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ABSTRACT OF THE THESIS 

SPATIOTEMPORAL VARIATION IN ABUNDANCE AND SOCIAL STRUCTURE 

OF BOTTLENOSE DOLPHINS IN THE FLORIDA COASTAL EVERGLADES 

by 

Robin Elizabeth Sarabia 

Florida International University, 2012 

Miami, Florida 

Professor Michael Heithaus, Major Professor 

Bottlenose dolphins (Tursiops truncatus) are large-bodied predators that are locally 

abundant in the coastal Everglades. Because of their potential to exert strong top-down 

effects on their communities, it is important to understand how spatiotemporal variation 

in biotic and abiotic factors affects the abundance and behavior of dolphins. This study 

combined two years of transect surveys with photographic identification methods to 

assess spatiotemporal variation in the abundance and group sizes of bottlenose dolphins 

across four large regions of the coastal Everglades including the Shark and Harney 

Rivers, Whitewater Bay, and coastal oceans of the Gulf of Mexico and Florida Bay.  

Dolphin abundance was similar across wet and dry seasons, except in river habitats where 

abundances were higher during the dry season. Group sizes were largest in Florida Bay 

and open water. Dolphins may be relatively resilient to abiotic changes in the coastal 

Everglades, with the possible exception of river habitats.  
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INTRODUCTION 

The Florida Everglades is a system of subtropical wetlands comprising a number of 

distinct habitats that terminates in oligotrophic mangrove estuaries adjacent to Florida 

Bay and the Gulf of Mexico (Childers 2006). Within the coastal Everglades, there is an 

assemblage of multiple, distinct aquatic habitats including sloughs, creeks, rivers, shallow 

bays with mangrove islands, and coastal oceans. Urbanization of the surrounding land 

and global climate change have reduced freshwater flow in volume and duration, thus 

changing patterns of dissolved oxygen, salinity, primary production, and consequently 

the distribution of many species of consumers (e.g., Turner et al. 1999, Chick et al. 2004, 

Rehage and Trexler 2006).  Diminished freshwater flow that has resulted from 

anthropogenic activities has reduced fish populations, and in turn, limited populations of 

some upper trophic level predators (e.g., wading birds) though decreased food availability 

(Lorenz and Serafy 2006, Trexler and Goss 2009).  

 

The Comprehensive Everglades Restoration Plan (CERP) was created to restore and 

preserve the natural water function and resources by capturing fresh water that now flows 

to the Atlantic Ocean and the Gulf of Mexico and redirecting it back to the Everglades 

(see CERP: evergladesplan.org).  The project, budgeted at $7.8 billion, will result in 

considerable changes throughout the Everglades, including in the coastal estuaries (Perry 

2004, Davis et al. 2005, Gaiser 2009).  In order to predict and understand the impact this 

will have on native species, as well as to assess the quality of “restoration,” it is critical to 

have a functional understanding of how spatiotemporal variation in biotic and abiotic 

factors, and their interaction, affects the abundance and behavior of key species. 
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Most published studies of Everglades ecosystems, especially in coastal estuaries, has 

focused on organisms at relatively low trophic levels (e.g., Trexler et al. 2005, Williams 

and Trexler 2006; but see Wiley and Simpfendorfer 2007, Heithaus et al. 2009, Mazzotti 

et al. 2009 for studes of large predators). The oligohaline ecotone region, however, is 

predicted to be dramatically affected by habitat restoration and sea level rise because of 

drastic changes in abiotic conditions. Thus, an understanding of how these changes will 

impact upper trophic level species, and their roles in estuarine communities and 

ecosystems, is important.  Previous work on large predators in the coastal Everglades has 

suggested that they may play an important role in upstream transport of marine-derived 

nutrients into the oligohaline ecotone (e.g.,, Matich et al. 2011, Rosenblatt and Heithaus 

2011).  However, the predators that have been studied - bull sharks (Carcharhinus 

leucas) and alligators (Alligator mississipiensis) - are poikilothermic and have low 

metabolic rates (Coulson et al. 1989, Schmid and Murru 1994), particularly when 

compared to mammalian metabolism.  Consequently, the overall ecological impacts of 

these species through consumptive effects may not be as sizeable as those of abundant 

mammalian predators. 

 

Bottlenose dolphins (Tursiops truncatus) are large-bodied predators that can be locally 

abundant in coastal and estuarine habitats (Ballance 1992), including those of South 

Florida. They have high metabolic rates, and may consume a large percentage of total 

productivity, potentially impose strong top-down effects on community structure through 

direct predation (Bowen 1997, Young and Phillips 2002, Williams et al. 2004), and may 

serve as an indicator of ecosystem health (Torres and Urban 2005.) Therefore, 
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understanding spatiotemporal variation in the abundance of dolphins and their feeding 

ecology in the coastal Everglades is important for elucidating the dynamics of the 

ecosystem and for successful management of this system. However, no previous work on 

dolphins in the inshore waters of the coastal Everglades has been published, and their 

trophic relationships and ecological roles are poorly known in the area.  Currently 

available data on dolphins within the boundaries of the Everglades National Park come 

from studies conducted in the marine waters of Florida Bay (Torres 2007, Torres et al. 

2008) and are focused on marine habitat affinities of dolphins. Furthermore, the current 

NOAA Marine Mammal Stock Assessment examines only the bottlenose dolphins 

residing in Florida Bay and does not consider the potential role dolphins may play in the 

trophic dynamics and nutrient flow of the more inshore waters of the coastal Everglades 

(NOAA 2010). The last known descriptions of dolphins within the estuarine Everglades 

are sporadic notes on dolphin distribution from the early 1950’s (Moore 1953). 

