging was observed in the small intestine 

and omentum (Saker et al. 1999, Thomas et al. 1998). 
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1.1.2    Pharmaceutical and personal care products (PPCPs) 

The widespread releases of organic contaminants from pharmaceutical and 

personal care products (PPCPs) and manufacturing waste chemicals to the water bodies 

have received increasing attention. PPCPs include a variety of regularly used chemicals, 

such as fragrances, cosmetics and drugs. Numerous PPCPs and drugs after ingestion, 

external application and /or disposal have been detected in the environment and surface 

water across the world (Kolpin et al. 2002). PPCPs are consumed by humans and animals 

and may be released into the environmental water bodies via direct (disposal from 

external application) (Halling-Sorensen et al. 1998) and indirect (excretion, washing) 

routes (Zhao et al. 2014a). Some PPCPs are persistent in the natural water and resistant to 

natural degradation, which can lead to environmental impacts and potential adverse 

effects on human health.  

Iodinated x-ray contrast media (ICM), one of the most prevalent PPCPs, are 

widely used to enhance the imaging of organs or blood vessels during diagnostic tests 

(Zhao et al. 2014a). Approximately 3.5 × 106 kg per year of ICM are consumed 

worldwide (Perez and Barcelo 2007). ICM is administered in high daily doses (up to 200 

g/day) and excreted primarily non-metabolized (> 95 %) (Mutschler 1996). ICM is 

frequently detected in wastewater, groundwater, rivers, creeks and even drinking water 

supplies at elevated concentrations (at μg/L levels for wastewater and surface water) 

(Schulz et al. 2008, Ternes and Hirsch 2000). The presence of ICM is responsible for the 

high concentration of adsorbable organic halogen material (AOX) present in hospital 

wastewater (Kummerer et al. 1998) with the potential for adverse health impacts on 

humans. Iopamidol, the focus of this dissertation, is the most frequently detected ICM in 
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aqueous environments (Duirk et al. 2011, Tian et al. 2014).  Shown in Fig. 1.2, iopamidol 

has a molecular weight of 777 and the structure features commonly associated contrast 

agents, i.e., a central iodo substituted aromatic ring.  The aromatic ring is substituted with 

alkyl side chains labeled A and B, which are coupled to the aromatic ring through amide 

linkages.  The chains contain hydroxyl and amide functionalities, which make the 

compound more water soluble. 

 

 

 

 

 

Fig. 1.2 The structure of iopamidol 

1.1.3.   Chemical spills and leaking 

The organic chemical spills and leaking associated with underground water have 

been studied by the EPA since mid-1983. An estimated 3.5 million underground tanks are 
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documentary reported that almost 40,000 gallons of petroleum products leaked from an 
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over a three-month period in 1981, which threatened the nearby residences due to the 

explosive level of gasoline vapors (Jercinovic 1985). 
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A serious chemical leak occurred on Jan 9, 2014: an estimated 10,000 gallons of 

crude 4-methyl cyclohexane methanol (MCHM) leaked from freedom industries facility 

into the Elk River near Charleston, West Virginia and contaminated the local drinking 

water, which threatened the health of 300,000 residents within nine counties in the 

Charleston (Tullo et al. 2014). According to the freedom industries, they reported that the 

leaking tank contained 88.5 % crude MCHM, 7.3 % proprietary mixture and 4.2 % water 

by weight (Tullo et al. 2014). The proprietary mixture primarily consisted of propylene 

glycol phenyl ether (PPh) and dipropylene glycol phenyl ether (DiPPh). Crude MCHM 

and PPh are the chemical foaming agents used to wash coal and remove impurities that 

contribute to pollution during combustion (Fig. 1.3). Following this spill, the 

concentrations of MCHM from initial water testing were determined to be 1.04 ~ 3.35 

ppm at the West Virginia American Water intake on the Elk River and 1.02 ~ 1.56 ppm 

in the treated drinking water (Tullo et al. 2014). The Center for Disease Control & 

Prevention (CDC) has set a screening level of 1 ppm for MCHM (2014a) and 1.2 ppm for 

PPh (2014b) in drinking water. 

 

 

 

 

 

Fig. 1.3 The structure of MCHM and PPh 
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1.2  Advanced oxidation processes (AOPs) for the remediation of water 

contaminants 

Advanced oxidation processes (AOPs) have received considerable attention for 

the treatment of water contaminated with a wide variety of toxins and pollutants. AOPs 

employ hydroxyl radical as the primary oxidant in the oxidative remediation of toxins in 

drinking water. Hydroxyl radical (HO•) is a powerful oxidant (Table 1.1) that can react 

rapidly with nearly all organic compounds (Table 1.2) due to its strong oxidation 

potential. Hydroxyl radical typically attacks organic compounds by radical addition, 

hydrogen abstraction and/or electron transfer. The oxidation potential of several 

chemicals for water treatment and disinfection are list in Table 1.1. Among these 

chemical oxidants, hydroxyl radical is the most powerful with an electrochemical 

oxidation potential of 2.8V. Ozone is currently used for drinking water treatment in a 

number of countries, but cost is the primary concern and bromate formation is also a 

serious problem. Hydroxyl radical has much higher reaction rates than ozone for a wide 

range of organic pollutants and toxins as presented in Table 1.2.  

Table 1.1: Oxidizing potential for oxidation regents 

Oxidizing agent 
(ADEL AL-KDASI 

2004) 

Hydroxyl 
radical 
(HO•) 

Ozone 
(O3) 

Hydrogen 
peroxide 
(H2O2) 

Hypochlorite 
(ClO-) 

Chlorine 
(Cl2) 

Chlorine 
dioxide 
(ClO2) 

Electronchemical 
oxidation potential 

(EOP),V 
2.80 2.08 1.78 1.49      1.36 1.27 

 

Table 1.2: Reaction rate constants (k, M-1s-1) of ozone vs. hydroxyl radical (Munter 2001) 

Compounds 
Chlorinated 

alkenes 
Phenols 

N-containing 
organics 

Aromatics Ketones Alcohols 

O3 (k, M-1s-1) 103-104 1000 10-100 1-100 1 0.01-1 
HO• (k, M-1s-1) 109-1011 109-1010 108-1010 108-1010  109-1010 108-109 
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1.2.1    TiO2 photocatalysis 

TiO2 photocatalysis is effective for the destruction of an extensive number of 

toxins and organic contaminants in the wastewater and drinking water (Tong et al. 2012, 

Zhao et al. 2014b). TiO2 is a cheap, readily available, non-toxic semiconductor for 

photochemical applications. Upon UV photoexcitation electron/hole pairs are generated 

with the potential to reduce molecular dioxygen forming superoxide anion radical and 

oxidize water to hydroperoxide radicals. While a number of subsequent processes can 

lead to the degradation of target compounds, hydroxyl radical (HO•) is generally 

considered to be the primary oxidant in the UV TiO2 photocatalysis processes. Extensive 

studies on the UV TiO2 photocatalysis have demonstrated that hundreds of pollutants can 

be transformed into harmless compounds such as CO2 and H2O (Chatterjee and Dasgupta 

2005).  

Pathways of photocatalytic degradation of organic pollutants (P) by TiO2 

photocataysis is represented in Fig 1.4. The process is initiated when the TiO2 

semiconductor absorbs light energy equal to or greater than its band-gap between the 

conduction and valence bands, promoting an electron to the conduction band (e−cb) and 

leaving a “hole” in valence band (h+
vb). Molecular oxygen is used to scavenge the e−cb at 

the TiO2 surface yielding superoxide radical anions (O2
-•). The pKa of superoxide radical 

anions occurs at the pH=4.6, thus hydroperoxide radical (HO2
•) is formed under more 

acidic conditions; and subsequent disproportionation results in the formation of hydrogen 

peroxide (H2O2). The h+
vb produced during UV TiO2 photocataysis has the potential to 

oxidize surface absorbed H2O or hydroxyl groups to generate hydroxyl radical. However, 
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the produced HO• in VLA NF-TiO2 likely results from the reduction of H2O2 rather than 

oxidizing surface absorbed H2O by h+
vb (Zhao et al. 2014b). 

                                 

Fig. 1.4 Oxidation of pollutants by UV and VLA TiO2 photocatalysis. 

 

1.2.2    Radiolysis  

The radiolysis technique, an advanced oxidation process, has been widely used 

for treatment of PPCPs (Abdelmelek et al. 2011, Santoke et al. 2012), pesticides (Song et 

al. 2009a) and cyanotoxins (Song et al. 2009b, Song et al. 2012) contaminated water 

supplies. The high energy electron beam from an accelerator or gamma ray can be 

absorbed by water, leading to bond breakage and the formation of several primary 

reactive species, such as hydroxyl radical (·OH), hydrated electron (eaq
-) and hydrogen 

atom (·H) shown in Eq. 1.1, which can react with cyanotoxins for the removal from the 

drinking water. The radiolysis method has a great advantage over other methods for 

generating reaction species which is the fact that the amount of energy absorbed by water 

solution is proportional to its electron fraction so that the yield of primary reaction 

species are well known (Buxton et al. 1988).  

H2O /\/\/\ → eaq
- (0.27) + ·H (0.06) + ·OH (0.28) + H2 (0.05) + H2O2 (0.07) + H3O+ (0.27)        (1.1) 
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(where the numbers in brackets are the radiation chemical yields of these species (G-

values) per 100 eV absorbed energy). 

 

eaq
- + N2O + H2O → N2 + -OH + ·OH                                        k1= 9.1× 109 M-1s-1                    (1.2) 

·H + N2O → ·OH + N2                                                                k3 = 2.1× 106 M-1s-1                   (1.3) 

(CH3)2CHOH + ·OH → (CH3)2C·OH + H2O                              k4 = 1.9× 109 M-1s-1                   (1.4) 

(CH3)2CHOH + ·H → (CH3)2C·OH + H2                                    k5 = 1.9× 109 M-1s-1                   (1.5) 

 

The high yield product ·OH is generated during this process which can rapidly react with 

nearly all organic compounds due to its strong oxidation potential (+2.80V) (Thakur et al. 

2010). Besides the formation of ·OH, hydrated electron (eaq
-) and hydrogen atom (·H) are 

also generated with relatively high yield. To study the reactions with ·OH, the solutions 

are saturated with nitrous oxide (N2O), which quantitatively converts hydrated electron 

(eaq
-) and hydrogen atom (·H) to ·OH (Eq. 1.1 and 1.2). To promote the reactions of 

hydrated electron (eaq
-) and organic pollutants, the solution is saturated in N2 containing 

isopropanol to scavenger ·OH and hydrogen atom (·H) (Eq. 1.3 and 1.4). These reactive 

species produced during radiolysis of water have been reported for the application of the 

remediation of the problematic cyanotoxins and contaminants in drinking water 

(Abdelmelek et al. 2011, Song et al. 2012). 

1.2.3    Iron-oxalate Photochemical system 

Advanced oxidation processes (AOPs) such as photo-Fenton or photo-Fenton-like 

processes have been widely reported to efficiently degrade organic pollutants from 

wastewater (Tao et al. 2005). These processes involve the generation of hydroxyl radical 
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(•OH) as the primary oxidant. A variety of iron species and a number of carboxylic acids 

are abundant in natural environments, their coexistence can establish homogenous photo-

Fenton type conditions with the potential to produce reactive species leading to the 

degradation of organic pollutants under solar irradiation. Oxalic acid, a simple abundant 

naturally occurring dicarboxylic acid, effectively initiates the degradation of the 

problematic pollutants, biphenol A and 4-chlorophenol (4-CP), under photo-Fenton 

conditions (Li et al. 2006). The photochemical Fe(III)-oxalate system can be more 

efficient and catalytic in degrading organic pollutants then Fenton reactions (Fe(III) or 

Fe(II)/ H2O2) because of the rapid redox cycling of iron and faster production of •OH 

(Jeong and Yoon 2005).  

The Fe(III)- oxalate complex exhibits strong ligand-to-metal charge absorption 

bands in the near UV and visible regions. UV and visible light photoexcitation of Fe(III)-

oxalate complex leads to events and species capable of degrading a variety of pollutants 

as summarized in reactions 1.6 through 1.17 (below).  Initial photoexcitation leads to an 

Fe(II)-oxalate excited complex or Fe(II) ion and the oxalate radical anion (C2O4
-•) 

illustrated by reaction (1.6). The majority of C2O4
-• readily decomposes to carbon dioxide 

(CO2) and the carbon dioxide radical anion (CO2
-•) via rapid decarboxylation (Mulazzani 

et al. 1986). CO2
-• has a high reduction potential and reacts with dissolved oxygen to form 

the superoxide anion radical (O2
-•) at a near diffusion rate which subsequently forms 

hydroperoxyl radical (HO2•) in acid media (reactions 1.7 and 1.8). O2
-• and HO2• react 

with Fe(III) ion or Fe(III)-oxalate complex to generate Fe(II) ions (reactions 1.10 and 

1.11) or Fe(II)-oxalate complex (reactions 1.12 and 1.13). Subsequent reactions of Fe(II) 

with O2
-•/ HO2• can lead to hydrogen peroxide (H2O2) (reactions 1.14 and 1.15). The 
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reaction of H2O2 and Fe(II) by the Fenton reaction produces the •OH (reactions 1.16 and 

1.17). The ROS (•OH, O2
-•, HO2•, H2O2) produced in Fe(III)-oxalate photochemical 

system can oxidize organic contaminants in the aqueous  media. 

Fe(III)(C2O4)n (3-2n) + hν → Fe(II)(C2O4)n-1 (4-2n) + C2O4
-•                                               (1.6) 

C2O4
-• → CO2 + CO2

-•                                                                                                     (1.7) 

CO2
-• + O2 → CO2 + O2

-•                                                                                                 (1.8) 

HO2• ↔ O2
-• + H+                                                                                                            (1.9) 

Fe(III) + O2
-• → Fe(II) + O2                                                                                           (1.10) 

Fe(III) + HO2• → Fe(II) + O2 + H+                                                                                (1.11) 

Fe(III)(C2O4)n (3-2n) + O2
-• → Fe(II) )(C2O4)n (2-2n) + O2                                                 (1.12) 

Fe(III)(C2O4)n (3-2n) + HO2• → Fe(II)(C2O4)n (2-2n) + O2 + H+                                         (1.13) 

Fe(II) + O2
-• → Fe(III) + H2O2 + OH-                                                                            (1.14) 

Fe(II) + HO2• → Fe(III) + H2O2 + OH-                                                                         (1.15) 

Fe(II) + H2O2 → Fe(III) + •OH + OH-                                                                          (1.16) 

Fe(II)(C2O4) + H2O2 → Fe(III)(C2O4)+ + •OH + OH-                                                   (1.17) 

 

1.2.4    Ferrate (VI) oxidation treatment 

Ferrate (Fe (VI) iron in + 6 oxidation state) has received increasing attention as an 

environmentally friendly oxidant in water and wastewater treatment due to its dual 

functions of an oxidant and a subsequent coagulant as ferric hydroxide (Fe(III)(OH)3) 

(Ma and Liu 2002). Alkaline solutions of Fe(VI) exhibit a maximum absorption at 510 

nm (ε= 1150 ± 25 M-1cm-1) by UV/Vis spectroscopy. The species of Fe(VI) as a function 
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of pH are shown in Fig. 1.5 (Sharma 2011, 2013). Fe(VI) has triprotonated, diprotonated, 

monoprotonated and deprotonated species present in the acidic to basic pH range. 

                    

Fig. 1.5 Speciation of Fe(VI) as a function of pH. Source: Adapted from (Sharma 2011) 
with the permission of Elsevier Inc. 

 

Fe(VI) is a selective oxidant which has a tendency to react with electron-rich 

organic moieties, such as amines, oldfin and aniline (Yang et al. 2012). Therefore, 

electron-rich organic moieties containing compounds can be potentially transformed 

during Fe(VI) oxidation. The reaction mechanisms of Fe(VI) with substrates can undergo 

1) a one electron transfer step from Fe(VI) to Fe(V) and then followed by a two electron 

transfer step to Fe(III) as the final product; 2) a two electron transfer step following 

Fe(VI) → Fe(IV) → Fe(II) (Sharma 2013).  

1.3.      General objectives of dissertation 

My dissertation project is to explore novel solar activated photocatalysts and 

advanced oxidation processes (AOPs) for the destruction of four target problematic 

toxins and pollutants: cylindrospermopsin (CYN), a potent cyanotoxin produced by 
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cyanobacteria in fresh water systems; iopamidol, widely employed as iodinated X-ray 

contrast media (ICM), and 4-methylcyclohexanemethanol (MCHM) and propylene glycol 

phenyl ether (PPh) related to the contamination of local drinking water in Charleston, 

West Virginia, on Jan 9 2014. In the present study, UV and visible light active TiO2 

photocatalysis, Fe(III)-oxalate photochemical systems, radiolysis technique and ferrate 

(VI) oxidation process were studied for the degradation of CYN, iopamidol, MCHM and 

PPh to develop the fundamental understanding required to assess AOPs as a potential 

water treatment process. 
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CHAPTER 2 

UV and Visible Light Activated TiO2 Photocatalysis of 6-hydroxymethyl uracil, a model 

compound for the potent cyanotoxin cylindrospermopsin 
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2.1       Abstract 

TiO2 photocatalyses of 6-hydroxymethyl uracil (6-HOMU) a model compound 

for the potent cyanotoxin, cylindrospermopsin (CYN), were carried out employing visible 

and UV irradiation using different non-metal doped TiO2 materials, nitrogen and 

fluorine-TiO2 (NF-TiO2), phosphorus and fluorine-TiO2 (PF-TiO2) and sulfur-TiO2 (S-

TiO2). The model compound was readily degraded under UV TiO2 photocatalysis with 

pseudo-first-order rate constants (k) of 2.1, 1.0, and 0.44 h-1 for NF-TiO2, PF-TiO2 and S-

TiO2, respectively. Under visible light activated (VLA), NF-TiO2 was the most active 

photocatalyst, PF-TiO2 was marginally active and S-TiO2 inactive. VLA NF-TiO2 was 

effective and increased the k with increasing pH from 3 to 9.  The presence of humic acid 

(HA), Fe3+ and Cu2+ can enhance the degradation. However, at 20 ppm HA significant 

inhibition was observed, likely due to shadowing of the catalyst, quenching of ROS or 

blocking active sites of TiO2. We probed the roles of different reactive oxygen species 

(ROS) using specific scavengers and the results indicate that O2
-• plays an important role 

in VLA TiO2 photocatalysis. Our results demonstrate that NF-TiO2 photocatalysis is 

effective under UV and visible irradiation and over a range of water qualities. VLA NF-

TiO2 photocatalysis is an attractive alternative technology for the CYN contaminated 

water treatment. 

2.2       Introduction 

Cyanobacteria commonly exist in drinking water sources and can lead to harmful 

algae blooms (HABs). Seventy percent of HABs can produce potent toxins (Codd 1995, 

Ho et al. 2006) and thus pose a tremendous risk to humans and the environment. One of 

the more problematic cyanotoxins is cylindrospermopsin (CYN), an alkaloid with a 
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tricyclic guanidine group and uracil ring. CYN has been showed to be genotoxic 

(Humpage et al. 2000) and carcinogenic (Falconer and Humpage 2001). The main target 

organs of CYN include the liver, kidney, thymus, lungs and adrenal glands. Human 

exposure to cylindrospermopsin occurs through ingestion of CYN contaminated food or 

water, or during recreational activities during HABs in lakes and fresh water systems. 

The most notable incident of CYN on human health occurred on Palm Island, Australia in 

1979, which led to hepatoenteritis in 138 children and 10 adults (Griffiths and Saker 

2003).  Despite this notorious incident, CYN was not isolated and identified until 1992 

(Ohtani et al. 1992).  CYN is also responsible for the poisoning of livestock (Saker et al. 

1999). 

The occurrences and volumes of toxic cyanobacterial blooms have increased 

significantly in recent years due to climate change and increasing eutrophication. With 

the increasing pressure and global need for clean water, it is desirable to identify a 

sustainable treatment process for the elimination of naturally occurring cyanotoxins from 

drinking water.  Conventional water treatment methods such as coagulation, flocculation, 

sedimentation and filtration are often not viable for removing cyanotoxins (Chow et al. 

1999, Newcombe and Nicholson 2004). Although activated carbon may be effective to 

remove cyanotoxins in the laboratory, treatments of large volumes of contaminated water 

are often not economically practical. The high levels of natural organic material (NOM) 

associated with HABs can have a pronounced negative impact on the effectiveness of the 

activated carbon process (Newcombe et al. 2002). Chlorine and ozone based treatments 

have been studied for removal of cyanotoxins, however, by products like trihalomethanes 



19 
 

(THMs) (by chlorination) and bromate (by ozonation) are a concern because of 

associated health consequences (Rodríguez et al. 2007a, Rodríguez et al. 2007b). 

Advanced oxidation processes (AOPs) have received considerable attention for 

the treatment of water contaminated with a wide variety of toxins and pollutants. AOPs 

employ the hydroxyl radical (HO•) as the primary oxidant in the oxidative remediation of 

toxins in drinking water. HO• is a very powerful oxidant, which can react rapidly with 

nearly all organic compounds due to its strong oxidation potential (+2.80V) (Thakur et al. 

2010). UV TiO2 photocatalysis is effective for the destruction of an extensive number of 

toxins and organic contaminants in the wastewater and drinking water (Tong et al. 2012). 

