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Fig. 19 Linearity of CE determination of microcystins. Buffer: 50 mM sodium phosphate, 

pH 9.30. λ = 240 nm, voltage = 25 KV. 

3.3 CE-MS identification 

 Mass spectrometry can provide the accurate information on molecular weight and 

molecular structure. The off-line ESI-MS was used to identify MCs.65 However, no 

research was focusing the on-line CE-MS determination of MCs. In this research, CE 

coupled with ESI-TOF was developed for the determination of MCs in environmental 

algal blooms. With the optimized CE separation condition, ESI-TOF parameters were 

investigated in order to achieve better sensitivity. The major requirement for MS 

optimization was the compatibility with on-line ESI-TOF detection. The optimized CE 

conditions were directly applied on the CE-MS detection using a sheath flow liquid 

consisting of methanol/water (50:50, v:v) as sheath liquid with a flow rate of 3 μL/min. 
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The background electrolyte was 50 mM sodium phosphate, pH 9.30. Unfortunately at this 

pH, no useful MS data was obtained. One potential reason could be at the high pH (9.30) 

of sodium phosphate, analytes were not ionized efficiently and few analyte were spayed 

into the MS. Another reason may be ion suppression from the relatively high salt content. 

Therefore, a buffer pH of 8.50 without the addition of β-CD was used in the CE-MS 

analysis. As expected, MC-YR and MC-LR coeluted, however, the co-eluting analytes 

could be differentiated by the different m/z ratio of the two parent ions (Fig. 20). With 

MC-LR showing a [M+H]+ ion at m/z of 995.5609 and MC-YR showing a [M+H]+ ion at 

with m/z of 1045.5362. MC-RR showed a [M+H]+ ion at a m/z of 1038.5911 and it also 

showed a characteristic doubly charged [M+2H]2+ with m/z of 519.7998 (Fig 21). This 

[M+2H]2+ fragment could be very useful to identify MC-RR. MC-LA showed [M+H]+ 

with m/z of 910.5175. The mass errors were listed in Table 3. For all the MCs, mass 

errors were less than 30 ppm. The obtained results showed the CE-ESI-TOF method 

could be potentially used in the analysis of crude algae samples.  
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Fig. 20 Extracted Ion Chromatograms of microcystins: (A). MC-RR ([M+2H]2+ ion 

519.8033); (B). MC-RR ([M+H]+ ion 1038.6067); (C). MC-YR ([M+H]+ ion 1045.5452); 

(D). MC-LA ([M+H]+ ion 910.5190; (E). MC-LR ([M+H]+ ion 995.5769. Buffer for CE-

MS: 50 mM sodium phosphate, pH = 8.50. Positive ion mode, sheath liquid 

methanol/water (50:50, v:v). 
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Fig. 21 Mass spectrum of four analytes. [MC-LA+H] 910.5109, [MC-YR+H] 1045.5452, 

[MC-LR+H] 995.5769, [MC-RR+H] 1038.6067, [MC-RR+2H] 519.8033. Positive ion 

mode, sheath liquid methanol/water (50:50, v:v). 

Table 3. Mass results of microcystins. 

Compound Theoretical m/z Experimental m/z Error (amu) Error (ppm) 

MC-RR 1038.5719 1038.5911 0.0192 18 

MC-LR 995.5548 995.5609 0.0061 6 

MC-YR 1045.5341 1045.5362 0.0021 2 

MC-LA 910.4909 910.5175 0.0266 29 
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3.4 Analysis of environmental samples 

3.4.1 Analysis of spiked water sample 

 The developed CE methods were next tested on the spiked lake water samples. A 

mixture consisting of 5.0 μg MC-LR, 5.0 μg MC-RR, 1.0 μg MC-LA, 1.0 μg MC-YR 

was spiked into 10 mL lake water and extracted as described in the experimental section 

and eluted with 2 mL methanol. The eluted sample was dried by a steam of nitrogen and 

reconstituted in 200 μL of methanol. The recovery was calculated based on the 

calibration curve. The percent recovery of MC-RR, MC-LR, MC-YR, and MC-LA was 

calculated to be 78.65%, 82.43%, 60.12%, and 70.33% respectively.  

The reproducibility was evaluated by testing the extracted MCs in five replicates. 

All the MCs were detected by CE-UV and good reproducibility was obtained (Fig. 22). 

