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ABSTRACT OF THE DISSERTATION 

AN EXPERIMENTAL AND THEORETICAL ANALYSIS OF NITRIC OXIDE 

AVAILABILITY IN THE MICROCIRCULATION 

by 

Shabnam M Namin 

Florida International University, 2012 

Miami, Florida 

Professor Nikolaos Tsoukias, Major Professor 

Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses 

to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular 

tone.  The close proximity of the site of NO production to the red blood cells (RBC) and 

its known fast consumption by hemoglobin, suggests that the blood will scavenge most of 

the NO produced.  Therefore, it is unclear how NO is able to play its role in 

accomplishing vasodilation.  Investigation of NO production and consumption rates will 

allow insight into this paradox. 

DAF-FM is a sensitive NO fluorescence probe widely used for qualitative 

assessment of cellular NO production. With the aid of a mathematical model of 

NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the 

fluorescence signal showing that the slope of fluorescent intensity is proportional to 

[NO]2 and exhibits a saturation dependence on [DAF-FM].  In addition, experimental 

data exhibited a Km dependence on [NO].  This finding was incorporated into the model 

elucidating NO2 as the possible activating agent of DAF-FM.  A calibration procedure 
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was formed and applied to agonist stimulated cells, providing an estimated NO release 

rate of 0.418 ± 0.18 pmol/cm2s.  

To assess NO consumption by RBCs, measurements of the rate of NO 

consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit 

(Hct) was performed. The consumption rate constant (kbl) in porcine RBCs at 25oC and 

45% Hct was estimated to be 3500 + 700 s-1.  kbl is highly dependent on Hct and can 

reach up to 9900 + 

Further simulations showed a linear relationship between varying NO production 

rates and NO availability in the SMCs utilizing the estimated NO consumption rate.  The 

corresponding SMC [NO] level for the average NO production rate estimated was 

approximately 15.1 nM.  With the aid of experimental and theoretical methods we were 

able to examine the NO paradox and exhibit that endothelial derived NO is able to escape 

scavenging by RBCs to diffuse to the SMCs.   

4000 s-1 for 60% Hct.   The nonlinear dependence of kbl on Hct 

suggests a predominant role for extracellular diffusion in limiting NO uptake.  
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1.1  Motivation 

The 2012 Statistical Fact Sheet update on high blood pressure prevalence by the 

American Heart Association stated that 76.4 million people in the United States over the 

age of 20 have high blood pressure or hypertension.  This approximates to about 1 in 

every 3 adults.  Future projections estimate that by the year 2030, an additional 27 

million more people will be affected, a 9.9% increase from the estimates performed in 

2010.  In addition, in 2008, estimated direct and indirect costs of high blood pressure 

were $50.6 billion [1].  Since there are no physical symptoms, many people are unaware 

that they are affected.  Data from 2005-2008 showed that 79.6% of people with high 

blood pressure are unaware they have it.  However, high blood pressure is a leading cause 

of heart attack, stroke, and congestive heart failure.  Statistics show that 69% of patients 

that experience their first heart attack, 77% of patients that experience their first stroke, 

and 74% of patients who are diagnosed with congestive heart failure, have blood 

pressures higher than 140/90 mmHg [1].  Blood pressure is responsible for the 

maintenance of blood flow in the circulatory system.  Regulation of blood pressure is 

attained by vessel constriction and dilation [2].  Understanding the nature of vessel 

reactivity is important in further understanding the clinical implications of hypertension. 

In 1987, Nitric Oxide (NO) was identified as the Endothelium Derived Relaxing 

Factor (EDRF).  EDRF was known as the agent involved in inducing relaxation of the 

smooth muscle cells (SMC) causing vasodilation.  Prior to this discovery, NO was 

thought to be a toxic environmental pollutant.  However, upon realizing that NO 

exhibited these vasodilating effects, researchers worked to find other physiological and 
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pathophsyiological areas in which NO played a role.  There have been over 100,000 

scientific papers published that focus on NO in multiple facets of research, most of which 

correlates to work performed within the last 5 years [3].  It has been revealed that NO 

plays a part in numerous physiological processes such as angiogenesis, reproduction, 

inflammation, neurotransmission, platelet and leukocyte adhesion, host defense response, 

apoptosis, and the regulation of vascular tone and blood flow.  In addition, NO is also 

involved in many pathological conditions such as septic shock, atherosclerosis, 

ischemia/reperfusion injury, and carcinogenesis [4, 5]. 

The recent understanding of NO in physiological processes has aided in the 

development of pharmacological drugs and treatments.  Examples include administration 

of gaseous NO for treatment of respiratory failure, intravenous administration of NO 

donors for treatment of hypertension, and oral administration of medication affecting NO 

production for treatment of erectile dysfunction.  Although there have been great strides 

in discovering functional roles of NO physiologically, a greater understanding of NO 

production and NO pathways would facilitate progression in pharmacological 

advancements in treating ailments such as hypertension. 

1.2  Background 

Circulatory system.  The circulatory system, in conjunction with the heart and 

blood vessels, is the basis for the cardiovascular system.  The primary function of this 

system is the transport of necessary nutrients to all parts of the body.  Blood flowing 

through the cardiovascular system can be divided into two pathways, the pulmonary and 

systemic pathways.  These two pathways work together to oxygenate blood flowing 
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through the vessels and deliver the oxygenated blood to every part in the body.  

Deoxygenated blood from the systemic pathway enters the heart in the right atrium, 

where the right ventricle then pumps this blood into the pulmonary pathway, which 

passes through the lungs.  In the lungs, the blood becomes oxygenated.  The freshly 

oxygenated blood then enters the left atrium ending the pulmonary pathway.  The right 

ventricle then pumps the blood, via the systemic pathway, enabling delivery of oxygen 

and nutrients to the whole body [6].   

 The vasculatures in both pathways are important components of the circulatory 

system and can be classified into three main categories: arteries, veins, and capillaries.  

Arteries are blood vessels that carry blood away from the heart.  The blood flowing 

through the arteries of the pulmonary system is deoxygenated, whereas the blood in the 

arteries of the systemic system is oxygenated.  Contrastingly, veins are blood vessels that 

return blood to the heart.  Therefore, the veins of the pulmonary system are oxygenated 

and the veins of the systemic system are deoxygenated.  The third category of blood 

vessels is the capillaries.  These vessels are tiny thin-walled vessels that connect the 

arteries and veins.  This is also the site of the exchange of oxygen and nutrients for 

metabolic wastes, heat, and carbon dioxide [6]. 

The anatomy of blood vessels can be described with three layers: tunica interna, 

tunica media, and tunica externa.  The tunica interna is the internal layer of the vessel 

wall and is comprised of a single layer of endothelial cells (EC).  The ECs play an 

important role in regulating blood pressure as well as absorbing nutrients from the blood 

flowing in close proximity.  Immediately adjacent to the tunica interna is the tunica 
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media, and as the name suggests, is the middle layer of the vessel.  This layer is 

composed of concentric sheets of vascular SMCs and is the thickest layer of the vessel.   

When the SMCs contract, the vessel diameter decreases, thus increasing the blood 

pressure within the lumen of the vessel.  On the other hand, when the SMCs dilate, the 

vessel diameter increases, causing the blood pressure to reduce.  A variety of chemicals 

can produce changes to the state of the SMCs including neurotransmitters, hormones, and 

paracrines [6].  The outer layer of the vessel, the tunica externa, is mainly composed of 

connective tissue, which allows connection to surrounding tissues [2]. 

 The difference between arteries and veins, other than the oxygenated state of the 

blood flowing within, are the wall thicknesses.  Arteries tend to have a greater mean wall 

thickness, almost double the value of most veins [6].  The thickness is mostly associated 

to a thicker tunica media.  The natural flexibility of the SMCs yields the arteries as a 

whole to be more flexible.  This characteristic is ideal and will allow arteries to resist the 

high pressures of blood flow generated by the heart.  Arteries also have a slightly smaller 

mean diameter than veins.  In addition, the amount of veins out numbers the amount of 

arteries.  Combining this fact with the overall larger diameter than arteries, veins as a 

result hold more than half of the blood in the circulatory system [6].   

 Arteries can be further examined and classified into three categories: elastic 

arteries, muscular arteries, and arterioles.  The elastic arteries are the first arteries to 

branch from the heart and are immediately affected by the great pressures generated by 

the heart.  The most important function of this type of artery is its ability in controlling 

the pressure within the vessel.  When the ventricles of the heart pumps the blood into the 
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elastic arteries, known as ventricular systole, the arteries respond by increasing in size to 

adapt to the large amounts of blood present.  This event is followed by ventricular 

diastole, in which the elastic arteries respond by reducing in size.  The expansion and 

compression of the elastic arteries during these two events ensure constant blood flow 

circulation [2].  The second category of arteries is known as the muscular arteries.  The 

role of these arteries are to provide oxygen and nutrient rich blood to surrounding 

muscles and internal organs.  In addition, muscular arteries play a role in regulating blood 

flow.  The last category of arteries is the arterioles.  These are the smallest types of 

arteries, with diameters in the micron range.  Arterioles have a high content of SMCs and 

have the ability to contract and dilate according to surrounding signals.  Because of their 

small diameters, arterioles are sites of high resistance in blood flow, especially when they 

are stimulated to constrict [6].   

 Veins can also be divided into three categories:  large veins, medium-sized veins, 

and venules.  The large veins are known as the superior and inferior venae cavae.  As 

mentioned before, veins are the vessels that return blood back to the heart.  The superior 

and inferior venae cavae are the largest veins that deliver the deoxygenated blood from 

the systemic system back to the heart.  The medium-sized veins are smaller than the large 

veins, but the overall wall thickness is not that great.  This is because they are not subject 

to high pressures like that of the arteries.  The last type of veins is the venules.  These are 

the smallest of the veins and are responsible for receiving the blood leaving the 

capillaries.  Venules contain little to no SMCs and are composed primarily of ECs and 

fibrous tissue [6]. 
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 The capillaries are the blood vessels that connect the arteries and veins.  They are 

the smallest vessels in the circulatory system.  The diameter of a capillary is 

approximately 8 μm, which is the approximate size of a single red blood cell (RBC).  As 

it was previously mentioned, the capillaries are the site of exchange of oxygen and 

nutrients for wastes and carbon dioxide [6].  The capillaries, in combination with the 

arterioles and the venules, compose the microcirculation. 

 Blood pressure is the driving force for blood flow; therefore it needs to be 

regulated carefully.  This is accomplished by monitoring blood volume, cardiac output, 

peripheral resistance, and relative distance of blood between arterial and venous blood 

vessels.  Although the volume of blood within the circulatory system is relatively 

constant, for the exceptions of trauma where there is loss of blood, slight changes in 

blood volume may still have an effect on blood pressure.  Increases in blood volume 

occur constantly with the ingestion of food and water.  The kidneys are responsible for 

regulating increased blood volume by excreting excess as urine.  In the event that there is 

a decrease in blood volume, the only way to increase it is either by drinking more fluids 

or via intravenous infusions [6].  

 Cardiac output must also be monitored in regulating blood pressure.  Cardiac 

output gives information as to the effectiveness of the heart and its pumping abilities.  To 

determine cardiac output, information about heart rate and stroke volume is needed.  

Heart rate, as the name suggests, is the rate at which the heart is beating.  Stroke volume 

is the amount of blood pumped by one ventricle [6].  To calculate cardiac output, the 
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heart rate is multiplied by the stroke volume.  Therefore, the effectiveness of the heart 

pumping is measured by volume of blood pumped per ventricle per time. 

 The third aspect of blood pressure that needs monitoring is the peripheral 

resistance.  Peripheral resistance is mainly due to the resistance produced in the 

arterioles.  Arteriole resistance contributes to approximately 60% of the total systemic 

resistance [6].  As previously mentioned, the small diameters provide high resistance to 

blood flow, especially when in a constricted state.  Therefore, the resistance to blood flow 

is proportional to the length of the arteriole and the viscosity of the fluid, and inversely 

proportional to the radius of the arteriole to the fourth power.  Hence, if the diameter of 

the arteriole decreases, caused by constriction, the resistance increases [6].   

 The final aspect that affects blood pressure is the relative distribution of blood 

between arterial and venous blood vessels.  As mentioned, veins contain more than half 

of the total blood supply due to their abundance and larger mean diameter in comparison 

to arteries.  In order to monitor the distribution of blood, the diameter of the veins must 

be examined [6].  In the event that the diameter of the veins decrease, the total amount of 

blood within the veins would decrease as well, altering the distribution of oxygenated to 

deoxygenated blood within the circulatory system. 

 There are also other means of regulating blood pressure.  Vascular SMC have the 

ability to regulate blood pressure by their state of contraction.  This ability is known as 

myogenic autoregulation and occurs when SMCs contract in direct response to being 

stretched by increased pressure [6].  Local regulation can also be achieved by secreted 

paracrines.  Such paracrines include oxygen (O2), carbon dioxide (CO2), and NO.  Their 
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presence or absence as well as their concentrations will dictate the vascular state, and 

ultimately blood pressure.  For example, in the event that there is a low O2 supply, and in 

response a high CO2 concentration, vasodilation will occur to increase the blood supply 

to the region in need of oxygen exchange [2].  Endothelium mediated regulation, as the 

name suggests, occurs when endothelial produced signals change the contracted state of a 

vessel.  The endothelium can produce signals in various ways.  One way is in response to 

the shear stresses experienced by the blood flowing through the lumen of the vessel.  

Another way is in response to agonists.  Typical signaling molecules produced by the 

endothelium are NO, prostaglandins, and the endothelium-derived hyperpolarizing factor 

(EDHF) [2]. 

 Another important component of the circulatory system is the blood that is 

traveling within it.  Blood makes up ¼ of the extracellular fluid or internal environment.  

It is composed of two parts: the plasma and the cellular elements.  The plasma is the fluid 

portion of the blood with water being the main component.  Within the plasma are ions, 

organic molecules such amino acids and proteins, vitamins, and gases such as O2 and 

CO2.  The cellular elements of the blood include white blood cells (WBC), platelets, and 

RBCs.  WBCs play a role in protecting the body from foreign bodies.  More specifically, 

this task is performed by lymphocytes, monocytes, neutrophils, eosinophils, and 

basophils [6].  Platelets are the second cellular element within the blood and they assist in 

forming clots needed during the coagulation process.    

RBCs make up the majority of cellular elements in the blood.  The amount of 

RBCs within the blood is known as the hematocrit (Hct).  Average Hct of an adult male is 
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approximately 40-54%, and the average Hct of an adult woman is 37-47% [6].  The 

primary role of RBCs, as discussed before, is to transport nutrients and oxygen to sites of 

need, and to remove wastes in exchange.  Hemoglobin (Hb) is a heme-containing protein 

that occupies 95% of RBCs.  Hb is the actual transporting mechanism of gases in the 

blood.  The oxidative state of blood depends on the oxidative state of the Hb.  Deoxy-Hb 

means there is no oxygen attached, whereas oxy-Hb infers that there is oxygen bound to 

the Hb.   