 

Bottlenose dolphins are capable of rapid long-distance movements.  For example, Wells 

et al. (1999) recorded one animal that moved 4,200 km in 47 days. Therefore, they could 

serve as mobile links between ecosystems, although not all populations or individuals 

display such pronounced distributions.  Indeed, many populations in the waters of the 

southeastern United States tend to display high site fidelity and what may initially appear 

to be a continuous coastal distribution is often a mosaic of localized resident groups with 

limited population exchange among these groups (Irvine et al. 1981, Gubbins 2002, Irwin 

and Würsig 2004).  In extreme cases, two or more genetically separate populations that 

differ in foraging ecology may be sympatric (Fernandez et al. 2011). Home range sizes, 
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however, can vary greatly.  In some populations, individuals may occupy areas as small 

as 0.4 km2 while others exhibit movements across more than 2000 km (e.g., Caldwell 

1955, Bassos 1993). In Sarasota Bay, Florida, USA the approximately 100 resident 

animals have a year-round community home range of about 125 km2, comprised of the 

overlapping core areas of different groups and individuals (Wells 1993). Their 

distribution is often correlated with environmental factors, but the nature and strength of 

the relationship is confounded with fish distribution and is difficult to critically assess 

(Allen et al. 2001, Torres et al. 2008).  For example, dolphin distributions in Florida Bay 

are more tightly correlated with environmental characteristics than measures of prey 

distribution based on otter trawls (Torres and Read 2008). 

 

Habitat preferences of dolphins have been studied in multiple locations around the world.  

Food availability, predation risk, social and maternal factors, as well as abiotic conditions 

have been identified as potential drivers, with their relative importance varying within 

and among study locations (Wells 1993, Heithaus and Dill 2002, Torres et al. 2008, 

Yeates and Houser 2008, McHugh et al. 2011a). Changes in habitat use and abundance of 

dolphins within locations can be driven by numerous factors tidal variation (Gregory and 

Rowden 2001), the interaction of submarine characteristics with foraging tactics and 

seasonally abundant prey (Hastie et al. 2004), overall prey availability (Shane et al. 1986, 

Heithaus et al. 2002), predation risk (Heithaus and Dill 2002, 2006) or environmental 

factors including dissolved oxygen, salinity, turbidity and temperature (Barco et al. 1999, 

Wilson et al. 1997, Stocktin et al. 2006,  Miller and Baltz 2010).  The extent to which 

some of these relationships are causal, particularly for physical and abiotic drivers, 
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remains poorly understood.  For example, physical characteristics may indirectly affect 

dolphins through their impacts on the abundance and distribution of dolphin predators 

and prey (e.g., Toth et al. 2011).  

 

Even in adjacent areas, the drivers of temporal and spatial variation in abundance can 

differ; such as in New South Wales, Australia, where tidal phase and an interaction of 

season and tidal phase influence dolphins habitat use in the Clarence River, but neither 

tidal phase nor season influences spatial distributions in the nearby Richmond River 

(Fury and Harrison 2011). The degree to which various factors shape dolphin 

abundances, therefore, likely is context-dependent. Some of this context dependence may 

be driven by the extent to which spatial and temporal variation in dolphin abundance is 

the result of spatial shifts within home ranges versus immigration and emigration of 

individuals.  Such dynamics, however, are poorly understood in many dolphin 

populations (e.g., Stocktin et al. 2006, Wilson et al. 1997).  

 

Group size is one of the main defining characteristics of social organization of a 

population (Wilson 1975). In cetaceans, group sizes vary considerably within and among 

species and populations.  Like other taxa, grouping patterns are influenced by the 

abundance and predictability of resources as well as predation risk (See Gowans et al. 

2008 for a summary). Larger group sizes are favored when predation risk is higher, 

grouping can enhance resource acquisition of individuals, and clumping of resources 

promotes social coexistence (e.g., Alexander 1974, Bertram 1978). Group sizes, however, 

are mediated by costs such as increased probabilities of predator and parasite encounter 
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and resource competition (Bertram 1978). For coastal populations of bottlenose dolphins, 

group sizes are typically smaller where the habitat is complex and resources are 

predictable (e.g., Campbell et al. 2002) and larger in open water with unpredictable and 

spatially fluctuating resources (e.g., Defran and Weller 1999).  Importantly, because of 

the high mobility and relatively low energetic cost of travel to dolphins, group sizes and 

composition can be highly dynamic on scales of hours or even less (e.g., Connor et al. 

2001). Thus, individuals can select appropriate group sizes and compositions on the basis 

of current requirements (i.e., behavioral state) or in response to changing trade-offs 

through ontogeny or across sex and reproductive states. 

 

Social structure is one of the best-studied aspects of bottlenose dolphin behavior, and 

varies considerably between regions in response to environmental and social factors (e.g., 

Connor et al. 2000).  In Sarasota Bay, a residential inshore population is typified by fluid 

groups largely defined by age and sex (Wells et al. 1987, Wells 1991, Curry and Smith 

1997, Barros et al. 2010). The most common types of groups include juvenile bands, 

male pairs/trios, and nursery bands comprised of females of multiple generations and 

calves as well as older calves of both sexes. Nursery groups tend to include females with 

long-term associations that share home ranges, although the composition of these groups 

is highly variable (Wells et al. 1987). Subadult groups are formed by juveniles of both 

sexes and individuals remain in these groups for many years, often over a decade (Wells 

et al. 1987). Roving male pairs/trios are long-term, stable associations capable of lasting 

for decades, although some males are largely solitary (Wells et al. 1987, Wells 1991). 

These groups select different parts of the population’s home range; females in nursery 
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bands select protected shallow-waters much more often than subadults or males (Wells 

1993).  

