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ABSTRACT OF THE THESIS 

AN ASSESSMENT OF THE PERFORMANCES OF SEVERAL UNIVARIATE TESTS 

OF NORMALITY 

by 

James Olusegun Adefisoye 

Florida International University, 2015 

Miami, Florida 

Professor B.M. Golam Kibria, Co-Major Professor 

Professor Florence George, Co-Major Professor 

The importance of checking the normality assumption in most statistical procedures 

especially parametric tests cannot be over emphasized as the validity of the inferences 

drawn from such procedures usually depend on the validity of this assumption. Numerous 

methods have been proposed by different authors over the years, some popular and 

frequently used, others, not so much. This study addresses the performance of eighteen of 

the available tests for different sample sizes, significance levels, and for a number of 

symmetric and asymmetric distributions by conducting a Monte-Carlo simulation. The 

results showed that considerable power is not achieved for symmetric distributions when 

sample size is less than one hundred and for such distributions, the kurtosis test is most 

powerful provided the distribution is leptokurtic or platykurtic.  The Shapiro-Wilk test 

remains the most powerful test for asymmetric distributions. We conclude that different 

tests are suitable under different characteristics of alternative distributions.  
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CHAPTER ONE: INTRODUCTION 

1.1 Why Test Normality? 

In theoretical and empirical research, there are assumptions that are usually tested to 

ensure the validity of inferences from such research; one of such assumptions is the 

normality assumption. Data often approximates a normal “bell-shaped” curve; some 

distributions become normal asymptotically. The normality or (lack thereof) of an 

underlying data distribution can have an effect to a greater or lesser degree on the 

properties of estimation or inferential procedures used in the analysis of the data.  

The standard errors and consequently, the test statistics computed from such standard 

errors in parametric statistics such as the t-test, tests for regression coefficients, analysis 

of variance, and the F-test of homogeneity of variance include the tests that have as an 

underlying assumption, the distribution of the population from which the sample data was 

generated to have be normal. The validity of inferences from such tests usually depends 

on validity of the normality assumption. Also, the probability associated with the test 

statistics are derived from distributions that are normal or asymptotic normal. Normality 

is an important requirement for the data with random independent variables which is 

often are used in everyday research. If the independent variables are random, 

distributions with high kurtosis tend to give liberal tests and excessively small standard 

errors, while low kurtosis tends to produce the opposite effects (Bollen, 1989). The 

normality assumption is therefore very important and this has caused the Gaussian or 

normal distribution to be a long focal point of much of statistical study. 
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Checking the validity of the normality assumption in a statistical procedure can be done 

in two ways: empirical procedure using graphical analysis and the goodness-of- fit tests 

methods. The goodness-of-fit tests which are formal statistical procedures for assessing 

the underlying distribution of a data set are our focus here. These tests usually provide 

more reliable results than graphical analysis. 

1.2 The Normal Distribution and its Characteristics 

The normal distribution is a probability model for continuous variables. The probability 

density function of the normal distribution with mean μ and variance 2σ  is defined as: 

2

2)(

2

1

22

1
)( σ

μ

πσ

−
−

=
x

exf  ∞<<∞− x , ∞<<∞− μ , 0>σ   (1.1) 

The normal distribution is completely determined by its parameters μ  and 2σ . The 

density curve of a normal random variable is shown in Figure 1.1. 

The normal distribution is the only absolutely continuous distribution all of whose 

cumulants beyond the first two (i.e., other than the mean and variance) are zero. It is also 

the continuous distribution with the maximum entropy for a given mean and variance. 

The normal distribution is a subclass of the elliptical distributions. The normal 

distribution is symmetric about its mean, and is non-zero over the entire real line. The 

value of the normal distribution is practically zero when the value x lies more than a few 

standard deviations away from the mean. Therefore, it may not be an appropriate model 

when one expects a significant fraction of outliers and least squares and other statistical 
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inference methods that are optimal for normally distributed variables often become 

highly unreliable when applied to such data. In such cases, a more heavy-tailed 

distribution should be assumed and the appropriate robust statistical inference methods 

applied. 

In characterizing the location and variability of a data set, a further characterization of the 

data includes skewness and kurtosis. Skewness is a measure of symmetry, or more 

precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the 

same to the left and right of the center point. The skewness for a normal distribution is 

zero, and any symmetric data should have a skewness near zero. Negative values for the 

skewness indicate that data are left skewed and positive values for the skewness indicate 

that data are right skewed. Kurtosis on the other hand is a measure of whether the data are 

peaked or flat. The normal distribution is a reference point and has a kurtosis coefficient 

of zero. Thus, data sets with high kurtosis tend to have a distinct peak near the mean, 

decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat 

top near the mean rather than a sharp peak. A uniform distribution would be the extreme 

case.  

 
Figure 1.1 The Normal Distribution 

The normal distribution can be rescaled through a process called standardization which 
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allows us to obtain a dimensionless quantity by subtracting the population mean from an 

individual raw score and then dividing the difference by the population standard 

deviation. This transformation can be denoted as
σ

μ−= x
z . The probability density 

function of z is then given by 

2/2

2

1
)( zezf −=

π
 ∞<<∞− z       (1.2) 

which has a mean of zero and a standard deviation of one. The density curve of the 

standard normal distribution is shown in Figure 1.2. 

 

Figure 1.2 The Standard Normal Distribution 

The Gaussian distribution belongs to the family of stable distributions which are the 

attractors of sums of independent, identically distributed distributions whether or not the 

mean or variance is finite.  
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The importance of the normal curve stems primarily from the fact that the distributions of 

many natural phenomena are at least approximately normally distributed. One of the first 

applications of the normal distribution was to the analysis of errors of measurement made 

in astronomical observations, errors that occurred because of imperfect instruments and 

imperfect observers. Galileo in the 17th century noted that these errors were symmetric 

and that small errors occurred more frequently than large errors. This led to several 

hypothesized distributions of errors, but it was not until the early 19th century that it was 

discovered that these errors followed a normal distribution. Independently, the 

mathematicians Adrian in 1808 and Gauss in 1809 developed the formula for the normal 

distribution and showed that errors were fit well by this distribution (Lane, n.d.). 

This same normal distribution had been discovered by Laplace in 1778 when he derived 

the extremely important central limit theorem. Laplace showed that even if a distribution 

is not normally distributed, the means of repeated samples from the distribution would be 

very nearly normally distributed, and that the larger the sample size, the closer the 

distribution of means would be to a normal distribution (Lane, n.d.). 

Most statistical procedures for testing differences between means assume normal 

distributions. Because the distribution of means is very close to normal, these tests work 

well even if the original distribution is only roughly normal. For more on normal 

distribution, readers are referred to Ahsanullah et al. (2014). 

1.3 Alternative Distributions 

For comparison purposes, data were generated from several alternative non-normal 
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distributions to be able to examine the performances of the tests under consideration 

given different distributions of data. The alternative distributions are as highlighted 

below. 

1.3.1 Symmetric Distributions 

These include symmetric and short-tailed distributions such as Beta (1, 1), Beta (2, 2), 

Beta (3, 3), Uniform (0, 1) and T (10); and symmetric long-tailed distributions such as T 

(5) and Laplace (0, 1). 

Beta (1, 1), Beta (2, 2), and Beta (3, 3) 

The Beta family of distribution is a family of continuous probability distributions defined 

on the interval [0, 1] and parametrized by two positive shape parameters, denoted by α 

and β, that appear as exponents of the random variable and control the shape of the 

distribution. The distribution is often used as a prior distribution for binomial proportions 

in Bayesian analysis (Evans et al. 2000, p. 34). The probability distribution function (pdf) 

is given by: 

),(

)1(
)(

11

βα

βα

B

xx
xf

−− −=  ,    (1.3) 

where α and β are the shape parameters. 

With the parameters of the distribution set at 1=α , 1=β ; 2=α , 2=β and 3=α , 3=β , 

we have three density curves that are  symmetric and short-tailed but with varying length 

of the tails as can be seen in the figure below. 
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Figure 1.3(a) Density of Beta (1, 1)    Figure 1.3(b)Density of Beta (2, 2) 

 

Figure 1.3(c) Density of Beta (3, 3)  

Uniform (0, 1) 

The uniform distribution, sometimes also known as a rectangular distribution, is a 

distribution that has constant probability. The probability density function (pdf) for a 

continuous uniform distribution on the interval ],[ βα  which are the parameters of the 

distribution is given by:  

αβ −
= 1

)(xf  .     (1.4) 
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With the parameters of the distribution set at 0=α , 1=β  we have the standard uniform 

distribution which is symmetric and short-tailed as shown in the figure below. 

 

Figure 1.4 Density of a Uniform (0, 1) distribution 

T (10) and T (5)  

The t -distribution is any member of a family of continuous probability distributions that 

arises when estimating the mean of a normally distributed population in situations where 

the sample size is small and population standard deviation is unknown. The pdf of t is 

given by 

2

1
2

1

2

2

1

)(

+
−









+







Γ







 +Γ

=

v

v

x
v

v

v

xf
π

,   (1.5) 

where v is the number of degrees of freedom and Γ is the gamma function. 

With the degree of freedom set at 10=v and 5=v , we have a symmetric, short-tailed 
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distribution and symmetric, long-tailed distribution respectively as shown in the figure 

below. 

                  

Fig 1.5 (a) Density of a T(10) distribution            Fig 1.5 (b) Density of a T(5) distribution 

Laplace (0, 1) 

The Laplace distribution, also called the double exponential distribution, is the 

distribution of differences between two independent variates with identical exponential 

distributions (Abramowitz and Stegun, 1972). The probability density is given by  

  bxe
b

xf /

2

1
)( μ−−= ,      (1.6) 

where μ and b are the mean and rate respectively. 

For this research work, the mean was set 0 and the rate at 1 and we have a symmetric and 

long-tailed distribution. The figure below shows the shape of the specified distribution: 
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Figure 1.6 Density of a Laplace (0, 1) distribution 

1.3.2 Asymmetric distributions 

These include distributions such as Gamma (4,5), Chi-Square (3), Exponential (1), Log-

Normal (0,1) which are asymmetric long-tailed;  and Weibull (2,2) and Gompertz (10, 

0.001) which are asymmetric short-tailed.  

Gamma (4, 5) 

The gamma distribution is a two-parameter family of continuous probability 

distributions. Gamma distributions have two free parameters, labeled α and θ , which are 

the shape and the scale parameter respectively. The pdf of the distribution is given by: 

α

θα

θα )(
)(

/1

Γ
=

−− xex
xf ,      (1.7) 

with the parameters set at 4=α  and 5=θ , we have a right-skewed, long-tailed 
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distribution as shown in the figure below. 

 

Figure 1.7 Density of a Gamma (4, 5) distribution 

Chi-Square (3) 

The chi-square distribution is one of the most widely used probability distributions in 

inferential statistics. It is a special case of the gamma distribution with 2/v=α  and 

2=θ . The chi-squared distribution with v degrees of freedom has a pdf given by: 

( )2/2
)(

2/

2/)12/(

v

ex
xf

v

xv

Γ
=

−−

      (1.8) 

where ( )2/vΓ denotes the Gamma function, which has closed-form values for integer v . 

With k =3, we have a right-skewed, long-tailed distribution as shown below 
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Figure 1.8 Density of a Chi-square (3) distribution 

Exponential (1) 

The exponential distribution is the probability distribution that describes the time 

between events in a Poisson process and as such, is commonly used for the analysis of 

Poisson processes. It is also special case of the gamma distribution with 1=α and λθ = . 

The pdf is given by 

xexf λλ −=)( ,      (1.9) 

where λ > 0 is the parameter of the distribution, often called the rate parameter. The 

distribution is supported on the interval [0, ∞). 

With the rate set at 1=λ , we have a right-skewed, long-tailed distribution as shown 

below 
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Figure 1.9 Density of an Exponential (1) distribution 

Log-Normal (0, 1) 

A log-normal distribution is a continuous probability distribution of a random variable 

whose logarithm is normally distributed. Thus, if the random variable x is log-normally 

distributed, then )log(xy = has a normal distribution. Likewise, if y has a normal 

distribution, then )exp( yx = has a log-normal distribution. The log-normal distribution is 

the maximum entropy probability distribution for a random variate x  for which the mean 

and variance of )ln(x are fixed. The distribution has the following pdf: 

2

2

2

)(ln

2

1
)( σ

μ

σπ

−
−

=
x

exf ,     (1.10) 

where μ is the log-scale parameter and σ > 0 is the shape parameter. 

With the parameters set at 0=μ and 1=σ , we have a left-skewed, long-tailed distribution 

as shown below. 
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Figure 1.10 Density of a Log-Normal (0, 1) distribution 

Gompertz (10, 0.001) 

Gompertz distribution is a continuous probability distribution often applied to describe 

the distribution of adult lifespans. The pdf of the Gompertz distribution is: 

)exp()( bxbx eeebxf ηη η −= ,    (1.11) 

where 0>b is the scale parameter and 0>η is the shape parameter of the distribution. 

With the parameters set at 10=b and 001.0=η , we have a left-skewed, short-tailed 

distribution as shown below. 