Conventional UV TiO2 photocatalysis can produce a number of reactive oxygen species 

(ROS), however HO• is generally associated with the effective destruction of organic 

compounds. UV photoexcitation of TiO2 produces electron/hole (e−cb / h+
vb) pairs as 

illustrated by Eq. (2.1). The e−cb can reduce molecular oxygen yielding superoxide anion 

radical (O2
-•), Eq. (2.2) and the h+

vb has the potential to oxidize surface absorbed H2O or 

hydroxyl groups to generate HO•, Eq. (2.3). Another source of HO• can occur via 

disproportionation of O2
-•, yielding H2O2, Eq. (2.4), which can be reduced to HO• Eq. 

(2.5). 

TiO2 + hν → e−cb + h+
vb                                                                                                   (2.1) 

e−cb + O2 → O2
-•                                                                                                               (2.2) 

h+
vb + H2O → H+ + HO•                                                                                                  (2.3) 

2O2
-• + 2H2O → H2O2 + 2OH- + O2                                                                                (2.4) 

H2O2 + e−cb → OH- + HO•                                                                                               (2.5) 
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Limitations effecting the broad application of UV TiO2 photocatalysis include the 

requirement of costly UV light (< 387 nm) and the rapid recombination of e−cb / h+
vb pairs, 

leading to low quantum yields. The wavelengths of solar irradiation that reach the surface 

of the earth are mostly in the visible region (40%) with a small fraction (5%) in UV 

region. Hence, photocatalysts activated by visible light or by a broad spectrum of 

wavelengths (solar) have significant economic advantages. Doping of TiO2 (NF-TiO2, 

PF-TiO2 and S-TiO2) can result in a decrease in band gap such that longer wavelength 

light (visible and solar light) becomes applicable (Han et al. 2011, Pelaez et al. 2009). In 

addition, doped TiO2 can inhibit e−cb / h+
vb pairs recombination through trapping of charge 

carriers. VLA photocatalysis employing TiO2 based materials has received significant 

attention recently and also been reviewed by the research groups of Zhao (Zhao et al. 

2005) and Dionysiou (Pelaez et al. 2012b). UV and VLA TiO2 photocatalysis are 

effective for treatment of microcystin cyanotoxins (MC), however only a limited number 

of reports have appeared on the photocatalysis of CYN (Pelaez et al. 2012a). The high 

cost of CYN limited our ability to conduct detailed studies to optimize the reaction 

conditions for the TiO2 photocatalytic destruction of CYN. The uracil moiety in CYN is 

critical to the toxicity of CYN. HO• reacts primarily (84%) at the uracil ring of CYN 

(Song et al. 2012). With this in mind, 6-hydroxymethyl uracil (6-HOMU) (Fig. 2.1) was 

synthesized and used as a model compound for the UV and VLA photocatalysis of CYN. 

We report herein the photocatalytic activity of different non-metal doped TiO2 materials, 

NF-TiO2, PF-TiO2 and S-TiO2 under 350, 420 and 450 nm irradiation. Among these 

photocatalysts, NF-TiO2 was the most UV and visible light active for the degradation of 

the CYN model compound. The treatment is effective over a range of pH, and in the 



21 
 

presence of ions and HA. O2
-• appears to play the predominant role in the VLA 

photocatalytic degradation process. Our results demonstrate NF-TiO2 can be used for the 

UV and visible light photocatalytic destruction of uracil based compounds under a variety 

of conditions. 

 

 

 

 

Fig. 2.1 Structure of cylindrospermopsin (CYN) and the model compound 6-
hydroxymethyl uracil (6-HOMU) 

 

2.3       Materials and methods 

2.3.1    Materials 

FeCl3 ·6H2O, CuCl2 ·2H2O, CaCl2 ·2H2O, MgCl2 as the sources of common ions, 

acetic acid, sodium bisulfite and HPLC grade methanol were purchased from Fisher 

Scientific. The humic acid was obtained from Fluka. 6-methyl uracil and selenium 

dioxide were purchased from Sigma Aldrich. Sodium borohydride was obtained from 

Acros organics. All reagents were used as received. The synthesis and characterization of 

the doped-TiO2 materials (NF-TiO2, PF-TiO2, and S-TiO2) are reported elsewhere (Pelaez 

et al. 2012a). The model compound (6-hydroxymethyl uracil) was synthesized according 

to standard organic functional group transformations. All aqueous solutions were 

prepared with Millipore filtered water. 
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2.3.2    Sample preparation 

The loading of doped-TiO2 materials employed for UV photocatalysis 

experiments was 0.05 g/L with the initial model compound concentration of 5 ppm unless 

otherwise stated. VLA TiO2 photocatalysis of model compound was conducted with 0.1 

g/L NF-TiO2 and 1 ppm initial concentration of model compound. The reaction solution 

was transferred to a pyrex cylindrical reactor (12 × 1 in., 150 ml capacity, with a vented 

Teflon screw top) and magnetically stirred in the dark and purged with oxygen for 15 

mins prior to irradiation and during irradiation. A Rayonet photochemical reactor 

(Southern New England Ultra Violet Company, www.rayonet.org, model RPR-100) was 

used for all experiments, equipped with a cooling fan and 15 phosphor-coated inter 

changeable lamps at λ= 350, 420 and 450 nm. Aliquots (1 ml) were collected at given 

time intervals and filtered through a 0.45 μm filter prior to high-performance liquid 

chromatography (HPLC) analysis.   

2.3.3    Preparation of model compound 

The synthesis of 6-HOMU includes two steps (Fig. 2.2): synthesis of 

orotaldehyde and reduction of orotaldehyde to 6-HOMU. The orotaldehyde was prepared 

by Kwang-Yuen’s method (Zee-Chen and Cheng 1967). Briefly, 6-methyl uracil (2.54 g) 

was refluxed in acetic acid (60 mLs) with selenium dioxide (2.66 g) for 6 hrs. The hot 

reaction mixture was filtered and the yellow filtrate collected and solvent evaporated. The 

crude orotaldehyde was then dissolved in hot water (24 mLs) and 5 % sodium bisulfite 

was added dropwise into the stirred mixture. The solution was boiled with active carbon 

for 10 mins and then gravity filtered to remove the carbon. The filtrate was acidified to 

pH 1 using concentrated HCl. Upon cooling, pure orotaldehyde was obtained as a 
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precipitate from the solution. A mixture of pure orotaldehyde (0.14 g) and sodium 

borohydride (0.076 g) was refluxed in 95 % methanol for 4 hrs.  The resulting solution 

was filtered and the solvent was evaporated yielding the pure 6-HOMU with the purity of 

98 %. 1H NMR spectrum (400 Hz, D2O): δ 4.234 (2H, s, CH2), 5.679 (1H, s, H5). 13C 

NMR (400 Hz, D2O): δ 62.18 (CH2), 98.76 (C5), 160.19 (C2), 167.86 (C6), 170.63 (C4). 

Mass spectrum (ESI): m/z 141.1 (M-1). 
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Fig. 2.2 Synthesis of 6-hydroxymethyl uracil. 

2.3.4    Analysis 

The concentration of the model compound was monitored by HPLC, Varian 

ProStar equipped with a ProStar 410 autosampler and a ProStar 335 photodiode array 

detector under the following conditions: a Luna RP C18 column (5 μm, 250 × 4.6 mm); 

30 μl injection volume and 1 ml/min flow rate; The mobile phase was consisted of a 

linear gradient starting at 5 % methanol, 95 % water increased to 30 % methanol in 5 min 

and then held constant for an additional 5 min; the detection wavelength was at 260 nm.  

2.4       Results and discussion 

2.4.1    TiO2 photocatalysis of 6-hydroxymethyl uracil  

TiO2 photocatalysis experiments were carried out with 6-HOMU under 350, 420 

and 450 nm irradiation varying only the catalysts, NF-TiO2, PF-TiO2 and S-TiO2, to 

evaluate the relative photocatalytic activity of these non-metal doped TiO2 materials.  
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The concentration of 6-HOMU was monitored by HPLC as a function of irradiation time 

(Fig. 2.3). Under UV irradiation (350 nm), the degradation follows the order of NF-TiO2 > 

PF-TiO2 > S-TiO2. The percent removal of 6-HOMU was 100, 86 and 59 % for NF-TiO2, 

PF-TiO2 and S-TiO2, respectively after 120 mins of UV irradiation. The observed 

pseudo-first-order rate constants (k) were 2.1 h-1 for NF-TiO2, 1.0 h-1 for PF-TiO2, and 

0.44 h-1 for S-TiO2. VLA NF-TiO2 photocatalysis (at 420 and 450 nm) leads to the 

degradation of 6-HOMU but at a slower rate than under UV irradiation (Fig. 2.3). 6-

HOMU was slightly degraded by PF-TiO2 under 420 nm irradiation and no degradation 

was observed employing S-TiO2 under our VLA (450 nm) conditions. The photocatalytic 

activity of these materials is dependent on the recombination e−cb / h+
vb pairs, the band gap 

energies and structural properties (Pelaez et al. 2009).  The band gaps of NF-TiO2, PF-

TiO2 and S-TiO2 and the corresponding photoexcitation wavelengths are presented in 

Table 2.1. 

Table 2.1 Doped TiO2 band gaps and corresponding photoexcited wavelengths 

Doped TiO2 Band-gap (eV) 
Wavelength  
λ (nm) 

S-TiO2 2.94  422 

NF-TiO2 2.75  451 

PF-TiO2 2.68 463 

 

PF-TiO2 has the smallest band gap and should be activated by wavelengths of ≤ 

463 nm. However, no degradation was observed at 450 nm during VLA PF-TiO2 under 

our conditions, indicating that PF-TiO2 has the poor photocatalytic activity likely due to 

faster recombination e−cb / h+
vb pairs and poor structural properties.  While the band gap 

energy of S-TiO2 (~ 422 nm) matches well with the light source of 420 nm, no detectable 
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degradation of 6-HOMU was observed under 420 nm irradiation after 4 hrs.  VLA S-

TiO2 photocatalysis was reported to be effective for the destruction of microcystin-LR 

(MC-LR) (Han et al. 2011).  The differences in the structures of the MC-LR and 6-

HOMU will influence the adsorption and hence degradation of these compounds. MC-LR 

has more functional groups (carboxylic acid, amide, amine) than 6-HOMU, which will 

enhance the adsorption and subsequent degradation of MC-LR by the surface initiated 

processes involved in heterogeneous photocatalysis. NF-TiO2 leads to the effective 

degradation of 6-HOMU under UV and visible light irradiation indicating the 

recombination of e−cb / h+
vb pairs in NF-TiO2 with a band gap of 2.75 ev is slow enough to 

allow the production of ROS.  VLA TiO2 photocatalysis using NF-TiO2 is reported to be 

effective for a number of compounds including acetic acid (Wu et al. 2010) and 4-

chlorophenol (Li et al. 2011). Our results indicate that NF-TiO2 should be an effective 

visible light driven photocatalyst for the destruction of the CYN. 
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Fig. 2.3. TiO2 photocatalysis of 6-HOMU under 350, 420 and 450 nm. [6-
HOMU]0=5ppm, [TiO2] =0.05g/L. The reproducibility is within ± 10 % on the basis of 

triplicate runs. 
 
2.4.2    Degradation Kinetics 

The TiO2 photocatalytic degradation kinetics of 6-HOMU were evaluated under 

350, 420 and 450 nm irradiation for each catalyst. While TiO2 photocatalysis is a 

heterogeneous process, the initial degradation kinetics often follow pseudo-first-order 

type kinetics (Xu et al. 2007). The concentration of 6-HOMU was monitored by HPLC as 

a function of irradiation time. The plots of ln (Co/C) as a function of treatment time 

exhibit linear relationships and the pseudo-first order rate constants were determined 

from the slope of the line. The results are summarized in Table 2.2. 
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Table 2.2 Pseudo-first-order rate constants (k) of 6-HOMU under 350, 420 and 450 nm 

Photocatalysts 
k (h-1) (R2) 

350 nm 420 nm 450 nm 

S-TiO2 0.44 (0.999) 0.0 (1.00) 0.0 (1.00) 

PF-TiO2 1.0 (0.999) 0.03 (0.915) 0.0 (1.00) 

NF-TiO2 2.1 (0.994) 0.12 (0.994) 0.20 (0.996) 

 

2.4.3    Heterogeneous kinetics 

Evaluation of reaction kinetics can provide useful mechanistic information and 

important parameters for the assessment and modeling of TiO2 photocatalytic treatment. 

TiO2 photocatalysis involves the generation of ROS and their subsequent reactions with 

the adsorbed target compounds at the TiO2 surface. In these heterogeneous processes, 

both adsorption and reactivity play critical roles in governing the degradation. To assess 

the adsorption and reactivity parameters for heterogeneous TiO2 photocatalysis, the 

Langmuir-Hinshelwood (L-H) kinetic model was employed Eq. (2.6). The L-H model 

has been widely used for assessment of TiO2 photocatalysis at the liquid-solid interfaces 

(Ollis 2005, Xu et al. 2007). This model assumes limited surface adsorption sites, no 

interaction between adsorbed species on the surface and reversible adsorption reaction 

(Fox and Dulay 1993). 

1/ r0 = 1/ krKCo + 1/ kr                                                   (2.6) 

Where r0 is the initial rate, C0 is the initial 6-HOMU concentration, kr is a reactivity 

coefficient related to oxidation reactions, and K is the equilibrium constant related to 

surface adsorption. The L-H model applied to TiO2 photocatalysis yields apparent kinetic 
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parameters. The L-H experiments were conducted over a range of initial concentrations 

(3.52-35.2 μM) and a constant NF-TiO2 concentration (0.1g/L) under visible light (450 

nm) irradiation (Fig. 2.4). The L-H kinetic parameters kr and K were determined from the 

slope and intercept of the linear fit of the 1/r0 vs. 1/C0, which shows that kr is 0.304 

μM/L·min and K is 0.016 L/μM under our experimental conditions. L-H kinetic 

parameters for phenylarsonic acid (PA) with P-25 TiO2 using the same reaction vessels 

and photochemical reactor under 350 nm irradiation has been reported with kr 2.8 

μM/L·min and K 0.034 L/μM (Zheng et al. 2010). The L-H parameters for PA under UV 

TiO2 photocatalysis may imply stronger adsorption and a more reactive system than 6-

HOMU treatment by VLA NF-TiO2 photocatalysis. The degradations at different initial 

concentrations follow pseudo-first-order kinetic model (insert table in Fig. 4). The 

apparent kinetic parameters obtained from our results are useful for modeling and 

predicting specific treatment objectives.  
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Fig. 2.4. L-H plot of TiO2 photocatalysis of 6-HOMU under visible light (450 nm). The 
insert table is the initial rates at different concentration of 6-HOMU.  [NF-TiO2]=0.1 g/L. 

The reproducibility is within ± 5 % on the basis of triplicate runs. 
 

2.4.4    Environmental factors on VLA TiO2 photocatalysis 

2.4.4.1 pH effects 

VLA TiO2 photocatalyses of 6-HOMU were performed under acidic, neutral, and 

basic conditions (pH 3, 5, 7 and 9). The concentrations of 6-HOMU as a function of 

irradiation time at different pH values are illustrated in Fig. 2.5. The degradation of 6-

HOMU was fastest at pH 7 and 9 with overall degradation of 62 ± 3 %, decreasing to 40 % 

at pH 5 and to 23 % at pH 3 after 4 hrs of treatment. The decrease in degradation with 

decreasing pH is rationalized based on electrostatic repulsion between positively charged 

6-HOMU and the NF-TiO2 surface. The point of zero charge (PZC) for NF-TiO2 is 6.4. 

Under acidic conditions, the surface of NF-TiO2 is protonated (TiO2H+) and possesses an 

overall positive charge. While the pKa value for 6-HOMU is not reported, we assume the 
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pKa of 6-HOMU is similar to 5-HOMU (pKa= 9.27) (Privat and Sowers 1996) and thus 

positively charged in the pH range of this study.  The neutral and negative charges on the 

surface of the catalyst under neutral and basic conditions lead to stronger adsorption of 

the positively charged 6-HOMU and thus faster degradation. As the pH decreases the 

overall positive charge on the surface increases along with the electrostatic repulsion with 

positively charged 6-HOMU inhibiting adsorption resulting in slower degradation at 

under acidic conditions. 

 

Fig. 2.5. TiO2 photocatalysis of 6-HOMU at pH 3, 5, 7 and 9. The insert table is the 1st 
order rate constants at different solution pH. [6-HOMU]0=1 ppm, [NF-TiO2]=0.1 g/L, 

λ=450 nm. The reproducibility is within ± 5 % on the basis of triplicate runs. 
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organic compounds. In order to investigate the influence of dissolved ions on VLA TiO2 
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range of 0.2~8 ppm. The effects of Ca2+ and Mg2+ ions on photocatalysis of 6-HOMU are 
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negligible under our experimental conditions.  The pseudo-first-order rate constants (k) of 

6-HOMU photodegradation with Ca2+, Mg2+ and without the ions are identical (0.25 ± 

0.01 h-1). The addition of Fe3+ and Cu2+ ions enhanced the VLA TiO2 photocatalysis of 6-

HOMU. In the presence of Fe3+ ions, the degradation rate constant increased by ~ 2.5 

times at a concentration of 8 ppm with pseudo-first-order rate constant (k) of 0.61 h-1. 

The NF-TiO2 photocatalysis process of 6-HOMU was also promoted by adding Cu2+ ions 

in the range of 0.2~2 ppm. The presence of Fe3+/Fe2+ and Cu2+ ions can promote photo-

Fenton/Fenton type reactions Eq. (2.7, 2.8) to produce HO• which may be responsible for 

the observed enhancement in the degradation of 6-HOMU.  

Fe3+ / Cu2+ + e- → Fe2+ / Cu+                                                                                           (2.7) 

Fe2+ / Cu+ + H2O2 → Fe3+ / Cu2+ + HO• + HO-                                                                                              (2.8) 

 

Fig. 2.6. The effects of Fe3+ and Cu2+ ion on TiO2 photocatalysis of 6-HOMU. [6-
HOMU]0=1 ppm, [NF-TiO2]=0.1g/L, λ=450 nm. The reproducibility is within ± 2 % on 

the basis of triplicate runs. 
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Fe3+/Cu2+ ions can also scavenge the e−cb during TiO2 photocatalysis, converting 

to Fe2+/Cu+ ions, while inhibiting e−cb / h+
vb pairs recombination to indirectly increase the 

HO• production. The decrease in the degradation rate constant at higher Cu2+ ion 

concentrations may be the result of Cu2+ ions acting as the primary e−cb scavenger at the 

expense of dissolve oxygen, inhibiting the formation of O2
-• and thus reducing the levels 

of O2
-• and indirectly reducing the production of HO•. Under our experimental conditions, 

inhibition however was not observed in the case of Fe3+ which may be a result of stronger 

adsorption of Cu2+ at the TiO2 surface leading to more effective competition for e−cb. 

2.4.4.3 Dissolved Organic Matter (DOM) effects 

The presence of dissolved organic matter (DOM) can have a pronounced effect on 

photochemical based water treatment processes. DOM derived from decomposed 

biomass is composed of large carbon based structures with a number of light absorbing 

chromophores. Upon light absorption DOM can lead to an excited state (DOM*) Eq. 

(2.9). The DOM* can undergo energy or electron transfer pathways with molecular 

oxygen to generate 1O2 or O2
-• Eq. (2.10). These ROS can initiate the degradation of 6-

HOMU, Eq. (2.11). The DOM* can also sensitize TiO2 Eq. (2.12) leading to charge 

carriers with the potential to initiate degradation processes Eq. (2.13). 

DOM+ hν → DOM*                                                                                                       (2.9) 

DOM* + O2 → 1O2 (O2
-•)                                                                                              (2.10) 

1O2 (O2
-•) + 6-HOMU→ 6-HOMU[OX]                                                                                                                (2.11) 

DOM* + TiO2 → TiO2*                                                                                                (2.12) 

TiO2*→ e−cb + h+
vb → ROS + 6-HOMU → 6-HOMU[OX]                                            (2.13) 
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The influence of DOM on the solar photolysis of organic contaminants has been 

widely studied (Chen et al. 2009, Guerard et al. 2009). We used HA to assess the role of 

DOM* initiated degradation of 6-HOMU under 450 nm irradiation in the absence of NF-

TiO2 as a control experiment.  The photolysis of 6-HOMU was also carried out in the 

presence of HA under 450 nm irradiation for 240 mins.  The concentration of 6-HOMU 

was monitored as a function irradiation time under different experimental conditions, 

shown in (Fig. 2.7).  DOM alone did not lead to the photo-transformation 6-HOMU 

under our experimental conditions.  

 

Fig. 2.7. The effects of HA on photo-transformation and TiO2 photocatalysis of 6-HOMU. 
[6-HOMU]0=1 ppm, [NF-TiO2]=0.1 g/L, λ=450 nm. The reproducibility is within ± 5 % 

on the basis of triplicate runs. 
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Fig. 2.7. An enhanced degradation was observed for HA concentrations between 1 and 10 

ppm. This enhancement was attributed to HA photosensitized processes, in which ROS 

can be formed to accelerate the overall photodegradation. However, the degradation 

process was strongly inhibited by the increased HA because at higher concentrations, HA 

can act as a light filter and attenuate the photochemically active processes (Canonica et al. 

2011), as well as scavenge ROS leading to the reduced degradation of 6-HOMU. 

2.4.5 The role of reactive oxygen species in VLA TiO2 photocatalysis 

UV TiO2 photocatalysis leads to a number of ROS, among them HO• produced by 

h+
vb oxidation of adsorbed hydroxyl groups is generally considered responsible for the 

degradation of organic pollutants and toxins. While the effectiveness of UV TiO2 

photocatalysis is often correlated to the production of HO•, during VLA doped-TiO2 

photocatalysis the direct formation of HO• from h+
vb is not thermodynamically plausible. 