 

In contrast to Sarasota Bay, in Shark Bay, Western Australia, male Indo-Pacific 

bottlenose dolphins may form pairs and trios that are part of a large, multi-level male 

alliance system or be a part of larger “superalliances” that are one of the most complex 

non-human societies (Connor et al. 1992, 1999). Also, female groups appear to be more 

fluid in Shark Bay than those in Sarasota Bay (Smolker et al. 1992). In comparison to 

Sarasota Bay females’ selection of safer habitats for nursery groups, females in Shark 

Bay may switch habitats adaptively to take advantage of both safer resting habitats and 

more energetically profitable but riskier foraging habitats (Heithaus and Dill 2002).  

Unlike these sex- and maturity-defined group structures, common bottlenose dolphins in 

Moray Firth, Scotland, exhibit groups composed of both adults of both sexes with no 

preferential associations among males (Wilson et al. 1997).  

 
 
It is critical to note that the social structure of dolphins may be dynamic as environmental 

conditions change. For example, in Moreton Bay, Australia, changes in food sources led 

to shifts in social structure with dolphins shifting from two separate sympatric 

communities to a more integrated single society with smaller groups sizes, different 

patterns of association, and different foraging patterns  as one of the food sources became 

less available (Ansmann et al. 2012).       
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Bottlenose dolphins also display considerable variation in foraging behavior within and 

among populations.  Indeed, even within populations innovative foraging tactics arise, 

apparently in response to ecological conditions, and often are maintained through social 

learning (Connor 2001, Krutzen et al. 2005, Sargeant et al. 2007). Some foraging 

behaviors are specific to the local environment; for example, dolphins in Shark Bay have 

been observed using marine sponges as foraging tools; sponging is the predominant mode 

of foraging for some individuals, but is only used by a small number of individuals with 

the behavior being passed down through matrilines (Mann et al. 2008). Similar tactical 

variation has been observed in Florida Bay. Three distinct foraging methods have been 

observed – deep diving, which is a common tactic in multiple populations, a herd-and-

chase tactic in which a barrier such as a mud-bank or mangrove island is used to herd the 

fish, and mud-ring feeding, a foraging behavior never observed elsewhere and requiring 

the cooperation of multiple individuals (Torres and Read 2009). Each tactic is correlated 

with a particular habitat type and location in the bay, varying with depth and bathymetric 

features; dolphins appear to limit their overall movements to coincide with the habitats 

predicted by their preferred tactic (Torres and Read 2009). Of particular interest are the 

site-specific “mud-plume” strategy (Lewis and Schroeder 2003) and the similar “mud-

ring” feeding behavior (Torres and Read 2009), which are thought to be unique to south 

Florida.  Other behaviors are seen across many populations, such as the use of shallow 

mud-flats for intentional stranding to capture prey herded onto the bank (Silber and Fertl 

1995). Both environmental heterogeneity (Sargeant et al. 2007) and unexploited niches 

(Patterson and Mann 2011) have been postulated to lead to the development of new and 

unique foraging behaviors.  
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Prey selection by dolphins appears to be a function of both prey availability and 

behavioral tactics being employed by dolphins. Dolphins using inland waters bordering 

the Gulf of Mexico often feed heavily on common seagrass-associated fish, particularly 

larger, solitary, soniferous fish (Barros and Wells 1998, Gannon et al. 2005, McCabe et 

al. 2010.) It is believed that this preference reflects a passive listening foraging tactic 

(Gannon et al. 2005). Variation in foraging tactics may reflect differences in preferred 

prey. For example, mud-ring feeding in the Florida Keys appears to exclusively target 

mullet (Lewis and Schroeder 2003).  

 

The objective of my study was to conduct preliminary investigations of spatiotemporal 

variation in the abundance and behavior of bottlenose dolphins in the Florida Coastal 

Everglades in order to gain insights into their potential ecological roles.  Specifically, I 

estimated the number of individual dolphins using different regions of the FCE, 

investigated spatial and temporal variation in dolphin densities and group sizes, and 

conducted preliminary investigations into spatial variation in group composition and 

age/sex classes. 

 

MATERIALS AND METHODS 

Study site 
 
The Florida Coastal Everglades is a spatially and temporally heterogeneous system which 

extends from small creeks where freshwater marshes transition to mangrove forests 

through mangrove-lined channels and inland bays to the coastal oceans of the Gulf of 

Mexico and Florida Bay (Childers 2006). The system is relatively oligotraophic and 
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phosphorous-limited.  Phosphorous inpts in this estuary have a marine source, rather than 

a terrestrial one, creating an “upside down” estuary with no productivity peak in the 

oligohaline zone (Childers et al. 2006).  Instead, productivity decreases from the mouths 

of rivers to upstream marshes. Salinity varies both spatially and temporally as the region 

alternates between a high precipitation wet season (July - December) and a low 

precipitation dry season (January – June) (Schomer and Drew 1982). During the dry 

season, salinities measuring >20 ppt may occur up to 17 km from the mouth of the 

estuary (Rosenblatt and Heithaus 2011) while salinities where the channels meet the 

coastal oceans can fall to <15 ppt in the wet season (Childers et al. 2006). Seasonal 

changes in precipitation lead to marked spatiotemporal variation in aquatic communities. 

Fish from freshwater marshes enter creeks and channels during marsh dry down creating 

a pulse of increased prey availability to estuarine predators (Rehage and Loftus 2007).  

 

My study was conducted from July 2010 – June 2012 in five major areas of the 

Everglades National Park: 1) Whitewater Bay, 2) Joe River, 3) Shark River Slough from 

Tarpon Bay to the mouths of the Harney and Shark Rivers, 4) coastal waters of Ponce de 

Leon Bay and a strip up to 4 km offshore and extending south to Cape Sable (“Gulf of 

Mexico”), and 5) the northernmost portion of Florida Bay extending from Flamingo to 

Cape Sable (See Figure 1).  
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Figure 1: The study was conducted in the coastal and inland waters of southwest Florida’s 

coastal Everglades.  Transects were conducted in the Shark and Harney Rivers, Joe River, 

Whitewater Bay, the Gulf of Mexico, and Florida Bay. 
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Whitewater Bay is a large (approximately 200 km2) and shallow enclosed bay with 

relatively uniform depth (0.75 -1.75m,) and characterized by small tidal variation. 