Nitric oxide formation.  The inner lining ECs of the vasculature are the sites of 

NO production.  NO is produced endogenously by the enzyme nitric oxide synthase 

(NOS).  There are several isoforms of this enzyme including neuronal NOS (nNOS), 

inducible NOS (iNOS), and endothelium NOS (eNOS).  iNOS is only produced during an 

inflammatory response whereas nNOS and eNOS are produced constitutively in the cells.  

When examining NO production in the vasculature, eNOS is the isoform focused on.  

Hemodynamic or agonist stimuli activate receptors on the membrane of the ECs causing 

an increase in eNOS production.  Agonist stimuli include, but are not limited to 

acetylcholine, bradykinin, and insulin.  Upon agonist stimulation and/or experiences of  

mechanical forces, there is an increase in Ca2+ entry into the ECs via channels. This in 

turn causes an increase in the concentration of intracellular inositol triphosphate (IP3), 

which initiates the release of stored calcium (Ca2+) from the endoplasmic reticulum (ER).  

The Ca2+ then binds to calmodulin (CaM) to activate the eNOS.   Other cofactors needed 

to activate this enzyme are tetrahydrobioprotein (BH4), nicotinamide-adenine-

dinucleotide phosphate (NADPH), and O2.  Once the eNOS is activated, it then catalyzes 
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the reaction that yields NO and L-citrulline via a five electron oxidation of the guanidine-

nitrogen terminal of L-arginine [7, 8].  Actual endothelial derived NO production rates 

have been estimated to range by many orders of magnitude.  Table 1.1 shows a list of 

production rates reported. 

QNO  Methodologies For Detection 
0.003-0.034 

μMs-1 
Modeling of pathways of eNOS for NO and superoxide production 
rates [9] 

2.19  
pMs-1 

In vitro experiments from BAEC following stimulation by 
Ethinylestradiol [10] 

415 
nMs-1 

In vitro experiments from HUVEC following stimulation by VEGF 
[11] 

0.117 
nMs-1 

In vitro experiments from HUVEC upon flow-induced stimulation 
[12] 

2.97 
μMs-1 

In vitro experiments from HUVEC exposed to high-glucose and 
detected with chemiluminescence [13] 

 
Table 1.1 – Endothelial NO production rates (QNO) previously reported based on a cell 

volume of 400 μm3, endothelial layer thickness 4 μm, and [eNOS] of 0.097 μM. 

 There can be several reasons for the large range of estimated NO production rate 

values.  Especially in modeling circumstances, incorrect assumptions of cell size and 

volume can generate incorrect production rate values.  Also, the NO detected in 

experimental scenarios could be contributed from other sources, leading to a value of NO 

larger than what was actually endogenously produced.  In addition, the method in which 

the production rate is determined could be a factor in the differences in reported NO 

production rate values, given that some detection systems are more sensitive than others.   

Nitric oxide’s chemical properties.  NO is an uncharged diatomic molecule and 

can diffuse freely to neighboring cells, allowing it to perform in both an autocrine and 

paracrine fashion.  NO is also a free radical making it a highly reactive species with a 

short half-life.  Reactions that have shown to dominate the fate of NO in the 
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microcirculation are those with superoxides, Hb, myoglobin, guanylate cyclase, and 

cytochrome c oxidase [7, 8, 14].  NO also reacts with O2.  O2’s biradical characteristics 

make it a good candidate in reacting with free radicals.  Because O2 has two unpaired 

electrons, and NO has only one unpaired electron, the product of the two will yield a 

form with one unpaired electron, NO2 radical.  This species is quite unstable and can 

easily react further [15].    

Nitric oxide’s fate in the microcirculation.  Endothelial derived NO once 

produced, may diffuse to the adjacent SMCs where it activates the hemoprotien soluble 

guanylate cyclase (sGC) by removing the histidine residue on its axial position.  sGC 

then catalyzes the conversion of guanosine triphosphate (GTP) to cyclic guanosine 

monophosphate (sGMP), thus causing relaxation of the SMCs [8].  However, as 

previously explained, NO reacts quickly with heme-containing proteins.  The close 

proximity of the ECs, the site of NO production, to the lumen of the vasculature, yields a 

second pathway that endothelial derived NO may pass.  The lumen consists of RBCs 

containing both oxy- and deoxy-Hb.  Due to NO’s reactive nature, it is suggested that a 

significant amount of endothelium derived NO will react with either form of Hb.  

Although NO is known to induce vasodilation, it is still unclear how it is able to diffuse 

to the SMCs and sustain physiological relevant concentrations to induce vasorelaxation, 

without being scavenged by the RBCs.  This phenomenon is referred to as the “NO 

Paradox” [14, 16-19].  Figure 1.1 below displays a schematic of an anatomical 

representation of the location of the ECs with respect to the SMCs and the RBCs. 
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Figure 1.1 – Schematic representation of the anatomical structures of the 
microcirculation [20]. 

There have been several experimental and theoretical studies performed to explain 

the fate of NO within the microcirculation, proposing that NO may encounter limitations 

in its reaction with oxy- and deoxy-Hb either via RBC membrane resistance, or limited 

by extracellular diffusion.  It has also been suggested that NO can also be preserved.  

These hypotheses propose mechanisms that regulate NO’s bioavailability [19-25].  On 

the whole, parameter values as well as a final conclusion regarding what actually 

prevents NO uptake by the RBCs has yet to be elucidated. This information would be 

essential in understanding more about NO’s role as a vasodilator.  

1.3  Detection methods 

 There are various methods available for detecting NO.  Some methods merely 

detect the presence of NO, whereas other methods can determine NO concentrations 

([NO]).  All existing methods vary according to their sensitivities and specificities to NO. 
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 Chemiluminescence method.  Chemiluminescence is considered one of the most 

sensitive assay systems for the detection of NO.  It generally can detect any radical at low 

concentrations in real-time.  It has been noted that physiological levels of endogenously 

produced NO range from the pico- to nanomolar ranges, therefore this system has the 

ability to detect these low concentrations [26].  Drawbacks to this method are its inability 

to detect intracellular [NO], because only the supernatant fluid of a cellular system can be 

analyzed.  In addition, chemiluminescence cannot give real-time output.  Lastly, this 

assay cannot be performed in the presence of Hb [27].   

 Griess method.  Although this method is used to detect NO, it does not measure 

NO directly.  Rather, the measurement of the stable oxidation product nitrite is detected.  

This product is formed with the rapid interaction between NO and O2.  The Griess 

reaction is performed utilizing a two-step diazotiation reaction, in which under acidic 

conditions, the nitrite produces a diazonium ion.  This ion is further processed to form a 

chromophoric azo derivative, which can be monitored using spectrophotometric 

measurements [27].  The detection limits for this assay system is not that sensitive with a 

range between 0.1-1.0 μM. 

 Nitric oxide sensitive electrode sensors.  Electrodes sensitive to NO can be 

employed as a method for NO detection.  One benefit of electrodes is its ability to 

provide real-time detection of NO.  The drawback of this method however is its lack of 

ability to yield information about the spatial distribution of NO.  The amount of NO 

detected by the electrode is determined by the amount of NO sensed only at the electrode 

tip [28].   
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Fluorometric detection.  Fluorometric analysis is the only method available for 

intracellular NO studies [29].  The development of fluorescent probes in the recent years 

has demonstrated to be a sensitive and specific assay system that is gaining wide 

application to measure nitrogen oxides [29-35].  NO-reactive fluorescent indicators allow 

bio-imaging of NO with high spatiotemporal resolution, permitting investigation of two-

dimensional NO production in real-time by digital fluorescence imaging, which is not 

possible with the other NO detection methods [36].  These fluorescent probes may be 

used to measure nanomolar levels of NO generated under biological conditions [37].  One 

such indicator is Cu(II) fluorescein-based compound, CuFL(1).  This fairly new probe 

has been shown to be specific for NO detection.  Fluorescence is achieved with NO under 

both anaerobic and aerobic conditions, indicating that it reacts directly with NO as 

opposed to an oxidative nitrogen species [34].   

One of the most widely used fluorescent NO detection probes is, 4-amino-5-

methylamino-2’,7’-difluorescein (DAF-FM).  DAF-FM is virtually non-fluorescent, 

however, upon reaction with NO, a highly fluorescent benzotriazole is formed (DAF-FM 

T).  Because the reaction between NO and DAF-FM is irreversible, the fluorescence 

intensity (FI) will not decrease.  DAF-FM T exemplifies greater stable photobleaching 

effects than its prior fluorescent indicators, is shown to be more stable at a pH above 5.8, 

and is more sensitive with detection limits up to 3 nM [27].  Figure 1.2 below shows the 

chemical structure of DAF-FM and its reaction scheme.   
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Figure 1.2 – Chemical structure of the cell permeable DAF-FM diacetate and its further 
reaction with an NO to yield DAF-FM T (* - NO derivative) [38]. 

 

1.4 Research Objectives 

 The ability to understand the fate of NO within the vasculature is limited due to 

inconsistent reported data with respect to both production and consumption rates.  The 

measurement of [NO] and production rates in biological tissues is difficult due to its short 

half-life, however different methods have been attempted.  Recently, the use of NO 

sensitive fluorescent indicators has gained interest due its promising spatiotemporal 

resolution.  One such indicator is DAF-FM.  DAF-FM has been shown to react with NO 

or NO derived products to produce a fluorescent signal [36].  Unlike many fluorescent 

indicators, DAF-FM is not a ratiometric dye; therefore, calibration has been difficult due 

to factors such as dye leakage, uneven dye loading, and photobleaching [39, 40].  More 

importantly, the actual kinetics of the reaction between NO and DAF-FM has yet to be 

elucidated.  Calibration of this dye can be beneficial in estimating [NO] as well as 

determining NO production rates.   

 The focus of this dissertation was to yield estimations of both production and 

consumption rates of NO.  Specifically, the following objectives were accomplished: 
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• Development of a mathematical model that simulates DAF-FM activation with 

NO upon formulation of NO/DAF-FM reaction kinetics. 

• Validation of the developed mathematical model with experimental studies of 

NO/DAF-FM reactivity in solution.  

• Development of a calibration procedure to quantify NO production rates by ECs 

utilizing DAF-FM upon agonist stimulation.  

• Estimation of NO reactivity with RBCs flowing in a flow chamber by examining 

the effects of Hct on NO consumption.  

• Determine NO bioavailability within the SMCs incorporating the derived NO 

production and consumption rates into a mathematical model. 

The first three objectives are focused on studying the endothelial derived NO 

production rates.  The NO-sensitive fluorescent dye, DAF-FM, was utilized in examining 

the production of NO.  It was hypothesized that incorporating a mathematical model of 

NO/DAF-FM reaction kinetics, in conjunction with in vitro solution experiments, proper 

calibration of the dye could be performed.  Understanding of this reaction scheme and 

formation of a proper calibration protocol will allow investigation of NO production by 

cellular systems.  Experiments performed with the DAF-FM and ECs not only test the 

validity of the developed calibration procedure, but yields information about [NO] and 

NO production rates.   

Similarly, NO consumption rates were studied via both mathematical models and 

experimental procedures as stated in the fourth objective.  It is initially hypothesized that 

the factor limiting NO uptake by RBCs is via extracellular diffusion.  This hypothesis 
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was based on a previously designed mathematical model [20].  Determining the 

relationships between the reaction rates of NO with the RBCs (kbl) at different Hct will 

give insight into this theory.  In addition, an estimation of membrane permeability can be 

determined from experimental results.  Finally, experimental findings of both NO 

production and consumption rates were used to meet the final objective.  These findings 

were incorporated into a detailed mathematical model to make predictions that provided 

concentration values SMC NO availability. 
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2.1  Abstract: 

Nitric oxide (NO) research in biomedicine has been hampered by the absence of a 

method that will allow quantitative measurement of NO in biological tissues with high 

sensitivity and selectivity, and with adequate spatial and temporal resolution.  4-amino-5-

methylamino-2’,7’-difluorofluorescein (DAF-FM) is a NO sensitive fluorescence probe 

that has been used widely for qualitative assessment of cellular NO production.  

However, calibration of the fluorescent signal and quantification of NO concentration in 

cells and tissues using fluorescent probes, have provided significant challenge.  In this 

study we utilize a combination of mathematical modeling and experimentation to 

elucidate the kinetics of NO/DAF-FM reaction in solution.  Modeling and experiments 

suggest that the slope of fluorescent intensity (FI) can be related to NO concentration 

according to the equation:  [ ] [ ] [ ] [ ]
[ ] [ ]DAFNOK

DAFONOαk2FI
dt
d

'
m

2
2

1 +
=  where α is a 

proportionality coefficient that relates FI to unit concentration of activated DAF-FM, k1 

is the NO oxidation rate constant, and '
mK  was estimated to be 4.3 ± 0.6.  The FI slope 

exhibits saturation kinetics with DAF-FM concentration.  Interestingly, the effective half-

maximum constant increases proportionally to NO concentration.  This result is not in 

agreement with the proposition that N2O3 is the NO oxidation byproduct that activates 

DAF-FM.  Kinetic analysis suggests that the reactive intermediate should exhibit NO-

dependent consumption and thus •
2NO  is a more likely candidate.  The derived rate law 

can be used for the calibration of DAF-FM fluorescence and for future quantification of 

NO concentration in biological tissues.  
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2.2  Introduction 

The measurement of nitric oxide (NO) in biological samples has been hampered 

by the lack of sensitive probes that can detect NO in nanomolar levels without 

interference from other species.  The available methods for NO detection include the 

colorimetric Griess reaction, chemiluminescence, electron paramagnetic resonance, 

electrochemical and fluorometric analyses [1, 2, 3].  Available assays to asses NO 

availability measure free NO or NO oxidation products (i.e. −
2NO , −

3NO , 32ON ) and 

signaling derivatives (i.e. S-nitrosothiols, cGMP).  Available methods vary in their 

sensitivity, specificity and interference from biological constituents.  NO is highly 

reactive with other modalities and has a very short half-life and steep concentration 

gradients.  Determining local availability and intracellular concentrations has proven to 

be quite challenging.  