VLA doped-TiO2 photocatalysis can however lead to the formation of HO• indirectly 

from O2
-•. O2

-• can also lose an electron to produce 1O2 which can contribute to the 

oxidation of organic compounds.  In an attempt to better understand the formation and 

roles of different ROS during VLA NF-TiO2 photocatalysis, specific scavengers were 

employed during the treatment of 6-HOMU.  The degradation of 6-HOMU was carried 

out in the absence and presence of various quenchers and scavengers as outlined in Table 

2.3.  Molecular oxygen was used as the e−cb scavenger, t-BuOH was added as a HO• 

scavenger, furfuryl alcohol was used to probe the role of 1O2, formic acid was used to 

quench oxidative processes, and superoxide dismutase employed to quench O2
-•.  
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Table 2.3 Scavengers effects on TiO2 photodegradation 

Reactive species Scavengers Mechanisms 

e−cb (electron) O2 
e−cb + O2 → O2

-•

 
k = 7.6 × 107 M-1s-1 (Xu et al. 2008)

HO• (hydroxyl radical) t-BuOH (tert-Butyl 
alcohol) 

HO• + t-BuOH → H2O + 
•CH2C(CH3)2OH 

 
k = 5.0 × 108 M-1s-1 (Xu et al. 2008) 

1O2 (singlet oxygen) Furfuryl alcohol (FFA) 
FFA + 1O2 → FFAox 

 
k = 1.2 × 108 M-1s-1 (Haag et al. 1984)

h+
vb (hole) HCO2H (formic acid) 2 h+

vb + 2HCO2
- → CO2 + 2H+ 

O2
-• (superoxide anion 

radical) 
SODred (superoxide 

dismutase) 

SODred + O2
-• + 2H+ →SOD + H2O2 

 
k = 2.0 × 109 M-1s-1 (Xu et al. 2008) 

 

(Argon saturated conditions) no detectable degradation of 6-HOMU was observed 

during VLA NF-TiO2 photocatalysis illustrating molecular oxygen is required for the 

degradation as an e−cb trap and/or in the production of O2
-•. The presence of t-BuOH, a 

HO• scavenger, significantly reduced the observed degradation of 6-HOMU. While 

hydroxyl radicals do not form directly via the h+
vb oxidation of surface hydroxyl groups 

during VLA NF-TiO2 photocatalysis, the formation of HO• can occur indirectly via 

reduction of H2O2 the product of O2
-• disproportion. 

Furfuryl alcohol (FFA) is commonly used as a scavenger for 1O2, but also readily 

reacts with HO• (Albinet et al. 2010) and thus can function as a scavenger for both 1O2 

and HO•.  The decreases in degradation of 6-HOMU were similar in the presence of FFA 

and t-BuOH, a selective HO• scavenger. Since FFA quenches 1O2 and t-BuOH does not, 

the similar decrease in the presence of FFA or t-BuOH indicates 1O2 plays a minimal role 

in the degradation process. To further test the role of 1O2 in VLA NF-TiO2 photocatalysis, 
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the degradation of 6-HOMU was performed in D2O. The lifetime of 1O2 in D2O is longer 

than that in H2O and thus singlet oxygen mediated processes are enhanced in D2O. The 

degradations in solution of H2O and D2O were similar indicating 1O2 does not play an 

important role under our experimental conditions.  

VLA NF-TiO2 photocatalysis of 6-HOMU was not affected by the presence of 

formic acid. While formic acid has been used to quench the h+
vb mediated processes 

during UV TiO2 photocatalysis, our observations are consistent with previous reports that 

h+
vb trapped in the region of inter-valence band does not possess the redox potential to 

efficiently oxidize formic acid (Beranek et al. 2007).  Therefore, the produced HO• in 

VLA NF-TiO2 likely results from the reduction of H2O2 rather than oxidizing surface 

absorbed H2O by h+
vb.  Our results indicate the photogenerated h+

vb in VLA NF-TiO2 

photocatalysis does not play a significant role in the observed degradation process.  

In TiO2 photocatalysis, dissolved oxygen serves as an electron trap and leads to 

the formation of O2
-• which can proportionate or produce to 1O2 with loss of an electron. 

In the presence of superoxide dismutase, an effective quencher of O2
-•, the degradation of 

6-HOMU was completely inhibited indicating that O2
-• is critical in the VLA NF-TiO2 

photocatalytic degradation process. O2
-• has been implicated in the destruction of a 

strongly visible light absorbing dye during VLA TiO2 photocatalysis (Stylidi et al. 2004). 

The previous study is complicated by potential self-sensitized degradation pathways.  Our 

model compound does not absorb visible-light and thus contributions from self-sensitized 

reaction pathways can be ruled out. Therefore, according to these findings, O2
-• plays a 

critical role in VLA TiO2 photocatalytic processes. 
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Fig. 2.8. The contribution of ROS to VLA TiO2 photocatalysis. [6-HOMU]0=1 ppm, 
[NF-TiO2]=0.1 g/L, λ=450 nm. The reproducibility is within ± 5 % on the basis of 

triplicate runs. 
 

2.5       Conclusions 

S-TiO2, PF-TiO2 and NF-TiO2 are photoactive under UV irradiation and the 

degradation of 6-HOMU follows a pseudo-first-order kinetic model. Among non-metal 

doped TiO2 materials, our results indicate that NF-TiO2 exhibits the best performance to 

destroy the model compound of CYN due to its high photocatalytic activity. The kinetics 

is accurately modeled and degradation is effective over a range of pH. A synergetic effect 

is observed in photodegradation of 6-HOMU in the presence of Fe3+, Cu2+ions and HA 

due to more production of HO• or ROS in the photooxidation process. Experiments 

performed in the presence of scavengers for O2
-•, 1O2, HO• and h+

vb indicate that O2
-• is 

the predominant species leading to the VLA TiO2 photocatalytic destruction of 6-HOMU. 

Our results provide a better fundamental understanding of the different roles of ROS 

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120

O2 saturated
Argon saturated
In D20
SOD (2000 unit/ml)
t-BuOH
FFA
FA

C
t  

/ C
0

Time (min)



38 
 

during VLA TiO2 photocatalysis and demonstrate VLA TiO2 photocatalysis has potential 

for water treatment for cyanotoxins. 
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CHAPTER 3 

Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by 

Fe(III)-oxalate under UV and visible light treatment 
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3.1       Abstract 

Iopamidol, widely employed as iodinated X-ray contrast media (ICM), is readily 

degraded in a Fe(III)-oxalate photochemical system under UV (350 nm) and visible light 

(450 nm) irradiation. The degradation is nicely modeled by pseudo first order kinetics. 

The rates of hydroxyl radical (•OH) production for Fe(III)-oxalate/H2O2/UV (350 nm) 

and Fe(III)-oxalate/H2O2/visible (450 nm) systems were 1.19 ± 0.12 and 0.30 ± 0.01 

μM/min, respectively. The steady-state concentration of hydroxyl radical (•OH) for the 

Fe(III)-oxalate/H2O2/UV (350 nm) conditions was 10.88 ± 1.13 × 10-14 M and 2.7 ± 0.1 × 

10-14 M for the Fe(III)-oxalate/H2O2/visible (450 nm). The rate of superoxide anion 

radical (O2
-•) production under Fe(III)-oxalate/H2O2/UV (350 nm) was 0.19 ± 0.02 

μM/min with a steady-state concentration of 5.43 ± 0.473 × 10-10 M. Detailed product 

studies using liquid chromatography coupled to Q-TOF/MS demonstrate both reduction 

(multiple dehalogenations) and oxidation (aromatic ring and side chains) contribute to the 

degradation pathways. The reduction processes appear to be initiated by the carbon 

dioxide anion radical (CO2
-•) while oxidation processes are consistent with •OH initiated 

reaction pathways. Unlike most advanced oxidation processes the Fe(III)-

oxalate/H2O2/photochemical system can initiate to both reductive and oxidative 

degradation processes. The observed reductive dehalogenation is an attractive 

remediation strategy for halogenated organic compounds as the process can dramatically 

reduce the formation of the problematic disinfection by-products often associated with 

oxidative treatment processes. 
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3.2       Introduction 

The presence of pharmaceutical compounds in aquatic environments is a serious 

concern due to their extensive use and incomplete removal during wastewater treatment 

processes(Doll and Frimmel 2003, Seitz et al. 2008). Iodinated x-ray contrast media 

(ICM), composed of water-soluble iodinated aromatic compounds, are widely used to 

enhance the imaging of organs or blood vessels during diagnostic tests. Approximately 

3.5 × 106 kg per year of ICM are consumed worldwide (Perez and Barcelo 2007). ICM is 

administered in high daily doses (up to 200 g/day) and excreted primarily non-

metabolized (> 95 %) (Mutschler 1996). ICM is frequently detected in wastewater, 

groundwater, rivers, creeks and even drinking water supplies at elevated concentrations 

(at μg/L levels for wastewater and surface water) (Schulz et al. 2008, Ternes and Hirsch 

2000). The presence of ICM is responsible for the high concentration of adsorbable 

organic halogen material (AOX) present in hospital wastewater (Kummerer et al. 1998) 

with the potential for adverse health impacts on humans. Conventional wastewater 

treatment processes generally do not effectively remediate ICM due to their resistance to 

biodegradation and high solubility in aqueous environments.  

Although specific negative health effects of ICM on humans have not been 

identified, their extensive use and persistence in the environment are causes for concern. 

A number of reports have appeared on the treatment of ICM contaminated wastewater 

and drinking water including treatment by filtration, biotransformation (Kormos et al. 

2010) and direct photolysis (Doll and Frimmel 2003, Sichel et al. 2011). These methods 

however are often not viable for ICM remediation because of extended treatment times, 

high cost and/or low efficiency. Ozonation treatment of ICM contaminated drinking 
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water only led to partial removal of non-ionic ICM (30-55 %) and less than 20 % of ionic 

ICM (Seitz et al. 2008). TiO2 photocatalytic degradation of ICM has been reported, but 

there are questions about the efficiency of the process and its application for the 

mineralization of the contrast agent, iomeprol (Doll and Frimmel 2005). Given the large 

quantities of ICM released into the environment it is essential to identify effective 

sustainable water treatment methods. Iopamidol the focus of this study is the most 

frequently detected ICM in aqueous environments (Duirk et al. 2011, Tian et al. 2014).  

Shown in Fig 1.2 iopamidol has molecular weight of 777, and the structure features 

commonly associated contrast agents, i.e., a central iodo substituted aromatic ring.  The 

aromatic ring is substituted with alkyl side chains labeled A and B, which are coupled to 

the aromatic ring through amide linkages.  The chains contain hydroxyl and amide 

functionalities which make the compound more water soluble.                                       

Advanced oxidation processes (AOPs) such as photo-Fenton or photo-Fenton-like 

processes have been widely reported to efficiently degrade organic pollutants from 

wastewater (Tao et al. 2005). These processes involve the generation of hydroxyl radical 

(•OH) as the primary oxidant. Hydroxyl radical can react rapidly with nearly all organic 

compounds due to its strong oxidation potential (+2.80V) (Thakur et al. 2010). A variety 

of iron species and a number of carboxylic acids are abundant in natural environments, 

their coexistence can establish homogenous photo-Fenton type conditions with the 

potential to produce reactive species leading to the degradation of organic pollutants 

under solar irradiation. Oxalic acid, a simple abundant naturally occurring dicarboxylic 

acid, effectively initiates the degradation of the problematic pollutants, biphenol A and 4-

chlorophenol (4-CP), under photo-Fenton conditions (Lee et al. 2014, Li et al. 2006). The 
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photochemical Fe(III)-oxalate system can be more efficient and catalytic in degrading 

organic pollutants then Fenton reactions (Fe(III) or Fe(II)/ H2O2) because of the rapid 

redox cycling of iron and faster production of •OH (Jeong and Yoon 2005, Zuo and Zhan 

2005). The Fe(III)-oxalate complex exhibits strong ligand-to-metal charge absorption 

bands in the near UV and visible regions. UV and visible light photoexcitation of Fe(III)-

oxalate complex leads to events and species capable of degrading a variety of pollutants 

as summarized in reactions 1.6 through 1.17.   

H2O2 has been added as a complementary source for •OH in combination with 

UV irradiation, ozone and/or photocatalysis to accelerate degradation of organic 

contaminants (Dionysiou et al. 2004, He et al. 2012). Although the Fe(III)-oxalate 

complex has been extensively used for photochemical actinometry (Marco Montalti 

2006), there are only a limited number of reports on the photochemical applications for 

water treatment. To date we are unaware of any published reports on the treatment of 

ICM using a Fe(III)-oxalate photochemical system. We herein report UV and visible light 

activated Fe(III)-oxalate/ H2O2 treatment of iopamidol. In our study, the addition of H2O2 

significantly increased the degradation of iopamidol. The effects of Fe(III) and oxalate 

concentrations, and solution pH were studied in the photodegradation of iopamidol. The 

steady-state concentrations of •OH and O2
-• are reported herein under UV and visible 

light activated Fe(III)-oxalate/ H2O2. Detailed product studies indicate that oxidation and 

reduction pathways play significant roles in the degradation processes. 
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3.3       Materials and methods 

3.3.1    Materials 

Iopamidol was obtained from Ilsung Pharmaceutical Co. (Korea). FeCl3 ·6H2O, 

Na2C2O4, nitroblue tetrazolium (NBT) and HPLC grade methanol were purchased from 

Fisher Scientific. Hydrogen peroxide was obtained from Sigma Aldrich (30%). Coumarin 

was purchased from MP Biomedicals, LLC. 7-hydroxycoumarin was obtained from 

Acros organics. All reagents were used as received. All aqueous solutions were prepared 

with Millipore filtered water and volumetric lab equipment. 

3.3.2    Sample preparation 

The standard photochemical experiments were conducted under the following 

experimental conditions: initial [iopamidol] = 10 μM, initial [Fe(III)] = 20 μM, initial 

oxalate concentration [C2O4
2-] = 100 μM and initial [H2O2] = 200 μM at the solution pH 

3 with 10 mLs solution.  Solution pH was adjusted with 0.1 M HNO3 or 0.1 M NaOH to 

desired pH values prior to the photochemical reactions. The reaction solution was 

transferred to a Pyrex cylindrical reactor (12 × 1 in., 150 ml capacity, with a vented 

Teflon screw top) and gently purged with oxygen for 15 min prior to and during 

irradiation. A Rayonet photochemical reactor (Southern New England Ultra Violet 

Company, www.rayonet.org, model RPR-100) equipped with a cooling fan and 4 

phosphor-coated inter changeable lamps at λ= 350 nm (0.46 mW/cm2) and 450 nm (2.25 

mW/cm2) was used for all experiments. The quantum yields for the Fe oxalate dosimeter 

vary only modestly over the different wavelengths employed in our experiments (Marco 

Montalti 2006). Aliquots (1 ml) were collected at given time intervals and subjected to 

high-performance liquid chromatography (HPLC) for analysis.  All the experiments were 
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conducted in triplicate with the mean value representing the data point and 

reproducibility expressed as error bars (based on the standard deviation among the trials) 

in the graphs. 

3.3.3    Analysis 

            HPLC analysis of iopamidol 

The concentration of the iopamidol was monitored by HPLC, Varian ProStar 

equipped with a ProStar 410 autosampler and a ProStar 335 photodiode array detector 

under the following conditions: a Luna RP C18 column (5 μm, 250 × 4.6 mm); 30 μl 

injection volume and 1 ml/min flow rate. The mobile phase consisted of a linear gradient 

starting at 5 % methanol, 95 % water increased to 30 % methanol in 5 min and then held 

constant for an additional 5 min; the detection wavelength was 242 nm.  

            LC-QTOF/MS analysis of iopamidol and its photoproducts 

The analyses of iopamidol and the degradation products were carried out using an 

Agilent 6530 high resolution accurate-mass quadrupole time-of-flight (Q-TOF) liquid 

chromatography / mass spectrometer (LC-QTOF/MS). The samples were separated on an 

Agilent Zobrax eclipse plus C-18 (rapid resolution HD 3.0 × 100 mm, 1.8-Micron) 

equipped with a guard column (3.0 × 5 mm) of same packing material.  The mobile phase 

consisted of A: 5mM ammonia formate + 0.1% formic acid in H2O and B: CH3CN, with 

a gradient elution of 5 % B for 1 min, followed by a linear increase to 95 % B in 10 min, 

back to 5 % B over 3 min. The flow rate was 0.4 ml/min and injection volume was 5 μl. 

The mass spectra (m/z 100-1000) were obtained in positive ion mode with electrospray 

ionization technology (ESI). Data acquisition and analysis were performed using the 

Agilent Mass Hunter software (Version B.05.0). 
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3.3.4    Measurement of steady-state concentration of •OH under UV and visible light  

Hydroxyl radical is a powerful oxidant and the basis for the degradation of an 

extensive number of organic compounds during the application of advanced oxidative 

treatments for water purification. Hydroxyl radical plays a critical role in the Fenton and 

photo-Fenton oxidative transformation of organic compounds. With this in mind we 

employed coumarin as a selective trap for [•OH]ss quantitation. Coumarin reacts with 

•OH to produce highly fluorescent 7-hydroxycoumarin (7-HOC) (λ excitation = 332 nm; λ 

emission = 455 nm), the concentration of •OH can be directly correlated to the 7-HOC 

fluorescence (Horiba FluoroMax 3 spectrofluorometer). The reaction yield of 7-HOC is 

28.6 % (Louit et al. 2005).The trapping experiments were conducted under the same 

conditions used for degradation of the target compound as follows [Fe(III)] = 20 μM, 

[C2O4
2-] = 100 μM, [H2O2] = 200 μM, and [coumarin] = 0.1 mM at the solution pH 3. 

The calibration curve was obtained over a range of initial 7-HOC concentrations (0.5 ~ 

10 μM) and [Fe(III)] = 20 μM, [C2O4
2-] = 100 μM, [H2O2] = 200 μM at pH 3.  The 

fluorescence intensity was converted to the concentration of 7-HOC by calculation from 

the calibration curve normalized for percent yield. 

3.3.5    Measurement of steady-state concentration of O2
-• under UV and visible light  

Superoxide anion radical is also produced during a number of advanced oxidation 

processes and we employed nitroblue tetrazolium dichloride (NBT) for the determination 

of superoxide anion radicals (O2
-•). NBT undergoes stepwise reduction via electron 

transfer upon reaction with O2
-• to form the monoformazan (MF) and diformazan (DF). 

Both MF and DF are stable organic compounds but insoluble under aqueous solution. 

Therefore, the formation of O2
-• in the Fe(III)-oxalate photochemical system was 
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monitored by determining the decomposition of NBT over the initial 30 min irradiation 

time. Since NBT can react with O2
-• and •OH, 5 % t-butanol was added to scavenge all 

the •OH and thus minimize non-superoxide anion radical initiated degradation of NBT. 

Experimental conditions for measurement of [O2
-•]ss were as follow: [Fe(III)] = 20 μM, 

[C2O4
2-] = 100 μM, [H2O2] = 200 μM, [NBT] = 0.1 mM at the solution pH 7. The 

reactions were performed under UV (350 nm) and visible light (450 nm) irradiation. 

Aqueous samples (2 ml) were collected at given time intervals and the decomposition of 

NBT was monitored at wavelength 258 nm by UV-Vis spectrometer. 

3.4       Results and discussion 

3.4.1    Removal of iopamidol under different oxidant systems 

The production of reactive oxygen species and degradation of the target 

compound is significantly more effective under UV irradiation compared to visible light 

and thus our focus shifts to the UV process.  Photodegradations of iopamidol were 

carried out under H2O2/UV, Fe(III)-oxalate/UV and Fe(III)-oxalate/H2O2/UV, to probe 

the roles of the different components on the photodegradation efficiency. The 

degradations of iopamidol are nicely fit to pseudo first-order kinetics with the rate 

constants of 0.004, 0.046 and 0.097 min-1 for H2O2/UV, Fe(III)-oxalate/UV and Fe(III)-

oxalate/H2O2/UV conditions, respectively. The H2O2/UV photochemical conditions 

establish the level degradation initiated by direct photolysis and production of •OH from 

the photochemical degradation of H2O2 to •OH. These pathways lead to less than 10 % 

degradation of iopamidol after 30 mins of treatment. The Fe(III)-oxalate/UV system 

results in ~ 70 % reduction of the iopamidol concentration while Fe(III)-

oxalate/H2O2/UV system results in ~ 95 % destruction after 30 mins of UV irradiation 
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(Fig. 3.1). The enhanced degradation upon addition of H2O2 is assigned to redox cycling 

of Fe(III)/Fe(II) and the generation of additional •OH through Fenton type processes. 
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Fig. 3.1. Degradation of iopamidol upon UV (350 nm) treatment in the presence of 
different chemical additives H2O2, Fe(III) and oxalate. ([iopamidol]= 10 μM, [Fe(III)]= 

20 μM, [oxalate]= 100 μM and [H2O2]= 200 μM at pH 3) 
 

3.4.2    Effect of Fe(III) concentration 

The photoactivity of the Fe(III)-oxalate system is influenced by chemical 

equilibrium and the light adsorption properties of the Fe-oxalate complex. With this in 

mind the concentration of Fe(III) was varied at constant oxalate and H2O2 concentrations 

(Fig. 3.2.) Oxalate concentration was used in excess since a single Fe(III) atom can 

complex a number of oxalate substrates. The degradation of iopamidol was measured at 

Fe(III) concentrations of 0, 10, 20 and 50 μM and an oxalate concentration of 100 μM to 

achieve oxalate: Fe(III) ratios from zero to two. The observed degradation was slowest in 

the absence of Fe(III) increasing with Fe(III) concentration, consistent with Fenton based 
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•OH production in the presence of H2O2. The rate constants increased from 0.004 to 

0.158 min-1 with increasing Fe(III) concentration. This result is consistent with previous 

studies on the degradation of alkylphenol by the Fe(III)-oxalate/sunlight system (Liu et al. 