Salinities were observed to range from 33 ppt in the wet season to as low as 5 ppt in the 

dry season (R. Sarabia, unpublished data). A number of small red mangrove (Rhizophora 

mangle) islands of varying sizes are scattered throughout the bay and water clarity varies 

with location in the bay. The Shark and Harney Rivers are comprised of deeper water 

channels (2.5-4.5 meters deep, with an average width of 100 meters) lined with 

mangroves and a salinity gradient ranging from marine levels of up to 35 ppt at the river 

mouth to values as low as <4 ppt in Tarpon Bay.  Tarpon Bay is a narrow (100-500 

meters), shallow (1-2 meters), mangrove-lined bay bordering the sawgrass ecotone 

(Figure 2), and was the upriver terminus for this study. 

 
Figure 2: Spatial and seasonal variation in salinity in the study system. SRS 4, 5 and 6 

are monitoring stations in the Shark River, with SRS4 being the furthest upstream and 

SRS6 being the furthest downstream. Other data were taken by the author during the 

course of this study. Error bars show standard error.  
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Florida Bay is a shallow basin, connected to the Gulf of Mexico at its western margin and 

to the Straits of Florida to the south through multiple channels between the islands of the 

Florida Keys. Mean salinity during the dry season can exceed 40 ppt in the areas 

surveyed (Boyer et al. 1997). Water clarity, depth and benthic habitats vary regionally; 

the area covered by this study is characterized by a muddy bottom, very turbid water and 

depths ranging from 0.5 to 3 meters (Torres and Read 2009). 

 

Study Methods  

I established transects in five regions (three estuarine, two in the coastal ocean), including 

Whitewater Bay (55 km in length), the Shark and Harney Rivers and Ponce de Leon Bay 

(50 km), Joe River (20 km), coastal waters of the Gulf of Mexico (33 km) and Florida 

Bay (15 km) (Figure 3). Transects were run onboard a 6.4 m vessel with three trained 

observers.  Transects were run at 15 kph and only in Beaufort sea conditions 3 or less.   
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Figure 3  – Location of sampling transects in the Florida Coastal Everglades. Image 
from Google Earth 6.1 

N 
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When a dolphin group was encountered during a transect, I marked the location on the 

transect and left the transect to survey the group. For the purposes of this study, a group 

was defined as all animals in close proximity to one another (<100m) engaged in similar 

behaviors (Shane 1990). During the survey, I recorded the group GPS position, 

environmental conditions (salinity, water temperature, dissolved oxygen, Beaufort sea 

state, tidal conditions, water depth and habitat type), behavior, and group size.  Due to 

equipment malfunctions I was unable to record salinity, water temperature, and dissolved 

oxygen for some surveys.  Predominate group behavior was determined at first sighting 

and categorized according to a modification of the Sarasota Bay Research Program 

guidelines (e.g., McHugh et al. 2011b). Traveling dolphins were those seen surfacing 

with persistent directional movement and surfacing at regular intervals. Resting dolphins 

were observed at or near the surface but not engaged in any obvious surface behavior, 

exhibited slow movements, and often occurred in tight groups. Socializing dolphins were 

those observed chasing or making bodily contact with one another, including a suite of 

possible behaviors linked with play and/or mating. Foraging dolphins were those 

observed making any effort to capture prey.  Behaviors included, but were not limited to, 

tail-out grubbing in the mud, herding prey, chasing prey, and rapid surfacing at varying 

intervals with no consistent heading. If the dolphins were first observed reacting to the 

presence of the researchers (e.g., approaching the boat to bow ride), their behavior was 

classified as unknown. 

 
 
I took photographs of the dorsal fins of every individual in a group using a Canon EOS 

10D SLR.  These photos were used to create a catalog of dorsal fins to identify 



16 
 

individuals on the basis of variation in dorsal fin size and shape, along with the nicks and 

scars acquired though the animal’s lifetime (e.g.,, Wursig and Wursig 1977) (Figure 4). 

The catalog was continuously updated with new individuals and current photographs of 

the animals, and all new photographs were compared to the catalog for identification.  

        

     

Figure 4: Examples of distinctive dorsal fin morphology and markings allowing for 

consistent identification of individuals through time. 

 

Photographs from each sighting were sorted by individual and all the photographs of an 

individual from a given sighting were then sorted to obtain the highest quality picture for 

comparison to the catalog. The sex of individuals was determined opportunistically, 

either by observing the presence of a dependent calf in the echelon position with a 

particular animal during multiple surveys (e.g., Elliser and Herzing 2011) or by directly 

observing the external genitalia. Calves were identified by size and behavior and sorted 

into three categories: juveniles, calves, and neonates. Juveniles were defined as animals 

smaller than adult size but greater than half an adult body length. A calf was defined as 
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an animal smaller than half an adult body length, and was typically found closely 

associated with its mother, particularly while surfacing. Neonates were identified by the 

presence of visible fetal folds and stereotypical awkward surfacing during breathing (e.g. 

Shane 2004).  

 

Photographs were also used to examine individuals for evidence of scars from shark 

bites. Scars were considered to have been inflicted by sharks in they were 

characteristically crescent-shaped or had deep and widely spaced tooth marks (Heithaus 

2001.) I determined the proportion of individuals with wounds by comparing the number 

of known individuals with wounds to the total number of individuals identified.  This 

method underestimates actual wounding rates since only a small portion of the body is 

surveyed for evidence of shark bites (e.g., Heithaus 2001).  