Fluorometric methods have been used to assess intracellular NO levels [4].  The 

development of fluorescent probes in recent years has provided sensitive and specific 

assays that are gaining wide applications in measuring nitrogen oxides [5, 6, 7, 8, 9, 10, 

11].  NO-reactive fluorescent indicators allow bio-imaging of NO with high spatial 

resolution, permitting investigation of two-dimensional NO production in real time by 

digital fluorescence imaging, which is not possible with other methods [7].  These 

fluorescent probes may be used to measure nanomolar levels of NO in vitro and in vivo 

[12].  Diamine derivatives of fluorescein are the most widely used NO fluorescent probes 

(i.e.  4,5 Diaminofluorescein (DAF-2) and 4-amino-5-methylamino-2’,7’-

difluorofluorescein (DAF-FM)).  Exposure of these compounds to NO, generates highly 
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fluorescent triazole derivatives  (DAF-T) [13].  Fluorescence to NO, however, is 

achieved only under aerobic conditions, indicating that DAF reacts with an oxidative 

product of NO, rather than NO itself [14].  The nature of the NO active derivative has not 

been established, although N2O3 has been proposed as a candidate for the reactive 

intermediate [14].  An alternative reaction scheme has also been proposed [15] where 

activation of DAF occurs through a two step process by initially reacting with NO2 

radical.  Therefore, controversy exists as to the actual kinetic mechanism for the reaction 

between DAF and NO. 

The vast majority of studies incorporating the use of DAFs have only reported 

relative changes in fluorescent signal [16, 17, 18, 19, 20].  Quantification of NO 

concentration ([NO]) in biological tissues using fluorescent probes is hindered by a series 

of challenges, including uneven dye loading, dye leakage, motion artifacts, 

photoactivation and photobleaching [14, 21, 22].  In addition, the dye may also exhibit 

increase in fluorescence due to the presence of cations [23].  Most importantly, 

elucidating the kinetics of NO-dye interaction is a prerequisite for developing meaningful 

calibration protocols.  In this study, we utilize mathematical modeling and 

experimentation to investigate the reaction of NO with DAF-FM and to gain further 

insight into the actual intermediate that activates DAFs.  Based on the proposed 

mechanism and kinetic law, recommendations for calibration of DAF fluorescence and 

the quantification of NO in biological tissues are provided. 
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2.3  Methods 

Kinetic analysis.  We investigated the kinetic mechanism that leads to activation 

of DAF by NO and the formation of the triazole derivative, DAF-T.  Assuming that the 

intermediate product of NO’s autoxidation reacting with DAF is N2O3, [24] DAF-T 

formation will proceed through the following reactions [7, 20, 25].   

•→+ 2
k

2 NO2ONO2 1      (Reaction 2.1)      

32

k

k
2 ONNONO

2

2−

→←+•      (Reaction 2.2) 

+• +→+ H2NO2OHON 2
k

232
3     (Reaction 2.3) 

TDAFDAFON 4k
32 −→+      (Reaction 2.4) 

Reaction rate constants k1 (3.15x106 M-2s-1), k2 (1.1x109 M-1s-1), k-2 (8.1x104s-1), and k3 

(38130 s-1) have been previously reported [26].  Applying the law of mass action to this 

reaction scheme yields differential equations that can be solved numerically to describe 

the rates of change of NO, •
2NO , N2O3, and DAF-T (see Appendix 2.1).   

 Activation of DAF by an oxidation product of NO, rather than NO itself, will 

affect the functional dependence of the rate of DAF-T formation on the reactants.  

Assuming that the concentrations of unstable intermediates (i.e. N2O3 and •
2NO ) are 

small relative to the reactants, and therefore show negligible rates of change, a Pseudo 

Steady State Approximation (PSSA) can be employed for their concentrations.  This 

simplifies the proposed kinetic mechanism (Reactions 2.1-2.4) and yields Equation 2.1: 

 [ ] [ ] [ ] [ ]
[ ]DAFk

k
DAFONOk2TDAF

dt
d

4

3
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+
=−    (Equation 2.1) 
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[ ]
[ ]DAFk

k
DAFγ

4

3 +
=  is the fraction of N2O3 that is utilized to activate DAF-FM  at any 

given moment (i.e. rate of reaction 2.4 over reaction 2.3 and 2.4).  Note that the kinetic 

mechanism and the simplified kinetic behavior depicted in Equation 2.1 are analogous to 

the kinetics of nitrosation of thiols by NO in [27].  Equation 2.1 simply states that the 

formation rate of the triazole derivative, DAF-T, will be limited by the rate of NO 

oxidation (Reaction 2.1) and the fraction of N2O3 that reacts with DAF-FM.  This 

approximation was validated against the numerical solution of the system for the assumed 

parameter values for k1, k2, k-2, k3 and a wide range of values for k4.  Assuming a 

constant fraction γ, Equation 2.1 can be integrated to give the increase in DAF-T after the 

addition of a bolus amount of NO.  For limiting initial NO concentrations ([NO]i) this 

increase will be approximately equal to: 

 [ ] [ ]iNO2
γTDAFΔ =−      (Equation 2.2) 

Thus, a linear dependence between fluorescent intensity (FI), and total amount of NO 

added, is possible under some conditions despite a square dependence of the increase in 

FI on [NO] at any particular instance.  

Materials.  Dulbecco’s phosphate buffered saline was purchased from Invitrogen 

(Grand Island, NY).  DAF-FM was from Molecular Probes (Eugene, OR).  Spermine 

NONOate (SPER/NO) was from Cayman Chemicals (Ann Arbor, MI).  DMSO (dimethyl 

sulfoxide anhydrous) was purchased from Sigma-Aldrich (St. Louis, MO), and the 

sodium hydroxide (NaOH), 2N solution was from Fisher Scientific (Fair Lawn, NJ). A 7 
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mM stock solution of DAF-FM was made with DMSO. Dilutions to final working 

concentrations were done by the addition of DPBS.  Spermine NONOate (t1/2= 230 

minutes at 22-25ºC) was chosen as a slow releasing NO donor.  Final working 

concentrations were made with DPBS immediately prior to experimentation.  

Measurement of NO.  We investigated the NO released from a NO donor 

(SPER/NO) at 25ºC, obtaining the resulting [NO] profile using a NO sensitive electrode 

(ISONOP, WPI; Sarasota, FL).  Different concentrations of the NO donor (50 nM to 500 

μM), were prepared in an aerated buffered solution (pH 7.4).  The NO released was 

detected using the electrode.  The reaction of DAF-FM with NO liberated from the NO 

donor was monitored using a computer controlled automatic microplate fluorometer 

(GENios; TECAN, Inc.; Durham, NC).  Samples were loaded in black 96-well plates and 

fluorescence intensity (FI) was recorded at an emission wavelength 535 nm followed 

excitation at 485 nm.  FI increase with time was recorded at different combinations of 

DAF-FM and NO donor concentrations to assess the dependency of FI on both DAF-FM 

and NO. 

2.4  Results 

The “Clamped NO” protocol.  First, we examined the NO release pattern from 

SPER/NO in aerated solution.  An NO donor, with a relatively long half-life, can provide 

continuous release of NO over the duration of a typical experiment (~ 15 minutes).  

Figure 2.1A shows representative model simulations (using the model in Appendix 2.1) 

for the evolution of NO in an aerated solution ([O2] = 2.77x10-4 M) at three different 

SPER/NO concentrations (10, 500 and 1000 µM).  NO is released and accumulates until 

reaching a maximum concentration (represented by a circle) that is followed by a slowly 
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decaying plateau.  The time it takes to reach this plateau differs depending on the 

concentration of the NO donor and its assumed half-life.  At higher concentrations, this 

plateau is established faster.  This offers a relative steady level of NO which can be 

maintained over the duration of an experiment, similar to the “clamped NO protocol” in 

[28].  (Note that the “clamped NO protocol” of this earlier study utilizes CPTIO rather 

than dissolved O2 as the main route of NO consumption.) 

 

Figure 2.1 – (A) Predicted continuous release by 1000, 500 and 10 μM SPER/NO.  
Maximum NO release is indicated by the dot with a constant increase until a pseudo 
steady-state plateau is reached.  (B) NO release from 500 μM SPER/NO over time, 

detected by an NO electrode (n=4).  The dot indicates when maximum [NO] achieved.  
(B-Insert) Log-log plot displays the relationship between [NO] and [SPER/NO] using 

maximum [NO] from ranging [SPER/NO] detected by the electrode.  The linear fit of the 
log-log plot has a slope of 0.508 with a standard deviation of 0.208.  The slope is not 

significantly different than 0.5 (p=0.95).   
 

 This relative steady level of NO, during the plateau phase, is a result of the 

balance between NO release by the NO donor (S) and NO consumed by the rate limiting 

oxidation reaction of NO ( [ ] [ ]2
2

1 ONOk4~R = ), and can be approximated by Equation 

2.3: 
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 [ ] [ ]
[ ]

[ ]21

d

21 Ok4
NOdonornk

Ok4
SNO =≈    (Equation 2.3) 

where kd is the dissociation rate constant (
2/1

d t
2lnk = ), and n is the moles of NO 

released for every mole of NO donor.  In Equation 2.3 we have assumed a constant 

release rate for the NO donor which is a valid assumption for 2/1experiment t
10
1t < .  Thus, a 

100 times increase in [NO donor] (i.e. 10 and 1000 μM SPER/NO) should yield only a 

10-fold increase in “clamped” [NO], given the square relationship.  

  The theoretical prediction for a square dependence between NO and NO donor 

concentration was verified experimentally.  Figure 2.1B shows a representative tracing 

using the NO-sensitive electrode.  NO evolves in a buffered solution of 500 µM 

SPER/NO.  After a short accumulation phase, a maximum [NO] is reached.  A slight 

decay after the peak is observed as the NO donor is slowly consumed over time.  The 

maximum NO concentration reached was recorded and average values (n=4) at different 

SPER/NO concentrations (50 nM to 500 μM) are summarized in a log-log plot (Insert in 

Figure 2.1B).  A linear fit of the data yields a slope of 0.51 ± 0.21.  The slope is not 

significantly different than 0.5 (p=0.95).  Thus, experimental data is in agreement with 

the theoretical predictions suggesting that the [SPER/NO] is proportional to [NO]2.    

Dependence of fluorescence intensity on DAF and NO concentrations.  A 

representative numerical simulation from the model in the Appendix 2.1 is presented in 

Figure 2.2A.  DAF-T formation is depicted as a function of time, for 5 µM of DAF-FM 

and 50 µM of SPER/NO.  At t=0, the slope of the curve is zero as a result of the absence 
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of free NO initially.  DAF-T formation begins to increase as NO evolves, until a 

maximum rate of change is reached (i.e. maximum slope, βmax).  This corresponds to the 

point of maximum NO concentration in Figures 2.1A and 2.1B.  Thus, the βmax of the 

DAF-T formation curve, can be correlated to the clamped NO concentration levels.  

 Assuming that DAF-T is the main fluorescently active species in the solution, we 

expect that FI will be proportional to the DAF-T concentration. Thus, FI should exhibit a 

similar profile in time with the [DAF-T] generated from the model.  Figure 2.2B depicts a 

representative experimental tracing of FI upon mixing of [DAF-FM] and [SPER/NO] (5 

µM and 50 µM final concentrations respectively) in the fluorometer.  Experimental 

tracing of FI and model predictions for [DAF-T] are in agreement. 

 

Figure 2.2 – Fluorescent intensity curves obtained from solutions containing 5 μM DAF-
FM and 50 μM SPER/NO (A) simulation (B) experimental, indicating when βmax is 

achieved. 
 

Fluorescent intensity vs. NO donor.  In a series of experiments, we investigated 

the dependence of FI on [NO] by varying the concentration of SPER/NO, while keeping 

the concentration of DAF-FM constant at 5 µM.  Fluorescence measurements were taken 
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in the fluorometer and representative results are depicted in Figure 2.3A for SPER/NO 

concentrations of 10 µM, 100 µM and 1 mM.  As expected, we observed an increase in 

maximum slope (βmax) when increasing [SPER/NO].  To test the relationship between 

NO donor and βmax, average maximum slopes (n=5) were calculated for six different 

SPER/NO concentrations (10 – 1000 μM).  Data is summarized in Figure 2.3B as a log-

log plot.  A linear fit gives a slope of 0.99 + 0.03.  This slope is not significantly different 

than 1 (p=0.74).  Therefore, experiments show a maximum slope in FI (βmax) that is 

proportional to NO donor concentration.  Data in Figures 2.1-2.3 combined, suggests that 

βmax is also proportional to [NO]2.  This is in agreement with the kinetic analysis 

(Equation 2.1). 

 

Figure 2.3 – (A) Fluorescent intensity curves showing the dependence of [SPER/NO] (10 
μM, 100 μM, and 1 mM) on slope (βmax).  (B) Log-log plot of βmax and [SPER/NO] 

(n=5).  A linear relationship is observed having a slope of 0.99 with a standard deviation 
of 0.03.  This slope is not significantly different than 1 (p=0.74). 

Fluorescent intensity vs. DAF-FM.  To investigate the dependence of the FI on 

DAF, a series of experiments were performed by varying [DAF-FM] at constant 

[SPER/NO].   Experiments were repeated for different [SPER/NO].  For each 

combination of [DAF-FM] and [SPER/NO], the maximum slope βmax of the FI curve was 
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recorded.  Figure 2.4A depicts representative results. Average βmax values (n=5) are 

presented as a function of DAF-FM concentration and for two different NO donor 

concentration.  We observe saturation dependence of βmax on DAF-FM and thus a 

Michaelis-Menten equation was utilized to fit the data. 

[ ]
[ ]DAFK

DAFmaxββ
m

maxmax +
=      (Equation 2.4) 

where maxβmax is the maximum βmax at saturating DAF concentrations, and Km is the 

concentration of  DAF for half-maximum βmax.   

 Fitting with Equation 2.4 allows us to estimate maxβmax and Km at each 

[SPER/NO]. maxβmax increases linearly with SPER/NO concentrations (i.e. maxβmax is 

20.1 and 1.9 for 125 µM and 12.5 µM of SPER/NO respectively).  This linear 

relationship has been previously noted [20, 29].  Therefore, the slope βmax of the FI curve 

shows a linear dependence on [SPER/NO] and thus exhibits a square dependence on 

[NO].  This is in agreement with Equation 2.1 (maxβmax=2k1[NO]2[O2]).  Surprisingly, 

however, the estimated Km values also increase with NO donor concentrations (i.e. Km is 

5.3 and 1.0 for 125 µM and 12.5 µM of SPER/NO respectively).  This was not 

anticipated based on Equation 2.1 and thus, the observed dependence of Km on NO 

questions the proposed kinetic mechanism of DAF-FM activation by N2O3 (Reactions 

2.1-2.4). 



 34 

 

Figure 2.4 – (A) Data fitting for βmax with respect to [DAF-FM] at 12.5 and 125 μM 
[SPER/NO] (n=5) indicating Km values of 1.0 and 5.3 respectively.  (B) Log-log plot of 

Km and [SPER/NO] (n=5) with a linear relationship having a slope of 0.59 and a standard 
deviation of 0.06.  The slope of this line is statistically different than 1 (p<5.5x10-5) and 0 

(p<1.2x10-5) and close to 0.5. 