2010). Under the conditions employed 50 μM Fe(III) was the optimal condition among 

the studied quantities for the remediation of iopamidol. While higher Fe(III) 

concentrations could result in the formation of more ROS, high concentrations can also 

lead to competing processes and inhibition.  
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Fig. 3.2. Effect of Fe(III) concentration on the Fe(III)-oxalate/H2O2/UV photodegradation 
of iopamidol. ([iopamidol]= 10 μM, [oxalate]=100 μM and [H2O2]= 200 μM at pH 3) 

 

3.4.3    Effect of oxalate concentration 

The effect oxalate concentration on the degradation of iopamidol was investigated 

from 20 to 400 μM at a constant Fe(III) concentration of 20 μM in the presence of H2O2 

with UV irradiation (350 nm). The degradation of iopamidol at different oxalate 

concentration is shown in Fig. 3.3 as a function of UV irradiation time. The influence of 
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the oxalate had a less pronounced effect on the degradation than varying the Fe(III) 

concentration. The observed degradations follow pseudo first order kinetics with similar 

rate constants 0.122 ± 0.025 min-1 at oxalate concentrations above 100 μM with a smaller 

rate constant 0.071 min-1 for the lowest oxalate concentration of 20 μM. The most 

effective degradation was observed at an oxalate concentration of 200 μM under our 

experimental conditions. Balmer and Sulzberger (Balmer and Sulzberger 1999) reported 

at oxalate concentrations above 180 μM, the predominant Fe-oxalate complexes are 

[Fe(III)(C2O4)2]- and [Fe(III)(C2O4)3]3-, which exhibit higher photo-activity than other 

Fe(III) oxalate complexes, thus leading to faster degradation processes. The slower 

degradation observed under excess oxalate conditions may be due to the competition for 

and quenching of the reactive oxygen species. 
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Fig. 3.3. Effect of oxalate concentration on the Fe(III)-oxalate/H2O2/UV 
photodegradation of iopamidol. ([iopamidol]= 10 μM, [Fe(III)]=20 μM and [H2O2]= 200 

μM at pH 3) 
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3.4.4    Effect of initial pH values 

The solution pH can also have a pronounced effect on the speciation and 

reactivity of Fe mediated oxidative processes as well as the protonation of organic 

function groups. Practical water treatments must be applicable over a range of solution 

pH. The effects of solution pH on the Fe(III)-oxalate/H2O2 initiated photodegradation of 

10 μM iopamidol were investigated at 20 μM Fe(III), 100 μM oxalate and 200 μM H2O2 

under UV (350 nm) irradiation. The solubility of these iron complexes drop off 

significantly under alkaline conditions and thus limit the range of solution pH to acid and 

neutral conditions.  The solution pH was adjusted from 2 to 7 by addition of 0.1 M HNO3 

or 0.1 M NaOH. The degradation of iopamidol as a function of irradiation time at 

different solution pH is illustrated in Fig. 3.4. The observed first-order rate constants are 

0.081 min-1 for pH 2, 0.097 min-1 for pH 3, 0.102 min-1 for pH 4, 0.055 min-1 for pH 5, 

0.002 min-1 for pH 6 and 0.001 min-1 for pH 7. The observed degradation of iopamidol is 

strongly dependent on pH in Fe(III)-oxalate/H2O2 system. The largest rate constants are 

observed under strongly acidic conditions with a pronounced decreased in the 

degradation of 50 % at pH 5, further decreasing to less than 10 % degradation under 

neutral conditions.  The observed pH effect has been attributed to the speciation of the 

more photoactive Fe(III) complexes [Fe(III)(C2O4)2]- and [Fe(III)(C2O4)3]3-. As the 

solution pH increases to 5, the complex speciation shifts to the less photoactive species 

Fe(III)(C2O4)+. At higher solution pH, the solubility of Fe(III) and Fe(II) strongly 

decreased and the main species are  Fe(III)-OH and Fe(II)-OH which precipitate and are 

not appreciatively photoactive. Although O2
-• is predominant relative to HO2• at solution 

pH above the pKa (pKa = 4.8) and reduction of Fe(III) to Fe(II) by O2
-• (reactions 1.10 
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and 1.12) are much faster than those by HO2• (reactions 1.11 and 1.13), less photoactive 

Fe(III)/Fe(II) species are available (at pH > 5) for generation of •OH. Our results further 

demonstrate the photodegradation of iopamidol under Fe(III)-oxalate/H2O2/UV treatment 

is accelerated under acidic conditions. 
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Fig. 3.4. Effect of pH on degradation of iopamidol. ([iopamidol]= 10 μM, [Fe(III)]=20 
μM, [oxalate]=100 μM and [H2O2]= 200 μM under UV irradiation) 

 

3.4.5    Effect of UV and Visible light irradiation 

The Fe(III)-oxalate complex exhibits strong ligand-to-metal charge absorption 

bands in the UV and visible light regions up to 450 nm (Gulshan et al. 2010). Although 

UV water treatment processes can be effective, the generation of UV can be costly and 

solar illumination only contains a small fraction (~5 %) of UV light. The Fe(III)-

oxalate/H2O2 initiated photodegradations were carried under UV (350 nm) and visible 

(450 nm) as a function of irradiation time shown in Fig. 3.5. The first order rate constants 

were 0.097 and 0.023 min-1, for UV and visible light treatment, respectively. Although 
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the degradation was slower under visible light compared with under UV, effective 

degradation was observed after 30 min of visible light treatment. Visible and UV light 

sources can effectively initiate Fe(III)-oxalate/H2O2 mediated degradation of iopamidol. 

The combination of both UV and visible portions of the solar spectrum could be a major 

economical advantage for practical applications of the Fe(III)-oxalate/ H2O2 system. 

Table 3.1 Pseudo-first-order rate constants under different conditions at pH 3 and UV 

irradiation 

[Fe(III)](μM) [Oxalate](μM) [H2O2](μM) k (min-1) 
0 0 200 0.004 

20 100 0 0.046 
20 100 200 0.097 
0 100 200 0.004 

10 100 200 0.076 
20 100 200 0.097 
50 100 200 0.158 
20 20 200 0.071 
20 100 200 0.097 
20 200 200 0.147 
20 400 200 0.133 
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Fig. 3.5. Effects of UV and visible light. ([iopamidol]= 10 μM, [Fe(III)]=20 μM, 
[oxalate]= 100 μM and [H2O2]= 200 μM at pH 3) 
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3.4.6   Determination of steady state concentration of [•OH]ss and [O2
-•]ss under UV and 

visible light  

The production of •OH during advanced oxidation water treatment is directly 

correlated to the degradation efficiency. To determine the role of •OH in the 

photodegradation of iopamidol by Fe(III)-oxalate/H2O2/photochemical treatment, the 

steady-state concentration of •OH, [•OH]ss, was measured employing coumarin as a •OH  

trap. The concentration of the characteristic •OH trap, 7-hydroxycoumarin (7-HOC), was 

measured using fluorescence (Louit et al. 2005). The fluorescence was converted to 

concentration employing a calibration curve developed from quantitative concentrations 

of 7-HOC. The formation rate of •OH is proportional to the formation rate of 7-HOC 

which can be converted to [•OH]ss by the following equation:  

 

       Formation rate of •OH = 0.286 · k coumarin + HO• [coumarin][ HO•]                                   (1) 

      where k coumarin + HO• = 6.4 × 109 M-1 s-1 (Singh et al. 2002) 

 

The monitoring of the fluorescence of 7-HOC demonstrates significant production of 

•OH in the Fe-oxalate/H2O2 system under UV and visible irradiation. The production of 

•OH is ~ four times greater under UV irradiation compared to visible light irradiation, 

analogous to the observed first order degradation rate constants under UV (0.097 min-1) 

and visible light irradiation (0.023 min-1). The formation of 7-HOC under UV (350 nm) 

and visible (450 nm) irradiation was monitored as a function of the irradiation time. Since 

6.1 % of •OH can be detected as 7-HOC by using 0.1 mM coumarin (Zhang and Nosaka 
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2012), the slope of the line in Fig. 3.6 was divided by 6.1 % to calculate the formation 

rate of •OH.  The rates of formation for •OH under UV (350 nm) and visible light (450 

nm) irradiation were 1.19 ± 0.124 and 0.30 ± 0.013 μM/min, respectively under our 

experimental conditions. The [•OH]ss were 10.88 ± 1.13 ×10-14 M  and 2.73 ± 0.12 × 10-14 

M under UV (350 nm) and visible light (450 nm) irradiation, respectively. Moreover, 

[•OH]ss from our experiments is the same order of magnitude as previously reported value 

8.33 × 10-14 M using nitrobenzene as a probe under simulated sunlight irradiation (Liu et 

al. 2010). 

                

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 UV (350 nm)
 Visible light (450 nm)

[7
-H

O
C

](
μM

)

Time (min)

 

Fig. 3.6. The formation of 7-HOC under UV (350 nm) and visible light (450 nm) 
irradiation ([coumarin]= 0.1 mM) 

 

Carbon dioxide anion radical is generated during photolysis of the Fe(III)-oxalate 

complex from the collapse of oxalate anion radical (C2O4
-•) (Zuo and Hoigne 1992). 

Carbon dioxide anion radical reduces O2 to O2
-• at a nearly diffusion controlled rate. 

Superoxide anion radical can also lead to the degradation of the target compound through 
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direct or indirect chemical reactions. While the generation of O2
-• during photolysis of the 

Fe(III)-oxalate complex has been reported under simulated solar irradiation (Liu et al. 

2010), the quantitative detection of O2
-• has yet to be reported. We monitored the 

production of O2
-• generated in Fe(III)-oxalate/H2O2 system under UV and visible light 

irradiation using NBT as the probe. The limited solubility of the NBT superoxide anion 

radical products prohibits their direct detection as a method for determination of the 

number of superoxide anion radical equivalents. However, the formation rate of O2
-•can 

be assessed based on the degradation rate of NBT as a function of irradiation time by 

adding t-BuOH, as a selective •OH quencher. The observed degradation of NBT in the 

presence of t-BuOH follows pseudo-first-order kinetics. The initial degradation rate was 

determined from the slope of the reduction in NBT concentration as a function of 

irradiation time (Fig. 3.7) and the concentration of O2
-• estimated using the relationship 

expressed below:  

 

Rate = k NBT + O2
-•·[NBT][O2

-•]                                                                                          (2) 

where k NBT + O2
-• = 5.88 × 104 M-1s-1 (Bielski et al. 1980)  

Control experiments established minimal or no conversion of NBT is observed under 

visible light irradiation and direct photolysis may interfere with the ability to detect 

superoxide anion radical under visible light irradiation. Based on these results and the 

complications associated with light adsorption and direct photolysis of the probe we are 

unable to quantify the formation of O2
-• under visible light initiated conditions. Under UV 

irradiation the initial NBT degradation rate was 0.197 ± 0.017 μM/min. The initial 
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degradation rate of NBT were used to calculate [O2
-•]ss employing Eq 2, leading to [O2

-•]ss 

of 5.43 ± 0.47 × 10-10 M under UV irradiation. 
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Fig. 3.7. The degradation of NBT under UV (350 nm) and visible light (450 nm) 
irradiation. 

 

3.4.7    Degradation pathways of iopamidol by oxidation and reduction processes 

Product studies were carried out to elucidate the reaction mechanisms in 

degradation of iopamidol by Fe(III)-oxalate/H2O2/UV process. The identification of 

intermediates was achieved by using positive ESI high resolution LC-MS based on the 

analysis of extract ion chromatography (EIC) and the corresponding mass spectrum. As 

demonstrated above •OH plays an important role in the oxidation of iopamidol by Fe(III)-

oxalate/H2O2/UV process. Based on the MS data and •OH reactivities, degradation 

pathways were proposed for •OH reactions with iopamidol. In general, •OH reacts with 

organic compounds via three pathways: electrophilic addition, hydrogen atom abstraction 

and electron transfer. The hydroxyl radical addition to aromatic rings is generally faster 
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than H-abstraction and electron transfer, via a resonance-stabilized carbon centered 

radical. H-abstraction pathways are typically slower and electron transfer is a less 

common pathway, requiring very electron rich substrates (Buxton et al. 1988). 

Hydroxyl radical addition to the aromatic ring ipso to an iodine atom is expected 

to be fast with the subsequent elimination of I• yielding substitution product with 

observed MW 667, shown in scheme 3.1. While two isomers are possible for the 

substitution product we were unable to distinguish or resolve them. Analogous 

substitution pathways via •OH addition has also been reported with the treatment of 

iomeprol by pulse and γ-radiolysis (Jeong et al. 2010) and iopamidol by UV irradiation 

(Tian et al. 2014). Although H-abstraction pathways are generally slower than •OH 

addition to aromatic rings or double bonds, there are a number of reactive Csp3-H sites 

available for H-abstraction in the iopamidol alkyl side chains. The hydrogens alpha to the 

oxygen atoms (the alcohol functionality) are highly activated towards H-abstraction with 

the production of stabilized carbon-centered radicals. Such carbon centered radicals can 

add molecular oxygen and rapidly eliminate hydroperoxyl radical to form ketone a 

product as represented in the equation below. 

RCH2OH + HO• => RCH(•)OH + O2 => RH(OO•)OH => RH(=O) + HO2• 
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Scheme 3.1. The product with MW of 667 degradation pathways. 
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The result is the oxidation of an alcohol to the corresponding carbonyl group and 

MW = 775 as represented in scheme 3.2.  Analogous oxidation of a second alcohol group 

yields a product with MW =773 observed in our study. These oxidation pathways are in 

agreement with the recent study of iopromide transformation in wastewater treatment via 

H-abstraction and further oxidation of secondary alcohol (Schulz et al. 2008). Two 

products with MW 741 were also observed in our study. These products correspond to 

M-36 from iopamidol and are assigned to the loss of two water molecules (dehydration) 

from side chains (scheme 3.4). 
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Scheme 3.2. The products with MW of 775 and 773 degradation pathways. 
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Scheme 3.3. The product with MW of 651 degradation pathways. The same reaction 
mechanisms for the products with MW of 525 and 399. 

 

The observed degradation pathways of iopamidol by reduction processes appear 

to be initiated by carbon dioxide anion radical (CO2
-•) in the absence of oxygen (purged 
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with argon).  Carbon dioxide anion radical (CO2
-•) is a powerful reducing agent and can 

reduce dissolved oxygen. Reduction of the aromatic ring of iopamidol produces a radical 

anion. Subsequent loss of I• and H atom via a reductive elimination process yields a by-

product with MW of 651 (M-I) (scheme 3.3).  Sequential reductive elimination yields 

MW = 525 (M-2I) and MW = 399 (M-3I). The two by-products observed with MW = 

651 corresponding to the loss of one I atom are assigned as constitutional isomers 

represented in scheme 3.4. Loss of a second iodine atom leads to two products MW of 

525 also assigned to constitutional isomers. The observed product with MW of 399 is 

attributed to loss of the third and final I atom from iopamidol.  Reduction pathways have 

been reported with the treatment of contrast agent, iomeprol under high energy pulse and 

γ–radiolysis (Jeong et al. 2010), however such reduction processes had not been 

previously reported during photochemical treatment of iopamidol.  
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Scheme 3.4. The proposed degradation pathways of iopamidol. 

 

3.5       Conclusions 

The ICM model compound, iopamidol is effectively degraded by Fe(III)-

oxalate/H2O2 photochemical system under UV irradiation and visible light irradiation.  

The degradation processes follow pseudo-first-order kinetics. Fe(III) concentration was 

critical and correlates to the formation of photoactive Fe-oxalate complexes and the •OH 

production during photochemical treatment. The process is most effective under strong 

acidic pH with the target compound, iopamidol degraded by 95 % within 30 min under 
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UV irradiation. The formation rates and steady concentrations of •OH and O2
-• were 

determined under UV (350 nm) and visible light (450 nm) irradiation. The product 

studies establish oxidative and reductive processes are critical to the observed 

degradation.  The reaction products and reaction pathways were elucidated based on high 

resolution MS data.  The predominant oxidation processes are the oxidation of aromatic 

ring and side chains by •OH. The reduction processes initiated by the carbon dioxide 

anion radical (CO2
-•) lead to multiple dehalogenations from aromatic ring. The results 

demonstrate the Fe(III)-oxalate/H2O2 photochemical system has promise as an effective 

method for treatment of ICM contaminated aqueous media. 
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CHAPTER 4 

Radiolysis studies on the degradation of 4-methyl cyclohexane methanol (MCHM) and 

propylene glycol phenyl ether (PPh) by hydroxyl radical 
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4.1       Abstract 

4-methyl cyclohexane methanol (MCHM) and propylene glycol phenyl ether 

(PPh) are commonly used as coal processing agents. A large spill of MCHM and PPh into 

the Elk River near Charleston, West Virginia, led to serious water contamination and 

concern about the human health consequences and appropriate remediation. We choose to 

conduct detailed studies on their reactions with hydroxyl radical (•OH), critical to the 

environmental fate and assessing potential remediation by advanced oxidation processes 

(AOPs). Time-resolved and steady-state radiolysis methods were employed to conduct 

detailed kinetic studies and probe the reaction mechanisms of •OH with MCHM and PPh. 

The bimolecular rate constants using time-resolved competition kinetics with thiocyanate 

(SCN-) for reaction of •OH with MCHM and PPh are 5.04 ± 0.09 × 109 M-1 s-1 and 9.15 ± 

0.08 × 109 M-1 s-1, respectively. The formation of the hydroxycyclohexadienyl radical 

resulting from •OH addition to the aromatic ring in PPh was measured using transient 

absorption spectroscopy (250 ~ 380 nm) with a maximum absorption at 330 nm. The rate 

constant for the specific addition of •OH to the aromatic ring in PPh is 8.98 ± 0.26 × 109 

M-1 s-1, indicating •OH reacts primarily by addition to the aromatic ring. Detailed product 

studies using SPME-GC/MS for MCHM suggest •OH mediated oxidation of MCHM 

primarily involves H-abstraction followed by radical oxidation pathways. LC-QTOF/MS 

analysis of •OH reactions with PPh indicate •OH attack to ortho and para positions of the 

benzene ring are the predominant reaction pathways. The fundamental kinetic parameters 

and detailed product studies using pulse and gamma radiolysis provide fundamental 

mechanistic understanding of •OH initiated reactions, essential to assessing the 
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remediation of these problematic pollutants in drinking water by AOP and anticipating 

the biological and environmental fate of MCHM and PPh. 

4.2.      Introduction 

An estimated 10,000 gallons of crude 4-methyl cyclohexane methanol (MCHM) 

leaked into the Elk River near Charleston, West Virginia contaminating the local drinking 

water and threatening the human health of 300,000 residents (Tullo et al. 2014). Nearly 

1,400 residents in nine counties experienced nausea, rashes, mild burns, and/or stomach 

disorders after contamination of their water supply. The leaking tank contained 88.5 % 

MCHM, 7.3 % proprietary mixture of propylene glycol phenyl ether (PPh) and 

dipropylene glycol phenyl ether (DiPPh), and 4.2 % water by weight (Tullo et al. 2014). 

MCHM and PPh are chemical foaming agents used to wash coal and remove 

impurities that contribute to pollution during combustion. The process using chemicals to 

wash coal is known as “froth flotation”, which involves the purification of residual coal 

materials formed during coal processing. MCHM and PPh are used to reduce the surface 

tension of water in order to stabilize and moderate the size of the air bubbles, then further 

assist “froth flotation” process (Tullo et al. 2014).  

Concentrations of MCHM between 1.04 ~ 3.35 ppm were reported at the West 

Virginia American Water intake on the Elk River and 1.02 ~ 1.56 ppm in the treated 

drinking water following the spill (Tullo et al. 2014).The Center for Disease Control & 

Prevention (CDC) set a screening level of 1 ppm for MCHM (2014a) and 1.2 ppm for 

PPh in drinking water (2014b). The 28-day study of oral toxicity of pure MCHM 

indicates 400 mg/kg/day dose were associated with erythropietic, liver and kidney 

problems (1/20/2014). MCHM has been studied as a dermal irritant resulting in focal 
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necrosis and eschar at the application sites (Bernard 1998). The regulatory standards of 

the Occupational Safety and Health Administration consider MCHM as “hazardous” (Jr. 

Januray 10, 2014). Mammalian studies identified MCHM as a skin and eye irritant 

(Bernard 1997). A recent study has demonstrated PPh is absorbed by rats, metabolized 

and excreted via urine and faeces rapidly after oral exposure (Saghir et al. 2003). PPh 

exhibits low oral and inhalation toxicities with oral LD50 in male and female Fischer 344 

rats of 2,830 and 3730 mg/kg, respectively (Saghir et al. 2003). PPh is also an eye irritant 

in rabbits (2004). 