 

Statistical Methods 

Statistical tests were carried out using JMP Pro 9TM software. To test for adequate 

sampling, a rarefaction analysis was performed. Cumulative individual curves were 

generated by resampling group compositions for 1000 randomly selected groups to 

calculate a mean and variability estimate of the cumulative number of individuals for 

each group. This mean cumulative number of individuals was then plotted against the 

randomly pooled number of groups; a linear regression was then performed on the last 

four points to determine if the slope of the line was significantly different from zero (e.g., 

Bizzarro et al. 2007).  
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To determine spatial and temporal variation in dolphin abundance, I calculated both the 

densities of groups (number of group sightings per  km2) and individuals (number of 

individual animals per km2). Area sampled was calculated by multiplying transect length 

by 0.8km, which represents sightings within 400 meters of the boat (the distance at which 

groups were sighted during a sea state of Beaufort 3). Because all of the channels 

sampled were narrower than 0.8 km, instead of 0.8 km, a mean width was calculated by 

averaging channel width derived from measurements every 100m along transects. Data 

were non-normal and transformations were unsuccessful, necessitating the use of non-

parametric statistical methods (Kruskal-Wallis and Mann Whitney tests). To determine if 

dolphins preferentially used areas near mangrove islands in Florida Bay, I used logistic 

regression to compare the probability of encountering a group within 100 meters of a 

mangrove island relative to that more than 100m from islands. 

 

Because of the turbidity of water in most sampling regions, I calculated group size using 

the total number of unique individuals photographed during a sample and estimates of 

minimum group size (i.e., number of individuals surfacing simultaneously). These data 

were also non-normal, and no transformations successful.  Therefore, I used a series of 

Kruskal-Wallis tests to investigate the effects of season (Wet or Dry), group composition 

(the presence or absence of calves), behavior (at first sighting), and region. For tests 

showing significant effects, Mann-Whitney tests were used to determine statistically 

significant paired contrasts where necessary.  
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The distance a group was found upstream in the Shark and Harney Rivers was calculated 

as river distance from a central point in Ponce de Leon Bay. We used Kruskal-Wallis 

tests to investigate whether dolphins moved further upstream during particular seasons or 

if particular age/sex classes were more likely to be encountered further upstream.  A 

series of Kruskal-Wallis tests were used to examine the proportion of calves encountered 

per total individuals sampled by season, region, behavior, and distance upstream. A 

simple logistic regression was performed to test if group encounter rate was higher within 

100 m of mangrove islands. 

 

RESULTS 

From August 2010 – June 2012, I completed a total of 67 transects (34 in the dry season, 

33 in the wet season).  These transects involved over 268 hours of observation and 

covered ca. 2650 kilometers (Table 1). Overall, I encountered 148 groups, 34 of which 

were foraging, 14 were socializing, and 63 were traveling.  I was not able to determine 

the behavior of 27 groups. Resting groups of dolphins were not observed. Multiple 

foraging behaviors were observed; the most common behavior was a tail-out mud 

grubbing behavior that was observed on 15 occasions, while using mangrove roots to 

herd fish was observed on seven occasions.  Although not observed during quantitative 

sampling, intentional stranding on mud banks was observed near the mouth of the Harney 

River. 

 
 I recorded over 12,000 photographs that resulted in identifying 174 unique individuals. 

A total of 31 animals were identified in Florida Bay, 30 in the Gulf of Mexico, 9 in the 
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Shark and Harney Rivers, and 92 in Whitewater Bay. All 14 individuals identified in Joe 

River were also observed in Whitewater Bay. Three animals were observed using both 

Whitewater Bay and the Shark River, four were observed using both the coastal ocean 

and either Whitewater Bay or Shark River, and two animals were observed in both 

Florida Bay and the Gulf of Mexico. No animals from the estuary were observed in 

Florida Bay or vice versa. Juveniles were observed on 51 occasions, calves on 17 

occasions, and neonates were sighted only twice. Most calves were not cataloged as 

individuals, because of a lack of identifying features early in life. Definitive shark bite 

scars were observed on two individuals, with possible bites occurring on seven others 

resulting in a minimum estimate of 1-5% of the population having been bitten by sharks 

along their dorsal surfaces.  

 

Rarefaction analysis showed that the identification rate of new individuals in Whitewater 

Bay has reached an asymptote with a slope nonsignificantly different from zero, showing 

that the region was sampled sufficiently to capture most of the individuals using this 

habitats (Figure 5). However, all of the other subregions (Joe River, the Shark and 

Harney Rivers, Florida Bay and the Gulf of Mexico) had rates of identification of new 

animals significantly different from zero, indication that these regions were not surveyed 

sufficiently to identify a large proportion of the individuals in the area (Figure 5). Given 

the small sampling area relative to the likely size of individual dolphin home ranges in 

these areas, this result is not surprising. However, when the rarefaction analysis was 

performed, only the analysis of all individuals from all regions showed a slope 

nonsignificantly different from zero, indicating adequate sampling (p=0.188). The slopes 
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of the identification rates of new individuals in Florida Bay (p=0.0005), the Gulf of 

Mexico (p=0.020), Joe River (p=0.005) and the Shark and Harney Rivers (p=0.0004) 

were all significantly different from zero, indicating that new individuals were still being 

discovered. The identification rate of new individuals in Whitewater Bay was borderline 

significant (p=0.046).  
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Table 1.Seasonal and regional survey effort and dolphin sightings. 