 
Figure 1.11 Density of a Gompertz (0.001, 1) distribution 
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Weibull (2, 2) 

The Weibull distribution is a distribution used in the lifetimes of objects, life data 

analysis and reliability engineering. The pdf of the Weibull distribution is given by  

αβαααβ )/(1)( xexxf −−−= ,     (1.12) 

where α is the shape parameter and β is the scale parameter. With the parameters set 

at 2=α and 2=β , we have a left-skewed, long-tailed distribution as shown below. 

 

Figure 1.12 Density of a Weibull (2, 2) distribution 

The organization of the thesis is as follows: Different statistical test for normality are 

presented in chapter 2. A simulation study has been conducted and results are presented 

in chapter 3. Applications to real life data to illustrate the findings of the thesis are 

presented in chapter 4, and concluding remarks are given in chapter 5.  
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CHAPTER TWO: TESTS OF NORMALITY 

Since the normality assumption is an important aspect of most statistical procedures, it is 

necessary to device a highly robust and generally acceptable technique to perform this 

test. It is revealed that over forty (40) different test has been proposed over time to verify 

the normality or lack of normality in a population (Thode Jr., H.C. , 2002). The main goal 

of these researches have been to determine the performance of available test and/or 

propose an alternative to the previously existing. The performance of these test is usually 

measured in terms of the power of the test and the probability of type I error (α ). 

A test is said to be powerful when it has a high probability of rejecting the null 

hypothesis of normality when the sample under study is taken from a non-normal 

distribution. On the other hand, the type I error rate is the rate of rejection of the null 

hypothesis of normality when the distribution is truly normal. The best tests are those that 

have type I error rate around the specified significance level and have the higher power of 

detecting non-normality. 

2.1 Lilliefors Test [LL] 

Kolmogorov (1933) had introduced the famous Kolmogorov-Smirnov goodness-of-fit 

test used to test if a set of data fits a particular distribution for which Smirnov (1948) 

provided the table of critical values.  

This Kolmogorov-Smirnov test required the specification of the parameters of the 

distribution being examined. Critical values were published in Smirnov (1948).  
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To test for normality, Lilliefors (1967) extended Kolmogorov’s test for testing a 

composite hypothesis that the data came from a normal distribution with unknown 

location and scale parameter. The test statistic is defined as: 

)()(* xSxFSupD nx −= ,    (2.1) 

where )(xSn is the sample cumulative distribution function and )(* xF is the cumulative 

distribution function (CDF) of the null distribution. 

The Lilliefor’s test is similar to the Kolmogorov-Smirnov test but the distribution of the 

test statistic under 0H is different and hence has a different critical value. 

2.2 Anderson–Darling Test [AD] 

The AD test was proposed by Anderson and Darling (1952). The test is used to test 

whether a given sample of data is drawn from a given probability distribution. It tests the 

hypothesis that a sample has been drawn from a population with a specified continuous 

distribution function )(xF The AD test is of the form 

[ ]
∞

∞−
Φ−= )()()()( 2 xdFxxxFnAD n ψ ,    (2.2) 

where )(xFn is the empirical distribution function (EDF), )(xΦ  is the cumulative 

distribution function of the standard normal distribution and )(xψ is a weight function. 

Let nxxx ,...,, 21 be n sample observations under 0H , and let )()2()1( ... nxxx <<<  be the n  
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ordered sample observations, then AD can be expressed as  

)]1ln([ln)12(
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j
n

nAD μμ  ,  (2.3) 

Where )( )(ii xF=μ  and )(ix is the ith ordered statistic. 

The null hypothesis is rejected for large values of the test statistic.  

The AD test is one of the best empirical distribution function statistics for detecting most 

departures from normality (Stephens, 1974), (Petrovich, n.d.). Very large sample sizes 

may reject the assumption of normality with only slight imperfections, but industrial data 

with sample sizes of two hundred (200) and more have passed the Anderson–Darling test 

and may not produce a result (Petrovich, n.d.). 

2.3 Chi-Square Test [CS] 

The chi-square goodness-of-fit test (Snedecor and Cochran, 1989) is used to test if a 

sample of data came from a population with a specified distribution. The test statistic is 

defined as:   


=

−=
k

i i

ii

E

EO

1

2
2 )(χ ,     (2.4) 

where ‘ iO ’ and ‘ iE ’ refers to the ith observed and expected frequencies respectively and 

k  is the number of bins/groups. 

An attractive feature of the chi-square goodness-of-fit test is that it can be applied to any 
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univariate distribution for which you can calculate the cumulative distribution function. 

The chi-square goodness-of-fit test is applied to binned data (i.e., data put into classes). 

This is actually not a restriction since for non-binned data you can simply calculate a 

histogram or frequency table before generating the chi-square test. However, the value of 

the chi-square test statistic is dependent on how the data is binned. To bin the data, the 

recommendation of Moore (1986) was adopted in this study. 

2.4 Skewness Test [SK] 

The skewness test is derived from the third sample moment. It is used to test the null 

hypothesis of normality versus non-normality associated with skewness. The coefficient 

of skewness of a set of data can be used to determine if it came from a population that is 

normally distributed (Bai and Ng, 2005). The skewness statistic is defined as: 

32
31 )(/ skg = , 
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 and s is the sample standard deviation. 

Under 0H , the test statistic )( 1gZ  is approximately normally distributed for 8>n and is 

defined as : 
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2.5 Kurtosis Test [KU] 

The kurtosis test is derived from the fourth sample moment. The coefficient of kurtosis of 

a set of data can be used to test the null hypothesis of normality versus non-normality due 

to kurtosis (Bai and Ng, 2005). The kurtosis statistic is defined as: 
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Under 0H , the test statistic )( 2gZ is approximately normally distributed for n ≥ 20 and 

thus more suitable for this range of sample size. )( 2gZ is given as 
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2.6 D’Agostino-Pearson K2 Test [DK] 

The sample skewness (g1) and kurtosis (g2) are used separately in the skewness and 

kurtosis tests in testing the hypothesis if random samples are taken from a normal 

population; g1 and g2 tests detects deviations due to skewness and kurtosis respectively. 

D’Agostino and Pearson proposed the test (also known as D’Agostino’s K-Squared) in 

1973. The test combines g1 and g2 to produce an omnibus test of normality. The test 

statistics is: 

2
2

2
1

2 ))(())(( gZgZK += ,       (2.8) 

where 2
1 ))(( gZ and 2

2 ))(( gZ are the normal approximations to g1 and g2 respectively. 

The test statistic follows approximately a chi-square distribution with 2 degree of 

freedom when a population in normally distributed. The test is appropriate for a sample 

size of at least twenty and the algorithm available in R-software will only compute the 

SK, KU and DK for this range of sample size. 

2.7 Shapiro–Wilk Test [SW] 

Shapiro and Wilk (1965) utilizes the null hypothesis principle to check whether a sample 

nxxx ,...,, 21 came from a normally distributed population, the Shapiro-Wilk’s test statistic 

W  is thus derived from the sample itself and the expected values of order statistics from 

a standard normal distribution. The W statistic is defined by: 
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where nmmm ,...,, 21  are the expected values of the order statistics of independent and 

identically distributed random variables sampled from the standard normal distribution, 

and V is the covariance matrix of those order statistics. 

The values of W lie between 0 and 1, and small values of the statistic indicate departure 

from normality under H0, thus we reject the null hypothesis if W is less than the 

corresponding critical value.W has a distribution that is independent of 2s  and x , and is 

both scale and origin invariant.  

2.8 Shapiro-Francia Test [SF] 

Shapiro and Francia (1972) suggested an approximation to the Shapiro-Wilk W-test 

called 'W . Let nxxx ,..., 21 be a random sample to be tested for departure from normality, 

ordered )()2()1( ... nxxx <<< , and let 'm denote the vector of expected values of standard 

normal order statistics. The test statistic is defined as: 
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The 'W equals the product-moment correlation coefficient between the )( ix and the im , and 

therefore measures the straightness of the normal probability plot )( ix ; small values of 'W  

indicate non-normality. 

Shapiro-Francia test is particularly useful as against the Shapiro-Wilk test especially for 

large samples where explicit values of m  and V utilized in the Shapiro-Wilk test are not 

readily available and the computation of 1−V is time consuming. 

2.9 Jarque-Bera Test [JB] 

Jarque-Bera test is based on the sample skewness and sample kurtosis, it was proposed by 

Jarque and Bera in 1987. The test uses the Lagrange multiplier procedure on the Pearson 

family of distributions to obtain tests for normality. The test statistic is given as: 










 −
+=

24

)3(

6

)( 2
2

2
1 bb

nJB ,      (2.11) 

where 1b and 2b are the skewness and kurtosis measures and are given by 
2/3

2

3

)(m

m
and 

3
2

4

)(m

m
respectively; and 432 ,, mmm are the second, third and fourth central moments 

respectively. 
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2.10 Robust Jarque-Bera Test [RJB] 

Gel and Gastwirth (2008) proposed a robust modification to the Jarque-Bera test. Since 

sample moments utilized in the Jarque-Bera test are sensitive to outliers, the Robust 

Jarque-Bera uses a robust estimate of the dispersion in the skewness and kurtosis instead 

of the second order central moment 2m . Let nxxx ,..., 21 be a sample of independent and 

identically distributed random variables. The robust sample estimates of skewness and 

kurtosis are 
3
3

nJ

m and 
4
4

nJ

m respectively, which leads to the new robust Jarque–Bera (RJB) test 

statistic: 
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where  
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n

i
in MX

n
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1

 , 2/π=C  and M is the sample median. 

Under the null hypothesis of normality, the RJB test statistic asymptotically follows the 

chi-square distribution with 2 degrees of freedom. The normality hypothesis of the data is 

rejected for large values of the test statistic. 

2.11 Doornik-Hansen Test [DH] 

In order to improve the efficiency of the Jarque-Bera test, Doornik and Hansen (1994) 

proposed a series of modification. The modification involved the use of the transformed 

skewness according to the following expression: 
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and the use of a transformed kurtosis according to the proposal by Bowman and Shenton 

(1977). Bowman and Shenton had proposed the transformed kurtosis 2z obtained by  
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The test statistic proposed by Doornik and Hansen is given by 

( )[ ] [ ]2
2

2

1 zbZDH += .     (2.15) 
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The normality hypothesis is rejected for large values of the test statistic. The test is 

approximately chi-squared distributed with two degrees of freedom. 

2.12 Brys-Hubert-Struyf MC-MR test [BH] 

Brys, et al.  (2004, 2007) have proposed a goodness-of-fit test derived from robust 

measures of skewness and tail weight. The considered robust measure of skewness is the 

medcouple (MC) defined as 

 ),( )()(
)()(
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xmx

xxhmedMC
jFi ≤≤

= , 

where med stands for median. Fm  is the sample median and h is a kernel function given 

by 
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The left medcouple (LMC) and the right medcouple (RMC) are the considered robust 

measures of left and right tail weight respectively and are defined by 

 )( FmxMCLMC <−=  and  )( FmxMCRMC >= . 

The test statistic LRMCT − is then defined by 

)()'( 1 ωω −−= −
− wVwnT LRMC     (2.17) 

in which w is set as [MC, LMC, RMC]’, and ω  and V are obtained based on the 

influence function of the estimators in ω . According to Brys, et al. (2004), for the case of 
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normal distribution, ω  and V are defined as 
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The normality hypothesis of the data is rejected for large values of the test statistic which 

approximately follows the chi-square distribution with three degrees of freedom. 

2.13 Bonett-Seier Test [BS] 

Bonett and Seier (2002) have suggested a modified measure of kurtosis for testing 

normality, which is based on a modification of proposal by Geary (1936). The test 

statistic of the new kurtosis measure wT is thus given by: 
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The normality hypothesis is rejected for both small and large values of wT using a two-

sided and, according to Bonett-Seier (2002), it is suggested that wT approximately follows 

a standard normal distribution. 

2.14 Brys-Hubert-Struyf-Bonett-Seier Joint test [BHBS] 

Considering that the Brys–Hubert–Struyf MC–LR test is, mainly, a skewness associated 
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test and that the Bonett–Seier’s proposal is a kurtosis based test, a test considering both 

these measures was proposed  by Romao et al. (2010)  for testing normality. The joint test 

attempts to make use of the two referred focused tests in order to increase the power to 

detect different kinds of departure from normality. This joint test is proposed based on 

the assumption that the individual tests can be considered independent based on a 

simulation study yielded a correlation coefficient of approximately −0.06. The normality 

hypothesis of the data is rejected for the joint test when rejection is obtained for either 

one of the two individual tests for a significance level of α/2. 

2.15 Bontemps-Meddahi tests [BM(1) and BM(2)] 

Bontemps and Meddahi (2005) have proposed a family of normality tests based on 

moment conditions known as Stein equations and their relation with Hermite 

polynomials. The test statistics are developed using the generalized method of moments 

approach associated with Hermite polynomials, which leads to test statistics that are 

robust against parameter uncertainty (Hansen, 1982). The general expression of the test 

family is thus given by 
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where sxxz ii /)( −= and )(⋅kH represents the kth order normalized Hermite polynomial. 