 Experiments at eight different SPER/NO concentrations (5-500 μM) were 

performed. At each NO donor concentration, five different DAF-FM concentrations (0.1-

10 μM) were utilized to estimate a single Km value for each combination.  The log-log 

plot of the average Km values from n=5 repetitions are depicted in Figure 2.4B.  A linear 

fit of this line has a slope of 0.59 + 0.06.  The slope of this line is statistically different 

than 1 (p<5.5x10-5) and 0 (p<1.2x10-5) and close to 0.5.  Thus, our data points toward a 

Km that is proportional to [SPER/NO]1/2 and thus proportional to [NO].   
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Figure 2.5 – Relationship of the dependence of Km on [NO].  The linear slope of the line 
yields the value of Km

′ = 4.27 with a standard deviation of 0.57. 
 

Figure 2.5 shows the dependence of Km on NO.  SPER/NO concentrations were 

translated to NO concentrations based on Equation 2.3 and NO-electrode recordings that 

show 500 μM NO donor correspond to 3.2 μM NO.  A linear fit of the data in Figure 2.5 

gives: 

[ ]NOKK '
mm =       (Equation 2.5) 

with '
mK = 4.3 ± 0.6.  Equations 2.1, 2.4 and 2.5 suggest the following rate law for DAF-

T formation rate. 

 [ ] [ ] [ ] [ ]
[ ] [ ]DAFNOK

DAFONOk2TDAF
dt
d

'
m

2
2

1 +
=−   (Equation 2.6) 
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Revised Kinetic Mechanism.  Equation 2.6 suggests that the fraction of the 

unknown NO byproduct X that reacts with DAF-FM is [ ]
[ ] [ ]DAFNOK

DAFγ '
m

'

+
= .  An 

effective Km that is NO dependent can be achieved if this active intermediate is 

consumed through an NO-dependent pathway.  (i.e. γ′ is the rate of reaction of X with 

DAF over the rate of reaction with DAF plus the rate of NO-dependent consumption of 

X).   

X......ONO2 1k
2 →→+  

 TDAFDAFX −→+         

 ......NOX →+         

Thus, our data argues against the proposition that this species is N2O3.  Previous studies 

have argued for a different reaction mechanism where conversion of DAF to DAF-T 

occurs after DAF is initially oxidized [15, 22, 30].  •
2NO  is proposed to be this oxidating 

agent, and the measurement of the fluorescently derived triazole product reflects this 

oxidation.  N2O3 has also been suggested as the active intermediate involved in thiol 

nitrosation [27].  However, recent work has provided evidence for a more important role 

of •
2NO , rather than N2O3, in thiol nitrosation [31, 32, 33, 34].  The resemblance of the 

kinetic behavior between DAF activation and GSH nitrosation, also makes •
2NO  an 

attractive candidate for the unidentified reactive intermediate in DAF activation by NO.  

A potential kinetic mechanism that assumes •
2NO  as the oxidative product of NO that 
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reacts with DAF would include Reaction 2.1-2.3 as well as Reaction 2.5 instead of 

Reaction 2.4. 

 TDAF......DAFNO 5k
2 −→→+•    (Reaction 2.5) 

Assuming the DAF oxidation by •
2NO  is the rate limiting step in Reaction 2.5, a PSSA 

can be utilized to simplify Reactions 2.1, 2.2, 2.3, and 2.5 yielding the rate of DAF-T 

formation: 

 [ ] [ ] [ ] [ ]

( ) [ ] [ ]DAFNO
kkk

kk
DAFONOk2TDAF

dt
d

325

23
2

2
1

+







+

=−

−

 (Equation 2.7) 

Comparing Equation 2.7 with Equation 2.6 we get ( )








+

=
− 325

33'
m kkk

kk
K  = 4.3 ± 0.6.  

Based on the values for the other reaction rate constants, we can an estimate a value for 

k5 in the reaction of DAF-FM activation to be 8.2x107 M-1s-1.  This value is of the same 

order as the oxidative rate constant of similar vicinal diamines by •
2NO  (i.e. rate constant 

for 1,4-phenylenediamine is 4.6x107 M-1s-1 [30, 35]). 

2.5  Discussion 

A number of methods have been employed to measure NO and related nitrogen 

oxides.  NO sensitive fluorescent probes have often been used to detect NO levels, 

however, most studies provide data in relative fluorescence and quantification of NO 

concentration fluorescently has not been accomplished.  This is due to several 

experimental limitations that may arise when utilizing DAF in many systems (i.e. motion 
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artifacts, uneven dye loading, photosensitivity and dye leakage) as well as due to an 

incomplete understanding of the kinetics of DAF-NO reaction. Characterizing the active 

intermediate for DAF activation by analyzing the kinetic mechanism between DAF and 

NO will aid in overcoming some of these limitations.  

Active intermediate of DAF activation.  The dependence of DAF fluorescence on 

the presence of O2, suggests that DAF is activated by a byproduct of NO oxidation rather 

than NO itself.  N2O3 has been previously proposed as an intermediate that can play this 

role. An alternative reaction mechanism has also been proposed according to which the 

activation of DAF occurs as a two-step process [30].  The first step is the oxidation of 

DAF via a one electron species such, as •
2NO , yielding a nitrosamine intermediate that 

reacts further with NO to form the fluorescent triazole DAF-T.  The data presented in this 

study supports the second mechanism of •
2NO  as the reactive intermediate in DAF 

activation [15, 22, 30] and suggests the initial oxidation step to be rate-limiting in this 

two-step conversion process.  

A mechanism based on •
2NO  rather than N2O3 as the reactive intermediate would 

exhibit similar, but not identical kinetic behavior (Equation 2.1 vs. Equation 2.7).  In both 

mechanisms, DAF-T formation is limited by the rate of NO oxidation and both exhibit 

Michaelis-Menten dependence on DAF concentration.  However, based on the second 

mechanism, the effective Km is NO dependent.  Experimental data (Figure 2.4) 

demonstrates such a dependence of Km on [NO] and point towards •
2NO  as the active 

intermediate for DAF activation.  However, any NO oxidation byproduct, that would 

exhibit NO dependent consumption, could satisfy the observed behavior.  
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Use of NO Donors for calibration standards.  Theoretical considerations, 

corroborated by experiments, suggest that slow releasing NO donors can provide steady 

levels of NO concentrations in aerated buffered solutions.  This is ideally suited for 

creating calibration standards.  The half-life of the NO donor needs to be significant 

relative to the duration of the experiment (i.e. experiment2/1 t10t ⋅> ) such as no significant 

consumption of NO donor occurs over this time frame.  The “clamped NO” concentration 

will depend not only on the stoichiometry, half-life, and concentration of NO donor, but 

also on the rate of NO consumption.  In the absence of other NO scavengers, the reaction 

with dissolved O2 will limit this rate and will lead to a square dependence between [NO 

donor] and [NO].  An appropriate time from the initiation of NO donor release is required 

for reaching this plateau NO concentration.  This time can be approximated by the ratio 

of the NO plateau over the initial release rate (i.e. [ ] [ ]( ) 2/1
d21lag NOdonornkOk4t > .  NO 

electrodes can validate these predictions and test the relationship between [NO] and [NO 

donor] in a particular system. 

Calibration using bolus addition of NO.  Studies have sometimes utilized the 

addition of a solution containing a known NO concentration for assessing NO 

fluorescence or a fast releasing NO donor [36].  Such an addition of a bolus amount of 

NO will result in a change in NO fluorescence that will stop when NO (or DAF) is 

consumed. This information is difficult to interpret as the [NO] and/or [DAF] 

concentrations may change significantly during the course of the experiment.  Thus, a 

linear increase in final fluorescence after addition of solutions with different NO 

concentration does not guarantee a linear dependence of fluorescence on [NO] at any 
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particular instance.  For example, Equation 2.2 shows that under some conditions the 

final change in NO fluorescence will be linearly dependent on the amount of NO added 

on the system, even though at any particular moment the increase in FI is proportional to 

[NO]2 (Equation 2.6).  Thus, a calibration curve using solutions with different NO 

concentration standards may not be ideal for time-dependent monitoring of NO.  

Kinetics of DAF activation.  Unlike many other fluorescence indicators that bind 

reversibly with the molecule of interest, DAF reacts with the active NO derivative in an 

irreversible manner.  The irreversibility of DAF activation has two main implications.  

First, the fluorescence signal should remain constant and should not decrease when NO 

disappears.  As a result, any observed drop in FI is an artifact that should be attributed to 

experimental limitations such as dye leakage, motion artifacts, photobleaching etc.  

Second, the NO concentration levels correlate with the rate of DAF-T formation and thus 

with the rate of FI increase (i.e. assuming a linear dependence of FI on [DAF-T]).  Thus, 

a relationship between the slope of FI and [NO] (and not NO release rate) should be 

sought.  This relationship will be governed by the reaction mechanism of DAF with NO 

and based on our theoretical and experimental data can be approximated by: 

[ ] [ ] [ ] [ ] [ ]
[ ] [ ]DAFNOK

DAFONOαk2TDAF
dt
dαFI

dt
d

'
m

2
2

1 +
=−=  (Equation 2.8) 

where α is a proportionality coefficient that depends on the fluorescent yield per mole of 

DAF-T, and '
mK  is estimated from our experiments to be 4.3 ± 0.6 µM DAF/µM NO.  

Inspection of Equation 2.8 suggests two limiting cases.  In Case I, when [DAF]<< '
mK

[NO], Equation 2.8 reduces to: 
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 [ ] [ ] [ ][ ][ ]DAFONO
K
kα2TDAF

dt
dαFI

dt
d

2'
m

1=−=      (Equation 2.8a) 

This would suggest a DAF-T formation rate that is proportional to [NO] and [DAF] under 

these conditions. 

In case II, when [DAF]>> '
mK [NO], Equation 2.8 reduces to: 

 [ ] [ ] [ ] [ ]2
2

1 ONO2ααTDAF
dt
dαFI

dt
d

=−=    (Equation 2.8b) 

This would yield a DAF-T formation that is independent of the [DAF] and is proportional 

to [NO]2.  Typical experimental protocols utilize µM concentrations of [DAF], while in 

many biological tissues and conditions, nM levels of NO are anticipated.  Thus, the 

second scenario is more likely to occur. Although the kinetic data was acquired from 

mixing DAF and NO donor in aerated buffered solutions, similar behavior may hold in 

biological tissues.  Ideally, the applicability of Equation 2.8a or 2.8b should be verified 

on a particular system and a method of analysis should be designed accordingly.  For 

example, normalizing FI(t) with initial fluorescence may be required according to 

Equation 2.8a but not according to 2.8b to yield data slopes independent of [DAF].  

Nevertheless, phenomena such as uneven dye loading, motion artifacts or dye leakage 

can still affect fluorescence through their effect on coefficient α.   

 Summary.  The absence of reliable methods for quantifying NO in biological 

tissues has provided a significant obstacle in elucidating NO functions in biomedicine. 

NO sensitive fluorescent probes are ideally suited for such investigations by allowing 
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spatio-temporal NO monitoring.  Despite several drawbacks associated with the use of 

DAFs, these fluorescent probes have adequate sensitivity for assessing physiological 

levels of NO that are usually in the nanomolar range.  The kinetic information provided 

in this study can assist in the development of calibration protocols that will enable us to 

quantify cellular NO levels in different systems and ultimately estimate endothelial 

derived NO production rates.  Future studies should test the kinetic behavior in cellular 

systems and validate fluorescent based quantification of NO against other established 

methods (i.e. Chemiluminescence, electrochemical).   
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Appendix 2.1 

Mathematical model of the proposed kinetic mechanism: 

Applying the law of mass action to the first reaction scheme (i.e. Reactions 2.1-

2.4), yields four differential equations for the rates of change of NO, •
2NO , N2O3, and 

DAF-T as follows: 

[ ] [ ] [ ] [ ][ ] [ ]322222
2 ONkNONOkONOk2

dt
NOd

−+−−=    (Eq. A.2.1) 

[ ] [ ] [ ] [ ][ ] [ ]322222
2

1
2 ONkNONOkONOk2

dt
NOd

−+−=    (Eq. A.2.2) 

[ ] [ ][ ] [ ] [ ] [ ][ ]DAFONkONkONkNONOk
dt

ONd
32432332222

32 −−−= −  (Eq. A.2.3) 

[ ] [ ][ ]DAFONk
dt

TDAFd
324=

−       (Eq. A.2.4) 

For the revised reaction mechanism, that assumes DAF activation by •
2NO  (i.e. Reactions 

2.1, 2.2, 2.3, and 2.5), Eqs. A.2.2-A.2.4 are modified to reflect this change. 

[ ] [ ] [ ] [ ][ ] [ ] [ ][ ]DAFNOkONkNONOkONOk2
dt

NOd
25322222

2
1

2 −+−= −  (Eq. A.2.5) 

[ ] [ ][ ] [ ] [ ]32332222
32 ONkONkNONOk

dt
ONd

−−= −     (Eq. A.2.6) 

[ ] [ ][ ]DAFNOk
dt

TDAFd
25=

−        (Eq. A.2.7) 
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Differential equations can also describe the change in the O2 and DAF-FM 

concentrations.  However, we can assume that due to the abundance of O2 its 

concentration will remain essentially constant while the total concentration of the dye is 

preserved.  Eq. 2.5 can then estimate the concentration of DAF: 

[ ] [ ] [ ]TDAFDAFDAF i −−=        (Eq. A.2.8) 

where [DAF]i is the initial dye concentration.  

An NO donor, with a relatively long half-life, can provide continuous release of 

NO over the duration of the experiment. To model this scenario, Eq. A.2.1 is modified to 

incorporate the NO release: 

[ ] [ ] [ ] [ ][ ] [ ]322222
2 ONkNONOkONOk2S

dt
NOd

−+−−=       (Eq. A.2.9) 

where S is the NO release rate given by: 

[ ] ( )tk
d

dexpNOdonork2S ⋅−=                             (Eq.A.2.10) 

kd is the dissociation rate constant of the NO donor and is inversely proportional to the 

half-life (
2/1

d t
2lnk = ).  

Although simulations exhibited in Figure 2.1A were performed for the proposed 

kinetic mechanism, an identical simulation is achieved for the revised kinetic mechanism 

(not shown). Similarly, the simulated evolution of DAF-T over time follows comparable 

profiles for both kinetic mechanisms.  Figure 2.2A shows simulations for the first kinetic 

mechanisms (Eq. A.2.2, A.2.3, A.2.4, A.2.9) assuming a k4 value of 4.0x108 M-1s-1. 