The CE-MS analysis was carried out with 50 mM sodium phosphate with pH of 8.50, 

with no addition of CDs. All four microcystins were detected in five replicates with good 

reproducibility (Fig. 23). 

 

Fig. 22 CE separation of spiked standards in drinking water plant sample in North 

Carolina: (1). MC-RR (25 μg/mL) and (2). MC-LR (25 μg/mL); (3). MC-YR (10 μg/mL) 



40 
  

and (4). MC-LA (10 μg/mL). Buffer: 50 mM sodium phosphate without addition of β-

cyclodextrin, pH = 9.30, λ = 240 nm, CE voltage = 25 KV. 

 

Fig. 23 CE-MS spectrum of microcystins spiked in drinking water plan sample in North 

Carolina. [MC-LA+H] 910.5109, [MC-YR+H] 1045.5452, [MC-LR+H] 995.5769, [MC-

RR+H]  1038.6067. Positive ion mode, sheath liquid methanol/water (50:50, v:v). 

3.4.2 Analysis of algal bloom samples  

 The environmental water sample was extracted as previously described and tested 

by CE-UV and CE-MS methods. There were two positive results showing the presence of 

microcystins out of 17 environmental algal blooms. The algal bloom samples were 

collected at a drinking water plant in North Carolina. In bloom sample 4, MC-LR, MC-

YR, and MC-LA were detected by CE-UV and CE-MS (Fig. 26-27). The microcystin 

peaks could be identified according to the migration times and mass spectrum. In bloom 
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sample 8, no commonly found MCs were present. The mass spectrum showed an m/z ion 

of 725.3704 which is in the molecular weight range of microcystin. The UV spectrum of 

this analyte was similar to the spectrum of a microcystin. The obtained results were 

checked by HPLC-MS/MS analysis, and HPLC results were consistent with CE results.  

 

Fig. 24 Electropherogram of bloom sample 4 with CE method. Buffer: 50 mM sodium 

phosphate, pH 9.3, λ = 240 nm, CE voltage = 25 kV. 

Fig. 25 Mass spectrum of bloom sample 4. [MC-LA+H] 910.4618, [MC-YR+H] 

1045.5266, [MC-LR+H] 995.5472. Positive ion mode, sheath liquid methanol/water 

(50:50, v:v). 
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Fig. 26 Electropherogram of bloom sample 8 with CE method. Buffer: 50 mM sodium 

phosphate, pH 9.3, λ = 240 nm, CE voltage = 25 kV. 

 

Fig. 27 Mass spectrum of bloom sample 8. [M+H] 725.3704. Positive ion mode, sheath 

liquid methanol/water (50:50, v:v). 
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CHAPTER 4  

Conclusion and future work 

Methods utilizing CE and CE-MS have been developed for the determination of 

four frequently occurring microcystins (MC-RR, MC-YR, MC-LR, and MC-LA). The 

developed methods provided optimal separation of the microcystins in spiked lake water 

sample and also in algal bloom samples. Unlike previously reported chromatographic 

methods, these CE methods could be integrated into a microfluidic chip device and 

suitable for field applications. Furthermore, the method described here is the first to 

utilize cyclodextrins in the simultaneous separation of microcystins. The UV detection 

enabled the determination of microcystins in mg/mL range.  

The coupling of the CE separation with an ESI-TOF detector is a powerful tool to 

identify microcystins at lower detection limits. The developed CE method could not be 

used directly on CE-MS due to the high pH of buffer electrolyte is not preferable for the 

ionization of analytes and the occurrence of ion suppression. Therefore, sodium 

phosphate with pH of 8.50 was chosen to be the buffer electrolyte for CE-MS analysis. 

With this buffer electrolyte, MC-YR and MC-LR were co-eluting, but they can be 

differentiated by m/z ions. Four different microcystins were identified based on the exact 

mass of the [M+H]+ and [M+2H]2+ ions. This result is the first demonstration of CE-ESI-

TOF in the analysis of harmful microcystins. The CE-UV and CE-MS results described 

in this project have been shown to be a rapid, useful, and sensitive assay for determining 

microcystins in environmental samples that may cause human illness or even death. In 

the future study, the methodologies could be applied on the detection of other 
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cyanotoxins such as nodularin, anatoxin, and cylindrospermopsin. The methods could be 

tested on portable CE devices and on the microfluidic devices. 
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