Different tests can be obtained by assigning different values of p, which represents the 

maximum order of the considered normalized Hermite polynomials in the expression 
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above. Two different tests are considered in this work with 4=p and 6=p ; these tests 

are termed 43−BM and 63−BM  respectively. The hypothesis of normality is rejected for 

large values of the test statistic and according to Bontemps and Meddahi (2005); the 

general pBM −3 family of tests asymptotically follows the chi-square distribution with 

2−p degree of freedom. 

2.16 Gel-Miao-Gastwirth test [GMG] 

Gel, et al.  (2007) have proposed a directed normality test, which focuses on detecting 

heavier tails and outliers of symmetric distributions. The test is based on the ratio of the 

standard deviation and the robust measure of dispersion nJ as defined in the expression 
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where M is the sample median. 

The test statistic is thus given by 

 
n

sJ J

s
R = , 

and should tend to one under a normal distribution. The normality hypothesis is rejected 

for large values of the sJR , and the statistic )1( −sJRn is asymptotically normally 

distributed (Gel et al., 2007). 

 



30 
 

2.17 G Test [G] 

Chen (2014) indicated that Chen and Ye (2009) proposed a new test called the G test 

statistics. The test is used to test if an underlying population distribution is a uniform 

distribution. Suppose nxxx ,...,, 21  are the observations of a random sample from a 

population distribution with distribution function F(x). Suppose also that )()2()1( ,...,, nxxx  

are the corresponding order statistics.  The test statistic has the following form: 
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where )0(x is defined as 0, and )1( +nx is defined as 1.  

We can observe that )(),...,(),( )()2()1( nxFxFxF are the ordered observations of a random 

sample from the )1,0(U distribution and thus the G Statistic can be expressed as 
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When the population distribution is the same as the specified distribution, the value of the 

test statistic should be close to zero. On the other hand, when the population distribution 

is far away from the specified distribution, the value should be pretty close to one.  

In order to use the test for normality, we can assume F(x) to be a normal distribution. 

Considering the case where the parameters of the distribution are not known, Lilliefor’s 

idea is adopted by calculating x and 2s from the sample and using them as estimates for 
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μ and 2σ respectively, and thus F(x) is the cumulative distribution function of the 

),( 2sxN distribution. By using the transformation  

σ
μ−= x

z  

the test statistic becomes 
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The hypothesis of normality should be rejected at significant level α if the test statistic is 

bigger that its α−1 critical value. A table of critical values is available in Chen and ye 

(2009) and Chen (2014) for sample sizes 2 to 50. For the purpose of this work, the table 

of critical values was extended for some sample sizes greater than 50 up to 1000. 

2.18 Other Test Statistics in Literature 

One can find a variety of goodness-of-fit tests in literature and an attempt of giving a 

complete overview would not be successful at this point. A few other references are 

available, where the reader can find some other approaches than those presented above. 

An extensive survey of goodness-of-fit testing is given by D’Agostino and Stephens 

(1986) and also Marhuenda et al. (2005). Miller and Quesenberry (1979) as well as 

Quesenberry and Miller (1977) collected various statistics for testing uniformity, too. 
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Some Kolmogorov-Smirnov type statistics, are considered in Rényi (1953) and Birnbaum 

and Lientz (1969). Some other recent ideas of constructing goodnessof-fit tests can be 

found in Glen et al. (2001), Goegebeur and Guillou (2010), Meintanis (2009), Steele and 

Chaseling (2006), Sürücü (2008) and Zhao et al. (2009). 

Since goodness-of-fit tests are always related to characterizations of distributions, in the 

sense that they are constructed to detect significant deviation of the data from 

characterizing properties of the hypothetical distribution, other references include Ghurye 

(1960), O’Reilly and Stephens (1982), Paul (2003) and their references. The performance 

of these test vary and have also been widely discussed. 

For instance, Razali and Wah (2011) suggested that Shapiro-Wilk test has the highest 

power of the four tests they compared. The four tests were the Shapiro-Wilk, 

Kolmogorov-Smirnov, Anderson-Darling and the Lilliefors test. They concluded 

however that the power of Shapiro-Wilk test is low for small sample size. 

A study carried out by Yap and Sim (2011) to compare the Shapiro-Wilk, Kolmogorov-

Smirniv, Lilliefors, Anderson-Darling, Cramer von Mises, D’Agostino and Pearson, 

Jarque-Bera and the Chi-Square test revealed that both the D’Agostino and Pearson, and 

Shapiro-Wilk have better power compared with the other tests. For asymmetric 

distributions, they concluded that Shapiro-Wilk is the most powerful followed by the 

Anderson-Darling test. Their results also showed that Kolmogorov-Smirnov and the Chi-

Square test performed poorly. Some authors have actually suggested that the chi-square 

test should not be used to perform a test of normality.  
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Although, D’Agostino et al. (1990) pointed out that g1 and g2 as well as the Shapiro-

Wilk and D’Agostino tests are excellent and powerful tests, Keskin (2006) found that 

their performance was not adequate in certain conditions especially for a beta (3, 1.5) 

distribution. This was consistent with the findings of Filliben (1975), and, Mendes and 

Pala (2003). 

The goal of this research work is to compare the performance of several of the tests of 

normality available and to find out which of them is more powerful in detecting 

normality or lack of it, in a set of data and in specific situations in which each is 

powerful. 

In this work, we have considered mainly the commonly used methods such as CS, AD, 

SW, and LL along with some of the methods that have been proposed in recent years. 

The LL was considered in place of the popular Kolmogorov-Smirnov (KS) test since the 

mean and the variance are estimated from the simulated data. 
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CHAPTER THREE: SIMULATION STUDY 

The performance of a test statistic can be evaluated primarily by conducting a power 

study and by examining the type I error rates associated with the test. Since a theoretical 

comparison among the proposed test statistics is not feasible, a Monte Carlo simulation 

was conducted to compare the performance of the test statistics in this Chapter. The R 

programming software version 3.1.2 was used to carry out the study and the R packages 

used are "lawstat", "nortest", "normtest", "tseries", "moments", "fBasics", "PoweR" and 

"distr". 

The first part of the simulation study involved the generation of random samples from the 

Standard normal distribution for the different sample sizes.  Each sample generated was 

then tested for normality and the type I error rate, that is, the rate of rejection of the 

hypothesis of normality of the data, was then recorded at specified significance levels.  

In the second part of the simulation study, data were generated from several alternative 

non-normal distributions as highlighted in section 1.3. These include symmetric, short-

tailed distributions such as Beta (1, 1), Beta (2, 2), Beta (3, 3), Uniform (0,1) and  T (10); 

symmetric long-tailed distributions such as T (5) and Laplace (0, 1); asymmetric 

distributions such as Gamma (4,5), Chi-Square (3), Exponential (1), Log-Normal (0,1) 

which are long-tailed;  and Weibull (2,2) and Gompertz (10, 0.001) which are 

asymmetric short-tailed. 
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3.1 Simulation Procedure 

For the sample sizes considered in this study which are 10, 20, 30, 40, 50, 100, 200, 500 

and 1000; the following steps were performed. 

1. Generate a random sample nxxx ,...,, 21 of size n from a specified alternative 

distribution. 

2. Test the generated data for normality simultaneously using the all the tests of 

normality considered herein. 

3. Compare the value of each of the test statistics with their corresponding critical 

values at the indicated significance levels of 0.01, 0.05, and 0.10; and decide 

whether to reject the null hypothesis of normality at the specified significance 

level. 

4. Perform steps 1 to 3 a total of 10,000 times 

5. Calculate the rejection rates for each of the tests. 

The rejection rate for the data from normal distribution is the type I error rate while that 

from an alternative distribution represents the power of the test. 

3.2 Simulated Results and Discussion 

The results of the simulation vary across different levels of significance, sample size and 

alternative distributions. The results for the 0.05 significance level for the different 

distribution considered are as presented in the table 3.1 to table 3.5 while those for the 

0.01 significance level are given in table 3.6 to table 3.10. Results are discussed at the 5% 

level without loss of generality.  
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Table 3.1: Simulated Type I error rate at 5% significance level 
Normal (0, 1) – Skewness = 0 , Kurtosis = 0 

N LL* AD* CS* DK* SK* KU* SW* SF* JB RJB* DH* BH BS BHBS BM(1) BM(2) GMG G 
10 4.90 5.16 6.39 - - - 4.93 5.30 0.93 5.27 4.63 0.14 4.07 15.96 0.24 1.73 7.99 1.34 
20 4.67 4.87 4.86 5.80 4.81 4.60 4.68 4.98 2.32 6.03 4.84 1.09 4.67 13.65 2.69 3.60 8.44 4.73 
30 4.94 5.21 5.75 5.90 5.38 5.10 5.41 5.58 3.27 6.38 5.16 4.64 4.76 14.12 2.67 5.15 8.90 5.37 
40 4.67 5.37 5.95 5.89 5.37 5.13 5.31 5.61 3.67 6.45 5.00 2.58 4.84 13.77 3.27 6.37 9.87 4.94 
50 4.72 4.87 5.04 5.75 4.90 5.03 4.96 5.17 3.74 5.87 4.81 4.09 4.41 14.02 3.30 6.67 9.05 4.41 

100 5.22 5.42 5.01 5.76 4.94 5.47 5.03 5.46 4.49 5.84 5.30 3.76 5.17 14.42 4.23 9.30 10.03 5.55 
200 5.20 5.05 5.10 5.31 5.14 5.09 5.31 5.44 4.59 5.33 5.06 4.25 5.04 14.90 4.45 11.35 9.70 4.32 
500 4.77 4.54 5.12 4.83 4.43 5.18 4.56 4.55 4.22 4.17 4.33 4.85 4.83 15.51 4.16 12.23 10.18 4.90 
1000 4.69 4.90 5.03 4.82 4.76 5.06 4.94 5.34 4.78 4.55 4.84 4.85 5.13 15.02 4.73 14.39 10.29 5.69 

*Tests with acceptable Type I error rates 
 
 
 

KEY 
S/N NORMALITY TEST ABBREVIATION 
1. Lilliefor’s LL 
2. Anderson-Darling AD 
3. Chi-Square CS 
4. D’Agostino’s K Squared DK 
5. Skewness SK 
6. Kurtosis KU 
7. Shapiro-Wilk SW 
8. Shapiro-Francia SF 
9. Jarque-Bera JB 
10. Robust Jarque-Bera RJB 
11. Doornik-Hansen DH 
12. Brys-Hubert-Struyf MC-MR BH 
13. Bonett-Seier BS 
14. Brys-Hubert-Struyf-Bonett-Seier Joint BHBS 
15. Bontemps-Meddahi (1) BM(1) 
16. Bontemps-Meddahi (2) BM(2) 
17. Gel-Miao-Gastwirth GMG 
18. G G 
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Table 3.2: Simulated power for symmetric short-tailed distributions at 5% significance level 
Beta (1, 1) – Skewness = 0 , Kurtosis = -1.20 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 6.35 7.73 8.74 - - - 7.97 5.01 0.38 1.72 5.93 0.61 8.88 16.00* 0.10 0.68 7.66 3.65 
20 9.39 17.23 8.35 15.51 0.54 30.27* 20.07 8.20 0.06 0.22 9.28 3.77 21.72 24.49 0.05 1.16 18.83 6.60 
30 13.88 30.02 10.96 40.25 0.39 57.15* 39.14 17.55 0.00 0.06 18.17 11.66 37.18 40.43 0.00 13.03 36.31 8.63 
40 19.84 43.75 16.27 63.22 0.35 76.88* 58.57 31.32 0.03 0.06 30.38 11.45 49.18 49.07 0.01 36.35 50.49 11.16 
50 26.02 58.13 19.75 80.80 0.21 89.09* 75.15 48.13 0.01 0.04 45.63 17.02 63.13 62.30 0.01 59.85 65.56 14.91 

100 59.19 94.80 46.27 99.65 0.12 99.88* 99.52 96.70 56.71 3.94 94.81 28.58 93.48 91.46 48.03 98.30 95.09 48.77 
200 94.50 100.00 90.24 100.00 0.07 100.00 100.00 100.00 100.00 98.74 100.00 52.55 99.92 99.92 100.00 100.00 99.97 98.41 
500 100.00 100.00 100.00 100.00 0.12 100.00 100.00 100.00 100.00 100.00 100.00 92.28 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 0.11 100.00 100.00 100.00 100.00 100.00 100.00 99.87 100.00 100.00 100.00 100.00 100.00 100.00 

 
Beta (2, 2) – Skewness = 0 , Kurtosis = -0.86 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 4.40 4.30 6.25 - - - 4.17 3.45 0.27 2.25 3.32 0.11 5.02 14.89* 0.07 0.59 6.53 1.91 
20 5.13 6.00 5.26 3.61 0.78 9.48 5.60 2.72 0.11 0.73 2.55 1.46 8.30 14.93* 0.14 0.58 7.99 3.15 
30 6.31 7.86 6.04 8.31 0.38 18.32 7.84 3.23 0.05 0.18 3.13 6.31 12.36 19.83* 0.07 2.06 13.07 3.99 
40 7.02 10.41 7.38 16.04 0.26 28.76* 11.11 3.76 0.00 0.06 4.06 4.58 17.42 21.86 0.00 5.26 19.61 4.14 
50 8.25 13.47 7.35 23.54 0.25 38.86* 15.19 5.62 0.03 0.08 6.10 7.56 21.28 26.97 0.08 10.80 25.41 4.41 