 48 

Modeling parameters utilized: 

Parameters Values 
k1 3.15x106 M-2s-1 
k2 1.1x109 M-1s-1 
k-2 81000 s-1 
k3 38130 s-1 
k4 4.0x108 M-1s-1 
k5 8.2x107 M-1s-1 
Km 4.27 
[O2] 2.77x10-4 M 

 

Table A.2.1 – Modeling parameters utilized [26] 
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Chapter 3 

 

 

APPROXIMATION OF NITRIC OXIDE RELEASE BY  

ENDOTHELIAL CELLS UTILIZING DAF-FM 
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3.1  Abstract 

 Endothelial derived NO production rates has been difficult to determine and 

current predicted values are widely ranging.  Fluorescent microscopy is the most 

common method available in determining NO production because it allows real-time 

bioimaging.  DAF-FM da is the most widely utilized cell permeable fluorescent indicator 

for in vitro NO research.  We have previously performed a detailed kinetic analysis 

between DAF-FM and NO and have developed relationships describing DAF-FM 

fluorescent signals to NO concentrations at physiological conditions.  These relationships 

were the driving forces in developing a calibration protocol for cellular systems.  NO 

concentration values from maximum agonist stimulated Human Umbilical Vein 

Endothelial Cells (HUVECs) were obtained and values were further corroborated by 

chemiluminescence.  Additional mathematical modeling was performed utilizing finite 

element methods (FEM) to approximate endothelial derived NO production rates.  At 

maximum agonist stimulation, the average NO production rate was found to be 

approximately 0.418 ± 0.18 pmol/cm2s.  Assuming an endothelial layer thickness of 4 

µm, this is equivalent to 1.05 µM/s.   

3.2  Introduction 

 Different methods for detecting endothelial derived NO have been utilized.  

However, fluorometric analysis is the only method available for intracellular NO studies 

[1].  The development of fluorescent probes in the recent years has demonstrated to be a 

sensitive and specific assay system that is gaining wide application to measure nitrogen 

oxides [1, 2, 3, 4, 5, 6, 7].  NO-reactive fluorescent indicators allow bio-imaging of NO 
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with high spatiotemporal resolution, permitting investigation of two-dimensional NO 

production in real-time by digital fluorescence imaging, which is not possible with other 

NO detection methods [8].  These fluorescent probes may be used to measure nanomolar 

levels of NO generated under biological conditions [9].  Currently, one of the most 

widely used fluorescent probes, 4-amino-5-methylamino-2’,7’-difluorescein diacetate 

(DAF-FM da), was also developed and utilized as an in vitro NO detection probe.   DAF-

FM da is cell permeable and is virtually non-fluorescent, however, upon reaction with 

NO, a highly fluorescent benzotriazole is formed (DAF-FM T).  Because the reaction 

between NO and DAF-FM is irreversible, the fluorescence intensity (FI) will not 

decrease.   

 Unlike many fluorescent indicators, DAF-FM da is not a ratiometric dye; 

therefore, calibration has been difficult due to factors such as dye leakage, uneven dye 

loading, and photobleaching [10, 11].  More importantly, the actual kinetics of the 

reaction between NO and DAF-FM da has yet to be elucidated.  Calibration of this dye 

can be beneficial in estimating cellular NO concentrations ([NO]) as well as determining 

endothelial derived NO production rates.  We have previously developed kinetic 

equations to describe the relationship between change in fluorescent signal to actual NO 

concentration levels in physiological systems.  These equations will provide the basis for 

the calibration protocol provided.    

3.3  Methods 

 Chemicals and Materials.  The base media for the HUVECs was phenol red free 

DMEM/F12k (Invitrogen) medium supplemented with 0.1 mg/mL of heparin and 0.03-
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0.05 mg/mL ECGS from Sigma-Aldrich, 1% penicillin/streptomycin from Invitrogen, 

and 10% fetal bovine serum (FBS) (ATCC; Manassas, VA).  A base media free of phenol 

red was chosen because phenol red has been shown to interfere with fluorescent 

measurements.  DAF-FM diacetate (da) (4-Amino-5-(N-methylamino)-3′,6′-

bis(acetyloxy)-2′,7′-difluoro-spiro[isobenzofuran-1(3H), 9′ -[9H]xanthen]-3-one) was 

purchased from Molecular Probes.  A 5 mM stock solution of DAF-FM da was prepared 

in DMSO and diluted to working concentrations in a premade buffer prior to 

experimentation.  Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) and 

agonists acetylcholine and bradykinin were purchased from Sigma-Aldrich.  Calcimycin 

was purchased from Enzo Life Sciences (Farmingdale, NY).  Final working 

concentrations of L-NAME, bradykinin, and acetylcholine were prepared in PBS 

(Invitrogen).  Calcimycin was prepared by first dissolving in DMSO and further diluting 

with a premade buffer solution containing calcium (2.5 mM).   

A premade buffer solution was made.  Table 3.1 below shows the components 

used and their corresponding concentrations.  The Sodium Chloride (NaCl), Calcium 

Chloride (CaCl2), Magnesium Sulfate (MgSO4), Potassium Phosphate (KH2PO4), and 

HEPES were purchased from Sigma-Aldrich.  The Potassium Chloride (KCl) and Sodium 

Carbonate (NaHCO3) were purchased from Fisher Scientific (Pittsburgh, PA).  Finally, 

the Glucose was purchased from Invitrogen.  All components were added to 1 liter of de-

ionized water and brought to a pH of 7.4.  
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Buffer Component Final Concentration (mM) 
NaCl 118.8 
KCl 5 

CaCl2 2.5 
MgSO4 1.2 
KH2PO4 1.2 
NaHCO3 2.7 
HEPES 20 
Glucose 10.1 

 
Table 3.1 – Individual components and concentrations of premade buffer solution. 

 

Cell Culturing and Cell Experiment Preparation.  Human Umbilical Vein 

Endothelial Cells (HUVEC) (Cell Applications; San Diego, CA) were used in 

experimental work for determining endogenously produced NO.  When purchased, they 

were received at passage 1.  Cell expansion was performed until cells reached passage 4, 

where they were then frozen down.  All cellular experiments were performed at this 

passage.  Appendix 3.1 and 3.2 give a detailed explanation of the cell culturing methods 

for feeding and passaging of cells respectively.  Prior to experimentation, cells were 

seeded into 35 mm2 culture dishes and cultured until an 80-90% confluency was reached.  

For both the fluorescent and chemiluminescent experiments, cells were starved with 

serum-free media for 1 hour at 37°C, 5% CO2 prior to stimulation.  This was done to 

ensure that any residual FBS within the cells was removed.  FBS has been shown to 

interfere with fluorescent measurements.  In addition, the starvation period is necessary to 

ensure low basal levels of NO production.   

Fluorescent Measurements.  After the 1 hour incubation period with serum-free 

media, cells were rinsed 3 times with the premade buffer solution.  A solution of 5 μM 
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DAF-FM da was prepared and added to the well plates.  For control experiments using L-

NAME in blocking agonist stimulation, 500 μM of L-NAME was added to the control 

wells with the DAF-FM da.  The well plates were placed back into the incubator for 30 

minutes at 37°C, 5% CO2.   Following this incubation period, the cells were again rinsed 

3 times with the premade buffer solution.  A final incubation with just buffer was done 

for 30 minutes to ensure complete esterification of the DAF-FM da.  An automated 

fluorescent microscope (Olympus 1X-81) with an incorporated filter wheel was utilized 

in the detection of DAF-FM fluorescence in cells.  The excitation and emission 

wavelength selected were 495 nm and 515 nm respectively, with a bandwidth of 10 nm.  

During data collection, a shutter was used to control the exposure time of light given to 

the DAF-FM sample.  An exposure time length of 20 ms was chosen to avoid over 

exposure of light to the sample for each frame collected.  The experiment duration time 

was 15 minutes, sampling every 30 seconds.  The objective was set to 10X for 

experimental purposes.  Connected to the microscope was a camera (Retiga Q EXi), 

which enabled image acquisition.  The information acquired was retrieved and analyzed 

using IPLab 3.6.3 (Scanalytics, VA).  After experimental results were obtained in IPLab, 

manual selections of regions of interest were selected.  One region selected to act as a 

normalizing region was of the background.  The other regions selected were cells within 

the field of view.  The fluorescent data from these regions were average for each frame 

collected and final averaged data was subtracted with the corresponding background 

region at each time point.  This data was then normalized with the last fluorescent 

reading, yielding values from 0 – 1.  Similar to the NO solution experiments, the slopes, 

and ultimately βmax, of the normalized fluorescent curves were determined.   
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 Chemiluminescent Measurements.  After incubation with serum-free media, the 

cells were removed and rinsed 3 times with PBS.  Agonist stimulants were then added to 

the cells, and well plates were incubated for 30 minutes to ensure complete release of NO 

from within the cells.  The detection of [NO] released from cells after agonist stimulation 

was done via chemiluminescence.  A nitric oxide analyzer (NOA Sievers 280i; Boulder, 

CO) in conjunction with NO Analysis™ Software (Ionics; Boulder, CO) was utilized for 

data collection.  A triiodide reducing solution was prepared by combining 0.4 g of 

Sodium Iodide (NaI) (Sigma-Aldrich), 0.26 g of Iodine (I2) chips (Acros Organics; 

Waltham, MA), 8 mL of distilled water, and 28 mL of glacial acetic acid (Sigma-

Aldrich).  The solution was placed on a magnetic stirrer for 30-40 minutes to ensure 

components were completely dissolved.  NO has a very short half-life and quickly reacts 

with O2 to form nitrite, the purpose of this reducing agent is to convert nitrite back to NO 

where it can then be detected by the NOA.  An initial standard calibration curve was 

obtained using known concentrations of nitrite solutions before cell samples were 

analyzed, where only the supernatants of the cell solutions are analyzed.   During this 

incubation period, a standard curve was obtained using known concentrations (25 μM–1 

mM) of Sodium Nitrite (NaNO2) (Sigma-Aldrich).  At the end of the incubation period, 

the supernatant above the cells was collected and analyzed in the NOA.  The resulting 

values obtained were given in picomoles, therefore calculations were performed to yield 

concentration values based on the volume injected into the detecting system.    

 FEM Model.  Finite Element Method (FEM) allows 2D modeling of the presented 

cellular system.  With this approach, we can estimate endothelial derived NO production 
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rates from the HUVECs upon agonist stimulation based on the [NO] values achieved 

experimentally.  A diffusion reaction model was developed to examine changes in NO 

concentration with respect to time and spatial position.  The following equation was 

utilized for the diffusion model: 

 ( ) RCD
t
C

=∇−∇+
∂
∂        (Equation 3.1) 

where C is the concentration of NO, D is the diffusivity of NO (3.3x10-5 cm2·s-1), and R 

is the rate of NO consumption by the rate limiting oxidation reaction of NO 

(R=4k1[NO]2[O2]; k1=3.15x106 M-2s-1, [O2]=2.77x10-4 M).  A semi infinite boundary 

condition was applied which assumes a zero flux at one end.  Initial production rate 

values were chosen to reach experimentally derived NO concentration values utilizing the 

following flux equation where N is the Flux value. 

 CDN ∇−=           (Equation 3.2) 

3.4  Results 

 Standard Curve by NO Donors.  NO detection within cells varies in comparison 

to NO detection in solution.  Therefore before experiments were performed to determine 

endogenously produced NO from HUVECs, sets of experiments were performed with 

NO donors to yield a standard curve (n=4).  Known concentrations of SPER/NO ranging 

from 50 – 750 μM were used with 5 μM DAF-FM da loaded HUVECs.  The FI curves 

from the cells treated with SPER/NO were recorded and the corresponding slopes (βmax) 

were determined.  Figure 3.1 below shows log-log plots of [SPER/NO] and βmax.  
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Analysis of the relationships between SPER/NO and βmax showed noticeable differences 

depending on [SPER/NO].  At the lower range of [SPER/NO] (5 – 25 μM), a linear 

fitting of the log-log data shows a slope of 1.1 ± 0.3 (p = 0.7512 ) (Figure 3.1A).  

Contrastingly, the relationship between SPER/NO and βmax at higher [SPER/NO] (100 – 

750 μM) yielded a slope of 0.4 ± 0.2 (Figure 3.1B).  Statistical analysis showed that this 

value was statistically different than 1 with p = 0.0012 and closer to 0.5.  Therefore, for 

lower values of [SPER/NO], βmax is linearly proportional to SPER/NO with the slope 

indicating a 1:1 ratio.  Thus meaning at this [SPER/NO] range, βmax is proportional to 

NO2.  Alternatively, at higher values of [SPER/NO], βmax is shown to be proportional to 

approximately SPER/NO½.  This would conclude that βmax is proportional to NO at 

higher [SPER/NO].   

 

Figure 3.1 – Data from standard curve experiments (n=4) presented as log-log plots of 
[SPER/NO] and βmax.  (A) Values from smaller [SPER/NO] ranging from 5 – 25 μM.  

Linear fit yields a slope of 1.1 ± 0.3.  (B) Values from larger [SPER/NO] ranging from 
100 – 750 μM.  Linear fit yields a slope of 0.4 ± 0.2. 
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 The standard calibration curve will be used to estimate endogenous [NO] from 

HUVECs stimulated by agonists given by the resulting FI curve obtained.  Depending on 

βmax, or slope values, an approximate [NO] can be estimated.     

 Agonist Stimulated Fluorescent Detection.  HUVECs loaded with DAF-FM da 

were stimulated with three different agonists: acetylcholine, calcimycin, and bradykinin.  

To ensure that the NO detected by the increase in DAF-FM fluorescence was directly 

attributed to the agonists applied, control trials were performed with the presence of L-

NAME.  L-NAME is known to inhibit vasorelaxation induced by agonists.  βmax from the 

FI curves was determined, averaged, and shown in Figure 3.2 (n=3). 

 
Figure 3.2 – Estimated βmax values obtained from HUVECs after agonist stimulation, 

with and without incubation with L-NAME.   

 From the βmax values given above for the different agonists without L-NAME, it is 

clear that the cells responded to the stimuli and endogenously produced NO, as can be 
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seen in comparison to the control with no stimulation.  Statistical analysis shows that the 

HUVEC’s responses from acetylcholine, calcimycin, and bradykinin were significantly 

different from the control response with p = 9.6x10-3, 4.06x10-4, and 5.59x10-7 

respectively.  In addition, statistics comparing the agonist response in the HUVECs with 

and without incubation with L-NAME showed a significant reduction in signal when L-

NAME was present (p = 8.5x10-3, 4.9x10-4, and 8.4x10-5 respectively).    

 Agonist Stimulated Chemiluminescent Detection.  Chemiluminescence was 

performed to quantify the NO generated from the HUVECs after agonist stimulation.  