Given the reports of negative health consequences and the absence of detailed 

toxicological studies on the impact of MCHM and PPh on human health, water works 

were closed and alternative water sources required for 300,000 people in Charleston, 

West Virginia. Little information on MCHM and PPh has been reported, and effective 

and efficient removals from contaminated water are unexplored. Among limited reports, 

West Virginia American Water’s engineers used carbon filtration in an attempt to purify 

to the contaminated water before distribution (Howard January 10, 2014). However, 

because of the large volume of contaminated water, carbon filtration was not practical or 

viable. A biodegradability study demonstrated that crude MCHM was not “readily 

biodegradable” using microorganisms extracted from wastewater treatment sludge 

(Beglinger 1997). Although PPh is considered biodegradable more than 60 % degradation 

after 28 days incubation under aerobic conditions (2004). Biodegradation for treatment of 

MCHM and PPh is time-consuming and not efficient, thus limiting its application for 

water purification. 
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Advanced oxidation processes (AOPs) are effective for the treatment of water 

contaminated with a wide variety of pollutants (Cooper et al. 1998, Zhao et al. 2014a, 

Zhao et al. 2014b). AOPs generally employ the formation of hydroxyl radical (·OH) as 

the primary oxidant. Hydroxyl radical is a very powerful oxidant and can react rapidly 

with nearly all organic compounds due to its strong oxidation potential (+2.80V). A 

fundamental kinetic and mechanistic understanding of the reactions for ·OH with MCHM 

and PPh are critical to assessing the potential application of AOP for their remediation. 

Determination of the bimolecular rate constants for ·OH with MCHM and PPh, and the 

corresponding degradation pathways are critical to effectively assess the application of 

AOPs on water purification. To our best knowledge, this is the first detailed studies of 

·OH mediated oxidation of MCHM and PPh. We herein report the kinetic studies 

focusing on the determination of bimolecular rate constants for ·OH with MCHM and 

PPh using transient absorbance spectroscopy (TAS) and competition methods. at 

different treatment doses. Detailed product studies were accomplished employing steady-

state γ-radiolysis and liquid chromatography coupled to Q-TOF/MS for PPh and solid 

phase microextraction (SPME) gas chromatography/MS for MCHM to identify the 

intermediates and determine the degradation pathways.  

4.3       Materials and methods 

4.3.1    Materials 

PPh was purchased from Sigma Aldrich. A mixture of trans and cis isomeric 

MCHM were obtained from TCI America. HPLC grade acetonitrile and potassium 

thiocyanate were purchased from Fisher Scientific. All reagents were used as received. 
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All aqueous solutions were prepared with Millipore filtered water and volumetric lab 

equipment. 

4.3.2    Pulse radiolysis and γ-radiolysis 

Electron pulse radiolysis experiments were conducted at the US Department of 

Energy, Notre Dame Radiation Laboratory using the 8-MeV Titan Beta model TBS-8/16-

1S linear accelerator. Detailed irradiation and transient absorption detection system has 

been described previously (Song et al. 2009b). Dosimetry was performed using N2O-

saturated of 10 mM potassium thiocyanate (KSCN) solution at wavelength of 472 nm. 

All experimental data were obtained by averaging 8-12 replicate pulses using continuous 

flow mode instrument.  

The radiolysis of water is described in Eq. 4.1.  

H2O /\/\/\ → eaq
- (0.27) + ·H (0.06) + ·OH (0.28) + H2 (0.05) + H2O2 (0.07) + H3O+ (0.27) 

(4.1) 

(where the numbers in brackets are the radiation chemical yields of these species (G-

values) per 100 eV absorbed energy). 

In addition to ·OH, hydrated electron (eaq
-) and hydrogen atom (·H) are also 

generated with relatively high yields. To study the reactions with ·OH, the solutions are 

saturated with nitrous oxide (N2O), which quantitatively converts hydrated electron (eaq
-) 

and hydrogen atom (·H) to ·OH (Eq. 4.2 and 4.3) (Buxton et al. 1988).  

eaq
- + N2O + H2O → N2 + -OH + ·OH                                     k1= 9.1× 109 M-1s-1         (4.2) 

·H + N2O → ·OH + N2                                                             k3 = 2.1× 106 M-1s-1        (4.3) 
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A Shepherd 109-86 Cobalt-60 (60Co) γ source was employed for steady-state γ-

radiolysis experiments with a dose rate of 0.0325 kGy/min, as measured by Fricke 

dosimetry. All the aqueous solutions were presaturated with N2O before γ-irradiation.  

4.3.3    LC/MS analysis of PPh and its products 

The analysis of PPh and the degradation products were carried out using a Bruker 

micro high resolution accurate-mass quadrupole time-of-flight (Q-TOF) ultra-high 

pressure liquid chromatography/mass spectrometer (UPLC-QTOF/MS). The samples 

were separated on a Waters XBrigde plus C-18 (3.0 × 50 mm, 5-Micron). The mobile 

phase consisted of A: H2O and B: CH3CN, with a gradient elution of 5 % B for 1 min, 

followed by a linear increase to 100 % B in 10 min, holding 100 % B for 5 min and back 

to 5 % B in 3 min. The flow rate was 0.4 ml/min and injection volume was 20 μl. The 

mass spectra (m/z 100-1000) were obtained in positive ion mode with electrospray 

ionization technology (ESI). 

4.3.4    SPME GC/MS analysis of MCHM and its products 

Thermo scientific ISQ gas chromatography/mass spectrometer (GC/MS) was used 

for analysis of MCHM and the degradation products. The autosampler fitted with a solid 

phase microextraction (SPME) sampling system (Supelco, Bellefonte, PA) was used to 

extract and inject all the samples. The SPME system consisted of a SPME fiber holder 

and a stableflex fiber with the coating materials of 24 Ga 50/30 μm 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS). A waters column 

was used for separation with a helium carrier gas at flow rate of 1 mL/min. The column 

temperature was programmed at 35º C for 5 min, followed by a linear increase to 300º C 
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at 8º C/min, holding at 300º C for 3 min. The mass spectra (m/z 10-500) were obtained 

with electron impact ionization technology (EI). 

4.4       Results and discussion 

4.4.1    Kinetic studies of PPh with hydroxyl radical 

Hydroxyl radical is selectively generated by pulse radiation of a N2O saturated 

aqueous solution, immediately following the pulse transient absorption spectra (TAS) is 

used to monitor the formation of transients. The intermediate resulting from the reaction 

of PPh with •OH generated by pulse radiolysis was monitored by TAS in the range of 

250 ~ 380 nm shown in Fig. 4.1. The observed transient absorption in the 300 ~ 350 nm 

range is characteristic of the hydroxycyclohexadienyl radical formed by •OH addition to 

the aromatic ring (Song et al. 2009a). Measurement of the bimolecular rate constant for 

addition of •OH to PPh can be obtained by monitoring the growth kinetics of a 

characteristic absorption at 330 nm (PPh hydroxycyclohexadienyl species) as a function 

of PPh concentration (Fig. 4.2a). The •OH concentrtaion remains constant while PPh 

concentration was varied from 42 ~ 200 μM. The bimolecular rate constant for the 

addition of •OH to the aromatic ring in PPh was determined by fitting exponential curves 

to the pseudo-first-order growth kinetics and plotting these values as a function of PPh 

concentration to give the linear plot shown in Fig. 4.2b. The slope of this line yields a 

bimolecular rate constant of 8.98 ± 0.26 × 109 M-1 s-1 for the specific addition of •OH to 

the aromatic ring in PPh.  
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Fig. 4.1. Time-resolved transient absorption spectra obtained from the reaction of 
hydroxyl radical and PPh. 
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Fig. 4.2. Transient absorption kinetics for determination of bimolecular rate constant for 
PPh and •OH. a. Growth kinetics of the transient absorption at 330 nm in the pulse 

radiolysis solution of 200, 162, 123, 86 and 42 μM PPh. b. Bimolecular rate constant 
determined for the reaction of hydroxyl radical and PPh at 330 nm. The slope from the 

line represents the specific rate constant of 8.98 ± 0.26 × 109 M-1 s-1. 
 

The result from direct monitoring of transient absorption spectra at 330 nm only 

represents the reaction pathways for •OH addition to the aromatic ring. Other possible 

  a. 

  b. 
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reaction sites specifically hydrogen abstraction of aliphatic hydrogens from the side chain 

in PPh can also lead to the degradation of PPh. A number of these six aliphatic reaction 

sites are activated by an adjacent oxygen atom. While H-abstraction pathways are well 

established, the resulting stabilized carbon-centered radical products absorb at short 

wavelengths, below the range of our detection system. With this in mind the competition 

kinetics were used to determine the overall bimolecular rate constant for the reaction of 

PPh with •OH. The competition kinetic experiments were carried out using SCN- as the 

competitor and monitoring the product (SCN)2
-• of SCN- and hydroxyl radical at 470 nm. 

Eq. (4.4) and (4.5) are the reactions of SCN- with PPh and with hydroxyl radical, 

respectively.  

•OH + PPh ⎯→⎯ 1k  Products                                     (4.4) 

•OH + 2SCN- ⎯→⎯ 2k  OH- + (SCN)2
•-                      (4.5) 

This competition can be described by the following equation (4.6): 

][k

][k
1

][(SCN)

][(SCN)

2

1
-

2

0
-

2
−•

•

+=
SCN

PPh
                                                                                          (4.6) 

Where [(SCN)2
-•]0 is initial amount of (SCN)2

-• without PPh in the solution, 

[(SCN)2
-•] is the corresponding amount of this transient in the presence of PPh (0 ~ 198 

μM). [(SCN)2
-•]0/[(SCN)2

-•] is determined from A0/ASCN- shown in Fig. 4.3 (directly 

proportional to A0/ASCN-). A plot of [(SCN)2
-•]0/[(SCN)2

-•] as a function of concentration 

ratio [PPh]/[SCN-] yields a straight line with the slope of k1/k2 and “y” intercept of 1. The 

rate constant for the reaction of SCN- with •OH is well established: k2 = 1.1 × 1010 M-1 s-1, 

the overall bimolecular rate constant for PPh and •OH can be calculated (Buxton et al. 

1988). The absorbance of (SCN)2
-• at 472 nm decreases with the increasing of PPh 
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concentration shown in Fig. 4.3 insert. The overall bimolecular rate constant for PPh and 

•OH calculated from the slope of straight line in Fig. 4.3 is 9.15 ± 0.08 × 109 M-1 s-1. 

Comparison of the overall bimolecular rate constants of PPh with ·OH and the specific 

rate constants for addition to aromatic ring suggests ~ 94 % of ·OH initiated reactions 

occur at the aromatic ring in PPh; thus H-abstractions account for 5 ~ 10 % of overall 

·OH initiated reactions pathways. There are six aliphatic H atoms and one OH in the side 

chain of PPh available for H-abstraction. The H atom in hydroxyl group (-OH) is 

generally much less reactive than aliphatic H atoms (sp3-H) due to the stronger O-H bond 

compared to C-H bond. The three primary H atoms (1º) in the methyl group have reduced 

reactivity compared to secondary (2º) and tertiary (3º) aliphatic H atoms. The two 

equivalent 2º hydrogens in PPh will have enhanced the reactivity from the adjacent 

oxygen atom. The single tertiary hydrogen (3º) also influenced by the presence of 

adjacent oxygen atom is considered the most reactive among the aliphatic hydrogens. The 

different electronic effects and statistically factors will determine the partitioning of these 

competing reaction pathways. Rate constants for ·OH addition to aromatic ring and H-

abstraction are generally on the order of 109-1010 and 108 M-1 s-1, respectively.  H-

abstraction is generally slower by 1 or 2 orders of magnitude than ·OH addition, 

consistent with our observation that the addition of •OH to the aromatic ring in PPh is the 

predominant reaction pathway. 
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Fig. 4.3. Thiocyanate competition kinetics for determination of overall bimolecular rate 
constant for PPh and •OH. The straight line gives the slope of 0.7903 ± 0.0075, 

corresponding the overall bimolecular rate constant of 9.15 ± 0.08 × 109 M-1 s-1.(Insert 
graph: kinetics of (SCN)2

-• formation at 472 nm with 100 μM SCN- changing the PPh 
concentration with 0 μM, 48.8 μM, 86.6 μM, 122 μM, 159 μM and 198 μM.) 

 

4.4.2    Kinetic studies of MCHM with hydroxyl radical 

MCHM does not possess double bonds or π systems for •OH addition. The 

reaction pathways for •OH with MCHM will involve H-abstraction with the formation of 

a localized carbon centered radicals. Direct measurement of the rate constant for H-

abstraction is not feasible because localized carbon centered radicals do not absorb 

wavelength within the range of our detection system. With this in mind, SCN- 

competition kinetics were employed for determination of the overall bimolecular rate 

constant for •OH and MCHM. The competition kinetics was obtained by monitoring a 

characteristic absorption of (SCN)2
-• at 470 nm as described earlier. A decrease in the 

absorbance of (SCN)2
-• at 472 nm is observed with increasing MCHM added in the 
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solution shown in Fig. 4.4 insert. The slope of the straight line in Fig. 4.4 yields the 

corresponding overall bimolecular rate constant for MCHM and •OH of 5.04 ± 0.09 × 109 

M-1 s-1. While H-abstraction accounts for the major reaction pathways of •OH reaction 

with MCHM, several reaction sites are possible and their anticipated relative reactivities 

are discussed. The H atom in hydroxyl group (-OH) typically is the least reactivity due to 

the stronger O-H bond compared to C-H bond. The relative reactivities of hydrogens 

decrease in the order of 3º > 2º > 1º in Csp3-H positions. Two 2º H atoms in CH2-OH 

have enhanced reactivity due to the adjacent electron-donating oxygen atom. Therefore, 

3º H atoms and 2º CH2-OH are expected to be the most reactive sites for H-abstraction 

based on the electronic factors. 
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Fig. 4.4. Thiocyanate competition kinetics for determination of overall bimolecular rate 
constant for MCHM and •OH. The straight line gives the slope of 0.4353 ± 0.0079, 

corresponding the overall bimolecular rate constant of 5.04 ± 0.09 × 109 M-1 s-1. (Insert 
graph: Kinetics of (SCN)2

-• formation at 472 nm with 100 μM SCN- changing the MCHM 
concentration with 0 μM, 43.7 μM, 85.4 μM, 122 μM, 160 μM and 198 μM.) 
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4.4.3    Degradation Pathway for hydroxyl radical mediated oxidation of PPh and MCHM 

In addition to the kinetic studies for •OH with PPh and MCHM, product studies 

were carried out to elucidate the reaction mechanisms in degradation of PPh and MCHM 

by hydroxyl radical. The experiments of product studies were conducted using 60Co 

steady-state radiolysis under N2O saturated condition with initial concentration of 100 

μM for PPh and MCHM. The identification of PPh degradation intermediates was 

achieved by using positive ESI high resolution LC-MS based on the analysis of total ion 

chromatography (TIC) and the corresponding mass spectrum. The identification of 

MCHM degradation intermediates was obtained using solid phase microextraction 

(SPME)-GC/MS. Hydroxyl radical typically reacts with organic compounds via three 

pathways: electrophilic addition, hydrogen atom abstraction and electron transfer. The 

hydroxyl radical addition to aromatic rings is generally faster than H-abstraction and 

electron transfer, via a resonance-stabilized carbon centered radical. H-abstraction 

pathways are typically slower and electron transfer is a less common pathway, requiring 

very electron rich substrates (Buxton et al. 1988).  

4.4.3.1 PPh degradation pathway 

As discussed in the kinetic studies, the electron rich 2º Hs have the enhanced the 

reactivity from the adjacent oxygen atom and are readily abstracted by ·OH to form 

stabilized carbon-centered radical. Hydroxyl radical can attack such stabilized carbon-

centered radical to yield product with MW 168, and then further oxidation by ·OH leads 

to the keto product with MW of 166. We observed the product with MW of 166 as a 

minor product, which is consistent with our proposed reaction pathway.  
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Kinetic studies indicate the majority of ·OH-mediated oxidation occurs at the 

aromatic ring of PPh by ·OH electrophilic addition. Two products with MW of 190 (M+ 

Na+) were observed, corresponding to the addition of 16 mass units to PPh (M+ Na+). 

Hydroxyl radical is an electrophile and thus addition to an aromatic ring can be directed 

by the electronic influence of the substituent. In the case of PPh the substituent is an alkyl 

group and electron donating which enhances the electron density and reactivity for 

addition of electrophilic ·OH at the ortho and para positions relative to the meta position. 

Following this logic we propose the two products with MW 190 are the ortho and para 

products. Oxidation of ROH to the corresponding carbonyl ketone product (MW=166) 

was observed in our studies, which can form the steric hindrance with the ortho position, 

leading to less ·OH attack to the ortho position. According to Fig. 4.5, the amount of 

product (MW= 190) at RT 4.9 min was much higher than the product (MW= 191) at RT 

3.8 min. Therefore, we propose the higher amount product is hydroxyl para product and 

the lower amount of product is the hydroxyl ortho product.  

We also observe the product with MW 94, possibly from the hydrolysis of ketone 

product (MW=166) or results from ·OH addition to ipso position. Similar ·OH addition to 

ipso position has been reported for the degradation of nonylphenol by involving ipso-

hydroxylation at the first step and proceeding via ipso substitution (Kolvenbach et al. 

2007). We spiked phenol (MW=94) in the treated sample and the RT for phenol and 

product with MW 94 are the same (RT=4.2 min), which is consistent with our proposed 

product (Scheme 4.1). A recent study has also been reported that PPh was predominantly 

metabolized to phenol (~ 60 % administrated dose) in rats, which agrees with our 

determination of phenol as one of the oxidation products (Saghir et al. 2003). The 
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reaction profile as a function of γ-radiation dose is shown in Fig. 4.6. All these three 

products reach the maximum levels at approximately 0.3 kGy.  
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Scheme 4.1. The proposed reaction pathways for ·OH with PPh. 
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Fig. 4.5. The reaction profile of PPh degradation products as a function of radiation under 
N2O saturated conditions. 
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4.4.3.2 MCHM degradation pathways 

Hydroxyl radical mediated oxidation of MCHM involves H-abstraction (Scheme 

4.2). Hydrogen atoms attached to CH2-OH are highly reactive towards abstraction due to 

its adjacent hydroxyl group. As a result, H-abstraction at C1 leads to the generation of 

stabilized carbon-centered radical. Such stabilized carbon-centered radicals can add a 

molecular oxygen and subsequently eliminate a hydroperoxyl radical to yield the 

corresponding aldehyde products with MW 126 (RT = 11.88 min)(P1). Elimination of -

CHO and addition of a molecular oxygen to C2 result in the formation of peroxyl radical 

intermediate, which can collapse to keto product with MW 112 (P2) or yield a double 

bond product (MW = 96) (P3) in the ring by elimination of a hydroperoxyl radical 

(Cooper et al. 2009).  

Tertiary H atoms at C2 and C5 are also expected to be readily abstracted, yielding 

the stabilized carbon-centered radicals. Addition of molecular oxygen to these stabilized 

carbon-centered radicals and subsequent elimination of hydroperoxyl radicals can form 

double bond products with the same MW 126. Similar formation of double bond in the 

ring by elimination of a hydroperoxyl radical has been reported for gas-phase oxidation 

of cyclohexane (Buda et al. 2006). We assign the retention times for C2-C3 (P4) and C4-

C5 (P5) double bond products are 14.06 min and 14.43 min, respectively, based on the 

analysis of NIST GC database. Further oxidation of double bond products results in the 

formation of corresponding aldehyde products with MW 124. The short chain carboxylic 

acids, including acetate, formate and oxalate are produced by multiple steps oxidation of 

intermediates. Such short chain carboxylic acids were detected using ion chromatography 

and also quantified to obtain the maximum formed concentration of 129 ppb for formate, 
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854 ppb for oxalate and < LOD for acetate ([MCHM]0 = 200 μM). The reaction profile of 

MCHM degradation products as a function of γ-radiation dose is shown in Fig. 4.6.  
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Scheme 4.2. The proposed reaction pathways for ·OH with MCHM. 
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Fig. 4.6. The reaction profile of MCHM degradation products as a function of radiation 
under N2O saturated conditions. 
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4.5       Conclusions 

The bimolecular rate constants of ·OH with MCHM and PPh were evaluated as 

5.04 ± 0.09 × 109 M-1 s-1 and 9.15 ± 0.08 × 109 M-1 s-1, respectively, by pulse radiolysis. 

Detailed product studies were determined to elucidate ·OH mediated oxidation reaction 

pathways by gamma radiolysis. The results demonstrate that •OH addition to ortho and 

para positions in PPh are the predominant reaction pathways; H-abstraction are primary 

reaction mechanisms for ·OH mediated oxidation of MCHM. Our results indicate 

hydroxyl radical based advanced oxidation processes (AOPs) can effectively destroy 

pollutants from drinking water and radiolysis technique is an attractive remediation 

strategy for the application of oxidative water treatments. 
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5.1       Abstract 

Cylindrospermopsin (CYN), a potent cyanotoxin mainly produced by 

cylindrospermopsis raciborskii, regularly exists in drinking water sources and poses a 

serious risk to humans and the environment. Ferrate (VI) mediated degradation kinetics 

of CYN and the model compound 6-hydroxymethyl uracil (6-HOMU) are reported as a 

function of solution pH. Fe(VI) oxidation of CYN followed second-order kinetics with 

the bimolecular rate constant decreasing from 38.8 ± 0.07 M-1s-1 at pH 7 to 5.0 ± 0.1 M-

1s-1 at pH 9.5. Detailed product studies using liquid chromatography coupled to Q-

TOF/MS indicated Fe(VI) mediated reactions primarily occur via oxidation of the uracil 

ring in CYN. Electrophilic attack at the unsaturated double bond C5-C6 in the uracil ring 

leads to the oxidation cleavage with the formation of corresponding carbonyl product 

with m/z 448. Subsequent amide hydrolysis of the ring opened product yields a new 

product with m/z 350. Sequential loss carbonyl groups yields products with m/z 320, 292 

and 290. Hydrolysis of the amide functional groups in the uracil ring in CYN is assigned 

to a product with m/z 375. ELISA results demonstrate Fe(VI) treatment of CYN leads to 

detoxification and the oxidation products did not exhibit significant biological activity. 

