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and non-virtualized environments. By doing so, we can provide improved insight on the 

virtualization overhead of different scientific applications being applied to different input 

problem sizes. For tightly coupled applications, we distinguish between computation and 

I/O time. There is little disk I/O needed for the jobs we run, so we do not consider it 

necessary to separate it from I/O due to inter-process communication via network.  

III.5.1 Terminology 

We refer to the ratio of virtualized execution time to bare metal execution time as the 

virtualization penalty. The extra CPU time that the hypervisor requires for I/O operations 

is referred to as virtualization overhead. 

III.5.2 Performance Analysis of Image Processing with FSL 

One caveat with the image processing applications used is that their execution times vary 

due to random components in the algorithms. MELODIC executions vary more because 

the main algorithm is iterated until converging and the number of steps required to 

converge depends on a random initial variable. For example, we performed 20 executions 

of the same data set on the same physical machine and observed an 8% difference in 

execution time between the fastest and slowest execution. FAST times varied less than 2%, 

since the heuristics used are guaranteed to converge in only “a few iterations” [62]. The 

data sets used are discussed in Section III.4.1. 
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Image Segmentation 

Since there is no communication of data involved when executing separate studies in 

parallel, we expected the bare metal and virtualized performance of Xen to be roughly the 

same. Surprisingly, the virtualized executions were 10-15% faster. We performed profiled 

executions using Oprofile to understand why. The execution profiles were similar for all 

data sets, so in describing this phenomenon, we focus on the first data set from MCH. In 

Figure 2, we show the execution time of the 7 most time-consuming functions (labeled 

A-E for brevity) in the VM (using circles) and BM (using squares) configurations. As can 

be seen, function A, which corresponds to the convolution function, has a disparity 

between the BM and VM executions. Furthermore, running the program through the GNU 

debugger (gdb) revealed that the function is only slowed down in the BM when processing 

about the kth direction in the i,j,k space. This function is called 30 times and consists of 

193 million additions and multiplications and 6.03 million assignments of a 3 dimensional 

local variable per call when processing a 256x256x190 image and using a 40x40x32 

convolution kernel. According to the profiler, memory operations consumed the bulk of 

the time, suggesting that virtualization-related cache optimization is the reason for the 

speedup. This coincides with a similar observation made in [36] when the authors ran 

BLAST [37] jobs, in which they suggested that VM double caching caused the virtualized 

execution to be faster. 
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Figure 2. Execution times of the 7 most time-consuming functions of FAST. 

Image Registration 

Comparing the VM and BM performance of the MELODIC image registration 

experiments was not straightforward due to the aforementioned randomness in the 

algorithm. Specifically, The ICA algorithm does not terminate until it converges, and the 

number of steps required until it converges depends on the random initial value. We 

observed anywhere from 63 to 136 steps before converging for identical executions, hence 

there was some variation in the resulting execution times.  

While this variation makes it difficult to measure the effect of virtualization, the 

results clearly showed that the VM executions were slightly slower when simultaneously 

processing 2 data sets per node. When only one data set at a time was processed on each 

node, the average overhead was negligible. When all data sets were submitted at once (but 
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only allowing one CPU per job), the overall VM slowdown was 13%, 10%, and 13% for 

1-, 2-, and 4-node executions, respectively. 

Figure 3 compares the completion times of each data set from the MCH repository for 

the VM and BM experiments for single-node, single process (solo) and 4-node, 

2-process-per-node (4n) executions. The relationship between the VM and BM executions 

is always the same, with the BM finishing slightly faster in the latter scenario. 

 

Figure 3. Execution time of MELODIC when run solo and when using 4 nodes. 
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III.5.3 Virtualization’s Impact on Tightly Coupled Applications 

We now discuss the virtualization impact on tightly coupled applications. Since the impact 

of virtualization on these applications varies so much depending on the characteristics of 

the job, it is more complex to describe, and thus we dedicate a relatively large amount of 

space to discussing it. 

Compcomm 

We begin the discussion on tightly coupled application performance with the compcomm 

benchmark, whose algorithm was shown in Figure 1. To gain insight on the relationship 

between computation ratio, message size, and virtualization overhead, we vary the number 

of computations per iteration and the message sizes. Computations per iteration values 

used are 25, 50, 100, and 200; Message size values used are 0.64, 1.28, 40, 8.75, 17.5, 35, 

70 and 140 kB. In Figure 4, we plot the virtualization penalty (vertical axis) for different 

MPI message sizes as the duration of the computation cycle (horizontal axis) is increased. 