Figure 3.3A displays the [NO] achieved using the different agonists.  The concentrations 

achieved after stimulation with acetylcholine, calcimycin, and bradykinin were 

significantly different than the control value (p = 0.02, 0.03, and 0.001 respectively).  To 

analyze the actual [NO] achieved due to agonist stimulation, the baseline value was set to 

the average control value.  Figure 3.3B displays the [NO] directly attributed to 

stimulation by the agonists.  It was noted that at maximal agonist concentrations, 

calcimycin and bradykinin induced more overall NO production than acetycholine did. 
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Figure 3.3 – Chemiluminescent data from HUVECs after agonist stimulation.  (A) 

Overall data shown in comparison to control without agonist stimulation (B) Normalized 
[NO] obtained from agonist stimulation. 

 Modeling Results.  To reach the NO concentration values determined 

experimentally, several different flux rates were investigated within the FEM model.  

Figure 3.4 shows the output generated from the model incorporating a production rate of 

1.0 pmol/cm2s.  A very fine mesh was utilized in the investigation area which yielded a 

NO concentration of 616.9 nM.  A range of production rate values between 0.1 – 1.0 

pmol/cm2s generated NO levels that were experimentally achieved.   
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Figure 3.4 – FEM analysis results.  (A) A very fine mesh was utilized for the 
investigation area yielding (B) NO concentration levels at a production rate of 1.0 
pmol/cm2s.  Maximum NO levels achieved at this production rate was 616.9 nM. 

3.5  Discussion 

 As discussed in the previous chapter, the differential equation describing the rate 

formation of DAF-FM T yields two limiting cases depending on [DAF-FM] and 

Km
′ [NO].  From Figure 3.1, this observation is evident.  The dependence in Figure 3.1A 

exhibits when [DAF-FM] >> Km
′ [NO] and Figure 3.1B displays when [DAF-FM] << 

Km
′ [NO].  Under physiological conditions, or for estimations of endogenously produced 

NO, the case where [DAF-FM] >> Km
′ [NO] is more appropriate for comparison.  The 

βmax values from the FI curves determined from agonist stimulation on the HUVECs in 

comparison to the standard calibration data, fell into this region.  [NO] achieved after 

agonist stimulation was determined from the βmax values.  A MATLAB fitting of an 
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equation of the standard calibration data for small values of NO yielded the following 

equation. 

 [ ]2max NOαβ =         (Equation 3.3) 

The estimated value of α was found to be 2.02x10-6.  The function given in Equation 3.3 

allows for estimations of [NO] from cellular experiments with agonist stimulations.  

Figure 3.5 shows the fitting of the equation to the standard calibration data.  The R2 value 

for this fit was 0.973, ensuring that Equation 3.3 can be used in estimating [NO] from 

βmax values.  The values determined were in the nanomolar range, which was expected 

especially for endogenously produced NO.  In addition, the presence of L-NAME 

significantly hindered the production of NO.   

 
Figure 3.5 – Standard calibration data fitted to modeled equation to enable estimations of 

[NO] from endogenously produced sources. 
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Table 3.2 below summarizes the βmax and corresponding [NO] due to agonist 

stimulation of HUVECs with and without incubation with L-NAME. 

Agonist βmax (10-3) [NO] (nM) 
Control 0.057 168 

Acetylcholine 0.23 335 
Acetylcholine + L-NAME 0.051 158 

Calcimycin 0.37 427 
Calcimycin + L-NAME 0.11 240 

Bradykinin 0.31 390 
Bradykinin + L-NAME 0.14 264 

 
Table 3.2 – βmax and corresponding [NO] from HUVECs due to agonist stimulation. 

 Summary.  This study was successful in stimulating HUVECs with agonists to 

induce endogenous NO production.  This study was also successful in attempting to 

develop a calibration protocol of DAF-FM in a cellular system based on the revised 

kinetic mechanism developed in the previous chapter.  A calibration curve of DAF-FM 

with NO donors was obtained as a standard to comparing FI signals attained from 

stimulated cells. Similarly to solution experiments, the slope, or βmax, of the FI curve 

achieved by activated DAF-FM, was used in determining [NO].  As determined before, 

the rate equation developed for DAF-FM T formation yielded two cases in which the FI 

signal would differ upon experimental conditions.  When considering experimental 

setups that are within physiological conditions (i.e. nanomolar levels of NO), case II of 

the rate equation must be utilized (i.e. [DAF-FM] >> '
mK  [NO]).  FI signals obtained 

from agonist stimulated HUVECs were compared to the standard curve and [NO] values 

were determined.  These values were corroborated with chemiluminescence readings.  

Findings from this study provided a capable protocol in utilizing DAF-FM in determining 

[NO] from cellular systems.  
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 To achieve the NO concentration levels at maximum agonist stimulation, the 

average production rate was found to be 0.418 ± 0.18 pmol/cm2s.  Assuming an 

endothelial layer thickness of 4 µm, this is equivalent to 1.05 µM/s.  This production rate 

value was noted to be within the same range as previously observed.  This group also 

utilized HUVECs and detected NO using chemiluminescence [12].  
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Appendix 3.1 

Purpose 
This procedure describes the steps in changing the media of the cell cultures.  The cells in 
consideration are HUVEC (Human Umbilical Vascular Endothelial Cells).  

1.0 Equipment & Materials 

HEPA-Filtered Laminar Flow Biological Safety Cabinet (LFBSC)  

Equipment 

Incubator 37°C, 5% CO2 

Refrigerator at 2°C to 8°C  

Waterbath at 35°C to 39°C  

Pipette 

Materials 

Pipette tips 

Waste Container (150mL beaker) 

70% Ethanol 

Kimwipes 

2.0 Reagents 
Description Catalog # Lot # Expiration Date 

Supplemented Media    

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

3.0 Technician Signature Log 
Print Name Signature Initials 
   
   
   
   
 
4.0 Procedure 

4.1 Safety Precautions:  
Biosafety Level 2 Procedures should be followed.  Good aseptic technique 
should be used during all procedures which include wearing appropriate 
clothing (i.e.- lab coats and gloves) at all times inside the hood and 
spraying hands with alcohol anytime they are re-entered inside the hood.  



 67 

All work and opening of sterile materials or cell cultures must be done 
inside a HEPA filtered, laminar flow biological safety cabinet (LFBSC). 

4.2 Hood cleared and cleaned by (Initial/date): _________________ 
4.3 Preparation steps before media change 

4.3.1 Turn on water bath and flow hood. 
4.3.2 Remove aliquoted amount of supplemented media from 

refrigerator and place into the water bath.  (Amount of media 
required depends on the amount of cell cultures needed to be fed.)   
NOTE:  For flasks, the approximate amount of media needed 
follows the ratio of 5mL per 25cm2.  For 24 well plates, 1mL is 
needed per well. 

4.3.3 Note the confluency of the cultures and record in notebook.  
Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

4.4 Changing Media (To be completed after supplemented media is warm) 
4.4.1 Spray down flow hood with 70% ethanol.  Wipe down with 

kimwipes. 
4.4.2 Spray down and place the following contents inside the hood:  Cell 

cultures, waste bucket, aliquoted supplemented media, pipette, and 
appropriate pipette tips.  

4.4.3 For flasks: Keep in an upright position, loosen the caps but do not 
completely open them until ready for use.  Discard old media into 
the waste bucket by slowly pouring.  Be careful not to cause 
splashing as contamination might occur.  

4.4.4 For 24 well plates:  Remove old media using a sterile pipette.  
Discard old media into the waste bucket. 

4.4.5 Using a pipette, pull up the appropriate amount of media from 
aliquot and place into the flask or well plate.  For the flasks, close 
the tops tightly. 

4.4.6 Place cell cultures back into the incubator. 
4.4.7 Remove all materials out of the hood and replace in their 

appropriate locations.   
4.4.8 Spray and wipe down the hood when completed. 
4.4.9 Discard of waste into the appropriate waste container. 

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

4.5 Further feeding considerations 
4.5.1 Changing of media should be done every 48-72 hours. 
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Appendix 3.2 

1.0 Purpose 
This procedure describes the steps in harvesting the cell cultures.  The cells in 
consideration are HUVEC (Human Umbilical Vascular Endothelial Cells).  

2.0   Equipment & Materials 

HEPA-Filtered Laminar Flow Biological Safety Cabinet (LFBSC)  

Equipment 

Incubator 37°C, 5% CO2 

Refrigerator at 2°C to 8°C  

Waterbath at 35°C to 39°C  

Centrifuge 

Pipette 

Materials 

Pipette tips 

Waste Container (150mL beaker) 

70% Ethanol 

Kimwipes 

Conical tubes 

3.0     Reagents 
Description Catalog # Lot # Expiration Date 

Supplemented Media    

PBS    

Trypsin    

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

4.0    Technician Signature Log 
Print Name Signature Initials 
   
   
5.0   Procedure 

5.1 Safety Precautions:  
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Biosafety Level 2 Procedures should be followed.  Good aseptic technique 
should be used during all procedures which include wearing appropriate 
clothing (i.e.- lab coats and gloves) at all times inside the hood and 
spraying hands with alcohol anytime they are re-entered inside the hood.  
All work and opening of sterile materials or cell cultures must be done 
inside a HEPA filtered, laminar flow biological safety cabinet (LFBSC). 

5.2 Hood cleared and cleaned by (Initial/date): _________________ 
5.3 Preparation steps before harvesting 

5.3.1 Turn on water bath and flow hood.  Remove aliquoted amount of 
supplemented media and trypsin from refrigerator and place into 
the water bath.   

5.3.2 Note the confluency of the cultures and record in notebook. Refer 
to notebook                       .

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 
  

5.4 Harvesting of cell cultures (To be completed after the trypsin and 
supplemented media are warm) 

5.4.1 Spray down flow hood with 70% ethanol.  Wipe down with 
kimwipes. 

5.4.2 Spray down and place the following contents inside the hood:  Cell 
cultures, waste bucket, aliquoted supplemented media, aliquoted 
typsin, PBS, conical tubes with rack, pipette, and appropriate 
pipette tips.  

5.4.3 For flasks:  
5.4.3.1 Keep in an upright position, loosen the caps but do not 

completely open them until ready for use.  Discard old 
media into the waste bucket by slowly pouring.  Be careful 
not to cause splashing as contamination might occur.  

5.4.3.2 Add PBS to the flasks.  (NOTE:  The amount of PBS added 
follows the ratio of 5mL per 25cm2.)   

5.4.3.3 Gently rock the flasks back and forth for approximately 1 
minute being careful not to get any liquid in the filter of the 
cap. 

5.4.3.4 Discard waste the same way described in step 5.4.3.1. 
5.4.3.5 Repeat steps 5.4.3.2-5.4.3.4 to ensure the cells have been 

properly rinsed. 
5.4.3.6 Add trypsin to the flasks (NOTE:  Approximate amount of 

trypsin to be used follows the ratio of 1-2mL per 25cm2.) 
5.4.3.7 Place flasks into the incubator.  Check flasks frequently 

under the microscope to ensure that all cells have lifted off 
the flask.  Timing will vary depending on the confluency.  
Light tapping on the flask will assist in removing the cells 
from the flask.  (NOTE:  Do not leave the cells in trypsin 
for longer time than needed as it will damage the cells) 
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5.4.3.8 Once cells have been completely lifted off the flask, place 
back into the hood using proper aseptic techniques 
described above. 

5.4.3.9 To quench the trypsin add the equivalent amount of media.  
Gently rock to mix well. 

5.4.3.10 Using a pipette of the appropriate volume, remove 
the cell suspension and place into a conical tube.   

5.4.3.11 Rinse once again by adding the same amount of 
media used to quench.  Rock gently and remove suspension 
as described in the previous step.  (NOTE:  As a check, 
look at the flasks or well plates under a microscope to 
ensure that all the cells have been removed) 

5.4.3.12 Place the conical tubes into the centrifuge and spin 
for 7 minutes at 1200 rpm at 25˚C. 

5.4.3.13 Carefully remove the conical tubes from the 
centrifuge to avoid disrupting the cell pellet and place into 
the hood. 

5.4.3.14 Discard the supernatant leaving only the cell pellet. 
5.4.3.15 Resuspend the cell pellet with an appropriate 

amount of media. 
5.4.3.16 Cells are now ready for further use.  

5.4.4 For 24 well plates:  Remove old media using a sterile pipette.  
Discard old media into the waste bucket. 
5.4.4.1 Rinse the wells by adding 1mL of PBS to each well. 
5.4.4.2 Gently rock the well plates to ensure that the cells have 

been rinsed sufficiently and any residual media is cleaned. 
5.4.4.3 Remove waste as described in step 5.4.4. 
5.4.4.4 Repeat steps 5.4.4.1-5.4.4.3. 
5.4.4.5 Add trypsin to each well (NOTE:  0.5-1mL of trypsin per 

well is sufficient) 
5.4.4.6 Place well plates into the incubator.  Check plates 

frequently under the microscope to ensure that all cells 
have lifted off.  Timing will vary depending on the 
confluency.  (NOTE:  Do not leave the cells in trypsin for 
longer time than needed as it will damage the cells) 

5.4.4.7 Once cells have completely lifted off the well plate, place 
back into the hood using proper aseptic techniques 
described above. 

5.4.4.8 Follow steps 5.4.3.9-5.4.3.16. 
Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

5.5 Clean-up: 
5.5.1 Remove all materials out of the hood and replace in their 

appropriate locations.   
5.5.2 Spray and wipe down the hood when completed. 
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5.5.3 Discard of waste into the appropriate waste container. 
5.6 Further feeding considerations 

5.6.1 Changing of media should be done every 48-72 hours. Refer to the 
changing media SOP. 
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Chapter 4 

 

 

THEORETICAL AND EXPERIMENTAL DETERMINATION OF NITRIC 

OXIDE CONSUMPTION BY RED BLOOD CELLS  
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4.1  Abstract 

 A major determinant of NO bioavailability in the SMCs is the rate of NO 

consumption by the RBCs and determining any reaction limitations.  To address this 

concern, we have measured the rate of NO consumption utilizing a NO gas source 

flowing above an RBC solution at a specified hematocrit (Hct).  The methodology 

incorporated allows for investigation at physiological Hct.  The consumption rate 

constant of NO by RBCs (kbl) was estimated both theoretically and experimentally as a 

function of surface area (S), partition coefficient (λ), volumetric gas flow (Q) and NO 

diffusivity in the solution DNO.  We found that kbl in porcine RBCs at 25 ºC and 45% Hct 

was 3500 ± 700 s-1 with a membrane permeability (Pm) of 1.5 cm·s-1.  A nonlinear 

dependence of kbl on Hct was noted suggesting a predominant role for extracellular 

diffusion as the limiting factor for the reaction between NO and RBCs.   

4.2  Introduction 

Nitric Oxide (NO) is an important signal transduction molecule with estimated 

physiological concentrations to be in the nanomolar range.  NO is known to have a short 

half-life in vivo, and can be degraded by a number of reactions.  However, its first order 

reactions with superoxide and heme containing proteins such as hemoglobin (Hb), will 

determine its fate in the vasculature [1].  

