










behaves abnormally at the same time. This type of anomalies is generated by

injections No.2 and No.3 in Table 5.1, and our framework correctly captures

such anomalies during the time period [300, 400]. One thing should be noted

is that the stream anomaly score of node 3 increases faster during the time

period [350, 400] than the time period [300, 350]. This is because two types of

anomalies (CPU utilization and memory usage) appear simultaneously during

the time period [350, 400].

3. Multiple streams behave abnormally simultaneously. This type of anomalies is

generated by injection No.5. During the injection time period, our framework

correctly identifies both anomalies (on node 2 and node 5).

4. Stable but abnormal streams. This kind of anomaly is indirectly generated by

injection No.6 in Table 5.1. This injection emulates the scenario that all the

nodes but one (i.e., node 6) in a cluster received the command of executing a

task. As is shown, although the CPU utilization of node 6 behaves stable all

the time, it is still considered to be abnormal during the time period [800, 850].

This is because it remains idle when all the other nodes are busy.

5. Transient fluctuation and slight delay would not cause false-positive. As this

experiment is conducted in a distributed environment, delays exist and vary

for different nodes when executing the injections. Despite this intervention,

our framework still does not report transient fluctuations and slight delays as

anomalies.

Based on the evaluation results, we find that our solution is able to correctly

identify all the anomalies in all these 5 different cases.
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Effectiveness Analysis

In this section, we will delve into the details about the effectiveness and efficiency

of our framework. To quantitatively measure the performance, we use F-measure

to measure the accuracy and detection time delay to measure the efficiency. The

precision and recall in computing F-measure are quantified according to the ground

truth shown in Table 5.1. To investigate how λ affects the results, we conducted

experiments with various λ values.
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The experimental results of how λ affects the results accuracy are illustrated in

Figure 5.9. To mitigate the randomness caused by the distributed environment, the

precision, recall, and the F-measure are averaged with 10 runs.

As shown, as λ increases, precision increases but recall decreases. The result shows

that the highest F-measure is 0.9351 while the lowest is 0.9060, which is stable. This

is due to the changing of precision and recall cancels each other and makes F-measure

insensitive to λ.

The reason for the decreasing of recall is as follows: The increase of λ causes the

upper bound of stream anomaly scores to decrease and indirectly increases the reset

frequency. After each reset of stream anomaly scores, some real anomalies would be

skipped and they would reduce the recall. In practice, the low recall does not indicate
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that our method misses the real alerts. Figure 5.11 plots the experiment results with

the worst recall, where the x-axis denotes the time and the y-axis denotes the number

of anomalies. Comparing with the ground truth (the top 6 sub-figures in Figure 5.8),

whenever there is an injection, the alerts are generated. Therefore, all the injections

can be captured.
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Figure 5.11: Generated alerts with the worst recall

In terms of the time delay, our proposed framework is able to identify the anomalies

in real time. As shown in Figure 5.10, the experimental results indicate that the

average time delay in all the experiments are less than 6 seconds. We also notice that

the variance of the time delay is large, this is because the experiments are conducted

in a distributed system, where the environment is highly dynamic. Since the delay

consists of network delay, injection execution delay, and the detection delay, the actual

delay of our detection method should be less than the observed value.

Results Comparison

To demonstrate the superiority of our framework, we also conduct experiments to

identify the anomalies with the same injection settings using the alternative methods

including contextual anomaly detection (CAD) and rule-based continuous query (Rule-

CQ). The contextual anomaly detection is equivalent to the snapshot scoring in our

framework. For the rule-based continuous query, we define three rules to capture three

types of anomalies, including high CPU utilization (rule 1), low CPU utilization (rule

2), and high memory usage anomalies (rule 3), respectively. Different combinations

of the three rules are used in the experiments.
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Figure 5.12: Generated alerts by CAD and Rule-CQ