100 15.06 31.17 11.25 64.97 0.18 78.79* 44.79 20.82 1.35 0.01 25.31 7.69 46.33 46.10 11.76 47.16 54.35 6.96 
200 33.46 70.79 23.12 97.45 0.14 99.21* 92.32 75.40 61.04 25.32 82.26 12.04 81.34 77.99 86.39 92.60 87.82 13.75 
500 83.33 99.82 69.55 100.00 0.06 100.00 100.00 100.00 100.00 99.72 100.00 25.03 99.73 99.49 100.00 100.00 99.91 70.53 
1000 99.74 100.00 98.85 100.00 0.05 100.00 100.00 100.00 100.00 100.00 100.00 46.76 100.00 100.00 100.00 100.00 100.00 99.99 

 
Beta (3, 3) – Skewness = 0 , Kurtosis = -0.67 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 4.34 4.30 6.20 - - - 4.02 3.34 0.31 2.55 3.40 0.10 4.60 15.21* 0.11 0.70 6.29 1.84 
20 4.56 4.66 4.77 2.58 1.02 5.65 4.11 2.16 0.17 1.11 1.99 1.35 5.74 14.31* 0.08 0.77 6.49 2.80 
30 4.78 5.29 5.07 4.10 0.74 9.50 4.51 2.02 0.14 0.59 1.59 5.59 7.20 16.14* 0.08 1.33 8.49 2.96 
40 5.02 6.27 6.23 7.20 0.60 14.85 5.88 2.13 0.10 0.35 1.98 3.74 9.83 16.74* 0.08 2.73 11.90 3.33 
50 5.88 6.98 5.61 9.80 0.50 18.93 6.59 2.56 0.05 0.20 2.68 5.82 11.36 19.15* 0.03 4.41 14.51 3.42 

100 8.16 13.13 7.05 27.73 0.21 42.81* 15.34 5.97 0.23 0.06 7.73 5.98 23.21 28.10 0.13 17.74 29.80 4.39 
200 14.49 29.97 11.19 66.11 0.18 79.72* 44.09 22.79 13.83 3.32 33.20 6.96 48.17 47.86 12.49 53.18 58.22 5.48 
500 40.98 80.44 26.38 99.26 0.25 99.88* 97.53 90.57 94.20 78.87 96.26 12.81 89.92 87.52 93.88 97.75 94.21 14.16 
1000 79.60 99.51 60.57 100.00 0.19 100.00 100.00 99.99 99.99 99.95 100.00 20.61 99.73 99.55 99.99 100.00 99.92 47.51 

 
Uniform (0, 1) – Skewness = 0, Kurtosis = -1.20 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 6.47 7.89 8.76 - - - 8.19 4.81 0.20 1.73 6.03 0.38 8.53 15.54* 0.09 0.56 7.57 3.51 
20 9.34 16.72 8.09 15.57 0.64 30.12* 19.84 8.14 0.07 0.36 9.31 3.33 21.35 24.14 0.05 1.24 18.77 6.84 
30 13.62 29.81 11.65 39.28 0.29 56.82* 38.00 17.67 0.01 0.06 17.93 12.20 35.17 39.54 0.01 12.89 34.32 8.93 
40 19.65 43.77 16.34 62.32 0.27 76.33* 58.22 30.65 0.03 0.06 30.24 11.21 49.57 49.24 0.02 36.03 50.88 11.19 
50 25.43 56.68 19.57 79.77 0.17 88.59* 74.76 46.87 0.01 0.01 44.40 16.89 61.46 60.62 0.00 58.41 64.67 14.73 

100 58.64 94.78 45.61 99.74 0.13 99.90* 99.59 96.74 55.78 4.24 95.06 28.35 93.39 91.45 47.50 98.63 95.17 48.08 
200 94.57 99.98 90.42 100.00 0.08 100.00 100.00 100.00 99.96 98.73 100.00 53.80 99.87 99.86 99.96 100.00 99.93 98.38 
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500 100.00 100.00 100.00 100.00 0.09 100.00 100.00 100.00 100.00 100.00 100.00 91.55 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 0.07 100.00 100.00 100.00 100.00 100.00 100.00 99.84 100.00 100.00 100.00 100.00 100.00 100.00 

 
T (10) – Skewness = 0 , Kurtosis = 1 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 6.32 7.00 7.78 - - - 7.18 8.38 1.97 9.10 7.24 0.06 5.57 16.81* 0.92 3.39 11.43 1.70 
20 7.40 8.75 6.29 12.58 11.07 9.84 9.94 11.63 7.65 14.54 11.97 0.97 8.80 17.07* 8.51 9.87 16.02 6.90 
30 7.93 9.87 6.23 15.43 13.31 12.15 11.79 14.33 11.84 18.07 14.82 4.80 10.61 18.91* 13.35 14.98 18.86 6.54 
40 7.81 11.15 7.33 17.02 14.26 13.72 13.64 17.01 14.36 20.30 17.00 2.42 12.90 19.98 16.76 18.93 20.66* 6.61 
50 8.50 11.59 6.51 18.92 15.23 15.53 14.54 18.72 17.15 22.80 19.01 4.42 14.00 21.55 20.44 22.53 23.35* 6.88 

100 11.14 16.35 7.54 27.39 19.78 24.95 23.37 28.61 28.78 33.79 29.17 3.86 21.92 27.86 33.51 37.82* 32.84 7.50 
200 14.60 - 8.30 39.79 21.97 40.68 35.20 41.93 44.35 47.88 44.16 4.45 34.70 38.09 50.45 55.74* 46.90 8.28 
500 28.45 - 12.28 69.96 26.19 74.37 65.55 71.84 75.16 76.42 74.97 6.50 65.98 65.81 80.12 84.05* 75.54 10.72 
1000 48.79 - 19.70 92.51 28.12 94.93 90.29 92.62 94.48 94.53 94.48 8.03 89.68 88.77 96.37 97.44* 94.19 15.00 

* The most powerful test for each sample size. 
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Table 3.3: Simulated power for symmetric long-tailed distributions at 5% significance level 
T (5) – Skewness = 0 , Kurtosis = 6 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 9.50 10.59 9.55 - - - 10.64 12.84 4.68 14.92 11.71 0.09 8.08 18.92* 2.38 7.21 17.06 2.39 
20 12.55 16.87 9.18 23.39 21.03 18.34 18.83 22.57 16.73 26.19* 22.28 0.94 16.71 23.50 14.46 20.44 26.62 4.52 
30 15.19 21.63 10.93 29.57 24.84 24.98 24.22 29.19 24.94 34.43* 29.67 5.02 23.17 30.08 23.35 30.23 34.46 6.02 
40 18.88 27.02 13.86 35.65 29.60 31.45 31.31 36.67 33.33 42.38* 36.84 3.07 30.61 35.06 32.00 39.62 42.13 6.81 
50 21.25 30.39 12.89 41.15 31.92 37.81 36.07 41.96 40.33 47.95* 42.87 4.46 35.79 39.58 39.05 47.00 47.26 7.85 
100 33.42 - 18.34 60.04 40.00 59.63 56.37 62.89 62.90 69.02* 64.10 4.47 58.54 59.73 62.22 71.35 68.79 11.61 
200 54.81 - 29.62 82.72 48.32 84.95 81.31 85.70 85.97 88.95 86.59 6.29 83.88 82.98 85.75 91.48* 89.48 16.27 
500 89.27 - 57.90 99.01 56.30 99.41 98.93 99.22 99.38 99.56 99.41 12.21 99.22 99.15 99.37 99.81* 99.60 26.45 

1000 99.54 - 90.50 100.00 62.33 100.00 100.00 100.00 100.00 100.00 100.00 22.21 99.99 99.99 100.00 100.00 99.99 43.70 
 

Laplace (0, 1) – Skewness = 0, Kurtosis = 3 
N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 13.82 15.67 12.87 - - - 15.18 18.35 6.38 20.72 17.28 0.14 11.60 21.35 3.24 10.04 24.24* 3.53 
20 21.40 26.64 14.63 30.23 25.62 23.82 25.59 31.62 22.13 38.28 30.58 1.04 28.34 32.25 18.50 28.11 43.64* 7.46 
30 29.55 37.34 19.77 38.19 30.23 33.37 35.85 42.89 33.47 50.95 40.87 5.06 41.86 44.26 31.25 42.85 57.87* 10.21 
40 35.98 45.85 25.23 44.30 32.87 40.93 44.08 51.59 42.22 60.17 48.54 3.52 53.63 54.14 40.09 54.16 68.45* 12.93 
50 43.15 54.46 28.04 51.89 35.52 49.66 52.77 60.12 51.44 68.84 56.87 5.96 64.55 64.71 49.88 64.29 76.65* 14.46 
100 70.97 83.08 47.55 73.76 40.91 76.35 80.08 84.99 78.09 89.49 80.48 10.14 90.25 89.63 77.33 89.05 94.86* 23.09 
200 94.33 98.30 78.05 94.24 46.68 96.43 97.45 98.12 96.45 99.13* 96.88 22.97 99.53 99.45 96.34 99.19 99.85 34.59 
500 99.99 - 99.42 99.97 50.17 99.99 100.00 100.00 99.99 100.00 99.99 56.45 100.00 100.00 99.99 100.00 100.00 65.01 

1000 100.00 - 100.00 100.00 51.04 100.00 100.00 100.00 100.00 100.00 100.00 88.25 100.00 100.00 100.00 100.00 100.00 88.63 
* The most powerful test for each sample size. 
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Table 3.4: Simulated power for asymmetric long-tailed distributions at 5% significance level 
Gamma (4, 5)  – Skewness = 1, Kurtosis = 4 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 10.80 13.35 11.75 - - - 13.90 14.60* 4.20 12.91 10.82 0.18 6.33 15.29 2.14 6.74 13.94 3.04 
20 17.99 25.04 12.80 25.33 29.06 15.23 29.35* 28.72 16.66 25.01 23.36 1.86 8.98 15.93 13.95 22.88 19.18 5.10 
30 25.46 37.27 18.12 36.61 44.25 19.50 44.73* 42.62 28.64 36.00 37.66 8.95 10.79 21.10 26.06 38.64 23.41 7.21 
40 33.01 48.66 24.17 45.78 55.37 22.80 57.83* 54.69 39.27 44.23 51.24 8.28 12.44 22.26 36.91 52.37 26.68 9.13 
50 41.17 59.08 27.29 55.34 67.21 27.16 69.45* 65.96 49.68 53.87 63.88 14.18 14.10 26.52 47.69 65.19 29.40 11.56 

100 70.50 89.38 51.49 88.10 94.15 39.31 95.81* 94.38 86.83 84.90 94.74 25.54 17.19 37.93 85.79 94.71 37.72 28.81 
200 95.30 99.83 87.32 99.85 99.92 59.49 99.97 99.93 99.85 99.70 99.98* 54.21 23.67 63.53 99.84 99.95 52.12 68.82 
500 100.00 - 99.98 100.00 100.00 89.89 100.00 100.00 100.00 100.00 100.00 93.18 40.14 95.54 100.00 100.00 78.55 99.84 
1000 100.00 - 100.00 100.00 100.00 99.08 100.00 100.00 100.00 100.00 100.00 99.94 61.99 99.96 100.00 100.00 94.91 100.00 

 
Chi-square (3) – Skewness = 1.63, Kurtosis = 4 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 21.12 28.35 25.57 - - - 31.10* 31.17 10.13 24.03 23.18 0.53 8.65 15.06 5.73 15.52 22.60 6.00 
20 41.37 58.54 41.52 48.03 56.67 27.68 65.81* 62.43 35.86 46.78 54.81 6.68 15.33 22.63 38.74 49.12 35.69 15.01 
30 58.93 79.93 60.50 65.81 77.03 36.56 87.19* 83.50 57.69 64.33 79.42 22.99 19.90 37.94 63.35 75.69 44.56 26.46 
40 72.69 91.13 75.15 78.97 88.94 44.94 95.81* 93.85 74.43 77.60 92.01 27.79 23.82 44.42 80.93 89.92 51.43 45.11 
50 82.14 96.42 84.91 88.63 95.33 52.12 98.87* 98.05 86.37 86.50 97.17 41.66 27.07 56.44 91.32 96.17 57.83 59.96 

100 99.11 99.99 99.56 99.97 99.93 75.37 100.00 100.00 99.92 99.71 100.00 75.32 42.01 85.26 100.00 100.00 76.92 98.64 
200 100.00 - 100.00 100.00 100.00 94.23 100.00 100.00 100.00 100.00 100.00 97.66 61.11 99.06 100.00 100.00 93.09 100.00 
500 100.00 - 100.00 100.00 100.00 99.95 100.00 100.00 100.00 100.00 100.00 100.00 89.71 100.00 100.00 100.00 99.79 100.00 
1000 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.11 100.00 100.00 100.00 100.00 100.00 