NO is active in a number of physiological processes including the regulation of 

the vascular smooth muscle tone.  In a typical blood vessel, NO produced by the ECs 

rapidly migrate towards the smooth muscle cells (SMCs) causing vessel relaxation.  

Simultaneously, NO diffuses inwards of the vessel and reacts with red blood cells (RBCs) 
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containing high concentrations of NO scavengers such as oxy and deoxy Hb.  Due to high 

in vitro reactivity rate constants of NO with Hb, it is uncertain as to how much of the 

endothelium derived NO reaches the smooth muscles to maintain physiologically relevant 

concentrations needed to induce vasodilation [2, 3].  

Several theoretical and experimental studies have been made to address this 

paradox [4-8].  Initial theoretical models only considered transport of free NO and 

ignored preservation of NO bioactivity by other compounds made by NO such as 

dinitrogen trioxide (N2O3), nitrite anions ( −
2NO ) and nitrosothiols (RSNO).  Initial 

simulations showed that physiological concentrations of Hb caused rapid scavenging of 

NO and challenged the feasibility of NO being the endothelium derived relaxing factor 

(EDRF) [5].  Theoretical models included a cell free layer next to the vessel wall, 

indicating a reason how NO might be able to diffuse through the smooth muscle escaping 

scavenging by RBCs [9].  

It is also proposed that encapsulated Hb within the membranes of RBCs can slow 

the reaction of NO and Hb as compared to NO reacting with free Hb due to a membrane 

barrier.  The diffusion limitations across the RBC membrane were investigated as 

reasoning for NO to escape scavenging.  In one study, NO was compared to O2, given 

they are both small diatomic molecules and have similar diffusivities across RBCs.  It 

was observed there was a significant diffusion layer surrounding the RBC providing a 

resistance to O2 uptake.  This diffusion layer comes into play because as O2 gets 

consumed by the RBC, the region surrounding it rapidly depletes in O2 content faster 

than the rate of replenishment by diffusion or stirring [9, 10].  Many believe that this 

could be what happens with respect to NO. 
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Other groups have measured the consumption of NO in a suspension of RBCs.  It 

was noted that the half-life of NO is inversely proportional to the concentration of RBCs, 

independent of oxyHb concentration in the RBCs, and that the disappearance of NO is 

first order in terms of NO concentration and first order in terms of RBC concentration.  It 

was concluded that extracellular diffusion resistance inhibits NO consumption by the 

RBCs [11].  However, it was considered that the resistance remains the same independent 

of hematocrit (Hct). 

Competition experiments have also been utilized to examine limitations of NO 

uptake by the RBCs.  The purpose of this test is to differentiate extracellular diffusion 

limitation from transmembrane or intracellular resistance.  If extracellular diffusion 

resistance is negligible, then the measured effective reaction rate constant, KRBC, would 

remain invariant of the Hct or the extracellular free Hb concentration.  Previous results 

showed that the KRBC approaches a constant only when the Hct was greater than 10%, 

suggesting that at higher Hct, the extracellular diffusion resistance is negligible [12].  

However, even at higher Hct, it was observed that NO consumption by RBCs is still 500-

1000 times slower than that by Hb.  The conclusion was that this was due to intrinsic 

RBC factors such as transmembrane diffusion limitations or intracellular mechanisms.  

Subsequently, a model was designed that detailed and took into account internal, external 

and membrane diffusion limitations [13].  The model was fitted to experimental data to 

estimate membrane permeability, which was found to be 2000 times lower as compared 

to conventional values [1, 6].  Intracellular diffusion was dismissed as no change in NO 

consumption was observed following a reduction in intracellular Hb concentration.  Other 

competition experimental data indicate that the main resistance to NO uptake by RBCs is 
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not transmembrane resistance; rather it is extracellular diffusion limitation in the 

unstirred layer surrounding each RBC [14].  Low membrane permeability was the reason 

for these observations [11].  Other groups utlized pretreated RBCs in their competition 

experiments [12, 15].  NO uptake by RBCs increased and decreased upon alteration of 

the band 3 which binds to the cytoskeleton.  It was noted that metHb and denatured Hb 

binding to the RBC membrane or cytoskeleton affected NO uptake by the RBCs.  

Moreover, such alterations in NO uptake by RBCs were found to correlate with the 

vasodilation of isolated blood vessels.  It was then concluded that the RBC membrane 

and cytoskeleton associated NO inert proteins provide a barrier for NO diffusion into the 

RBCs [15].  

Analysis of Hb-vesicles (HbVs) with different particle sizes using stopped-flow 

spectrophotometry was also used in investigating NO uptake by RBCs [41].  In this 

approach, the notion that the lipid membrane affected NO uptake by the Hb vesicles was 

dismissed since values suggest that the apparent NO binding rate constant of HbV at low 

intracellular Hb concentration (1g/dl) was similar to that of molecular Hb (2.6×107 M-1s-

1) [16]. When the intracellular Hb concentrations were raised, it was observed that the 

NO binding rate constants fell (0.9×107 M-1s-1), which further decrease to 0.5×107 M-1s-1 

when enlarging the particle diameter from 265 to 452 nm.  With the use of diffusion 

simulations and elementary binding reactions, it was concluded that an intracellular 

diffusion barrier is the predominant obstacle to NO binding with Hb [16].  In a later 

study, the effects of HbVs perfused through narrow gas permeable tubes were examined 

[17].  Four kinds of Hb containing solutions (purified Hb, polymerized bovine Hb 

(PolyBHb), HbVs [279 nm], and RBCs) were perfused through artificial narrow tubes of 
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25 µm inner diameter at Hb concentration of 10 g/dl, at 1 mm·s-1.  NO reactivity showed 

that NO binding with deoxygenated Hb and PolyBHb in the tube was faster than those 

with HbV and RBCs, which showed almost identical binding rates.  It was concluded that 

lateral diffusivity of Hb & PolyBHb lead to high consumption of NO as compared to HbV 

and RBCs [17].  

Recent experimental work in a novel bioreactor tried to ascertain extracellular 

diffusion and permeability effects on NO and RBC interactions [18].  The bioreactor had 

then RBC solutions of 5% & 45% Hct suspended in ice cold buffer and were kept 

constantly stirred.  A headspace for the solutions was kept, which maintained controlled 

NO concentrations, along with the required inlets and outlets. Samples were collected at 

regular intervals and analyzed for NO oxidation derivatives.  For a physiological Hct of 

45%, a reaction rate constant of 3.17 × 105 M-1s-1 was utilized, which is comparable to 

others groups [11, 19, 20].  However, this was obtained with a low Pm of 0.0415-0.4 

cm·s-1, which suggests that Pm is a critical factor prohibiting NO uptake by RBCs. 

Mathematical models can also be implemented in examining NO reactivity with 

RBCs.  One model was developed with the assumption of a spherical geometry for the 

RBC [20]. The RBC model included an intracellular region where Hb was encapsulated, 

a membrane region, and an extracellular plasma layer.  The purpose of this model was to 

provide a means to study analytically extracellular, intracellular and membrane limited 

diffusion of NO into the RBCs. According to this model, NO had to cross both the 

extracellular region, and the membrane to enter the intracellular region where it could 

then bind with Hb.  This model successfully replicated results from competition 

experiments by taking a high membrane permeability (Pm = 40 cm·s-1), and an oxy Hb 
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binding constant at 250C (Koxyhb = 106 µM-1s-1) [13].  Simulations showed, at their chosen 

Pm, membrane resistance had little contribution.  The major resistance to NO uptake was 

through extracellular diffusion.  The reported NO consumption rate was 6.5 × 103 s-1 on a 

per blood volume basis of 0.7 µM-1s-1 and on a per total heme concentration basis [20].  

On the whole, parameter values as well as a final conclusion regarding what 

actually prevents NO uptake by the RBCs has yet to be elucidated.  This information 

would be essential in understanding more about NOs role as a vasodilator.  Moreover, 

this information would be particularly useful in designing extracellular Hb-based oxygen 

carriers (HbOCs) which may be used as an alternative for blood transfusion.  The benefits 

of such carriers are abundant, since the absence of antigens can help compatibility across 

different blood groups.  In addition, purely artificially manufactured HbOCs can ensure 

good quality as well as decrease the transfection of diseases.  However, the hypertensive 

effects seen after the administration of HBOCs preclude their more common usage [21, 

22, 23, 24, 25, 26, 27].  Improvements over this are the HbVs or liposome encapsulated 

Hb [16].   

We have attempted to study NO consumption by RBCs by first experimentally 

estimating NO consumption rates by RBCs at physiological Hct.  Measurements obtained 

are of consumption of gaseous NO flowing over a buffer with a known amount of RBCs 

flowing through a chamber.  In addition to obtaining a consumption rate, experimental 

work would give insight into the limiting factor of NO consumption by RBCs.  These 

results have been verified against a previously established mathematical model [20].   
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4.3  Methods 

Flow chamber design.  Prior to experimentation, mathematical modeling was 

done to provide the design parameters of the chamber.  Three important characteristics 

were considered in the model:  convection, diffusion, and the reaction rate of NO with 

RBCs.  Analytical and finite element methods (FEM) were used to model the system.   

 

Figure 4.1 – Flow chamber schematic. 

Analytical method.  As shown in Figure 4.1, the flow chamber has several 

characteristics that play an important role in the analysis.  In the upper part of the 

chamber there is convection of NO gas at a specific velocity (v).  When the NO gas 

comes in contact with the RBC solution below it diffuses at a flux (J).  The diffusion area 

(S) is determined by the length (L) and width (W).  The height (H) corresponds to the 

height of the gaseous phase.  It is important to utilize a low value for H in the chamber 

design to minimize gas phase resistance in NO transport.  The assumptions used for the 

analytical approach were:  plug flow in the gas region, negligible gas phase resistance, 

homogenous Hct in the buffer solution, and abundance of Hb.  Equation 3.1 shows the 

mass balance equations used.   
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⋅

+
      (Equation 3.1) 

FEM analysis.  FEM analysis was performed using FEMLAB-COMSOL, a 

modeling software allowing the simulation of physical processes defined by partial 

differential equations.  FEM was used to predict how NO concentrations varied in the 

flow chamber and to test model assumptions derived from the analytical solution.  A 2-D 

experimental chamber was defined in the software with the specifications obtained from 

the analytical solution.  2-D equations were used in the model to describe convection, 

diffusion and reaction.  The assumption for the FEMLAB simulations was homogenous 

Hct.   

Flow chamber preparation and data acquisition.  Figure 4.2 shows a schematic of 

the experimental flow chamber design used in this study.  The chamber allows for 

gaseous NO to flow through the top of the chamber, allowing direct contact with the RBC 

solution with a known Hct flowing at the bottom.  The gaseous NO has a concentration of 

45 ppm and was supplied through one of the sides of the chamber at a constant and 

controlled volumetric flow rate.  Once the NO enters the chamber, it reacts with the 

RBCs via diffusion.  The pressure inside the chamber is kept at atmospheric pressure 

allowing flow from one side to the other without significant resistance.  The 

concentration of the NO gas is measured at the exit of the flow chamber using a Nitric 

Oxide Analyzer (NOA) (GE; Boulder, CO).  This instrument is a highly sensitive 

detector for measuring NO.  This system allows measurement of NO consumption by 

RBC at high and physiological Hct.  The NOA is connected to a computer allowing 
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collection and processing of data acquired.  For each experiment, different Hct were 

prepared (15%, 30%, 40%, 45%, 50%, 55%, and 60%).  The exiting NO gas 

concentration was examined for each run.    

In addition, the RBC solution flowing at the bottom of the flow chamber was 

analyzed to ensure that the solution maintained laminar flow.  Calculations of the 

Reynolds number in both the tubing of the system as well as the flow chamber itself were 

performed.  The Reynolds numbers were found to be 157 and 24.5 for the tubing and 

chamber respectively.  It was noted that both of these values were under 2100 therefore 

ensuring that the solution flowing through the system was laminar. 

 

Figure 4.2 – Schematic of experimental flow chamber design. 

Blood collection and separation.  Experimental studies incorporated the use of 

porcine blood.  500 mL of blood was collected in a container with 50 mL of heparin 

(Sigma-Aldrich; St. Louis, MO) in a buffer solution.  The sample was then transferred to 
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50 mL conical tubes and centrifuged at 800 g for 10 minutes.  The supernatant containing 

the plasma and buffy coat were removed.  The remaining RBCs were resuspended and 

washed three times with a buffer solution containing 20 mM Hepes (Sigma-Aldrich; St. 

Louis, MO), 140 mM NaCl (Sigma-Aldrich; St. Louis, MO), and 5 mM glucose 

(Invitrogen; Carlsbad, CA) with a pH of 7.4 and 295 mOsm.  After each wash, the cells 

were centrifuged at the aforementioned condition.  The remaining sample was diluted 

with buffer solution to obtain the desired Hct and maintained at 25 ºC.   

Hb measurement.  Before and after each experimental run, 10 mL of blood was 

separated and centrifuged for 15 min at 800 g.  1 mL of the plasma was removed and 

analyzed for free Hb using a spectrophotometer.  This measurement is important to 

ensure that NO consumption is by RBCs and not by free Hb.  The spectrophotometer 

measures concentrations of metHb, deoxyHb and oxyHb based on absorbances at their 

respective wavelengths [15].   

4.4  Results 

FEM model.  The chamber defined in FEMLAB required implementing a very 

fine mesh close to the gas-liquid interface to be able to capture the steep gradient in the 

NO concentration profile as most of the NO is consumed in the first few µm of the liquid 

phase.  According to the FEMLAB results, once NO is in contact with the RBC solution, 

it only has to travel several microns before the NO starts to react.  FEMLAB was also 

utilized to validate the equations derived from the analytical method.  Graphical solutions 

from both analyzing methods were superimposed.  The graph from the analytical method 

was obtained by creating a continuous graph that showed the ratio of Cout/Cin with respect 
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to NO reaction rates with the RBCs (kbl s-1) by increasing the value of kbl from 500-6000 

using Equation 3.2.   

( )Dk
V

Sλ

inout

bl
NOeCC

⋅
⋅−

⋅=        (Equation 3.2) 

The graphical image from FEMLAB was obtained by performing one simulation at a 

time similarly by increasing kbl from 500-6000.  Figure 4.3 displays the superimposed 

image for both ratio graphs.  Both models showed very similar trends suggesting 

experimental analysis should give an approximation to these theoretical yields. 

 

Figure 4.3 – FEMLAB and analytical solution comparison. 

Experimental results.  Experimental results were compared to a previously 

developed mathematical model which also predicted kbl as a function of Hct [20].  The 

model, however, differed to the experimental conditions.  The model was developed to 

predict values at 37 ºC and extracellular Hb was not taken into consideration.  