  

    Group Size  

Transect # transects # dolphins # of Groups Mean ± SD Range % Calf 
Florida Bay 7 89 7 12.71 ±  9.59  2-31 8.73 

Dry 4 32 4 8.0 ± 6.48 2-17 11.25 
Wet 3 57 3 19 ± 10.44 12-31 5.38 

Gulf of Mexico 10 69 13 5.31 ± 4.70   1-15    5.17 
Dry 6 63 10 6.3 ± 4.90 1-15 6.72 

Wet 4 6 3 2.0 ± 1.73 1-4 0 
Joe River 12 97 26 3.73 ± 2.75  1-12 9.57 

Dry 6 54 13 4.15 ± 3.28 1-12 8.54 
Wet 6 43 13 3.31 ± 2.13 1-9 10.51 

Shark/Harney Rivers 16 42 20 2.1 ± 1.65  1-6 4.25 
Dry 9 27 11 2.45 ± 1.63 1-5 7.08 

Wet 7 15 9 1.67 ± 1.65 1-6 0 
Whitewater Bay 22 454 82 5.54 ± 4.05  1-18 8.81 

Dry 9 188 33 5.69 ± 4.72 1-18 9.56 
Wet 13 266 49 5.42 ± 3.57 1-8 8.37 
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Figure 5 Cumulative individual curves generated by resampling group compositions for 

1000 randomly selected groups within Whitewater Bay (a) and the four other regions of the 

study area (b).  Points show means, error bars show standard error.  

 

a 

b 
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Both densities of individuals (Kruskal-Wallis Statistic = 20.18, P=0.0168) (Figure 6) and 

densities of groups (Kruskal-Wallis Statistic = 23.55, P=0.0044) (Figure 7) varied 

significantly in space and in time. Within the rivers, densities of individuals were greater 

in the dry season (mean=0.73 dolphins per km2 ± 0.19 SD) than the wet season 

(mean=0.14 dolphins per km2 ±0.08 SD) (Kruskal-Wallis Statistic = -2.34, P=0.02).  

Densities of individuals were similar across regions, with the exception of higher 

abundances in the Joe River in both wet and dry seasons (Kruskal-Wallis Statistic 

=18.34, P=0.001) and Florida Bay in the wet season.  During the wet season, Florida Bay 

and Joe River had the highest density of individuals (mean=1.94 dolphins/km2 ± 1.29 SD 

and mean=1.27 ± 0.60 SD respectively), and the density in the Gulf of Mexico was 

significantly less than in Joe River (mean=0.37 ± 0.54 SD). Densities in Whitewater Bay 

(mean=0.56 ± 0.25 SD) and the Shark and Harney Rivers (mean=0.14 ± 0.22 SD) were 

not significantly different from those of the Gulf of Mexico but were significantly 

different from densities in all other regions including each another. Interestingly, the 

density of foraging animals did not vary across regions (Kruskal-Wallis Statistic= 2.66, 

P=0.62) and did not change seasonally (Kruskal-Wallis Statistic= 0.21, P=0.98). Within 

Whitewater Bay, the probability of encountering groups was higher within 100m of 

mangrove islands than more than 100 m from islands (Z = 4.58, P=0.03). 

 

The presence versus absence of calves did not vary among regions (Chi-Square Statistic 

=4.70, P=0.32) within the estuary (Chi-Square Statistic =4.43, P=0.11), or among 

channels, open water, and mangrove edges within Whitewater Bay (Chi-Square 

Statistic=5.35, P=0.13).   Interestingly, during the dry season in the rivers, groups with 
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calves were encountered further upstream than those without calves (Kruskal-Wallis 

Statistic =2.28, P=0.02). I was unable to assess whether this pattern occurred in the wet 

season because only one group with calves was encountered.  

 

I did not detect seasonal variation in group sizes overall or within regions (overall 

Kruskal-Wallis Statistic =0.84, P=0.89, Florida Bay Kruskal-Wallis Statistic =1.24, 

P=0.22, Gulf Kruskal-Wallis Statistic =-1.46, P=0.14, Joe River Kruskal-Wallis Statistic 

=-0.36, P=0.72, Shark/Harney River Kruskal-Wallis Statistic =-1.29, P=0.20, Whitewater 

Bay Kruskal-Wallis Statistic =-0.29, P=0.77). 

 

Figure 6 – Spatiotemporal variation in the density of dolphins in the Florida Coastal 

Everglades. Boxplots show median, quartile, minimum and maximum values; bars 

with the same letter are not significantly different from one another. . 
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Figure 7 – Spatiotemporal variation in the density of dolphin groups in the Florida 

Coastal Everglades. Boxplots show median, quartile, minimum and maximum values; 

bars with the same letter are not significantly different from one another. 

 

Group sizes varied across regions (Kruskal-Wallis Statistic = 25.88, P<0.0001) and 

among habitats within Whitewater Bay (Kruskal-Wallis Statistic = 17.24, P=0.0002).  

The smallest groups were found in the rivers (mean=2.10 ± 1.65 SD) and the largest were 

found in Florida Bay (mean=12.71 ± 9.59 SD).  Mean group sizes were intermediate in 

the Gulf of Mexico (mean=5.31 ± 4.70 SD), Joe River (mean=3.73± 2.75 SD), and 

Whitewater Bay (mean=5.37±4.04 SD) (Figure 8, 9). Interestingly, Whitewater Bay had 

significantly larger groups than Joe River, despite the high degree of connectivity 

between the regions.  Across habitats within Whitewater Bay, groups were largest in 
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open water and smallest around mangrove islands (Figure 10).  Finally, when examining 

groups while excluding calves, groups with juveniles, calves, or neonates were much 

larger than those without younger age classes within estuarine regions (Figure 13; 

Kruskal-Wallis Statistic =15.60, P=0.004) (Figure 11).  

 

 

Figure 8- Map showing locations of all groups encountered. Dot size is proportional 

to group size.  
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Figure 9 – Regional variation in mean group sizes.  There was no seasonal variation 

in group sizes. Boxplots show median, quartile, minimum and maximum values; bars 

with the same letter are not significantly different from one another. 