Our results provide a better understanding of the fundamental kinetic parameters and the 

reaction pathways of CYN oxidation by Fe(VI), which are critical to evaluate the Fe(VI) 

treatment technology for the remediation of CYN and uracil based problematic 

cyanotoxins in drinking water.  

5.2       Introduction 

The significant increase in the occurrences of cyanobacterial blooms (harmful 

algae blooms HABs) in industrial and potable water is an emerging environmental issue. 



85 
 

Seventy percent of HABs can produce potent toxins, which pose a tremendous risk to 

humans and the environment (de la Cruz et al. 2013, Liu et al. 2015). Cyanobacteria can 

produce a range of cyanotoxins, one of the most problematic cyanotoxins in drinking 

water is cylindrospermopsin (CYN), an alkaloid hepatotoxin with uracil ring, tricyclic 

guanidine and sulfate group (Fig. 5.1). CYN has been showed to be genotoxic (Humpage 

et al. 2005) and carcinogenic (Falconer and Humpage 2001) and is reported to cause the 

damage of main target organs, including the liver, kidney, thymus, lungs and adrenal 

glands (Harada et al. 1994).The toxic activity of CYN partly results from the uracil 

moiety which inhibits protein translation or it bands to DNA to cause strand breakage 

(Banker et al. 2001). Human positioning incident by CYN was first discovered on Palm 

Island, Australia in 1979, which led to hepatoenteritis in 138 children and 10 adults 

(Griffiths and Saker 2003, Zhao et al. 2014b).The presence of CYN has been primarily 

limited to warm regions, recent reports confirm the occurrences of CYN extend to more 

temperate regions in Europe, such as Italy, Germany and France (de la Cruz et al. 2013). 

                           

Fig. 5.1. The structure of cylindrospermopsin (CYN) 

A number of factors such as global warming and eutrophication have contributed 

to more frequent HABs events. With the increasing pressure and global need for clean 

water, it is desirable to identify a sustainable treatment process for the elimination of 

naturally occurring cyanotoxins from drinking water. Conventional water treatment 
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methods such as coagulation, flocculation, sedimentation and filtration only lead to 

minimal removal of cyanotoxins. Activated carbon has shown effectively removal of 

cyanotoxins, however, treatments of large volumes of contaminated water are time-

consuming and not economically applicable. Although a variety of chemical oxidants 

have been reported for removal of cyanotoxins, such as chlorine, ozone and 

permanganate, by-products like trihalomethanes (THMs) (by chlorination) and bromate 

(by ozonation) are a serious environmental issue (Rodríguez et al. 2007a, Rodríguez et al. 

2007b).The permanganate dose required for CYN oxidation is very high and not 

applicable in waterworks. Advanced oxidation processes (AOPs) have also been studied 

for degradation of pollutants and cyanotoxins based on hydroxyl radical oxidation (Song 

et al. 2012, Zhao et al. 2014a). A few studies have reported for the removal of CYN and 

6-HOMU, the CYN model compound, by UV and visible light activated (VLA) TiO2 

photocatalysis (Zhang et al. 2015, Zhao et al. 2014b). 

Ferrate (FeVIO4
2-, Fe(VI)) treatment as an environmentally friendly method has 

received considerable attention for the remediation of a wide variety of pollutants and 

toxins (Jiang et al. 2014, Lee et al. 2009) due to the reagent’s selective oxidizing 

properties. Fe(VI) is a powerful oxidant with large reduction potential (+2.20V) (Sharma 

2002).and undergoes the reactions (1) and (2) in acidic and alkaline solution, respectively 

(Wood 1958).Fe(VI) has triprotonated, diprotonated, monoprotonated and deprotonated 

species present in acidic and basic pH range with three pKa shown in reactions (4-6). The 

decomposition of Fe(VI) in water leads to the formation of Fe(III) and molecular oxygen 

by reaction (3). The reduction of Fe(VI) leads to non-toxic by-product Fe(III), indicating 

Fe(VI) as an environmentally friendly oxidant can be applied for water purification.  
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FeO4
2- + 8H+ + 3e- ↔ Fe3+ + 4H2O                                                                                    (1) 

FeO4
2- + 4H2O + 3e- ↔ Fe(OH)3 + 5OH-                                                                           (2) 

2FeO4
2- + 10H2O → 2Fe3+ + 20OH-                                                                                   (3) 

H3FeO4
+ ↔ H+ + H2FeO4                                       pKa1 = 1.6 ± 0.2                                  (4) 

H2FeO4 ↔ H+ + HFeO4
-                                         pKa2 = 3.5                                            (5) 

HFeO4
- ↔ H+ + FeO4

2-                                           pKa3 = 7.3 ± 0.1                                  (6) 

The oxidation of CYN by Fe(VI) has not yet been reported. To the best of our 

knowledge this is the first detailed study of Fe(VI) mediated oxidation of CYN. We 

report herein the kinetic studies of Fe(VI) with CYN and model compound 6-HOMU 

over a range of solution pH (7 ~ 9.5). Detailed product studies were performed using 

liquid chromatography coupled to Q-TOF/MS to identify the oxidation intermediates and 

determine the degradation pathways. The biological activities of CYN oxidation products 

during Fe(VI) treatment were evaluated using ELISA. Our results indicate the Fe(VI) as a 

promising water-treatment method can be applied for the remediation of uracil based 

problematic cyanotoxins in drinking water. 

5.3       Material and methods 

5.3.1    Materials 

Sodium phosphate, sodium borate and HPLC grade methanol were purchased 

from Fisher Scientific. The humic acid was obtained from Fluka. All reagents were used 

as received. The model compound (6-hydroxymethyl uracil) was synthesized according 

to standard organic functional group transformations (Zhao et al. 2014b). Potassium 

ferrate (K2FeO4) of high purity (~ 98 %) was obtained from Dr. Sharma’s group. Fe(VI) 
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solutions were prepared by adding  to 5 mM Na2HPO4 / 1 mM Na2B4O7 · 10 H2O buffer 

at pH 9.0. All aqueous solutions were prepared with Millipore filtered water. 

5.3.2    Kinetic studies 

Kinetic experiments were conducted at the room temperature using pseudo-first-

order conditions with [Fe(VI)] >> [6-HOMU] and [CYN]. Aliquots were collected at 

given time intervals and then quenched with hydroxylamine before analyzing with high-

performance liquid chromatography (HPLC). The hydroxylamine concentration was used 

at least 20 times higher than Fe(VI) concentration so that the reaction was stopped right 

after adding the quencher. Fe(VI) concentration was measured by colorimetric method 

(Lee et al. 2005).at the same time intervals with 6-HOMU concentration. The second 

order rate constants of Fe(VI) with CYN and 6-HOMU were determined using the 

method described by (Hu et al. 2008)(details in results section) in the pH range of 7 ~ 9.5.  

5.3.3    Biological activity using ELISA 

Enzyme-linked immunosorbent assay (ELISA) was used to assess the biological 

activity of the treated sample as a function of irradiation time using colorimetric 

procedures described in Abraxis (Abraxis). CYN samples were diluted 500 times with 

Milli-Q water for ELISA. The microtiter plate was measured at 450 nm on an íQuant 

reader within 15 min after stopping the reaction. The inhibition of enzyme activity was 

measured at known CYN concentrations to establish the standard curve.  

5.3.4    Analysis 

HPLC analysis of CYN and 6-HOMU 

The concentration of CYN was monitored by HPLC, Varian ProStar equipped 

with a ProStar 410 autosampler and a ProStar 335 photodiode array detector under the 
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following conditions: a Luna RP C18 column (5 μm, 250 × 4.6 mm); 50 μl injection 

volume and 1 ml/min flow rate; The mobile phase consisted of a linear gradient starting 

at 5 % methanol, 95 % water increased to 60 % methanol in 6 min and then held constant 

for an additional 5 min; the detection wavelength was at 262 nm. 6-HOMU concentration 

was monitored using a modified HPLC analytical method described by Zhao (Zhao et al. 

2014b). 

LC-QTOF/MS analysis of iopamidol and its photoproducts 

The analyses of CYN and the degradation products were carried out using an 

Agilent 6530 high resolution accurate-mass quadrupole time-of-flight (Q-TOF) liquid 

chromatography / mass spectrometer (LC-QTOF/MS). The samples were separated on an 

Agilent Zobrax eclipse plus C-18 (rapid resolution HD 3.0 × 100 mm, 1.8-Micron) 

equipped with a guard column (3.0 × 5 mm) of same packing material. The mobile phase 

consisted of A: 2 % acetonitrile + 0.2% acetic acid in H2O and B: 2 % H2O + 0.2% acetic 

acid in acetonitrile, with a gradient elution of 5 % B for 1 min, followed by a linear 

increase to 95 % B in 10 min, back to 5 % B over 3 min. The flow rate was 0.4 ml/min 

and injection volume was 5 μl. The mass spectra (m/z 100-1000) were obtained in 

positive ion mode with electrospray ionization technology (ESI). Data acquisition and 

analysis were performed using the Agilent Mass Hunter software (Version B.05.0). 

5.4.      Results and discussion 

5.4.1    Kinetics 

Since the reaction of CYN and Fe(VI) is pH dependent, the degradation of CYN 

by Fe(VI) was conducted in pH range 7 - 9.5 to evaluate the degradation efficiency with 

different pH values. The concentration of CYN was monitored by HPLC as a function of 
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treatment time. The degradation of CYN follows pseudo-first-order kinetics. The reaction 

kinetic of CYN and Fe(VI) can be described in Eq. (7). The second-order-rate constants 

for the reaction of CYN and Fe(VI) were determined using the equation (8) converted 

from Eq. (7),where [CYN] << [Fe(VI)].  

 ୢ[େଢ଼]ୢ௧  = -k2 [Fe(VI)][CYN]                                                                                             (7) 

ln([CYN]0/[CYN]t) = k2 [FeሺVIሻ]dݐ௧                                                                         (8) 

 

The  [FeሺVIሻ]dݐ௧  represents the Fe(VI) exposure which is integrated of Fe(VI) 

concentration over the time (in Fig. 2). The second-order-rate constant (the slope) was 

obtained by plotting the natural logarithm of CYN concentration versus the Fe(VI) 

exposure, yielding k = (38.91 ± 0.99) M-1s-1 at pH 7 shown in Fig. 5.2a (inserted fig). The 

second-order-rate constant of 6-HOMU and Fe(VI) was obtained by Eq. (8), giving the k 

= (112.112 ± 8) M-1s-1 at pH 7 shown in Fig. 5.2b (inserted fig). 
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Fig. 5.2. Kinetics of CYN and 6-HOMU with Fe(VI). a). CYN and Fe(VI) degradation at 
pH 7 ([CYN]0 = 2 μM, Fe(VI) = 40 μM). Insert shows the second order rate constant for 
CYN and Fe(VI) reaction using Eq. 7. b). 6-HOMU and Fe(VI) degradation at ph 7 ([6-

HOMU]0 = 10 μM, Fe(VI) = 100 μM). Insert shows the second order rate constant for 6-
HOMU and Fe(VI) reaction using Eq. 7 

 

  a. 

  b. 
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The second order rate constants (k) for the reactions of Fe(VI) with CYN and 6-

HOMU as a function of pH is shown in Fig. 5.3. The reactivity of Fe(VI) with CYN 

decreases with the increase of pH; the similar trend was also observed for the reaction of 

Fe(VI) with 6-HOMU. The k were similar for Fe(VI) with 6-HOMU and CYN at pH 8 ~ 

9.5, indicating Fe(VI) mediated reaction primary occur via oxidation of the uracil ring in 

CYN. Fe(VI) has a tendency to react with electron-rich organic moieties, such as amines, 

oldfin and aniline (Lee et al. 2009, Sharma 2013). Therefore, the unsaturated double bond 

C5-C6 and amines N1 and N3 in the uracil ring are expected to be the primary sites for 

Fe(VI) oxidation. 
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Fig. 5.3. The second order rate constants (k) for the reactions of Fe(VI) with CYN and 6-
HOMU as a function of pH in range of 7 ~ 9.5. 

 

Selective oxidants such as ozone (O3), chlorine, permanganate (MnO4
-) and 

chlorine dioxide (ClO2), and non-selective oxidant hydroxyl radical (•OH) have been 

reported for mediated oxidation of CYN (Rodríguez et al. 2007a, Song et al. 2012).The 
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kinetics of second order rate constants and/or apparent rate constants (kapp) of different 

oxidants with CYN is summarized in Table 5.1. The non-selective oxidant hydroxyl 

radical (•OH) mediated oxidation of CYN shows the highest reactivity than other 

oxidants, which can react with CYN via attack the uracil ring (accounting for 84 %) 

(Song et al. 2012) and hydrolysis of tricyclic guanidine group (He et al. 2014).The 

reactivity of CYN with selective oxidants O3, chlorine and ClO2 is pH dependent: the kapp 

for the reaction of CYN with O3 and ClO2 decreased with decreasing pH, while a 

maximum kapp for CYN with chlorine was observed at pH 7. O3 has orders of magnitude 

higher reactivity than other selective oxidants at neutral pH conditions. O3 can rapidly 

react with the deprotonated amine moieties in CYN. Followed by O3, chlorine also 

exhibits higher reactivity with CYN by reacting with the uracil ring in CYN to form non-

toxic 5-chloro-CYN and cylindrospermic acid (Rodríguez et al. 2007b).Based on the 

results from the present study and previous studies (Rodríguez et al. 2007a, Song et al. 

2012),the reactivity order with CYN was •OH > O3 > chlorine > Fe(VI) > MnO4
- > ClO2. 

In addition, •OH, O3, chlorine and Fe(VI) are suitable options for oxidative removal of 

CYN in water treatment, while MnO4
- and ClO2 are not appropriate oxidants for 

degradation of CYN due to the low reactivity with CYN.  

Table 5.1. The kinetics of second order rate constants and/or apparent rate constants (kapp) 

of different oxidants with CYN 

Oxidants 
Hydroxyl 

radical 
(•OH) 

ozone (O3) chlorine ferrate (VI) 
permanganate 

(MnO4
-) 

chlorine 
dioxide 
(ClO2) 

CYN (k, M-1s-1) 5.08 × 109 3.4 × 105 490 16.52 0.3 0.9 
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5.4.2    Product Identification 

Since there are no previous reports addressing the product identification of CYN 

oxidation by Fe (VI), it’s becoming critical to determine the reaction pathways and 

mechanisms to develop the fundamental understanding of Fe(VI) mediated oxidation of 

CYN. Detailed product studies were conducted at [CYN]0 = 15 μM and [Fe(VI)] = 50 

μM to make sure the initial intermediates were observed under our experimental 

conditions. The identification of intermediates was achieved by using positive ESI high 

resolution LC-MS based on the analysis of molecular ion masses and the target MS/MS 

spectrum. The tandem MS/MS spectrum of a CYN standard showed the product ion and 

its fragmentation pattern of m/z 416 > 336 > 318 > 274 > 194 > 176 as previously 

reported by Guzmán-Guillén (Guzmán-Guillén et al. 2012). The fragments ions at m/z 

336 and 318 resulted from the loss of sulfate group (- 80 Da) with a subsequent lost of 

H2O (- 18 Da); the fragment ion at m/z 274 was assigned to the loss of hydroxymethyl 

uracil group (- 142 Da); the fragments ions at m/z 194 and 176 corresponded to the loss 

of sulfate group (- 80 Da) and H2O (- 18 Da) from the fragment ion at m/z 274. 

Determination of intermediates was achieved using these characteristic fragmentation 

patterns in order to confirm the presence of specific functional groups. 

In generally, Fe(VI) has a tendency to react with electron-rich organic moieties, 

such as amines, oldfin and aniline. The reactivity of Fe(VI) with amines has been 

reported following the order of primary (1º) amine > secondary (2º) amine >> tertiary (3º) 

amine (negligible) (Lee and von Gunten 2010).Therefore, the unsaturated double bond 

C5-C6 and secondary amines N1 and N3 in the uracil ring are expected to be the primary 

sites for Fe(VI) oxidation attack. The proposed intermediates and reaction pathways are 
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shown in Scheme 5.1. The reaction of Fe(VI) with CYN is initiated by electrophilic 

attack at the unsaturated double bond C5-C6. Two possible pathways have been proposed: 

a) formation of a cyclic ester from a 3 + 2 electrocyclic addition of Fe(VI) to the double 

bond; or b) formation of a four-centered organometallic complex from a 2 + 2 addition to 

the double bond (Hu et al. 2008).Both of these two possible pathways lead to the 

formation of product m/z 448 with the same fragmentation pattern of 368 and 350, which 

is hard to distinguish between [3 + 2] and [2 + 2] addition. The hydrolysis of –C6ON1H 

or –C6OHN1H group in the uracil ring formed the product m/z 350, which has been 

determined as cylindrospermopsic acid (Merel et al. 2010, Song et al. 2012).and reported 

as nontoxic in mice up to a dose of 10 mg/kg mouse intraperitioneal injection (Banker et 

al. 2001).  

Fe(VI) can undergo electron abstraction at the carboxylate anion in 

cylindrospermopsic acid (m/z 350), leading to loss of CO2 and subsequent hydrolysis to 

product m/z 322. Fe(VI) has been reported to selectively oxidize alcohols to the 

corresponding aldehydes/ketones (Lee and Gai 1993). In our study, the product m/z 322 

can be oxidized to the aldehyde form product m/z 304. There is one proton available on 

product m/z 304 (R-CHO) for abstraction by Fe(VI), resulting in oxidation to product m/z 

320. Although the product m/z 322 and 304 were not observed under our experimental 

conditions, the detectable product m/z 320 demonstrated the above reaction pathways 

were reasonable. Such reaction pathways are similar to UV/H2O2 initiated hydroxyl 

radical attack to CYN reported by He et al (He et al. 2014). Decarboxylation and 

hydroxylation of product m/z 320 led to the formation of product m/z 292 and its further 

oxidation to ketone product m/z 290. We observed two peaks with m/z 292 and same 
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mass fragments of 292 > 240 > 194 in our study, which are consistent with recent 

findings of TiO2 photocatalytic degradation of CYN by Zhang (Zhang et al. 2015). The 

ring opening processes lead to a transformation of m/z 292a to m/z 292b (Garrison et al. 

1970, Sheu and Foote 1995). The retention time of m/z 292a was slightly longer than m/z 

292b, which indicate the polarity of product structure with m/z 292a was less than that of 

m/z 292b. This probably resulted from the contribution of hydroxyl group on C8 to the 

well distribution of electron density in molecule, leading to less polarity of product m/z 

292a, as previously reported by Zhang (Zhang et al. 2015).  

Another product with m/z 375 was observed involving hydrolysis of the urea 

functional group (-NHCONH-) in the uracil moiety, leading to the ring opening, which 

can also be transformed to product with m/z 320 by several steps. Such hydrolysis of the 

urea groups has been observed for Fe(VI) oxidation of carbamazepine (Hu et al. 2008) 

and acid hydrolysis of phenylurea in previous studies (O'Connor and Barnett 

1973).Similar reaction pathways have also been reported in the •OH mediated 

degradation of CYN by Song et al (Song et al. 2012).  
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Scheme 5.1. The proposed reaction pathways for Fe(VI) with CYN. 
 

5.4.3   Detoxification analysis of CYN oxidation products  

A limited number of studies have been reported on the assessment of biological 

activity of CYN oxidation products (Chen et al. , Zhang et al. 2015). The toxic activity of 

CYN results from the uracil moiety as mentioned above (Banker et al. 2001). Our product 

studies demonstrate the Fe(VI) mediated oxidation of CYN primary occur on the uracil 

moiety, leading to the open ring products. It is important to assess the biological activity 

of product-mixture during the Fe(VI) treatment in order to evaluate the environmental 

risks of degradation products. The biological activities of CYN following Fe(VI) 

treatment are determined using ELISA measurements. The CYN ELISA is an 

immunoassay for the quantitative and sensitive detection of CYN in water samples at 

ng/mL levels. This process involves CYN antibodies binding with second specific 

antibodies to generate color signal measured at 450 nm. A calibration curve for %B/B0 as 

a function of the CYN standards is shown in Fig. 5.4.  The %B/B0 for each standard was 

calculated by dividing the mean absorbance value for each standard by the Zero Standard 

(Standard 0) mean absorbance. The calibration curve was from 0.05 to 2 ppb CYN with 

IC50 concentration of 0.17 ppb. Samples showing a lower concentration than 0.05 ppb of 

CYN are considered to be negative.  

The samples were diluted 500 times to make sure the residual CYN concentration 

within the range of the calibration curve for ELISA measurements. As shown in Fig. 5.5, 

Fe(VI) treatment significantly decreases the biological activities of CYN product-mixture, 

which parallel the CYN concentration determined by HPLC. The biological activity 

concentration from ELISA decreased slower than the CYN concentration from HPLC, 
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which indicates the by-products formed during Fe(VI) treatment may have analogous 

biological activity. Up to 97 % of the biological activities were removed following Fe(VI) 

treatment for 120 min. The small portion at the end of treatment from ELISA reached the 

detection limit of the calibration curve and was considered to be insignificant. Our 

observations suggest that Fe(VI) treatment can readily degrade CYN, and its oxidation 

products did not exhibit the significant biological activity after the treatment.  