Experimental conditions were actually performed at 25 ºC and extracellular Hb was 
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accounted for, therefore the model was modified to incorporate these changes.  The 

change in temperature conditions changed the diffusivity constant of NO in the buffer 

solution from 3.3 x 10-5 cm2s-1 at 37 ºC to 2.21 x 10-5 cm2s-1 at 25 ºC [28].  Extracellular 

Hb was taken into consideration by evaluating how much was present before and after 

each experimental run.  It was noted that at 60% Hct, the highest Hct tested, extracellular 

Hb was found to be 35 ± 5 µM.  In order to account for extracellular Hb at each Hct 

solution, Equation 3.3 was assumed. 

( ) 25μ5
Hct1

HctC plasmaHb, ⋅
−

=       (Equation 3.3) 

 Another factor that had to be modified was the reaction rate between NO and 

oxyHb.  The previous model used a koxy of 80 µM-1s-1, while experimental data 

performed with the flow chamber exhibited different values [20].  The same procedure 

used to measure the reaction rate of NO with RBCs within the flow chamber was utilized 

to determine koxy using oxyHb in buffer.  According to experimental data, koxy was 

calculated to be approximately 25 µM-1s-1.  Although this value is lower than previously 

reported values, this value was used in the model in order to maintain the same conditions 

for the measurements of NO uptake by RBCs. 
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Figure 4.4 – Previous model predictions for the observed first order reaction rate 
constant of NO in blood (37 ºC, 45% Hct), kbl [20] 

 
 Figure 4.4 exhibits the previous model’s predictions on how kbl behaves with 

respect to Hct and Pm.  At 45% Hct, predictions for kbl vary between 7.5x102 and 6.5x103 

s-1 when Pm changes between 0.04 and 40 cm·s-1 [20].  Figure 4.5 however, shows this 

same relationship incorporating the different temperature and koxy values, inclusion of 

extracellular Hb, as well as experimental data observed from flow chamber experiments. 
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Figure 4.5 – Updated model predictions of kbl at 25 ºC including experimental data. 

 According to the experimental observations, at low Hct it is not distinguishable 

whether the values follow the low or high Pm values.  However, once the Hct reaches 

physiological levels, it is noted that the extracellular space between the RBCs diminishes 

and allows the NO to diffuse faster to the RBCs, increasing the reaction rate.  A trendline 

was added by minimizing the SSE of the experimental values.  This fitting suggests an 

experimental Pm value of approximately 1.5 cm·s-1 and a reaction rate constant kbl of 

3500 ± 700 s-1. 

4.5  Discussion 

 The estimated kbl for porcine RBCs at 25 ºC and 45% Hct was found to be 

approximately 3500 s-1.  In addition, the calculated Pm was found to be 1.5 cm/s.  It has 

been previously discussed that the actual mechanism of how NO is able to escape being 

scavenged by RBCs has yet to be established.  Therefore, the value of Pm was determined 

in order to differentiate whether NO consumption is limited by extracellular diffusion or 
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membrane resistance.  In this study, extracellular diffusion was shown to play a 

predominant role in the limiting of NO consumption due to several factors.  As 

previously mentioned, if extracellular diffusion resistance is negligible and would 

ultimately not play a role in limiting NO uptake, then the effective reaction rate constant, 

kbl, would remain invariant of the Hct values.  However, our experimental data clearly 

exhibits an apparent nonlinear dependence of kbl and Hct, therefore suggesting the 

conclusion that extracellular diffusion is indeed the reason for limiting NO uptake by 

RBCs.   

In addition, Pm values that vary between 1-40 cm·s-1 also exhibit this nonlinear 

behavior.  Our experimental data yielded a value of 1.5 cm·s-1 which falls in this range 

and further corroborates our conclusion.  Concluding that extracellular diffusion as the 

limiting mechanism also aids in explaining how NO’s reaction rate with RBCs is similar 

to oxygen’s reaction rate with Hb which is noted to be limited by extracellular diffusion 

and not by RBCs membrane [10].  However, it was noted that Pm values smaller than 1 

cm·s-1 exhibited a somewhat linear relationship.  This type of behavior on the other hand 

suggests membrane resistance as the limiting factor rather than extracellular diffusion.  

Therefore, the value of Pm is a critical variable needed to determine the actual limiting 

factor of NO uptake by RBCs.   

 Summary.  This study was successful in measuring NO consumption by RBCs to 

predict both the reaction rates (kbl) and Pm value at physiological Hct.  With these 

information, we were also able to distinguish a means of how NO is able to escape 

scavenging by the RBCs.  Prior experimental studies measuring NO consumption above 

20% Hct had not been properly performed.  The experimental setup for these groups 
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measured NO consumption at low Hct incorporating the use of NO donors and NO 

sensitive electrodes with measurements taken after different time intervals.  Using this 

prior technique, measurements at higher or physiological Hct could not be possible.  This 

is because the reaction between NO with RBCs occurs within milliseconds, therefore 

measurements in time intervals would not capture the reaction.  A proper measuring 

technique at physiological Hct must be able to capture real-time information. 

 The experimental model incorporated in this study differs from previous studies 

in that NO gas is the source of NO used as opposed to NO donors.  This method is 

advantageous in that the NO consumed within the system is limited only by the surface 

area of the liquid-gas interface.  In addition, there is a reduced NO concentration 

dissolved in the solution due to the low solubility of NO (λ=0.041 

mol(NOliq)/mol(NOgas)).  These advantages allowed measurements at physiological Hct 

possible.  These newly determined values for NO consumption and Pm can be further 

combined with derived NO production rates to yield information about the NO paradox 

and bioavailability of NO within the SMCs. 
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Appendix 4.1 

Mass balance of the gaseous NO through the chamber yields: 
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where CNO is the NO concentration, VNO is the volumetric flow, J is the flux of NO 

across the RBC solution-gas interface, A is the gas phase cross-sectional area, W is the 

width, and L is the length. 

Diffusion of NO gas into the RBC buffer solution with known Hct yields: 

ΔyΔAkC
dy
dCD

dt
dCD

dt
dCΔyA 1bl

1

Δyyy

1
NO

1 ⋅⋅⋅−⋅+⋅−=







⋅

+

 

bl
1
NO2

12

NO

1
NO kC

dy
CdD

dt
dC

⋅−⋅=







 

At steady state: 
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(Parameters: D is the diffusivity constant and kbl as the NO consumption rate) 

Solving the steady state Eq. A.4.2: 
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By using Eq. A.4.4, a value for kbl was calculated using the initial [NO] (Cin) and the 

output NO measured by the NOA (Cout).  These values were used to predict Pm [20].  Eq. 

A.4.3 was utilized to perform preliminary simulations to predict the outflow 

concentration of NO for a kbl value of 6000 s-1 [19].   

Parameter Value Units Description 

Hct 15%-60% - Hematocrit 

DNO 2.21 x 10-5 cm2s-1 Diffusivity constant of NO in RBC solution 

S 100 cm2 Area exposed to NO gas 

W 2.5 cm Chamber width 

L 40 cm Chamber length 

H 0.5 cm Gas phase height 

v 2 cm/s NO velocity 

λ 0.04 - Partition coefficient 

V 0.3 mL/min NO volumetric flow rate 

 

Table A.4.1 – Chamber parameters and values 
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 Nitric oxide (NO) has been recognized for its importance in many physiological 

arenas including playing a major role in the regulation of vascular tone.  Upon realization 

that endothelial derived NO is responsible for inducing vasodilation in the smooth muscle 

cells (SMCs) of the vasculature, many have studied its production and consumption 

properties.  However, the phenomena known as the “NO paradox,” questions NO’s role 

as a vasodilator.  Due to NO’s known fast reaction with heme containing proteins such as 

hemoglobin (Hb), and given that red blood cells (RBCs) containing Hb are traveling 

within close proximity to the site of NO production, it is unclear how endothelial derived 

NO escapes scavenging by the RBCs to diffuse to the adjacent SMCs to induce 

vasodilation.  To determine both NO bioavailability in the SMCs and NO levels needed 

to induce vasodilation, information is needed about NO production and consumption 

within the vasculature.  The balance between these rates will determine NO’s ability to 

cause vasodilation  The work performed for this dissertation was aimed at understanding 

this balance. 

 In an attempt to address the questions arising from the NO paradox, theoretical 

and experimental studies were performed to yield information about NO production and 

NO consumption rates within the vasculature.  Cell culture studies utilizing Human 

Umbilical Vein Endothelial Cells (HUVECs) and incorporating the use of a NO-sensitive 

fluorescent dye, 4-amino-5-methylamino-2’,7’-difluorescein diacetate (DAF-FM da), 

were performed to determine NO production rates.  Solution experiments, without the 

presence of cells, were initially performed for the calibration of the fluorescent dye.  

These experimental results were verified against a detailed mathematical model that 
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analyzed the kinetic behavior between DAF-FM and NO.  Once a calibration protocol for 

the fluorescent dye was developed for both solution and cellular experiments, production 

rates and NO concentration levels were determined upon agonist stimulation.  It was 

determined that at maximum agonist stimulation, the NO production rate was found to be 

0.418 ± 0.18 pmol/cm2s.  Assuming an endothelial layer thickness of 4 µm, this is 

equivalent to 1.05 µM/s.  This production rate value was noted to be within the same 

range as was previously observed by [1].  This group also utilized HUVECs and detected 

NO using chemiluminescence 

 The second major parameter in addressing the “NO paradox” is NO consumption 

by RBCs.  To address this concern, theoretical and experimental studies were performed 

by measuring the rate of NO consumption utilizing a NO gas source flowing above a 

porcine RBC solution at a specified hematocrit (Hct).  The methodology incorporated for 

this study allowed for investigation and measurements at physiological Hct.  The 

consumption rate constant of NO by RBCs (kbl) was estimated both theoretically and 

experimentally as a function of surface area (S), partition coefficient (λ), volumetric gas 

flow (Q) and NO diffusivity in the solution DNO.  It was found that kbl in porcine RBCs at 

25 ºC and 45% Hct was 3500 ± 700 s-1 with a membrane permeability (Pm) of 1.5 cm·s-1.  

A previous study showed a range of similar reaction rate values that were predicted for 

Pm values between 0.4 – 40 cm·s-1 at physiological Hct [2].  A nonlinear dependence of 

kbl on Hct as well as a nonlinear relationship of Pm was experimentally observed 

suggesting a predominant role for extracellular diffusion as the limiting factor for the 

reaction between NO and RBCs.   
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 Once both NO production and consumption rates were determined 

experimentally, a mathematical model was utilized to determine NO bioavailability in the 

SMCs.  A previously developed arteriolar model was utilized to yield this information 

[3].  This theoretical model incorporated a series of concentric cylinders to mimic the 

anatomy of a vessel.  RBCs, at chosen Hct, flow within the lumen of the vessel.  A RBC-

free layer was integrated into the model between the flowing blood and the inner layer of 

the vessel composed of endothelial cells (ECs).  Adjacent to the ECs is a layer of SMCs.  

It is assumed NO is transported in the radial direction into either the lumen or SMC 

region.  Axial and angular NO transport was neglected with the assumption that there is 

symmetry in NO production [3].  Upon the addition of the recently acquired experimental 

NO production and consumption rates, NO profiles were generated to yield NO 

concentration levels within the SMCs.  Several NO production rates varying between 0.1 

– 1.0 pmol/cm2s were modeled while also varying the NO consumption rate between 

2500 – 6500 s-1 at 45% Hct.   

 

Figure 5.1 – NO concentration levels available in the SMCs assuming an endothelial 
derived NO production rate of 1.0 pmol/cm2s and an NO consumption rate of 3500 s-1. 

 Figure 5.1 shows simulation results of SMC [NO] levels utilizing a NO 

production rate of 1.0 pmol/cm2s at a NO consumption rate of 3500 s-1.  It is noted that at 
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this combination of NO production and consumption rate, a peak NO concentration that 

is available in the SMCs is approximately 36 nM.  Similar simulations were conducted 

with the varying NO production and consumption rate combinations, and the NO 

concentration levels within the SMCs were noted.  Figure 5.2 represents the simulation 

data acquired for the different NO production rates while maintaining a constant 

consumption rate of 3500 s-1.  It is noted that there is a linear relationship between NO 

production rate and NO concentration available in the SMCs.  For the average NO 

production rate achieved at maximum agonist stimulation (0.418 ± 0.18 pmol/cm2s), a 

corresponding SMCs NO concentration level obtained is 15.1 nM (using a kbl of 3500 s-

1).  Similar linear relationships were observed when evaluating the varying NO 

production rates with each constant NO consumption rate analyzed.   
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Figure 5.2 – Linear relationship between varying NO production rates and a SMCs NO 
concentration levels simulated by theoretical arteriole model assuming a constant NO 

consumption rate of 3500 s-1.  
 

 Figure 5.3 summarizes the simulation data obtained for all combinations of NO 

production and consumption rates.  It is noted the NO production rate value has more of 

an effect on the available [NO] within the SMCs.  As the NO production rate increases, 

there is a noticeable increase in SMCs [NO].  Interestingly, varying the NO consumption 

rates had very little effect on the overall SMC [NO].  Therefore it is concluded that the 

NO production rate plays a significant role in the amount of NO available in the SMCs.  

This can aid in explaining that when there is damage to the lining of the vasculature and 

more specifically to the ECs and site of NO production, the ability to regulate vascular 

tone is dramatically impaired.  Further simulations were performed (not shown) to 

examine when the concentration of NO within the SMCs would be zero.  This situation 
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was noted to occur at NO production rates less than 0.001 pmol/cm2s.  Therefore, this 

value was noted to be the threshold value.  In order to observe physiological relevant 

[NO] levels within the SMCs, NO production rates had to be greater than this value. 

 
Figure 5.3 – Summarized data of simulations performed for varying combinations of NO 

production and consumption rates to evaluate SMC [NO] 
 

Conclusion.  In conclusion, the experimental and theoretical data achieved in this 

dissertation provided significant information in answering the “NO paradox” by 

accomplishing the aforementioned objectives.  Combining the values of NO production 

rates and NO consumption rates determined, suggests that endothelial derived NO is in 

fact able to escape scavenging by RBCs where it then diffuses to the adjacent SMCs to 

induce vasodilation.  The actual amount of bioavailable NO in the SMCs depends linearly 

on the endothelial NO production rate obtained.  However, it has been previously 

suggested that the amount of NO required for the activation of the enzyme responsible for 

inducing vasodilation is within the range of (1 – 250 nM) [4].  Our predicted SMC [NO] 

values are within this range.  Further experimental work can be performed to examine 
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production rates obtained upon stimulation at submaximal agonist levels.  In addition, 

shear stress induced NO production could be evaluated.  Also, NO consumption studies 

can be performed using human blood to see how reaction rates differ between porcine 

blood.  However, in summary, this work provides proper methodologies on evaluating 

NO bioavailability in the SMCs by determining the balance between NO production and 

NO consumption in the vasculature, which can be utilized in further studies.   
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