 

Group size varied among behavioral states; traveling groups were significantly smaller 

(mean=4.58 ± 3.34 SD) than the larger socializing groups (mean=7.92, SD=6.01); 

foraging groups were nonsignificantly different from either socializing or traveling 

groups (Kruskal-Wallis Statistic=12.72, P=0.0053).  
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Figure 10 - Distribution of group sizes across the five study zones. Overall, the 

smallest groups were the most common. Groups in Whitewater Bay most closely 

resembled overall patterns; group sizes in river habitats were smallest, and group 

sizes in Florida Bay had the widest variation in size, including the largest groups 

encountered. 
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Figure 11 – Variation in group sizes among estuarine habitats. Boxplots show median, 

quartile, minimum and maximum values; bars with the same letter are not 

significantly different from one another. 
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Figure 12 – Influence of group type (presence or absence of calves) on group sizes. 

Boxplots show median, quartile, minimum and maximum values; bars with the same 

letter are not significantly different from one another. 

 

DISCUSSION 

Bottlenose dolphins are known to use coastal and estuarine habitats around the world 

(Wells and Scott 1999).  However, few areas exhibit the considerable diversity of habitat 

types encompassed by the Florida coastal Everglades (FCE).  In addition, most studies of 

estuarine dolphins have occurred in areas with relatively high human densities (e.g., 

Barros and Wells 1998, Gregory and Rowden 2001, Hastie et al. 2004).  Although water 

flow into the FCE is highly modified and managed by humans, the current study site is 

typified by low densities of boats and direct human impacts (Ault et al. 2008). I 

discovered that in spite of considerable seasonal variation in abiotic conditions, 

bottlenose dolphins in this temporally dynamic environment exhibit relatively stable 

densities and group sizes within regions, but show considerable variation in their use of 

regions in the estuary and coastal ocean.  

 

There are three main population types that might be observed in an estuarine system: 

year-round residents (Wells 1991, Williams et al. 1993, Zolman 2002), temporarily 

resident seasonal migrants (Scott et al. 1990), or transient animals (Hansen 1990, Bearzi 

et al. 1997, Defran and Weller 1999). Often, animals from multiple populations are 

temporarily sympatric (Wells 2003), but there appears to be little genetic interchange 

despite these periods of intermingling (Hoelzel et al. 1998). Social structure differs 
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among these population types. Resident animals tend to be found in small groups that are 

differentiated by sex and reproductive state and feature a variety of association types (see 

Wells 1991, Connor et al. 2000) while migratory groups are often large and include all 

ages and sexes, and associations are more fluid (Defran and Weller 1999). 

 

In the FCE it is clear that there is a year-round residential population, at least in 

Whitewater Bay and Joe River. Out of the 50 animals sighted four or more times, 45 were 

sighted in both seasons.  The presence of either a seasonal resident or a transient 

population is possible since 125 animals were observed three times or fewer, with 62 

animals sighted only once. Of the individuals sited only once, 36 were from the Gulf of 

Mexico or Florida Bay.  At this time, however, it is not possible to reject the possibility 

that these rarely sighted individuals are part of a resident population, and simply were not 

frequently encountered because the survey transects may have only included a small 

portion of their home ranges.  For example, although the transect through Whitewater 

Bay sampled 33 km2, this is only ca.16.5% of the total area available to dolphins.  

Additionally, if dolphins in Whitewater Bay exhibited small-scale shifts in habitat use or 

home ranges similar to those observed in other locations (e.g., Nowacek et al. 2001), they 

may become unavailable for observation within the transect area.  

 

Residency patterns of dolphins encountered in the Shark and Harney Rivers are similarly 

difficult to assess; of the 19 animals identified in these rivers, only three were ever 

sighted elsewhere in the estuary.  It is likely that these animals are part of a nearshore 

population occasionally exploiting the rivers since it is unlikely dolphins were present but 
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not sited during river transects due to the narrow width of the transect and calm water 

conditions. The presence of a nearshore population occasionally entering the estuary 

could explain the low resighting rates of these animals (only two of the 19 individuals 

were sighted four times or more). Three animals were observed to switch habitats from 

estuarine to nearshore Gulf of Mexico; a pattern also observed in Sarasota Bay (Owen et 

al. 2002). Of the 31 animals identified in Florida Bay, two were later identified in the 

Gulf of Mexico. No animals seen in any other regions were sighted in Florida Bay. The 

lack of resightings may be indicative of a separate population or simple isolation by 

distance. Ponce de Leon Bay is the nearest entrance point to the estuarine Everglades 

from Florida Bay, which is 32 km away. Future genetic or isotopic studies may help 

elucidate population structure in the coastal Everglades region (e.g., Olin et al. 2012).   

 

Dolphin densities varied considerably among regions. Densities of individuals in Florida 

Bay were consistently high despite having similar group densities to other areas, which is 

reflective of larger group sizes in Florida Bay.  In the Shark and Harney Rivers, the 

densities of individuals during the dry season were not significantly greater than those 

found in the rest of the estuarine system, but the densities of groups were greater than 

those in Whitewater Bay. It was somewhat surprising that densities of both individuals 

and groups were considerably higher in Joe River than the adjacent Whitewater Bay since 

they should experience very similar water temperatures and salinities throughout the year.  

In addition, all of the individuals observed in Joe River were also observed in Whitewater 

Bay at some time. Because the abundance of large sharks is low in both Whitewater Bay 

and Joe River (Wiley and Simpfendorfer 2007) and rates of shark-inflicted injuries are 
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low, it is unlikely that Joe River provides a refuge from predation.  The possibility that 

dolphins are using Joe River for foraging reasons is not testable at this time because of a 

lack of data of prey abundance and generally low sample sizes of foraging individuals. 

However, it is possible that dolphins select Joe River because the greater proportion of 

mangrove-lined shores facilities foraging. For example, in the Moray Firth, dolphins 

preferentially foraged over steep seabed gradients that may either provide higher 

concentrations of prey or increased foraging efficiency (Hastie et al. 2004). 