 
Exponential (1) – Skewness = 2, Kurtosis = 6 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 29.66 40.68 39.63 - - - 43.77* 42.43 15.09 30.94 33.13 1.35 11.69 16.84 9.60 21.91 29.45 10.08 
20 58.02 77.82 66.21 60.58 70.32 36.38 83.73* 80.15 48.38 59.55 73.27 14.74 20.46 32.04 43.54 65.46 46.95 28.66 
30 78.46 93.46 85.56 78.72 88.64 48.70 96.72* 94.97 72.85 77.59 92.18 40.45 27.77 56.07 69.75 89.21 59.27 53.56 
40 90.23 98.23 95.02 89.73 95.70 56.62 99.51* 98.81 87.47 88.33 97.89 51.34 33.04 66.37 85.41 97.08 66.39 76.19 
50 96.32 99.70 98.44 96.42 98.82 66.25 99.95* 99.84 95.63 95.02 99.63 66.17 38.29 77.95 94.79 99.42 74.15 90.73 

100 100.00 100.00 100.00 100.00 100.00 88.86 100.00 100.00 100.00 99.99 100.00 94.51 57.70 97.51 100.00 100.00 91.64 99.99 
200 100.00 - 100.00 100.00 100.00 99.06 100.00 100.00 100.00 100.00 100.00 99.91 81.54 99.99 100.00 100.00 99.31 100.00 
500 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.55 100.00 100.00 100.00 100.00 100.00 
1000 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 

 
Log-Normal (0, 1) – Skewness = 6.18, Kurtosis = 113.94 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 47.33 58.45 54.74 - - - 61.25* 60.53 29.19 48.72 51.10 2.23 20.24 24.68 22.18 38.88 46.20 21.62 
20 78.59 90.30 82.36 79.82 86.91 59.63 93.10* 91.67 71.53 80.43 88.43 21.71 41.48 54.33 67.68 84.36 71.66 52.75 
30 93.07 98.29 95.05 93.79 97.19 75.69 99.12* 98.75 91.68 93.79 98.23 50.65 58.46 78.84 90.33 97.26 85.58 79.10 
40 98.23 99.75 98.97 98.29 99.55 85.18 99.89* 99.86 97.85 98.09 99.76 65.76 69.87 89.52 97.47 99.67 92.04 92.83 
50 99.52 99.99 99.75 99.70 99.91 90.88 100.00 100.00 99.59 99.48 100.00 80.16 77.62 95.05 99.48 99.98 95.52 97.92 

100 100.00 - 100.00 100.00 100.00 99.62 100.00 100.00 100.00 100.00 100.00 98.41 96.05 99.87 100.00 100.00 99.81 100.00 
200 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.88 100.00 100.00 100.00 100.00 100.00 
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500 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
* The most powerful test for each sample size. 
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Table 3.5: Simulated power for asymmetric short-tailed distributions at 5% significance level 
Weibull (2, 2)  – Skewness = 0.63, Kurtosis = 0.25 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 6.80 7.54 8.30 - - - 7.79 8.12 2.00 7.14 6.27 0.18 5.01 14.33* 0.77 3.44 9.58 1.97 
20 9.72 12.55 8.01 13.06 14.44 8.64 15.13* 14.10 6.63 12.14 10.41 1.48 5.81 13.24 5.35 9.97 11.04 3.60 
30 13.20 18.62 10.10 17.88 21.16 10.78 23.49* 20.55 11.14 15.85 17.03 7.12 6.73 17.09 9.71 17.56 12.29 4.33 
40 16.54 24.45 12.44 22.81 28.70 11.90 31.85* 27.62 15.87 19.89 24.37 5.24 7.41 16.06 14.17 25.89 13.25 5.41 
50 20.75 31.11 13.71 28.29 37.62 13.10 41.47* 36.02 21.25 24.84 33.37 8.77 7.14 18.10 19.78 35.24 13.78 6.20 

100 38.78 60.46 25.45 56.37 69.28 15.57 79.33* 71.64 50.06 47.50 72.64 13.80 8.58 22.05 48.25 72.93 14.79 12.64 
200 70.35 92.84 55.70 94.84 95.73 17.67 99.28* 98.30 93.57 90.14 98.41 28.82 9.30 34.33 93.18 97.91 14.80 40.73 
500 98.71 100.00 98.30 100.00 100.00 24.71 100.00 100.00 100.00 100.00 100.00 67.76 12.27 69.02 100.00 100.00 15.72 99.07 
1000 100.00 100.00 100.00 100.00 100.00 33.66 100.00 100.00 100.00 100.00 100.00 94.19 16.94 93.45 100.00 100.00 15.98 100.00 

 
Gompertz (0.001, 1) – Skewness = -1, Kurtosis = 1.5 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 11.70 14.07 12.44 - - - 14.68 15.71 4.37 14.19 11.60 0.18 6.74 16.51 2.19 7.55 15.39* 3.13 
20 18.57 26.21 12.68 28.62 31.71* 16.71 30.00 30.45 19.23 28.67 25.44 2.20 9.92 17.49 16.24 25.56 22.06 5.03 
30 26.17 37.73 16.94 38.98 45.13* 21.26 44.52 43.37 31.63 39.06 38.66 9.08 12.67 22.61 29.21 40.97 27.22 6.74 
40 34.63 48.94 22.99 49.94 59.04* 25.44 57.90 56.48 43.47 50.32 52.19 9.19 14.45 24.10 40.99 55.88 31.16 8.69 
50 41.23 57.81 24.89 58.39 68.09* 29.77 66.80 65.27 53.30 58.08 62.51 13.42 16.46 29.14 51.39 65.75 34.79 10.47 

100 70.46 87.48 45.79 87.97 94.22* 46.68 93.49 92.40 87.28 86.98 92.56 25.69 23.46 42.58 86.46 93.54 48.16 22.62 
200 95.23 99.35 81.31 99.67 99.90* 71.15 99.86 99.82 99.63 99.50 99.86 51.98 36.73 68.55 99.63 99.84 67.80 50.14 
500 100.00 100.00 99.90 100.00 100.00 96.22 100.00 100.00 100.00 100.00 100.00 92.55 65.88 97.63 100.00 100.00 92.56 94.33 
1000 100.00 100.00 100.00 100.00 100.00 99.91 100.00 100.00 100.00 100.00 100.00 99.76 89.28 99.99 100.00 100.00 99.53 99.97 
* The most powerful test for each sample size. 
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Table 3.6: Simulated Type I error rate at 1% significance level 
Normal (0, 1) – Skewness = 0 , Kurtosis = 0 

N LL* AD* CS* DK SK* KU* SW* SF* JB* RJB DH* BH BS* BHBS BM(1)* BM(2) GMG G 
10 0.90 0.86 1.16 - - - 0.88 0.85 0.18 2.97 0.57 0.00 0.82 2.87 0.03 0.40 2.55 0.13 
20 0.94 0.97 1.21 1.89 0.97 0.92 1.00 1.05 0.99 3.59 1.13 0.10 0.99 2.76 2.69 1.15 2.60 0.92 
30 0.94 0.89 0.98 1.80 0.99 1.04 0.96 0.98 1.36 3.73 1.30 1.06 0.99 3.45 1.14 1.96 2.56 0.82 
40 0.93 0.79 1.13 2.10 1.13 1.21 0.91 1.09 1.76 3.69 1.25 0.38 0.94 2.86 1.47 2.49 2.47 0.98 
50 0.97 0.99 1.06 1.97 1.07 1.29 1.04 1.10 1.89 3.41 1.30 1.03 1.14 3.20 1.61 2.90 2.22 1.06 

100 1.03 0.96 0.93 1.72 0.93 1.41 0.91 1.02 1.72 2.59 1.21 0.81 1.07 3.45 1.63 3.38 2.39 1.02 
200 1.01 0.87 1.03 1.58 0.95 1.36 0.95 1.09 1.81 2.18 1.24 0.96 0.95 3.09 1.79 4.72 1.84 0.99 
500 0.82 1.04 0.93 1.36 0.96 1.37 1.11 1.05 1.46 1.48 1.21 1.14 1.00 3.57 1.45 5.06 1.94 0.61 
1000 0.71 1.03 0.96 1.47 1.02 1.25 1.15 1.23 1.44 1.30 1.27 0.89 1.06 3.42 1.43 5.93 2.17 0.30 

*Tests with acceptable Type I error rates 
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Table 3.7: Simulated power for symmetric short-tailed distributions at 1% significance level 
Beta (1, 1) – Skewness = 0 , Kurtosis = -1.20 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 1.40 1.36 2.42 - - - 1.33 0.66 0.06 1.01 1.22 0.02 0.40 2.48* 0.02 0.19 0.79 0.44 
20 1.97 3.87 2.71 4.24 0.04 11.36* 2.86 0.66 0.02 0.11 1.54 0.39 3.36 4.82 0.02 0.04 1.39 1.53 
30 3.25 9.11 3.75 18.82 0.00 32.78* 9.29 1.90 0.00 0.01 2.79 2.98 9.77 14.19 0.00 0.12 6.24 2.17 
40 5.05 16.94 5.65 38.32 0.01 54.17* 20.35 5.82 0.00 0.02 6.73 2.80 18.00 19.99 0.00 2.99 14.05 2.67 
50 7.19 26.96 7.83 59.69 0.00 73.70* 36.02 12.02 0.00 0.00 12.34 5.41 29.19 31.51 0.00 12.33 25.96 3.89 

100 25.39 79.05 27.17 98.06 0.00 99.14* 94.52 76.80 0.17 0.00 70.60 11.94 75.53 73.21 0.04 86.23 76.66 19.48 
200 73.39 99.83 79.40 100.00 0.00 100.00 100.00 100.00 96.19 47.20 99.94 30.27 99.19 98.62 95.18 100.00 99.39 91.42 
500 99.98 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 79.24 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 99.04 100.00 100.00 100.00 100.00 100.00 100.00 

 
Beta (2, 2) – Skewness = 0 , Kurtosis = -0.86 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 0.70 0.60 1.21 - - - 0.58 0.33 0.05 1.35 0.45 0.00 0.31 2.27* 0.00 0.10 0.91 0.14 
20 0.97 1.03 1.37 0.69 0.02 2.13 0.47 0.15 0.02 0.31 0.16 0.13 0.72 2.57* 0.14 0.06 0.50 0.49 
30 1.17 1.66 1.34 2.45 0.01 5.72* 0.87 0.16 0.02 0.07 0.32 1.61 1.65 4.84 0.07 0.08 1.05 0.79 
40 1.14 1.86 1.64 5.62 0.00 11.97* 1.29 0.24 0.00 0.00 0.37 0.66 2.99 5.21 0.00 0.11 2.33 0.79 
50 1.43 2.96 1.80 9.75 0.01 18.14* 2.38 0.40 0.00 0.02 0.60 1.87 5.16 7.70 0.08 0.49 4.72 0.99 

100 3.29 9.86 3.59 40.73 0.00 56.26* 12.90 3.26 0.00 0.00 4.16 2.11 17.80 18.11 11.76 11.80 19.70 1.45 
200 10.72 39.54 8.94 89.44 0.00 95.39* 65.37 35.72 5.51 0.18 43.25 3.85 54.38 50.02 86.39 67.05 60.43 3.86 
500 50.28 97.60 46.84 100.00 0.00 100.00 100.00 99.89 99.61 90.78 99.90 10.01 98.01 96.53 100.00 99.95 98.77 36.77 
1000 95.17 100.00 95.56 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 24.62 100.00 99.98 100.00 100.00 100.00 98.28 

 
Beta (3, 3) – Skewness = 0 , Kurtosis = -0.67 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 0.79 0.68 1.31 - - - 0.67 0.48 0.07 1.57 0.54 0.00 0.40 2.50* 0.01 0.16 1.33 0.14 
20 0.88 0.78 1.16 0.41 0.04 1.21 0.39 0.16 0.06 0.48 0.22 0.03 0.66 2.68* 0.03 0.10 0.64 0.38 
30 0.86 0.86 0.96 0.93 0.04 2.52 0.45 0.13 0.01 0.25 0.19 1.31 0.76 3.54* 0.01 0.07 0.67 0.59 
40 0.99 1.18 1.22 1.91 0.05 4.85* 0.61 0.20 0.02 0.12 0.30 0.49 1.30 3.49 0.02 0.17 1.14 0.73 
50 0.98 1.44 1.21 3.11 0.03 6.62* 0.88 0.21 0.02 0.08 0.28 1.29 1.74 4.63 0.02 0.26 1.43 0.67 