The generated alerts of these methods are shown in Figure 5.12, where the x-axis

denotes the time and y-axis denotes the number of anomalies. As illustrated, the

contextual anomaly detection method generates a lot of false alerts. This is because

this method is sensitive to the transient fluctuation. Once an observation deviates

from the others at a timestamp, an alert would be triggered. For Rule-CQ method, we

experiment all the combinations and report the results of the two best combinations:

C1 (rule 1 or rule 2) and C2 (rule 2 or rule 3). Similarly, the Rule-CQ method also

generates many false alerts since it is difficult to use rules to cover all the anomaly

situations. Table 5.2 quantitatively shows the precision, recall, and F-measure of the

three methods as well as the results of our method. The low-precision and high-

recall results of CAD and Rule-CQ indicate that all these method are too sensitive

to fluctuations.

Table 5.2: Measures of different methods
❳
❳

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Measure
Method

precision recall F-measure

CAD 0.4207 1.0000 0.5922
C1: Rule 1——3 0.5381 1.0000 0.6997
C2: Rule 2——3 0.0469 1.0000 0.0897

Our method (worst case) 0.9832 0.8400 0.9060
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A real system problem detected

We have identified a real system problem when deployed our framework on two com-

puting clusters in our department. In one of the clusters, we continuously receive

alerts. Logging into the cluster, we find the CPU utilization is high even no tasks are

running. We further identify that the high CPU utilization is caused by several pro-

cesses named hfsd. We reported the anomaly to IT support staffs and they confirmed

that there exist some problems in this cluster. The high CPU utilization is caused

by continuous attempts to connect to a failure node in the network file system. After

fixing this problem, these out-of-expectation but real alerts disappear.

5.5.2 Real Word Scenario 2 — Twitter Topics Anomaly De-

tection

In this section, we conduct experiments on two twitter datasets to perform twitter

topic anomaly detection. The first dataset with 7,858,046 tweets was collected by

using Twitter Streaming API during 03/09/2011-03/23/2011 and the second dataset

with 10,780,000 tweets was collected during 03/23/2012 – 05/28/2012. The first

dataset contains the topics of the countries and the second dataset contains topics

about candidates of the president election. For pre-processing, the first dataset is

aggregated by hour and the second dataset is aggregated by day, and then the change

ratios between contiguous timestamps are calculated and feed to our framework as

streams. Figure 5.13 and Figure 5.14 illustrate the time series of change ratios as well

as the identified anomalies. Also, some of the typical events are marked in both two

figures and are described in Table 5.3 and Table 5.4, respectively.

Take the first dataset for example, five sets of anomalies are detected. The anoma-

lies of set 1 is raised by the topic japan around March 11th 2011, when a 9 magnitude
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Figure 5.13: Country dataset Figure 5.14: Election dataset

Table 5.3: Events in country group
No Event
1 Japan 9.0 magnitude earthquake. Anti-Gaddafi action.
2 Bloody assaults in Libya. Egypt evolution conflict.
3 Egypt constitutional referendum.
4 Japan is too quiet compare with others.
5 International armed conflict in Libya.

earthquake happened near Japan that day. Almost at the same time, the National

Transitional Council flag is flown by anti-Gaddafi fighters in Lybia on 10th March

2011. Observing from the figures, the change ratios of these two topics are higher than

others during this time period. For this time periods, the collective anomaly detection

algorithms generate a large number of false-positives since the change ratios of all the

topics are changing irregular all the time. During time period of March 12th-13th,

2011 (anomaly set 2), the change ratios of topic egypt and libya are high and the

anomalies of set 2 is observed. For comparison, The contextual anomaly detection

algorithms generate a lot of alerts since fluctuations occur frequently during this time

period. According to the news report, several conflicts happened in these two coun-
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Table 5.4: Events in election group
No Event
1 Ron Paul’s campaign became active earlier than others.
2 No alert since all topics burst.
3 Santorum’s active peak lasts longer than others.
4 False positive alerts.
5 Santorum quited the Republican presidential primaries.

tries due to the revolution. Similarly, other anomaly sets are the follow-up conflicts

either happened in Egypt or Libya. All the identified anomalies can be validated by

variable information resources.