 

The lack of measurable seasonal variation in dolphin densities (except within rivers) 

within regions was somewhat surprising given the dynamic nature of the ecosystem.  

However, the subtropical climate of south Florida, likely facilitates year-round residence 

and may lead to similar densities within the region across seasons.  For example, even at 

higher latitudes (i.e., south of North Carolina along the Atlantic coast) dolphins tend to be 

year-round residents (Wells and Scott 1999, Gubbins 2002). The seasonal increase in 

dolphin abundances in rivers during the dry season is consistent with dolphins taking 

advantage of foraging opportunities.  Indeed, during the dry season there is a pulse of 

freshwater fish entering the rivers as marsh taxa seek refuge from drying marshes 

(Rehage and Loftus 2007). In addition, increases in salinity dung the dry season may 

reduce the physiological costs of accessing these, and resident estuarine, potential prey.   

Stable isotope (e.g. Matich et al. 2011, Rosenblatt and Heithaus 2011) and fatty acid 

(Belicka et al. 2012) analysis could provide insights into the contribution of freshwater 

and estuarine taxa to the diets of dolphins using river habitats.  
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The proportion of individuals with scars or wounds from shark bites was quite low (1-

5%) compared to other locations.  For example, boat-based observations of free-

swimming animals documented scars of 74.2% of individuals in Shark (Heithaus 2001) 

and 36.6% of individuals in Moreton Bay, Australia (Corkeron et al. 1987).  In Sarasota 

Bay, attack rates are lower.  Even though animals were captured and the entire body was 

assessed, only 31% of individuals had evidence of having been bitten by sharks (Urian et 

al. 1998).  It is likely that some of the differences in scarring rates between the FCE and 

these locations is driven by poorer observation conditions in the FCE (e.g. tubid waters, 

free-swimming animals).  When viewed in light of low catch rates of large sharks within 

the FCE (e.g. Wiley and Simpfendorfer 2007, P. Matich unpublished data), however, 

scarring data suggest that risk to dolphins is low.  Yet, predation rates need not be high in 

order to elicit strong anti-predator behavior and low scarring rates could be the result of 

effective anti-predator behavior (e.g. Lima and Dill 1990).   Indeed, even though 

predation pressure is relatively low in Sarasota Bay, dolphins were still found to 

preferentially use shallower, more complex habitats during the times when bull sharks 

were most prevalent (Wells et al. 1980). 

 

There appeared to be a general trend of increasing group size with increasing habitat 

openness, even within estuarine waters. Whitewater Bay had significantly larger groups 

than Joe River or the Shark and Harney Rivers and groups in channel habitats  were 

smaller than those in open water habitats.  Florida Bay had by far the largest group sizes 

compared to all other regions. In open water regions, prey tend to aggregate in larger 

patches (Ritz et al. 2011), which may result in larger groups through foraging 
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aggregations or facilitate larger groups through the benefits of cooperative foraging (e.g. 

Creel and Creel 1995, Blundell et al. 2002).  The open waters of Florida Bay likely have 

somewhat higher risk of predation than estuarine habitats (e.g. Torres et al. 2006, Wiley 

and Simpfendorfer 2007), so it is not possible to distinguish between foraging 

considerations and anti-predator behavior as drivers of spatial variation in group sizes. In 

other bottlenose dolphin populations, spatial variation in group sizes has been attributed 

to age/sex variation in grouping patterns and habitat use (Wells 1993), activity-specific 

habitat use and group size variation (Miller and Baltz 2010) and multiple dolphin 

communities that may or may not share overlapping core areas of their home ranges but 

vary in group sizes (Chilvers et al. 2001, Toth et al. 2012).  

 

Groups with juveniles, calves and neonates were larger in the estuarine regions than in 

the coastal oceans. In general, it is thought female bottlenose dolphins form nursery 

bands with loose associations among individuals to reduce the risk of predation to their 

calves (Wells et al. 1987). In Sarasota Bay, females with calves are most sociable and 

occupy the largest groups – usually within estuaries - when their calves are younger 

(Scott et al. 1990, Barco et al. 1999).  Interestingly, in my study, the probability of 

sighting a group with calves did not vary across regions.  Based on patterns observed in 

Florida Bay, higher probabilities of sighting calves would have been expected in 

estuarine waters.  Thus, it is possible that there are two separate populations or 

communities within the study area, specifically an estuarine community and a coastal 

ocean community.  It is possible, however, that use of the river is influenced by predators 

of dolphins.  Groups containing calves were found further upstream than those without 
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calves. Juvenile bull sharks (Carcharinhus leucas) use upstream areas of the rivers to 

reduce the risk of predation from large sharks (Heithaus et al. 2009). Sharks large enough 

to be predators of juvenile sharks and young dolphins are encountered only at the mouth 

of the Shark River and coastal oceans (Wiley and Simpfendorfer 2007; Matich 

unpublished data), so moving upstream could reduce predation risk.   

 

The results of my study suggest that the impacts of the planned Everglades restoration 

project will vary across the population. The animals using the Shark and Harney Rivers 

appear to be the most likely to be impacted. The upcoming CERP restoration will 

increase the amount of fresh water flowing through the system, potentially reducing the 

magnitude of dry-down and resulting prey pulses. In addition, salinities will be reduced 

throughout the system, potentially increasing metabolic costs to dolphins using some 

areas. Long-term studies will allow more detailed investigations of the biotic and abiotic 

factors impacting dolphin densities and habitat use and provide important insights into 

likely responses to restoration.  In addition, incorporating stable isotopic or fatty acid 

analysis would provide insights into the foraging ecology of dolphins and be an important 

first step in elucidating their ecological roles in the coastal Everglades.  
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