100 1.61 3.11 1.73 11.88 0.00 21.06* 2.64 0.57 0.00 0.00 0.95 1.38 6.15 8.39 0.00 2.42 7.26 0.88 
200 3.27 9.92 3.02 40.92 0.00 56.82* 14.27 4.26 0.18 0.00 7.12 1.77 20.56 19.69 0.13 19.70 24.96 1.18 
500 13.88 52.63 10.50 95.96 0.00 98.55* 84.28 62.98 58.72 26.44 77.89 4.07 70.21 64.37 57.69 87.03 76.87 2.99 
1000 45.11 95.59 36.27 99.98 0.00 100.00* 99.98 99.80 99.91 97.58 99.97 7.33 97.80 96.24 99.91 99.97 98.88 9.87 

 
Uniform (0, 1) – Skewness = 0, Kurtosis = -1.20 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 1.29 1.19 2.19 - - - 1.17 0.53 0.04 0.96 1.16 0.00 0.35 2.42* 0.01 0.11 0.65 0.43 
20 1.96 3.74 2.78 4.18 0.06 10.84* 2.77 0.63 0.02 0.15 1.37 0.29 3.15 4.62 0.01 0.08 1.41 1.47 
30 3.03 8.90 3.66 18.06 0.01 31.22* 8.79 1.95 0.00 0.02 2.93 3.00 8.96 13.79 0.00 0.15 6.18 2.40 
40 5.05 16.65 5.20 38.34 0.02 53.56* 19.63 5.25 0.00 0.03 5.95 2.79 17.53 19.83 0.00 2.69 14.24 2.86 
50 6.72 25.90 7.77 58.83 0.00 72.22* 35.07 11.71 0.00 0.00 11.94 5.23 28.25 31.03 0.00 11.90 25.13 4.30 

100 25.52 78.07 26.70 98.27 0.00 99.18* 94.69 76.15 0.16 0.00 69.62 11.65 75.47 72.76 0.05 86.33 76.65 19.28 
200 73.03 99.80 79.96 100.00 0.00 100.00 100.00 99.97 96.48 45.83 99.91 29.85 99.11 98.47 95.45 99.96 99.33 91.21 
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500 99.99 100.00 100.00 100.00 0.01 100.00 100.00 100.00 100.00 100.00 100.00 78.38 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 99.11 100.00 100.00 100.00 100.00 100.00 100.00 

 
T (10) – Skewness = 0 , Kurtosis = 1 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 1.55 1.70 1.54 - - - 1.94 2.03 0.67 6.10* 1.38 0.00 1.50 3.52 0.23 1.20 4.67 0.15 
20 2.00 2.86 1.82 6.69 4.24 3.33 3.70 4.34 4.85 10.41* 4.46 0.08 3.70 5.34 8.51 5.37 7.55 1.48 
30 1.81 3.17 1.39 8.42 5.28 4.58 4.85 5.98 7.76 13.09 6.39 1.14 4.87 6.61 13.35* 9.06 8.72 1.47 
40 2.06 3.48 1.50 9.62 6.11 5.84 6.13 7.42 10.05 14.86 8.30 0.34 6.05 6.85 16.76* 12.11 10.55 1.34 
50 2.26 4.04 1.41 10.54 6.58 6.53 6.69 7.97 11.60 16.87 9.56 0.92 6.85 7.91 20.44* 14.60 11.56 1.38 

100 3.24 6.17 1.81 16.54 9.50 12.58 12.13 14.98 20.71 24.80 17.60 2 0.82 11.48 11.91 33.51* 27.14 18.10 1.66 
200 4.16 - 1.78 25.51 11.50 24.02 21.16 25.52 33.67 36.76 30.20 1 0.75 19.97 19.52 50.45* 43.42 27.97 2.04 
500 10.00 - 3.26 53.67 15.13 56.44 48.97 54.52 63.52 65.37 60.90 1 1.39 47.91 45.63 80.12* 74.10 57.61 1.61 
1000 22.03 - 6.35 83.25 15.87 86.96 79.96 83.63 88.83 89.40 87.70 4 1.92 78.11 74.76 96.37* 93.53 84.52 0.87 

* The most powerful test for each sample size. 
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Table 3.8: Simulated power for symmetric long-tailed distributions at 1% significance level 
T (5) – Skewness = 0 , Kurtosis = 6 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 3.16 4.03 2.10 - - - 4.57 4.93 1.99 11.14* 3.21 0.00 3.34 4.91 0.68 3.18 8.95 0.33 
20 4.69 7.40 3.22 14.76 10.29 8.52 9.24 11.00 11.51 21.01* 10.61 0.07 9.15 10.23 9.84 12.91 16.18 1.02 
30 5.99 10.46 3.48 19.81 13.80 13.01 13.73 16.16 18.99 27.99* 17.26 1.08 14.40 15.23 17.48 21.61 21.83 1.14 
40 7.89 13.97 4.17 25.20 18.00 18.64 19.49 22.31 26.49 34.93* 24.03 0.57 19.90 19.66 25.03 30.27 28.34 1.70 
50 9.09 16.68 4.30 28.99 20.25 23.08 23.34 27.42 32.04 40.64* 29.16 0.86 24.17 23.87 30.81 37.44 32.96 2.14 
100 16.63 - 7.36 45.81 27.27 42.48 41.45 47.02 53.74 61.06 50.28 0.89 44.37 42.97 52.94 61.27* 54.06 3.64 
200 32.20 - 13.51 70.98 36.10 71.73 70.12 74.32 79.68 83.78 77.71 1.23 72.25 70.23 79.34 85.84* 79.82 5.74 
500 72.92 - 36.12 97.32 45.27 98.05 97.55 98.13 98.61 98.99 98.50 3.38 97.96 97.36 98.60 99.29* 98.73 8.30 

1000 97.61 - 76.67 99.97 52.40 100.00 100.00 100.00 100.00 100.00 100.00 8.18 99.98 99.96 100.00 100.00 99.98 9.66 
 

Laplace (0, 1) – Skewness = 0, Kurtosis = 3 
N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 4.91 5.93 3.09 - - - 6.46 6.82 2.74 15.69* 4.53 0.00 5.28 6.89 0.82 4.25 13.94 0.46 
20 8.99 12.88 5.31 18.81 13.10 10.67 13.45 15.79 14.84 31.04* 15.36 0.11 16.76 16.18 12.49 18.04 28.68 1.53 
30 13.08 19.83 7.69 25.03 16.67 17.05 20.51 24.76 25.00 42.75* 24.73 0.86 28.41 27.36 22.81 30.67 41.25 2.61 
40 16.56 27.37 9.41 29.51 18.99 22.03 26.91 31.97 32.30 51.73* 31.11 0.65 38.12 35.45 30.39 40.64 51.64 3.56 
50 22.13 34.33 11.74 35.28 21.46 28.57 34.25 39.86 41.11 60.17 38.90 0.98 49.27 46.52 39.38 51.09 62.53* 4.21 
100 46.11 65.91 26.33 55.98 27.26 55.37 63.68 69.07 68.45 84.23 65.88 2.20 81.55 79.14 67.54 80.74 88.49* 8.15 
200 81.95 94.71 57.44 85.13 33.28 87.64 93.21 94.65 93.03 98.01 92.04 7.28 98.53 98.19 92.85 97.43 99.33* 15.15 
500 99.88 - 97.55 99.87 37.66 99.92 99.99 99.99 99.96 100.00 99.96 32.76 100.00 100.00 99.96 100.00 100.00 33.87 

1000 100.00 - 100.00 100.00 38.86 100.00 100.00 100.00 100.00 100.00 100.00 72.38 100.00 100.00 100.00 100.00 100.00 51.43 
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Table 3.9: Simulated power for asymmetric long-tailed distributions at 1% significance level 
Gamma (4, 5)  – Skewness = 1, Kurtosis = 4 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 3.15 4.27 2.68 - - - 4.91 4.63 1.67 9.49* 2.88 0.00 1.71 3.19 0.39 2.72 6.54 0.28 
20 6.17 10.15 4.71 15.02 12.61 6.06 12.75 12.50 10.55 18.80* 9.55 0.11 3.62 5.17 8.71 12.13 9.86 0.97 
30 9.80 18.23 6.51 23.09 22.31 9.07 24.02 22.59 19.67 27.50* 19.25 2.09 4.81 7.27 17.73 23.42 12.78 1.61 
40 14.15 26.90 8.38 30.06 32.23 11.47 36.10* 32.67 27.15 34.45 30.36 1.73 5.84 7.99 25.32 33.97 14.60 2.05 
50 19.24 36.22 10.83 38.23 42.19 13.96 47.03* 43.01 36.20 42.53 41.89 3.69 6.38 10.06 34.19 44.95 16.68 2.72 
100 43.85 73.75 28.30 70.14 81.54 23.69 86.69* 82.59 70.64 72.09 84.31 9.74 8.57 17.05 69.31 83.34 22.83 10.07 
200 82.73 98.31 69.51 98.02 99.31 42.61 99.81* 99.62 98.22 97.61 99.75 29.12 13.28 38.05 98.09 99.56 35.38 45.73 
500 99.94 - 99.86 100.00 100.00 80.39 100.00 100.00 100.00 100.00 100.00 81.74 25.58 86.28 100.00 100.00 63.16 98.82 

1000 100.00 - 100.00 100.00 100.00 97.75 100.00 100.00 100.00 100.00 100.00 99.42 45.40 99.76 100.00 100.00 87.71 100.00 
 

Chi-square (3) – Skewness = 1.63, Kurtosis = 4 
N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 7.96 12.43 7.50 - - - 14.32 13.09 4.81 19.07* 9.18 0.01 3.14 3.87 1.74 7.07 13.04 0.98 
20 20.45 36.49 22.22 33.10 32.09 14.67 41.29* 38.16 25.38 38.84 33.25 0.83 7.98 8.66 38.74 31.52 23.99 3.89 
30 33.96 59.88 37.78 48.83 52.83 21.31 68.78* 62.84 43.55 54.74 59.58 7.41 11.50 18.27 63.35 54.74 31.13 9.15 
40 47.67 76.60 49.38 63.20 70.43 28.38 85.28* 80.18 59.91 67.60 78.77 9.34 14.74 22.79 80.93 74.25 37.74 18.91 
50 60.74 87.72 62.31 74.48 83.08 33.98 94.19* 91.11 73.30 77.77 89.96 18.91 17.45 33.00 91.32 86.59 43.45 32.26 
100 94.65 99.86 96.31 98.37 99.49 60.34 100.00 99.98 98.68 98.07 99.97 52.36 29.91 67.07 100.00 99.92 65.35 93.49 
200 99.99 - 100.00 100.00 100.00 87.39 100.00 100.00 100.00 100.00 100.00 91.70 48.43 95.88 100.00 100.00 87.03 100.00 
500 100.00 - 100.00 100.00 100.00 99.77 100.00 100.00 100.00 100.00 100.00 99.99 82.19 100.00 100.00 100.00 99.35 100.00 

1000 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.00 100.00 100.00 100.00 100.00 100.00 
 

Exponential (1) – Skewness = 2, Kurtosis = 6 
N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 13.17 20.92 12.94 - - - 23.65* 21.51 8.09 25.35 16.02 0.05 4.75 5.16 3.73 11.54 19.00 1.96 
20 33.61 57.08 42.34 45.10 45.68 21.35 63.16* 58.15 35.84 51.79 52.05 2.53 11.87 14.40 31.96 45.13 34.78 9.26 
30 55.15 82.18 65.89 64.62 69.74 32.00 87.80* 83.42 59.88 69.75 80.16 16.84 18.26 32.40 56.44 73.18 46.73 25.66 
40 72.37 93.30 78.71 77.25 84.79 39.58 96.69* 94.60 75.00 80.95 92.89 25.58 22.85 42.73 72.54 88.69 54.46 48.64 
50 85.13 98.23 86.90 88.09 93.80 48.37 99.42* 98.87 87.73 90.10 98.32 41.02 27.12 57.83 86.32 96.72 62.92 72.03 
100 99.91 100.00 99.84 99.91 99.98 77.97 100.00 100.00 99.91 99.83 100.00 83.78 45.36 91.50 99.89 100.00 85.16 99.97 
200 100.00 - 100.00 100.00 100.00 97.08 100.00 100.00 100.00 100.00 100.00 99.37 71.65 99.89 100.00 100.00 98.15 100.00 
500 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.61 100.00 100.00 100.00 99.99 100.00 

1000 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.95 100.00 100.00 100.00 100.00 100.00 
 