                   

Fig. 5.4. The calibration curve for %B/B0 as a function of CYN concentration. IC50 = 
0.17 ppb. 
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Fig. 5.5. Fe(VI) oxidation of CYN. The concentrations of CYN were measured by HPLC 
and ELISA.([CYN] = 2 μM, Fe(VI) = 50 μM at pH = 8) 

 

5.5       Conclusions 

Ferrate (VI) treatment can lead to the effective degradation of CYN and the model 

compound 6-hydroxymethyl uracil (6-HOMU) under neutral pH condition. The kinetic 

studies were reported to determine the reactivity of Fe(VI) with CYN and 6-HOMU as a 

function of solution pH. Fe(VI) oxidation of CYN followed second-order kinetics with 

the bimolecular rate constant decreasing from 38.83 ± 0.07 M-1s-1 at pH 7 to 5.02 ± 0.04 

M-1s-1 at pH 9.5. Product studies demonstrated Fe(VI) oxidation of uracil ring in CYN are 

the predominant reaction pathways, which are critical to the biological activity. The 

biological activities of CYN product-mixture decreased as a function of Fe(VI) treatment. 

The oxidation products did not pose the significant biological activity after 120 min 

treatment. Our results indicate the Fe(VI) as a promising water-treatment method can be 

applied for the remediation of uracil based problematic cyanotoxins in drinking water. 
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Cyanobacteria have become the focus of extensive research studies because of 

their increased prevalence and the diverse toxic compounds they can produce. Of 

particular concern is cylindrospermopsis raciborskii (Nostocales) which has spread from 

the tropics to more temperate climates and become a worldwide concern. The powerful 

biological activity has a significant environmental impact and threatens the health and 

lives of human beings. UV and visible light activated (VLA) TiO2 photocatalysts as the 

promising solar-driven TiO2 materials were employed for the degradation of CYN model 

compound, 6-hydroxymethyl uracil (6-HOMU). The degradation of 6-HOMU follows a 

pseudo-first-order kinetic model using nitrogen and fluorine-TiO2 (NF-TiO2), phosphorus 

and fluorine-TiO2 (PF-TiO2) and sulfur-TiO2 (S-TiO2) under UV irradiation. NF-TiO2 

performs the most photoactive, followed by marginally active PF-TiO2 and inactive S-

TiO2 under visible light irradiation. The pseudo-first-order constants increase as pH 

increase from 3 ~ 9 under VLA NF-TiO2. The dissolved metals Fe3+, Cu2+ and up to 10 

ppm humic acid can enhance the degradation of 6-HOMU. The roles of reactive species, 

•OH, 1O2, O2
-• and h+

vb were studied by adding the specific scavengers and the results 

indicate that O2
-• plays a critical role in VLA NF-TiO2 photocatalysis of 6-HOMU. 

Fe (VI) as an environmentally friendly oxidant was employed for the degradation 

of CYN and its model compound 6-hydroxymethyl uracil (6-HOMU) due to its large 

reduction potential (+ 2.2 V). Kinetic studies of Fe(VI) degradation of CYN and 6-

HOMU were conducted to determine second order rate constants over a range of pH (6.5 

~ 9.5). Fe(VI) degradation of CYN indicate that second order rate constants decrease 

from 38.83 ± 0.07 M-1s-1 at pH 7 to 5.02 ± 0.04 M-1s-1 at pH 9.5 due to changing acid-

base speciation of Fe(VI). Product studies indicate Fe(VI) mediated degradation 
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pathways predominantly occur via oxidation of the uracil ring in CYN, leading to 

oxidation and ring opened products. ELISA results demonstrate Fe(VI) oxidation process 

leads to a significant decrease in the biological activity of CYN as a function of treatment 

time. 

Iodinated X-ray contrast media (ICM) compounds are widely used 

pharmaceuticals for intravascular administration to enhance the imaging of organs or 

blood vessels during diagnostic tests. Although ICM compounds have not shown any 

specific health effects on humans, precautionary and prediction are necessary because of 

their contribution to adsorbable organically halogen (AOX). Iron based treatments and 

oxidative processes have received considerable attention for the remediation of a wide 

variety of pollutants. We report the investigation of Fe(III)-oxalate/H2O2/UV process for 

the remediation of iopamidol a model for ICM. The observed degradation follows first 

order and can be achieved at solution pH from 2 to 7. Kinetic studies were used to 

optimize reaction conditions, reactant ratios, wavelength of irradiation and solution pH. 

Under our optimal conditions, the rates of hydroxyl radical (•OH) and superoxide anion 

radical (O2
-•) production were 1.19 ± 0.12 and 0.19 ± 0.02 μM/min under UV (350 nm) 

irradiation, respectively. Detailed product studies using liquid chromatography couple to 

Q-TOF-MS demonstrate both reduction (multiple dehalogenations) and oxidation 

(oxidation of the aromatic ring and side chains) contribute to the degradation pathways. 

The reduction processes appear to be initiated by the carbonate radical anion (CO2
-•) 

while oxidation processes are consistent with •OH initiated reaction pathways. 

4-methylcyclohexanemethanol (MCHM) and propylene glycol phenyl ether (PPh) 

are related to the contamination of local drinking water in Charleston, West Virginia, on 
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Jan 9, 2014. Hydroxyl radical (·OH) mediated oxidation of MCHM and PPh were studied 

to obtain the bimolecular rate constants using transient absorption spectrum and 

competition kinetics. The bimolecular rate constants of ·OH with MCHM and PPh were 

5.04 ± 0.09 × 109 M-1 s-1 and 9.15 ± 0.08 × 109 M-1 s-1, respectively, by pulse radiolysis. 

Product studies indicate •OH addition to ortho and para positions in PPh are the 

predominant reaction pathways; H-abstraction are primary reaction mechanisms for ·OH 

mediated oxidation of MCHM. The fundamental kinetic parameters and proposed 

reaction pathways using pulse and gamma radiolysis are important to evaluate the 

reactive species (·OH) initialized reactions for the remediation of these problematic 

pollutants in drinking water and also critical to assess the radiolysis techniques as a 

potential water treatment for organic pollutants. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



105 
 

REFERENCE 
 
(1/20/2014) Summary Report of Short-term Screening Level Calculation and Analysis of 
Available Animal Studies for MCHM 
(http://emergency.cdc.gov/chemical/MCHM/westvirginia2014/pdf/MCHM-Summary-
Report.pdf), The Centers for Disease Control & Prevention  
 
(2004) Propylene glycol phenyl ether 
(http://www.chem.unep.ch/irptc/sids/OECDSIDS/770354.pdf). The Organization for 
Economic Cooperation and Development/Screening Information Data Set (OECD SIDS). 
 
(2014a) Information about MCHM - 2014 West Virginia Chemical Release 
(http://emergency.cdc.gov/chemical/MCHM/westvirginia2014/mchm.asp). The Center 
for Disease Control & Prevention (CDC). 
 
(2014b) Information about PPh - 2014 West Virginia Chemical Release 
(http://emergency.cdc.gov/chemical/MCHM/westvirginia2014/pph.asp). The Center for 
Disease Control & Prevention (CDC). 
 
Abdelmelek, S.B., Greaves, J., Ishida, K.P., Cooper, W.J. and Song, W. (2011) Removal 
of Pharmaceutical and Personal Care Products from Reverse Osmosis Retentate Using 
Advanced Oxidation Processes. Environmental Science & Technology 45(8), 3665-3671. 
 
Abraxis Cylindrospermopsin ELISA (Microtiter Plate). Technical Note Product No. 
522011. 
 
ADEL AL-KDASI, A.I., KATAYON SAED, CHUAH TEONG GUAN (2004) 
TREATMENT OF TEXTILE WASTEWATER BY ADVANCED OXIDATION 
PROCESSES – A REVIEW. Global Nest: the Int. J. 6(3), 222-230. 
 
Albinet, A., Minero, C. and Vione, D. (2010) Photochemical generation of reactive 
species upon irradiation of rainwater: Negligible photoactivity of dissolved organic 
matter. Science of the Total Environment 408(16), 3367-3373. 
 
Balmer, M.E. and Sulzberger, B. (1999) Atrazine Degradation in Irradiated Iron/Oxalate 
Systems:  Effects of pH and Oxalate. Environmental Science & Technology 33(14), 
2418-2424. 
 
Banker, R., Carmeli, S., Werman, M., Teltsch, B., Porat, R. and Sukenik, A. (2001) 
Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin 
cylindrospermopsin. Journal of Toxicology and Environmental Health-Part A 62(4), 281-
288. 
 
Beglinger, J.M. (1997) Determination of ready biodegradability (Biotic degradation) 
using CO2 evolution test modified sturm 



106 
 

(http://www.eastman.com/Literature_Center/Misc/Crude_MCHM_Ready_Biodegradatio
n_Study.pdf). Eastman Kodak Company ES-97-112. 
 
Beranek, R., Neumann, B., Sakthivel, S., Janczarek, M., Dittrich, T., Tributsch, H. and 
Kisch, H. (2007) Exploring the electronic structure of nitrogen-modified TiO2 
photocatalysts through photocurrent and surface photovoltage studies. Chemical Physics 
339(1–3), 11-19. 
 
Bernard, L.G. (1997) Acute Dermal Irritation Study in the Rabbit 
(http://www.eastman.com/Literature_Center/Misc/Crude_MCHM-Skin_Irritation_Study). 
eastman Kodak Company TX-97-256. 
 
Bernard, L.G. (1998) Acute dermal toxicity study in the rat 
(http://www.eastman.com/Literature_Center/Misc/Crude_MCHM-
Acute_Dermal_Toxicity_Study.pdf ). Eastman Kodak Company TX-97-308. 
 
Bielski, B.H.J., Shiue, G.G. and Bajuk, S. (1980) Reduction of nitro blue tetrazolium by 
CO2

- and O2
- radicals. The Journal of Physical Chemistry 84(8), 830-833. 

 
Bourke, A.T.C., Hawes, R.B., Neilson, A. and Stallman, N.D. (1983) An outbreak of 
hepato-enteritis (the Palm Island mystery disease) possibly caused by algal intoxication. 
Toxicon 21(Supplement 3), 45-48. 
 
Bourke, A.T.C., Hawes, R.B., Neilson, A. and Stallman, N.D. (1986) PALM ISLAND 
MYSTERY DISEASE. Medical Journal of Australia 145(9), 486-486. 
 
Buda, F., Heyberger, B., Fournet, R., Glaude, P.-A., Warth, V. and Battin-Leclerc, F. 
(2006) Modeling of the Gas-Phase Oxidation of Cyclohexane. Energy Fuels 20, 1450-
1459. 
 
Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988) CRITICAL-
REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, 
HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-
SOLUTION. Journal of Physical and Chemical Reference Data 17(2), 513-886. 
 
Canonica, S., von Gunten, U. and Wenk, J. (2011) Reply to Comment on "Effect of 
Dissolved Organic Matter on the Transformation of Contaminants Induced by Excited 
Triplet States and the Hydroxyl Radical". Environmental Science & Technology 45(18), 
7947-7948. 
 
Chatterjee, D. and Dasgupta, S. (2005) Visible light induced photocatalytic degradation 
of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry 
Reviews 6(2-3), 186-205. 
 



107 
 

Chen, L., Zhao, C., Dionysiou, D.D. and O’Shea, K.E. TiO2 photocatalytic degradation 
and detoxification of cylindrospermopsin. Journal of Photochemistry and Photobiology A: 
Chemistry 307–308(0), 115-122. 
 
Chen, Y., Hu, C., Hu, X.X. and Qu, J.H. (2009) Indirect Photodegradation of Amine 
Drugs in Aqueous Solution under Simulated Sunlight. Environmental Science & 
Technology 43(8), 2760-2765. 
 
Chiswell, R.K., Shaw, G.R., Eaglesham, G., Smith, M.J., Norris, R.L., Seawright, A.A. 
and Moore, M.R. (1999) Stability of cylindrospermopsin, the toxin from the 
cyanobacterium, Cylindrospermopsis raciborskii: Effect of pH, temperature, and sunlight 
on decomposition. Environmental Toxicology 14(1), 155-161. 
 
Chow, C.W.K., Drikas, M., House, J., Burch, M.D. and Velzeboer, R.M.A. (1999) The 
impact of conventional water treatment processes on cells of the cyanobacterium 
Microcystis aeruginosa. Water Research 33(15), 3253-3262. 
 
Codd, G., Bell, S., Kaya, K., Ward, C., Beattie, K. and Metcalf, J. (1999) Cyanobacterial 
toxins, exposure routes and human health. European Journal of Phycology 34(4), 405-415. 
 
Codd, G.A. (1995) Cyanobacterial toxins: Occurrence, properties and biological 
significance. Water Science and Technology 32(4), 149-156. 
 
Cooper, W.J., Cramer, C.J., Martin, N.H., Mezyk, S.P., O’Shea, K.E. and Sonntag, C.v. 
(2009) Free Radical Mechanisms for the Treatment of Methyl tert-Butyl Ether (MTBE) 
via Advanced Oxidation/Reductive Processes in Aqueous Solutions. Chemical Reviews 
109(3), 1302-1345. 
 
Cooper, W.J., Curry, R.D. and O'Shea, K.E. (1998) Environmental applications of 
ionizing radiation, John Wiley & Sons. 
 
de la Cruz, A.A., Hiskia, A., Kaloudis, T., Chernoff, N., Hill, D., Antoniou, M.G., He, X., 
Loftin, K., O'Shea, K., Zhao, C., Pelaez, M., Han, C., Lynch, T.J. and Dionysiou, D.D. 
(2013) A review on cylindrospermopsin: the global occurrence, detection, toxicity and 
degradation of a potent cyanotoxin. Environmental Science: Processes & Impacts 15(11), 
1979-2003. 
 
Dionysiou, D.D., Suidan, M.T., Baudin, I. and Laı̂né, J.-M. (2004) Effect of hydrogen 
peroxide on the destruction of organic contaminants-synergism and inhibition in a 
continuous-mode photocatalytic reactor. Applied Catalysis B: Environmental 50(4), 259-
269. 
 
Doll, T.E. and Frimmel, F.H. (2003) Fate of pharmaceuticals––photodegradation by 
simulated solar UV-light. Chemosphere 52(10), 1757-1769. 
 



108 
 

Doll, T.E. and Frimmel, F.H. (2005) Cross-flow microfiltration with periodical back-
washing for photocatalytic degradation of pharmaceutical and diagnostic residues–
evaluation of the long-term stability of the photocatalytic activity of TiO2. Water 
Research 39(5), 847-854. 
 
Duirk, S.E., Lindell, C., Cornelison, C.C., Kormos, J., Ternes, T.A., Attene-Ramos, M., 
Osiol, J., Wagner, E.D., Plewa, M.J. and Richardson, S.D. (2011) Formation of Toxic 
Iodinated Disinfection By-Products from Compounds Used in Medical Imaging. 
Environmental Science & Technology 45(16), 6845-6854. 
 
Falconer, I.R. (1998) Algal toxins and human health, pp. 53-82, Springer. 
 
Falconer, I.R. (2005) Cyanobacterial Toxins of Drinking Water Supplies: 
Cylindrospermopsins and Microcystins, CPC Press, Boca Raton. 
 
Falconer, I.R. and Humpage, A.R. (2001) Preliminary evidence for in vivo tumour 
initiation by oral administration of extracts of the blue-green alga Cylindrospermopsis 
raciborskii containing the toxin cylindrospermopsin. Environmental Toxicology 16(2), 
192-195. 
 
Fox, M.A. and Dulay, M.T. (1993) Heterogeneous photocatalysis. Chemical Reviews 
93(1), 341-357. 
 
Garrison, W.M., Kland-English, M.J., Sokol, H.A. and Jayko, M.E. (1970) Radiolytic 
degradation of the peptide main chain in dilute aqueous solution containing oxygen. The 
Journal of Physical Chemistry 74(26), 4506-4509. 
 
Griffiths, D.J. and Saker, M.L. (2003) The palm island mystery disease 20 years on: A 
review of research on the cyanotoxin cylindrospermopsin. Environmental Toxicology 
18(2), 78-93. 
 
Guerard, J.J., Chin, Y.P., Mash, H. and Hadad, C.M. (2009) Photochemical Fate of 
Sulfadimethoxine in Aquaculture Waters. Environmental Science & Technology 43(22), 
8587-8592. 
 
Gulshan, F., Yanagida, S., Kameshima, Y., Isobe, T., Nakajima, A. and Okada, K. (2010) 
Various factors affecting photodecomposition of methylene blue by iron-oxides in an 
oxalate solution. Water Research 44(9), 2876-2884. 
 
Guzmán-Guillén, R., Prieto, A.I., González, A.G., Soria-Díaz, M.E. and Cameán, A.M. 
(2012) Cylindrospermopsin determination in water by LC-MS/MS: Optimization and 
validation of the method and application to real samples. Environmental Toxicology and 
Chemistry 31(10), 2233-2238. 
 



109 
 

Haag, W.R., Hoigne´, J.r., Gassman, E. and Braun, A.M. (1984) Singlet oxygen in 
surface waters — Part I: Furfuryl alcohol as a trapping agent. Chemosphere 13(5–6), 
631-640. 
 
Halling-Sorensen, B., Nielsen, S.N., Lanzky, P.F., Ingerslev, F., Lutzhoft, H.C.H. and 
Jorgensen, S.E. (1998) Occurrence, fate and effects of pharmaceutical substances in the 
environment - A review. Chemosphere 36(2), 357-394. 
 
Han, C., Pelaez, M., Likodimos, V., Kontos, A.G., Falaras, P., O'Shea, K. and Dionysiou, 
D.D. (2011) Innovative visible light-activated sulfur doped TiO2 films for water 
treatment. Applied Catalysis B: Environmental 107(1–2), 77-87. 
 
Harada, K., Ohtani, I., Iwamoto, K., Suzuki, M., Watanabe, M.F., Watanabe, M. and 
Terao, K. (1994) Isolation of cylindrospermopsin from a cyanobacterium Umezakia 
natans and its screening method. Toxicon 32, 73-84. 
 
He, X., Pelaez, M., Westrick, J.A., O’Shea, K.E., Hiskia, A., Triantis, T., Kaloudis, T., 
Stefan, M.I., de la Cruz, A.A. and Dionysiou, D.D. (2012) Efficient removal of 
microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Research 
46(5), 1501-1510. 
 
He, X., Zhang, G., de la Cruz, A.A., O’Shea, K.E. and Dionysiou, D.D. (2014) 
Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl 
Radicals in Homogeneous UV/H2O2 Process. Environmental Science & Technology 
48(8), 4495-4504. 
 
Ho, L., Meyn, T., Keegan, A., Hoefel, D., Brookes, J., Saint, C.P. and Newcombe, G. 
(2006) Bacterial degradation of microcystin toxins within a biologically active sand filter. 
Water Research 40(4), 768-774. 
 
Howard, B.C. (January 10, 2014) What's the chemical behind West Virginia's River spill ? 
- Spill in the Elk River brings a "do not drink" advisory. 
 
Hu, L., Martin, H.M., Arce-Bulted, O., Sugihara, M.N., Keating, K.A. and Strathmann, 
T.J. (2008) Oxidation of Carbamazepine by Mn(VII) and Fe(VI): Reaction Kinetics and 
Mechanism. Environmental Science & Technology 43(2), 509-515. 
 
Humpage, A.R., Fenech, M., Thomas, P. and Falconer, I.R. (2000) Micronucleus 
induction and chromosome loss in transformed human white cells indicate clastogenic 
and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutation 
Research/Genetic Toxicology and Environmental Mutagenesis 472(1–2), 155-161. 
 
Humpage, A.R., Fontaine, F., Froscio, S., Burcham, P. and Falconer, I.R. (2005) 
Cylindrospermopsin Genotoxicity and Cytotoxicity: Role Of Cytochrome P-450 and 



110 
 

Oxidative Stress. Journal of Toxicology and Environmental Health, Part A 68(9), 739-
753. 
 
Jeong, J., Jung, J., Cooper, W.J. and Song, W. (2010) Degradation mechanisms and 
kinetic studies for the treatment of X-ray contrast media compounds by advanced 
oxidation/reduction processes. Water Research 44(15), 4391-4398. 
 
Jeong, J. and Yoon, J. (2005) pH effect on OH radical production in photo/ferrioxalate 
system. Water Research 39(13), 2893-2900. 
 
Jercinovic, D.E. (1985) Petroleum-Product Contamination of Soil and Water in New 
Mexico, Environmental Improvement Division, Ground Water/Hazardous Waste Bureau. 
 
Jiang, W., Chen, L., Batchu, S.R., Gardinali, P.R., Jasa, L., Marsalek, B., Zboril, R., 
Dionysiou, D.D., O’Shea, K.E. and Sharma, V.K. (2014) Oxidation of Microcystin-LR 
by Ferrate(VI): Kinetics, Degradation Pathways, and Toxicity Assessments. 
Environmental Science & Technology 48(20), 12164-12172. 
 
Jr., K.W. (Januray 10, 2014) What is 'Crude MCHM'? Few know. 
 
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. 
and Buxton, H.T. (2002) Pharmaceuticals, hormones, and other organic wastewater 
contaminants in US streams, 1999-2000: A national reconnaissance. Environmental 
Science & Technology 36(6), 1202-1211. 
 
Kolvenbach, B., Schlaich, N., Raoui, Z., Prell, J., Zühlke, S., Schäffer, A., Guengerich, 
F.P. and Corvini, P.F.X. (2007) Degradation Pathway of Bisphenol A: Does ipso 
Substitution Apply to Phenols Containing a Quaternary α-Carbon Structure in the para 
Position? Applied and Environmental Microbiology 73(15), 4776-4784. 
 