5.6 Chapter Summary

In this chapter, we propose a real time anomaly detection framework to identify the

contextual collective anomalies from a collection of streams. Our proposed method

firstly quantifies the snapshot level anomaly of each stream based on the contextual

information. Then the contextual information and the historical information are

used in combination to quantify the anomaly severity of each stream. Based on

the distribution of the stream anomaly scores, an implicit threshold is dynamically

calculated and the alerts are triggered accordingly. To demonstrate the usefulness of

the proposed framework, several sets of experiments are conducted to demonstrate

its effectiveness and efficiency.
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CHAPTER 6

Conclusion

Distributed systems are the new trends for people to solve the modern computa-

tion problems. As the scale of the systems getting increasingly large, more efforts need

to be paid to facilitate people to investigate and manage them. In this dissertation,

the problems of leveraging temporal data mining techniques for distributed system

management have been discussed. Specifically, three related but orthogonal concrete

problems have been studied: 1) The event summarization problem that facilitate the

system event analysis; 2) The cloud prediction problem that make the cloud systems

more intelligent and enables the autonomous computing; 3) The stream anomaly

detection problem that allow the system to self-diagnosis in real time.

For the issue of facilitating system event analysis, the solution of event summa-

rization has been presented. Specifically, a novel event summarization methodology

called NES which is able to summarize the given event logs with periodical and cor-

relation patterns is proposed. Using NES, event analysts are able to obtain a concise

yet accurate summary which demonstrates the running status of the system. Besides

NES, an integrated framework call META is proposed. META is an event summa-

rization framework that provides various of event operations, include event storage,

event multi-resolution analysis and event summarization. It facilitates the event an-

alysts by enabling them end-to-end solutions when analyzing the event logs. Due

to its flexibility, the existing and future event summarization methods can be easily

plugged into META, and therefore making META more powerful.

For the issue of making the cloud systems autonomy and more intelligent, we pro-

pose the data mining based approach to solve the problems of cloud capcity planning

and instant VM provision. Concretely, we abstract and formulate these two problems

as the time series prediction problem, then we leverage ensemble time series prediction

as well as the VM deprovision probability estimation to predict the demand of VM
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provision/deprovision. The experimental evaluation demonstrates the effectiveness

and efficacy of the proposed solution.

For the issue of the system self-diagnosis, we propose a real-time streaming anomaly

detection algorithm. The proposed algorithm is able to identify a particular anomaly

called contextual-collective anomaly that occurs frequently in load-balanced distributed

systems. Our proposed method conducts the anomaly detection in a 3-step appoach,

and is able to effectively identify most of the anomalies, including the abnomral

stream, the abnormal time range, and the severity, according to the results of exper-

imental evaluation. Most importantly, the proposed method is able to identify the

anomalies in real time.

In summary, this dissertation attempts to leverage temporal data mining tech-

niques to resolve the system autonomy and management issues in different aspects.

As far as we know, this disssertation is the one of the earliest attempts that solves

such issues from the analytic perspective instead from the system perspective.

Based on these initial exploration, we also found several limitation of the proposed

works and there are some promising extensions can be done in the future. The current

methods for event summarization has limitated express power and scalability. For

example, it is unable to express the event relationship if there exists event clique.

Moreover, it is unable to handle huge event logs as it requires superlinear running

time to generate the summarise. In the future, more experessive model and more

effective or parallel summarization algorithm would be proposed. For the issue of

improving cloud system autonomy, current proposed solutions is incapable of handling

sudden demand bursts as the models have limited power to predict such abnormal

situation. In the future, advanced burst detection algorithms can be integrated into

current prediction framework to boost the solution’s stability. In terms of system

self-diagonosis, there are also some limitations on the aspects of diagnosis power and

scalability. The proposed method is effective to discover the anomalies, but it is
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not able to provide an intuitive explaination about the root cause of the anomalies.

Moreover, the design of this method is not scalable enough, so it is prohibitive to

handle a large number of event streams.
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