Log-Normal (0, 1) – Skewness = 6.18, Kurtosis = 113.94 
N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 27.78 38.97 23.22 - - - 42.12* 39.36 20.04 42.67 32.51 0.17 12.28 12.02 12.47 24.90 36.10 7.63 
20 60.17 79.68 61.95 68.55 70.03 43.89 82.51* 79.58 61.17 74.74 76.08 5.17 32.52 36.41 56.97 70.43 62.51 29.33 
30 82.07 94.87 83.26 87.39 90.33 62.36 96.85* 95.57 84.70 90.25 94.44 24.72 49.37 62.42 82.44 92.05 78.81 57.95 
40 93.16 98.97 93.14 94.80 97.30 74.19 99.56* 99.30 94.20 96.47 99.12 38.77 61.44 77.45 93.23 98.29 87.59 81.04 
50 97.61 99.86 97.08 97.94 99.31 82.70 99.94* 99.90 97.99 98.57 99.84 57.50 70.35 88.41 97.70 99.70 92.49 92.81 
100 100.00 - 99.99 100.00 100.00 98.45 100.00 100.00 100.00 100.00 100.00 93.88 93.13 99.69 100.00 100.00 99.70 100.00 
200 100.00 - 100.00 100.00 100.00 99.98 100.00 100.00 100.00 100.00 100.00 99.96 99.78 100.00 100.00 100.00 100.00 100.00 
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500 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
1000 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
* The most powerful test for each sample size. 
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Table 3.10: Simulated power for asymmetric short-tailed distributions at 1% significance level 
Weibull (2, 2)  – Skewness = 0.63, Kurtosis = 0.25 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 1.57 1.84 1.75 - - - 2.23 2.08 0.51 5.09* 1.18 0.00 0.90 2.50 0.12 1.15 3.64 0.19 
20 2.79 3.70 2.36 5.91 4.32 2.14 4.44 4.17 3.68 8.20* 2.88 0.15 1.27 3.03 2.74 4.23 3.62 0.59 
30 3.69 6.35 3.02 8.35 6.95 3.35 7.98 6.95 6.17 10.38* 5.73 1.60 1.42 3.94 5.23 7.82 3.75 0.68 
40 5.40 9.24 3.56 10.89 10.21 4.29 12.38 10.29 8.85 12.81* 9.12 0.96 1.73 3.71 7.82 11.64 4.19 1.23 
50 7.19 12.23 4.44 13.68 14.96 4.67 18.08* 14.86 11.70 15.84 13.87 2.00 1.56 4.40 10.73 16.71 4.06 1.28 

100 17.14 34.04 10.36 29.19 40.10 6.25 51.64* 42.07 27.86 29.33 45.42 3.98 2.03 6.70 26.71 44.27 4.29 2.93 
200 43.08 77.93 31.00 73.01 83.45 7.48 94.85* 89.99 72.58 67.31 91.59 11.22 2.42 13.21 71.30 89.15 4.32 17.75 
500 92.25 99.97 92.60 100.00 99.99 12.29 100.00 100.00 100.00 99.99 100.00 43.36 3.59 42.86 100.00 100.00 4.73 94.17 
1000 99.98 100.00 100.00 100.00 100.00 18.93 100.00 100.00 100.00 100.00 100.00 83.69 6.09 81.91 100.00 100.00 4.44 100.00 

 
Gompertz (0.001, 1) – Skewness = -1, Kurtosis = 1.5 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G 
10 3.67 4.41 2.99 - - - 4.97 5.03 1.84 10.82* 3.08 0.02 2.05 3.52 0.52 2.79 7.59 0.38 
20 6.72 11.12 4.42 17.36 14.31 6.75 14.02 14.18 12.16 22.29* 10.74 0.27 4.24 5.29 10.13 14.24 12.40 0.95 
30 10.37 19.21 5.93 25.90 24.77 10.07 25.27 24.47 22.13 31.22* 20.51 2.32 5.72 8.15 20.10 26.29 15.68 1.59 
40 15.54 27.73 7.76 34.08 34.65 12.19 36.24 34.42 31.08 39.85* 30.63 2.00 6.93 9.10 28.80 37.57 18.72 1.98 
50 20.09 36.44 9.38 41.85 45.15 15.43 46.05 43.52 39.82 46.95 41.30 3.87 8.13 11.34 37.87 47.97* 20.93 2.83 

100 45.49 71.54 23.22 74.59 82.73 28.12 83.32 80.71 74.81 76.82 81.43 9.44 12.19 20.54 73.80 83.67* 31.65 7.80 
200 83.47 97.62 60.04 97.98 99.28* 52.85 99.20 98.92 98.10 98.00 99.17 28.35 22.13 45.62 98.02 99.20 51.22 28.26 
500 99.92 100.00 99.13 100.00 100.00 90.52 100.00 100.00 100.00 100.00 100.00 79.65 48.43 91.18 100.00 100.00 83.76 81.39 
1000 100.00 100.00 100.00 100.00 100.00 99.60 100.00 100.00 100.00 100.00 100.00 99.16 78.23 99.90 100.00 100.00 98.42 99.07 
* The most powerful test for each sample size. 
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Table 3.1 gives the type I error rate while Table 3.2 to Table 3.5 give the power of the 

tests for the several alternative distributions.  

An examination of the performance of the tests in terms of type I error rate shows that the 

LL, AD,  CS, DK, SK, KU, SW, SF, RJB, DH tests were found better than the other tests; 

these tests have Type I error rates that were around the 5% level specified. The RJB test 

also have generally acceptable type I error rate but these rate were slightly higher than 

specified when the sample size was less than 50. The JB, BH, BS, BM (1) and G statistic 

all have Type I error rates lower than 5% and tend to under-reject while the BHBS, BM 

(2) and the GMG have Type I error rates higher than 5% and tend to over-reject. These 

results are generally consistent when compared with those obtained at the 0.01 and 0.10 

significance levels. 

A consideration of the results of power of the tests showed that different tests performed 

differently under different combinations of the sample size and the significance level. A 

general and expected pattern was observed that as sample size increase the power of the 

test also increase. 

With Beta (1, 1), Beta (2, 2) and Beta (3, 3) as the alternative distributions, we have 

symmetric distributions with short tails, where Beta (1, 1) has the longest tail and the 

length of the tail reduces as the size of the parameters increase. The kurtosis test was the 

most powerful test for these distribution with the test achieving a 76.88% power at n=40. 

With  Beta (2, 2), only the KU at 78.79% exhibited significant power when the sample 

size was less than 100, followed by the CS at 64.97%. However, with the sample size of 

200, all the test reached at least 80% except for BHBS at 77.99, SF at 75.40, AD at 
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70.79% and JB at 61.04%. All other tests do not exhibit significant power especially the 

SK and BH which had 0.05% and 46.74 % power respectively, even at n=1000, and are 

clearly not suitable for these conditions. It is noticed that as the value of the parameter 

increases, the tail of the distribution reduces and consequently the coefficient of kurtosis 

resulting in a loss of power. In fact, for Beta (3, 3), considerable power was not achieved 

until when the sample size was 200; the kurtosis test was able to achieve a 79.72% power 

at this point. 

In the case of a Uniform (0, 1) as the alternative distribution, the KU test had a power 

88.59% at n=50 to prove being the most powerful under this condition, followed closely 

by DK (79.77%). With n=100, all tests excepts the LL, CS, SK, JB, RJB, BH, BM (1) 

and the G had power greater than 80%; the CS, SK, JB, RJB, BH, BM(1) and G 

particularly proved to be very bad test with n ≤ 50 in this situation with the SK only 

achieving a power of 0.07% even at n=1000. 

For a T (10) distribution, all the test were poor in detecting non-normality; even at n=500, 

only the BM(1) and BM(2) achieved a power of 80%, followed closely by the RJB 

(76.42%), GMG (75.54%), JB (75.16%), DH (74.97%),  KU (74.37%) and SF (71.84%). 

All other test had power below 70% at n=500 or less. However, BM (2) is not acceptable 

as it has unacceptable type I error rate. 

For a T(5) distribution that is symmetric and long-tailed, none of the tests was able to 

achieve a power of 80% even at n=100 with those that achieved closest to this cut-off 

point being the BM(2) (71.35%), RJB (69.02%), GMG (68.79%), DH (64.10%), JB 

(62.90%), SF (62.89%) and DK (60.04%).  
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Considering a Laplace (0, 1) with a mean of zero, the GMG is the most powerful for all 

sample sizes and achieved a power of 94.86% with n=100, with the AD, SW, SF, RJB, 

DH, BS, BHBS and BM(2) all achieving power above the 80% threshold. The SK and the 

G tests are the least powerful under this alternative distribution. 

In the situation where the alternative distribution is a Gamma (4, 5), the most powerful 

test was the SW reaching a power of 95.81% at n=100, it was followed closely by the 

DH, BM(2), SF, and SK all achieving more than 90% power at n=100. The least 

powerful under the situation are the G, KU and BS. Both G and KU that did not achieve 

80% power until n=500; the BS only achieved a power of 61.99% even at n=1000. 

The chi-square (3) distribution proved to be one that was easily identified as being non-

normal by all tests with SW(87.19%), SF (83.50%), AD(79.93%) and DH(79.42%) all 

achieving adequate power even at sample size as small as 30. At n=50, all eighteen tests 

considered had reached at least the 80% threshold except for the KU, BH, BS, BHBS, 

GMG and G. The least powerful was the BS test never achieving 100% power at n=1000 

whereas all other tests have. 

Exponential (1) also proved to be a distribution that was easy for the tests to identify as 

non-normal with the SW and SF having power above 80% at only n=20. All tests were 

able to achieve more than 80% power at only n=50 except for the KU, BH, BS, BHBS, 

and GMG. All tests however surpassed the 80% threshold at n=100 except for the BS 

which only achieved a 57.70% power at this sample size and proved the least powerful 

never achieving 100% power at n=1000 whereas all other tests have. 
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The SW test proved to be the most powerful under the Log-normal alternative 

distribution achieving a power of 83.73% at n=20, followed closely by its modified form 

the SF (80.13%). All tests surpassed the 80% threshold at n=40 except for the BH and BS 

which only achieved power of 65.76% and 69.87% respectively. BHBS, a joint test of the 

BH and BS however proved more powerful than the individual tests by achieving a 

power of 89.52 at n=40. However, BHBS is not recommended as it has unacceptable type 

I error rate. 

The result of power on a weibull (2, 2) alternative distribution showed that the SW is the 

most powerful under this distribution. The test achieved a power of 79.33% at n= 100 

which is just a little below the 80% rate that is usually described as acceptable. The SW is 

closely followed by the DH (72.64%) and SF (71.64). The AD, DK, SK, JB, RJB, BM(1) 

and BM(2) were also able to achieve at least 80% power at n=200. The BS once again 

proved to be the least powerful among the tests under this distribution by only achieving 

a power of 16.94%. 

An asymmetric, short-tailed Gompertz distribution as an alternative distribution showed 

the SK test to be powerful, and a strong rival to the popular SW test, however, none of 

the test was able to achieve 80% power until the sample size was increased to 100 at 

which point all of the tests except the LL, CS, KU, BH, BS, GMG and G had surpassed 

the threshold. The BS once more was the least powerful under this distribution; despite 

most of the tests achieving the 80% threshold and a significant number of them achieving 

100% at n=500, the test was only able to achieve 65.88% power. 

As expected, the power of all the tests reduced at the 1% level of significance in contrast 
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to those at the 5% level as follows. This is because we have a wider range of critical 

values for non-rejection of the hypothesis of normality thus leading to a higher level of 

confidence in the results from the tests. Little variations were observed in the results at 

the 1% level and these include the RJB and BM (1) being the most powerful test for a T 

(10) distribution as against BHBS, BM (2) and GMG at the 5% level. Also, RJB was 

more powerful for sample sizes of 40 or less for a laplace (0, 1) and then GMG for higher 

sample sizes. In contrast, GMG was ultimately the most powerful for laplace (0,1) at the 

5% level.  

A weibull (2, 2) distribution also showed RJB as the most powerful for sample sizes of 

40 or less and SW for larger sample sizes as against BHBS for a sample size of 10 and 

SW for larger sample sizes at the 5% level. There is however, the most drastic change in 

the case of the Gompertz (0.001, 1) distribution at 1% level, where the GMG was the 

most powerful for sample size on 10 and SK for other sample sizes. The SK will 

probably be the most powerful for a sample size of 10 but for the unavailability of the SK 

along with the KU and DK for sample sizes less than 20. At the 5% level on the other 

hand, the RJB was the most powerful for sample sizes of 40 or less and BM (2) for larger 

sample sizes. 

All these tests behave differently depending on the alternative distribution under 

consideration. Even though the BHBS, BM(2) and GMG show proved powerful in 

certain situations, they are not recommended for testing for normality as they do not 

effectively control for type I error rate. 
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CHAPTER FOUR: SOME APPLICATIONS 

To illustrate the findings of this research, three real life medical dataset were analyzed as 

follows. 

4.1 Non-sudden infant death syndrome (SIDS) Example 

Several population studies have demonstrated an inverse correlation of sudden infant 

death syndrome (SIDS) rate with birth weight. The occurrence of SIDS in one of a pair of 

twins provides an opportunity to test the hypothesis that birth weight is a major 

determinant of SIDS. The data below consist of the birth weights (in grams) of one of 

each pair of 22 dizygous twins: 

2098, 3119, 3515, 2126, 2211, 2750, 3402, 3232, 1701, 2410, 2892, 2608,  

2693, 3232, 3005, 2325, 3686, 2778, 2552, 2693, 1899, 3714. 

Data Source: Peterson et al., 1979. 