Kormos, J.L., Schulz, M., Kohler, H.-P.E. and Ternes, T.A. (2010) Biotransformation of 
Selected Iodinated X-ray Contrast Media and Characterization of Microbial 
Transformation Pathways. Environmental Science & Technology 44(13), 4998-5007. 
 
Kummerer, K., Erbe, T., Gartiser, S. and Brinker, L. (1998) AOX-emissions from 
hospitals into municipal waste water. Chemosphere 36(11), 2437-2445. 
 
Lee, D.G. and Gai, H. (1993) Kinetics and mechanism of the oxidation of alcohols by 
ferrate ion. Canadian Journal of Chemistry 71(9), 1394-1400. 
 
Lee, J., Kim, J. and Choi, W. (2014) Oxidation of aquatic pollutants by ferrous–oxalate 
complexes under dark aerobic conditions. Journal of Hazardous Materials 274(0), 79-86. 
 
Lee, Y. and von Gunten, U. (2010) Oxidative transformation of micropollutants during 
municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, 



111 
 

chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical). 
Water Research 44(2), 555-566. 
 
Lee, Y., Yoon, J. and von Gunten, U. (2005) Spectrophotometric determination of ferrate 
(Fe(VI)) in water by ABTS. Water Research 39(10), 1946-1953. 
 
Lee, Y., Zimmermann, S.G., Kieu, A.T. and von Gunten, U. (2009) Ferrate (Fe(VI)) 
Application for Municipal Wastewater Treatment: A Novel Process for Simultaneous 
Micropollutant Oxidation and Phosphate Removal. Environmental Science & 
Technology 43(10), 3831-3838. 
 
Li, F.B., Chen, J.J., Liu, C.S., Dong, J. and Liu, T.X. (2006) Effect of iron oxides and 
carboxylic acids on photochemical degradation of bisphenol A. Biology and Fertility of 
Soils 42(5), 409-417. 
 
Li, X.H., Zhang, H.D., Zheng, X.X., Yin, Z.Y. and Wei, L. (2011) Visible light 
responsive N-F-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol. 
Journal of Environmental Sciences-China 23(11), 1919-1924. 
 
Liu, G., Zheng, S., Xing, X., Li, Y., Yin, D., Ding, Y. and Pang, W. (2010) Fe(III)–
oxalate complexes mediated photolysis of aqueous alkylphenol ethoxylates under 
simulated sunlight conditions. Chemosphere 78(4), 402-408. 
 
Liu, S., Zhao, Y., Ma, F., Ma, L., O'Shea, K., Zhao, C., Hu, X. and Wu, M. (2015) 
Control of Microcystis aeruginosa growth and associated microcystin cyanotoxin 
remediation by electron beam irradiation (EBI). Rsc Advances 5(40), 31292-31297. 
 
Louit, G., Foley, S., Cabillic, J., Coffigny, H., Taran, F., Valleix, A., Renault, J.P. and Pin, 
S. (2005) The reaction of coumarin with the OH radical revisited: hydroxylation product 
analysis determined by fluorescence and chromatography. Radiation Physics and 
Chemistry 72(2-3), 119-124. 
 
Ma, J. and Liu, W. (2002) Effectiveness of ferrate (VI) preoxidation in enhancing the 
coagulation of surface waters. Water Research 36(20), 4959-4962. 
 
Marco Montalti, A.C., Luca Prodi, M. Teresa Gandolfi (2006) Handbook of 
Photochemistry, CRC Press, Boca Raton. 
 
Merel, S., Clément, M., Mourot, A., Fessard, V. and Thomas, O. (2010) Characterization 
of cylindrospermopsin chlorination. Science of the Total Environment 408(16), 3433-
3442. 
 
Mulazzani, Q.G., Dangelantonio, M., Venturi, M., Hoffman, M.Z. and Rodgers, M.A.J. 
(1986) INTERACTION OF FORMATE AND OXALATE IONS WITH RADIATION-



112 
 

GENERATED RADICALS IN AQUEOUS-SOLUTION - METHYLVIOLOGEN AS A 
MECHANISTIC PROBE. Journal of Physical Chemistry 90(21), 5347-5352. 
 
Munter, R. (2001) Advanced oxidation processes - current status and prospects. Proc. Est. 
Acad. Sci., Chem. 50, 59-80. 
 
Mutschler, E. (1996) Arzneimittelwirkungen, 7th Ed. Wissenschaftliche   
Verlagsgesellschaft, Stuttgart, . 
 
Newcombe, G., Morrison, J., Hepplewhite, C. and Knappe, D.R.U. (2002) Simultaneous 
adsorption of MIB and NOM onto activated carbon: II. Competitive effects. Carbon 
40(12), 2147-2156. 
 
Newcombe, G. and Nicholson, B. (2004) Water treatment options for dissolved 
cyanotoxins. Journal of Water Supply Research and Technology-Aqua 53(4), 227-239. 
 
O'Connor, C.J. and Barnett, J.W. (1973) Acid hydrolysis of phenylurea, 4-
fluorophenylurea, and 3-methylphenylurea. Journal of the Chemical Society, Perkin 
Transactions 2 (10), 1457-1461. 
 
Ohtani, I., Moore, R.E. and Runnegar, M.T.C. (1992) Cylindrospermopsin: a potent 
hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. Journal of the 
American Chemical Society 114(20), 7941-7942. 
 
Ollis, D.F. (2005) Kinetics of liquid phase photocatalyzed reactions: An illuminating 
approach. Journal of Physical Chemistry B 109(6), 2439-2444. 
 
Pelaez, M., de la Cruz, A.A., Stathatos, E., Falaras, P. and Dionysiou, D.D. (2009) 
Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic 
degradation of microcystin-LR in water. Catalysis Today 144(1–2), 19-25. 
 
Pelaez, M., Falaras, P., Kontos, A.G., de la Cruz, A.A., O'Shea, K., Dunlop, P.S.M., 
Byrne, J.A. and Dionysiou, D.D. (2012a) A comparative study on the removal of 
cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films 
with visible and UV-vis light photocatalytic activity. Applied Catalysis B-Environmental 
121, 30-39. 
 
Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, 
P.S.M., Hamilton, J.W.J., Byrne, J.A., O'Shea, K., Entezari, M.H. and Dionysiou, D.D. 
(2012b) A review on the visible light active titanium dioxide photocatalysts for 
environmental applications. Applied Catalysis B-Environmental 125, 331-349. 
 
Perez, S. and Barcelo, D. (2007) Fate and occurrence of X-ray contrast media in the 
environment. Analytical and Bioanalytical Chemistry 387(4), 1235-1246. 
 



113 
 

Privat, E.J. and Sowers, L.C. (1996) A proposed mechanism for the mutagenicity of 5-
formyluracil. Mutation Research/Fundamental and Molecular Mechanisms of 
Mutagenesis 354(2), 151-156. 
 
Rodríguez, E., Onstad, G.D., Kull, T.P.J., Metcalf, J.S., Acero, J.L. and von Gunten, U. 
(2007a) Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine 
dioxide and permanganate. Water Research 41(15), 3381-3393. 
 
Rodríguez, E., Sordo, A., Metcalf, J.S. and Acero, J.L. (2007b) Kinetics of the oxidation 
of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. 
Water Research 41(9), 2048-2056. 
 
Saghir, S.A., Brzak, K.A. and Bartels, M.J. (2003) Oral absorption, metabolism and 
excretion of 1-phenoxy-2-propanol in rats. Xenobiotica 33, 1059-1071. 
 
Saker, M.L., Thomas, A.D. and Norton, J.H. (1999) Cattle mortality attributed to the 
toxic cyanobacterium Cylindrospermopsis raciborskii in an outback region of north 
Queensland. Environmental Toxicology 14(1), 179-182. 
 
Santoke, H., Song, W.H., Cooper, W.J. and Peake, B.M. (2012) Advanced oxidation 
treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions 
of Suwannee River humic acid. Journal of Hazardous Materials 217, 382-390. 
 
Schulz, M., Loffler, D., Wagner, M. and Ternes, T.A. (2008) Transformation of the X-ray 
contrast medium lopromide in soil and biological wastewater treatment. Environmental 
Science & Technology 42(19), 7207-7217. 
 
Seitz, W., Jiang, J.-Q., Schulz, W., Weber, W.H., Maier, D. and Maier, M. (2008) 
Formation of oxidation by-products of the iodinated X-ray contrast medium iomeprol 
during ozonation. Chemosphere 70(7), 1238-1246. 
 
Sharma, V.K. (2002) Potassium ferrate(VI): an environmentally friendly oxidant. 
Advances in Environmental Research 6(2), 143-156. 
 
Sharma, V.K. (2011) Oxidation of inorganic contaminants by ferrates (VI, V, and IV)–
kinetics and mechanisms: A review. Journal of Environmental Management 92(4), 1051-
1073. 
 
Sharma, V.K. (2013) Ferrate(VI) and ferrate(V) oxidation of organic compounds: 
Kinetics and mechanism. Coordination Chemistry Reviews 257(2), 495-510. 
 
Sheu, C. and Foote, C.S. (1995) Photosensitized Oxygenation of a 7,8-Dihydro-8-
oxoguanosine Derivative. Formation of Dioxetane and Hydroperoxide Intermediates. 
[Erratum to document cited in CA122:106358]. Journal of the American Chemical 
Society 117(16), 4726-4726. 



114 
 

 
Sichel, C., Garcia, C. and Andre, K. (2011) Feasibility studies: UV/chlorine advanced 
oxidation treatment for the removal of emerging contaminants. Water Research 45(19), 
6371-6380. 
 
Singh, T.S., Madhava Rao, B.S., Mohan, H. and Mittal, J.P. (2002) A pulse radiolysis 
study of coumarin and its derivatives. Journal of Photochemistry and Photobiology A: 
Chemistry 153(1–3), 163-171. 
 
Song, W.H., Cooper, W.J., Peake, B.M., Mezyk, S.P., Nickelsen, M.G. and O'Shea, K.E. 
(2009a) Free-radical-induced oxidative and reductive degradation of N,N '-diethyl-m-
toluamide (DEET): Kinetic studies and degradation pathway. Water Research 43(3), 635-
642. 
 
Song, W.H., Xu, T.L., Cooper, W.J., Dionysiou, D.D., De La Cruz, A.A. and O'Shea, 
K.E. (2009b) Radiolysis Studies on the Destruction of Microcystin-LR in Aqueous 
Solution by Hydroxyl Radicals. Environmental Science & Technology 43(5), 1487-1492. 
 
Song, W.H., Yan, S.W., Cooper, W.J., Dionysiou, D.D. and O'Shea, K.E. (2012) 
Hydroxyl Radical Oxidation of Cylindrospermopsin (Cyanobacterial Toxin) and Its Role 
in the Photochemical Transformation. Environmental Science & Technology 46(22), 
12608-12615. 
 
Stewart, I., Webb, P., Schluter, P. and Shaw, G. (2006) Recreational and occupational 
field exposure to freshwater cyanobacteria – a review of anecdotal and case reports, 
epidemiological studies and the challenges for epidemiologic assessment. Environmental 
Health: A Global Access Science Source 5(1), 1-13. 
 
Stylidi, M., Kondarides, D.I. and Verykios, X.E. (2004) Visible light-induced 
photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied 
Catalysis B-Environmental 47(3), 189-201. 
 
Tao, X., Su, J.M., Chen, J.F. and Zhao, J.C. (2005) A novel route for waste water 
treatment: photo-assisted Fenton degradation of dye pollutants accumulated in natural 
polyelectrolyte microshells. Chemical Communications (36), 4607-4609. 
 
Ternes, T.A. and Hirsch, R. (2000) Occurrence and behavior of X-ray contrast media in 
sewage facilities and the aquatic environment. Environmental Science & Technology 
34(13), 2741-2748. 
 
Thakur, R.S., Chaudhary, R. and Singh, C. (2010) Fundamentals and applications of the 
photocatalytic treatment for the removal of industrial organic pollutants and effects of 
operational parameters: A review. Journal of Renewable and Sustainable Energy 2(4). 
 



115 
 

Thomas, A., Saker, M.L., Norton, J.H. and Olsen, R.D. (1998) Cyanobacterium 
Cylindrospermopsis raciborskii as a probable cause of death in cattle in northern 
Queensland. Australian Veterinary Journal 76(9), 592-594. 
 
Tian, F.-X., Xu, B., Lin, Y.-L., Hu, C.-Y., Zhang, T.-Y. and Gao, N.-Y. (2014) 
Photodegradation kinetics of iopamidol by UV irradiation and enhanced formation of 
iodinated disinfection by-products in sequential oxidation processes. Water Research 
58(0), 198-208. 
 
Tong, A.Y.C., Braund, R., Warren, D.S. and Peake, B.M. (2012) TiO2-assisted 
photodegradation of pharmaceuticals - a review. Central European Journal of Chemistry 
10(4), 989-1027. 
 
Tullo, A.H., Kemsley, J., Hogue, C. and Morrissey, S.P. (2014) OBSCURE CHEMICAL 
TAINTS WATER SUPPLY. Chemical & Engineering News 92(7), 10-15. 
 
Turner, P.C., Gammie, A.J., Hollinrake, K. and Codd, G.A. (1990) Pneumonia associated 
with contact with cyanobacteria. 
 
Wood, R.H. (1958) The Heat, Free Energy and Entropy of the Ferrate(VI) Ion. Journal of 
the American Chemical Society 80(9), 2038-2041. 
 
Wu, G.S., Wen, J.L., Nigro, S. and Chen, A.C. (2010) One-step synthesis of N- and F-
codoped mesoporous TiO2 photocatalysts with high visible light activity. 
Nanotechnology 21(8). 
 
Xu, T.L., Cai, Y. and O'Shea, K.E. (2007) Adsorption and photocatalyzed oxidation of 
methylated arsenic species in TiO2 suspensions. Environmental Science & Technology 
41(15), 5471-5477. 
 
Xu, Z., Jing, C., Li, F. and Meng, X. (2008) Mechanisms of Photocatalytical Degradation 
of Monomethylarsonic and Dimethylarsinic Acids Using Nanocrystalline Titanium 
Dioxide. Environmental Science & Technology 42(7), 2349-2354. 
 
Yang, B., Ying, G.-G., Zhao, J.-L., Liu, S., Zhou, L.-J. and Chen, F. (2012) Removal of 
selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care 
products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents. Water 
Research 46(7), 2194-2204. 
 
Zee-Chen, K.-Y. and Cheng, C.C. (1967) Pyrimidines. XX. A convenient preparation of 
orotaldehyde and thymine-6-carboxaldehyde. Journal of Heterocyclic Chemistry 4(1), 
163-165. 
 
Zhang, G., Wurtzler, E.M., He, X., Nadagouda, M.N., O'Shea, K., El-Sheikh, S.M., 
Ismail, A.A., Wendell, D. and Dionysiou, D.D. (2015) Identification of TiO2 



116 
 

photocatalytic destruction byproducts and reaction pathway of cylindrospermopsin. 
Applied Catalysis B: Environmental 163(0), 591-598. 
 
Zhang, J. and Nosaka, Y. (2012) Quantitative Detection of OH Radicals for Investigating 
the Reaction Mechanism of Various Visible-Light TiO2 Photocatalysts in Aqueous 
Suspension. The Journal of Physical Chemistry C 117(3), 1383-1391. 
 
Zhao, C., Arroyo-Mora, L.E., DeCaprio, A.P., Sharma, V.K., Dionysiou, D.D. and 
O'Shea, K.E. (2014a) Reductive and oxidative degradation of iopamidol, iodinated X-ray 
contrast media, by Fe(III)-oxalate under UV and visible light treatment. Water Research 
67(0), 144-153. 
 
Zhao, C., Pelaez, M., Dionysiou, D.D., Pillai, S.C., Byrne, J.A. and O'Shea, K.E. (2014b) 
UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model 
compound for the potent cyanotoxin cylindrospermopsin. Catalysis Today 224(0), 70-76. 
 
Zhao, J., Chen, C. and Ma, W. (2005) Photocatalytic Degradation of Organic Pollutants 
Under Visible Light Irradiation. Topics in Catalysis 35(3-4), 269-278. 
 
Zheng, S., Cai, Y. and O'Shea, K.E. (2010) TiO2 photocatalytic degradation of 
phenylarsonic acid. Journal of Photochemistry and Photobiology a-Chemistry 210(1), 61-
68. 
 
Zuo, Y. and Hoigne, J. (1992) Formation of hydrogen peroxide and depletion of oxalic 
acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environmental 
Science & Technology 26(5), 1014-1022. 
 
Zuo, Y. and Zhan, J. (2005) Effects of oxalate on Fe-catalyzed photooxidation of 
dissolved sulfur dioxide in atmospheric water. Atmospheric Environment 39(1), 27-37. 
 

 

 

 

 

 

 

 

 



117 
 

VITA 
 

CEN ZHAO 
 

    Born, Fushun, Liaoning, China 
 

2006-2010    Bachelor of Science in Applied Chemistry 
Shenyang Agricultural University 
Shenyang, Liaoning, China 

 
 

2010 -present    Doctoral Candidate 
Florida International University 
Miami, Florida, USA 

 
 

PUBLICATIONS AND PRESENTATIONS 
 

C.A.A. de, A. Hiskia, T. Kaloudis, N. Chernoff, D. Hill, M.G. Antoniou, X. He, K. Loftin, 
K. O'Shea, C. Zhao, M. Pelaez, C. Han, T.J. Lynch, D.D. Dionysiou, A review on 
cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent 
cyanotoxin, Environmental Science.: Processes Impacts 15 (2013) 1979-2003. 

 
C. Zhao, M. Pelaez, D.D. Dionysiou, S.C. Pillai, J.A. Byrne, K.E. O'Shea, UV and visible 
light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the 
potent cyanotoxin cylindrospermopsin, Catalysis Today 224 (2014) 70-76. 

 
C. Zhao, L.E. Arroyo-Mora, A.P. DeCaprio, V.K. Sharma, D.D. Dionysiou, K.E. O'Shea, 
Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by 
Fe(III)-oxalate under UV and visible light treatment, Water Research 67 (2014) 144-153. 

 
L. Chen, C. Zhao, D.D. Dionysiou, K. E. O'Shea, TiO2 photocatalytic degradation and 
detoxification of cylindrospermopsin, Journal of Photochemistry & Photobiology, A: 
Chemistry 307-308 (2015) 115-122. 

 
C. Zhao, M. Luzi, M. Pelaez, D. D. Dionysiou and K. E.O’Shea, TiO2 photocatalysis of 
6-hydroxymethyl uracil as a model for the cylindrospermopsin, poster presentation at the 
17th International Conference on Semiconductor Photocatalysis and Solar Energy 
Conversion, November 11-15, 2012, Jacksonville, Florida. 
 
C. Zhao, M. Pelaez, D. D. Dionysiou, S. C. Pillai, J. A. Byrne and K. E. O’Shea, Visible 
Light Activated (VLA) TiO2 photocatalysis of 6-hydroxymethyl uracil as a model 
compound for the cylindrospermopsin, oral presentation at the 245th American Chemical 
Society (ACS) National Meeting,Division of Environmental Chemistry,April 7-11, 2013, 
New Orleans, Louisiana 



118 
 

 
K. E. O'Shea, C. Zhao, D. D. Dionysiou, M. Pelaez ,W. Song , J. A. Byrne, S. C. Pillai, 
Advanced oxidation of cylinderspermopsin (cyanobacterial toxin). Mechanistic and 
practical considerations, oral presentation at the 245th American Chemical Society (ACS) 
National Meeting, Division of Environmental Chemistry, April 7-11, 2013, New Orleans, 
Louisiana 
 
C. Zhao, D. D. Dionysiou and K. E. O'Shea, Photodegradation of iodinated x-ray contrast 
mediam iopamidol by Fe(III)-oxalate system with the composition of H2O2, poster 
presentation at the 19th International Conference on Advanced Oxidation Technologies 
for Treatment of Water, Air and Soil, November 17-21, 2013, San Diego, California. 
 
W. Jiang, C. Zhao, L. Zhu, V. K. Sharma, S. R. Batchu, P. R. Gardinali, D. D. Dionysiou, 
K. E. O’Shea, Oxidation of Microcystin-LR by Ferrate (VI): Intermediates, Degradation 
Pathways and Toxicity Assesement, poster presentation at the 247th American Chemical 
Society (ACS) National Meeting,Division of Environmental Chemistry, March 16-20, 
2014, Dallas, Texas 
 
C. Zhao, L. E. Arroyo-Mora, A. P. DeCaprio, D. D. Dionysiou, K. E. O’Shea, 
Photodegradation of iodinated X-ray contrast media iopamidol by Fe(III)-oxalate system 
with the composition of H2O2, oral presentation at the 248th American Chemical Society 
(ACS) National Meeting,Division of Environmental Chemistry, August 10-15, 2014, San 
Francisco, California. 
 
C. Zhao, V. K. Sharma, D. D. Dionysiou, K. E. O’Shea, Oxidation of cylindrospermopsin 
and its model compound 6-hydroxymethyl uracil by Ferrate (VI), poster presentation at 
the 248th American Chemical Society (ACS) National Meeting,Division of Environmental 
Chemistry, August 10-15, 2014, San Francisco, California. 

 


	Florida International University
	FIU Digital Commons
	4-2-2015

	Advanced Oxidation Processes of Problematic Toxin and Water Contaminants: Cylindrospermopsin, Iopamidol, 4-methylcyclohexane Methanol and Propylene Glycol Phenyl Ether
	Cen Zhao
	Recommended Citation


	Advanced Oxidation Processes of Problematic Toxin and Water Contaminants: Cylindrospermopsin, Iopamidol, 4-Methyl Cyclohexane Methanol and Propylene Glycol Phenyl Ether