             
Figure 4.1 (a) Histogram of SIDS data   Figure 4.1 (b) QQplot of SIDS data 
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Table 4.1 Test results for non-sudden infant death syndrome (SIDS) data 
Normality Test Value of test statistic P-value 

(or Critical Value)
Reject normality at  

α = 5%? 
LL 0.0758 0.9854 Do not reject 
AD 0.1417  0.9665 Do not reject 
CS 1.4545  0.6928 Do not reject 
DK 0.7598 0.6839  Do not reject 
SK 0.0181 0.9856 Do not reject 
KU -0.8715 0.3835 Do not reject 
SW 0.9778  0.8784 Do not reject 
SF 0.9883 0.9772 Do not reject 
JB 0.6827  0.7108 Do not reject 

RJB 0.3954  0.8206 Do not reject 
DH 0.2060 0.9021 Do not reject 
BH 0.9322 0.8177 Do not reject 
BS -0.4967 0.6194 Do not reject 

BHBS 5.3355 0.2546 Do not reject 
BM(1) 0.5579 0.7566 Do not reject 
BM(2) 0.9743 0.6144 Do not reject 
GMG 0.9745 0.3268 Do not reject 

G 0.0147 (0.0714) Do not reject 
 

The sample is positively skewed with skewness = 0.007 and short-tailed with kurtosis = -

1.05, mean = 2756.409, standard deviation (SD) = 568.762 and sample size is 22. From 

the histogram and QQ plot above together with the summary of the data, we can see that 

the data can satisfactorily be modeled by the normal distribution as revealed by all the 

tests of normality. 

4.2 Triglyceride Level Example 

A study of changes in serum cholesterol and triglyceride levels of subjects following the 

Stillman diet was conducted. The diet consists primarily of protein and animal fats, 

restricting carbohydrate intake. The subjects followed the diet with length of time varying 

from 3 to 17 days. The mean cholesterol level increased significantly from 215 mg 
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per/100 mL at baseline to 248 mg per/100 mL at the end of the diet. Below are the 

Baseline triglyceride level measurements: 

159, 93, 130, 174, 148, 148, 85, 180, 92, 89, 204, 182, 110, 88, 134, 84. 

Data Source: Rickman et al. (1974) 

         

 
 
Table 4.2 Test results for triglyceride level data 

Normality Test Value of test statistic P-value  
(or Critical Value)

Reject normality at  
α = 5%? 

LL 0.2011 0.0830 Do not reject 
AD 0.5826 0.1096 Do not reject 
CS 3.5000 0.3208 Do not reject 
DK - - - 
SK - - - 
KU - - - 

SW 0.9016 0.0853 Do not reject 
SF 0.9213 0.1543 Do not reject 
JB 0.6827 0.7108 Do not reject 

RJB 0.3954  0.8206 Do not reject 
DH 2.7390 0.2542 Do not reject 
BH 1.7458 0.6268 Do not reject 
BS -1.6340 0.1023 Do not reject 

BHBS 6.5317 0.1628 Do not reject 
BM(1) 1.0166 0.6015 Do not reject 
BM(2) 2.6699 0.2632 Do not reject 
GMG 0.9024 0.0713 Do not reject 

G 0.0565 (0.1007) Do not reject 

Figure 4.2(a) Histogram of triglyceride   Figure 4.2 (b) QQplot of triglyceride  
level data      level data 
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The sample is positively skewed with skewness = 0.23 and short-tailed with kurtosis = -

1.52, mean = 131.25, SD = 40.74 and sample size is 16. There seems to be some concerns 

with the normality assumption about this set of data both from the histogram and the QQ 

plot. It can also be observed that the LL, AD, SW, BS and GMG only marginally failed 

to reject the normality assumption and in particular, the LL, SW and GMG would have 

rejected normality at 10% significance level. As the sample size is small at only sixteen, 

we can attribute some of the effect to sample size as these tests have small power at small 

sample sizes especially when the coefficient of skewness is close to zero. The RJB did 

not identify and serious problem of normality from the data while the DK, SK and KU 

will not produce results for sample size less than 20. 

4.3 Postmortem Interval Example 

The postmortem interval (PMI) is defined as the elapsed time between death and an 

autopsy. Knowledge of PMI is considered essential when conducting medical research on 

human cadavers. The following data are PMIs of 22 human brain specimens obtained at 

autopsy in a recent study: 

5.5, 14.5, 6.0, 5.5, 5.3, 5.8, 11.0, 6.1, 7.0, 14.5, 10.4, 4.6, 4.3, 7.2, 10.5, 6.5, 3.3, 7.0, 4.1, 

6.2, 10.4, 4.9. 

Data Source: Hayes and Lewis, 1995 
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Table 4.3 Test results for postmortem interval data 
Normality Test Value of test statistic P-value  

(or Critical Value)
Reject normality at  

α = 5%? 
LL 0.2398 0.0019 Reject 
AD 1.2453 0.0023 Reject 
CS 15.6364 0.0013 Reject 
DK 5.5303 0.0630 Do not reject 
SK 2.2380 0.0252 Reject 
KU 0.7222 0.4702 Do not reject 
SW 0.9091 0.2378 Do not reject 
SF 0.9129 0.2244 Do not reject 
JB 4.1410 0.1261 Do not reject 

RJB 7.9721 0.0186 Reject 
DH 8.9722 0.0113 Reject 
BH 8.8778 0.0310 Reject 
BS -0.1260 0.8997 Do not reject 

BHBS 11.5494 0.0210 Reject 
BM(1) 3.6023 0.1651 Do not reject 
BM(2) 7.5541 0.0229 Reject 
GMG 1.0968 0.0439 Reject 

G 0.1210 (0.0714) Reject 
 

The sample is positively skewed with skewness = 0.99 and short-tailed with kurtosis = -

0.16, mean = 7.30, SD = 3.18 and sample size is 22. This dataset was originally modeled 

by a gamma distribution with shape parameter α = 5.25 and scale parameter β = 1.39 (see 

Figure 4.3(a) Histogram for postmortem   Figure 4.3(b) QQplot for postmortem 
interval data        interval data 



60 
 

Banik and Kibria, 2010), so we can assume that the hypothesis of normality will be 

rejected, however, seven of the eighteen test considered failed to reject this hypothesis 

including the popular DK, SW and SF tests. It can be noted that the coefficient of kurtosis 

of the data is 0.16 and close enough to that of a normal distribution at zero. 
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CHAPTER FIVE: SUMMARY AND CONCLUSION 

It is necessary to carry out this research work because of the necessity to check the 

normality assumption in most statistical test. Parametric tests in particular are usually 

more powerful than their non-parametric counterparts but do require the validity of some 

assumptions of which the normality is one. Numerous methods have been proposed by 

different authors over the years and particularly, empirical tests which result in 

conclusive decision have become popular among the users of statistical methods. 

In this work, eighteen different tests of normality comprising the most popular and 

frequently used such as the SW, LL, and CS among others along with some of the 

recently proposed tests were compared simultaneously in order to scrutinize their 

performance. The performance was measured in terms of type I error rate and power of 

the test. The type I error rate is the rate of rejection of the hypothesis of normality for 

data from the normal distribution while the power of the test is the rate of rejection of 

normality hypothesis for data generated from a non-normal distribution. Different 

samples sizes, each at significance levels 1%, 5% and 10%.  

Type I error rates for the LL, AD, CS, DK, SK, KU, SW, SF, RJB, DH tests were around 

the 5% level specified and thus adequately control for error rates in data. The RJB test 

was also found out to have generally acceptable type I error rate but these rate were 

slightly higher than specified when the sample size was less than 50 thereby increasing 

the rate of false-positive for non-normality. The JB, BH, BS, BM (1) and G statistic all 

have Type I error rates lower than 5% and tend to under-reject while the BHBS, BM (2) 

and the GMG have Type I error rates higher than 5% and tend to over-reject.  
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Regarding the power of the test, symmetric distributions shows the influence of the 

coefficient of skewness on the tests; none of the tests produces significant power result as 

symmetric distribution is characterized by a skewness coefficient of zero which is similar  

to that of the normal distribution. The tests only yield a better performance when the 

distribution is long-tailed and have a co-efficient of kurtosis significantly different from 

zero. Generally, the tests did not achieve significant power with sample size below one 

hundred but the BM(2) seem to have a slight advantage over the others followed closely 

by the KU test provided the coefficient of kurtosis is significantly different from zero. 

For asymmetric distributions, the coefficients of skewness appears to have a major 

influence on the power of the test, with the power rapidly increasing as the coefficient 

tends away from zero, the coefficients of kurtosis also tend to influence the power of the 

test with the power of the test increasing as the coefficient of kurtosis increases, but this 

measure does not exert much influence as the coefficient of skewness. The SW test is the 

best for asymmetric distribution followed closely by its modified form, the SF. The tests 

are adequate in detecting non-normality under this condition provided the sample size is 

at least fairly large. 

From the section on application to real data, we see that not all the tests are powerful at 

detecting non-normality with small sample size, however, when the data is approximately 

normal, all the tests seems to agree with normality irrespective of the sample size. 

The conclusions here are limited to the simulation conditions of this thesis. For a definite 

statement about the performance of the test statistics one might need more data and more 

simulation conditions. 
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APPENDIX 

Table A1: Extended table of critical values for the G-test 
N G0.900 G0.950 G0.990 G0.995 G0.999 
2 0.5360 0.6543 0.8349 0.8815 0.9459 
3 0.3932 0.4895 0.6751 0.7358 0.8397 
4 0.3126 0.3862 0.5498 0.6109 0.7280 
5 0.2595 0.3185 0.4568 0.5135 0.6278 
6 0.2212 0.2702 0.3874 0.4371 0.5448 
7 0.1924 0.2337 0.3337 0.3777 0.4762 
8 0.1699 0.2053 0.2922 0.3310 0.4208 
9 0.1520 0.1829 0.2591 0.2935 0.3741 
10 0.1373 0.1644 0.2316 0.2625 0.3361 
11 0.1251 0.1492 0.2090 0.2363 0.3033 
12 0.1149 0.1364 0.1903 0.2153 0.2763 
13 0.1060 0.1255 0.1739 0.1963 0.2511 
14 0.0984 0.1160 0.1599 0.1805 0.2311 
15 0.0918 0.1079 0.1482 0.1669 0.2130 
16 0.0859 0.1007 0.1375 0.1546 0.1971 
17 0.0808 0.0943 0.1282 0.1440 0.1834 
18 0.0761 0.0887 0.1200 0.1347 0.1718 
19 0.0720 0.0837 0.1128 0.1264 0.1605 
20 0.0683 0.0791 0.1062 0.1188 0.1506 
21 0.0649 0.0751 0.1003 0.1121 0.1418 
22 0.0618 0.0714 0.0950 0.1060 0.1336 
23 0.0590 0.0680 0.0901 0.1005 0.1266 
24 0.0564 0.0649 0.0856 0.0952 0.1197 
25 0.0541 0.0620 0.0816 0.0907 0.1139 
26 0.0519 0.0594 0.0778 0.0864 0.1084 
27 0.0499 0.0570 0.0745 0.0826 0.1032 
28 0.0480 0.0547 0.0713 0.0790 0.0986 
29 0.0462 0.0527 0.0684 0.0757 0.0943 
30 0.0446 0.0507 0.0656 0.0726 0.0902 
31 0.0431 0.0489 0.0631 0.0698 0.0865 
32 0.0416 0.0472 0.0608 0.0671 0.0830 
33 0.0403 0.0456 0.0586 0.0646 0.0799 
34 0.0390 0.0441 0.0565 0.0623 0.0767 
35 0.0379 0.0427 0.0545 0.0600 0.0740 
36 0.0367 0.0414 0.0528 0.0580 0.0715 
37 0.0357 0.0402 0.0510 0.0560 0.0689 
38 0.0347 0.0390 0.0494 0.0543 0.0666 
39 0.0337 0.0379 0.0479 0.0526 0.0644 
40 0.0328 0.0368 0.0465 0.0509 0.0621 
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41 0.0320 0.0358 0.0450 0.0493 0.0601 
42 0.0312 0.0349 0.0438 0.0479 0.0583 
43 0.0304 0.0340 0.0426 0.0466 0.0567 
44 0.0297 0.0331 0.0414 0.0452 0.0548 
45 0.0289 0.0323 0.0403 0.0440 0.0532 
46 0.0283 0.0315 0.0393 0.0428 0.0518 
47 0.0276 0.0308 0.0383 0.0417 0.0504 
48 0.0270 0.0301 0.0373 0.0406 0.0490 
49 0.0264 0.0294 0.0364 0.0396 0.0477 
50 0.0259 0.0287 0.0355 0.0386 0.0465 
60 0.0213 0.0234 0.0285 0.031 0.0368 
70 0.0180 0.0197 0.0238 0.0257 0.0302 
80 0.0156 0.017 0.0203 0.0218 0.0256 
90 0.0138 0.0149 0.0176 0.0187 0.0216 
100 0.0123 0.0132 0.0155 0.0165 0.0187 
200 0.0058 0.0062 0.0069 0.0072 0.0080 
300 0.0038 0.0040 0.0044 0.0045 0.0049 
400 0.0028 0.0029 0.0032 0.0032 0.0035 
500 0.0022 0.0023 0.0025 0.0025 0.0027 
1000 0.0011 0.0011 0.0012 0.0012 0.0012 
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