We observe an inverse relationship between computation cycle length and virtualization 

penalty. The figure shows that the penalty tends towards unity as the length of compute 

iterations is increased. For message sizes below 8.5kB, the virtualized executions are 

actually slightly faster. We attribute this to reduced operating system noise in the VM 

nodes as we observed that idle bare metal nodes experience more than 15 times as many 

interrupts as idle vm-container nodes.  
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Looking at the relationship between message size and overhead (keeping computation 

duration constant), we see a significant increase in virtualization penalty as the message 

size is increased, especially when the computation cycle duration is less than 0.2 seconds, 

because the communication time is a significant portion of the execution time. Only the 

executions with 140 kB remained at over 2% overhead when the computation duration 

reaches 0.67 seconds. It is observed that 140kB is large compared to the message sizes 

used by the applications we experimented with. Hence, we can deduce that the 

virtualization overhead is minor for well balanced tightly coupled applications as long as 

the problem size is not small.  

       

Figure 4. Effect of increasing computation cycle duration on virtualization penalty. 
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NPB LU and LU-MZ Benchmarks 

We now look at how the relationship between computation ratio, message size, and 

virtualization overhead observed using Compcomm compares to that of actual applications 

for which communication requirements vary for each worker. Figure 5 shows the overall 

communication and computation times for 2-process-per-node LU-MZ executions with 

Class A (Figure 5a) and Class C (Figure 5b) for 1, 2, 4, and 8 nodes. The BM and VM 

times are shown in adjacent rectangles for each configuration. Since the performance 

penalty was below 6% for the 1-process-per-node executions, we do not show them. The 

times depicted in the figures were obtained from the timers built into the benchmarks. The 

communication times include physical communication as well as virtualization overhead. 

Comparing the figures, we can see that using a smaller input results in a larger 

performance penalty on multi-node executions compared to the larger input.  

Using Xen’s command line tools revealed that virtualization overhead was less than 2% 

larger for Class A, which does not explain the larger difference in performance penalty. 

We analyzed the communication pattern of the execution using the Paraver trace analysis 

tool [70], which revealed that when running Class A, the average duration of the 

computation cycles was only 72 milliseconds, which implies that there was high 

communication frequency. For Class C (Figure 5b), the duration is 520 milliseconds, 

resulting in a much smaller virtualization penalty. This coincides with the observations 

from the compcomm experiments, where we found that the virtualization penalty increases 
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as computation rate decreases. However, the largest virtualization penalty with compcomm 

was 35%, compared to 62% for LU-MZ. The other culprits are load imbalance and 

contention between the processors when accessing the network interface.  

 

(a) 

 

(b) 
Figure 5. Communication and computation times for LU-MZ (a) Class A and (b) Class C, 

using 2 processes per node. 
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Another observation is that the overall execution times with 8 node Class A 

executions are roughly equal for the VM and BM. This is because the (non-virtualized) 

computation ratio is only 53%. Since the CPU spends so much time idle, the virtualization 

overhead has a negligible effect on overall execution time.  

We repeated these experiments with the other coarse grained NPB CFD benchmarks 

(SP-MZ and BT-MZ), with similar observations. With 1 process per node, the 

virtualization penalty increased roughly linearly as a function of the parallelism and never 

surpassed 10%. With 2 processes per node, the pattern of the virtualization penalty was 

similar to LU-MZ. 

Next, we repeated the experiments with the original (fine-grained) LU, SP, and BT 

benchmarks. As expected, the virtualization penalty was greater since the fine-grained 

implementation performs more frequent message passing (e.g. between 0.6 and 0.7 

milliseconds between most messages for 8-node Class A runs, which is two orders of 

magnitude more frequent than with the MZ benchmark). Also, a larger amount of data is 

transferred during the execution; for example, a 4-processor execution of LU, Class A 

transfers a total of 122 megabytes of data with the fine-grained implementation but only 

34 megabytes with the coarse-grained implementation.  Looking back at Figure 2, we see 

that when the length of the computation cycles is below 100 milliseconds, quadrupling the 

message sizes results in a large virtualization penalty. Unlike the MZ benchmarks, the 

original benchmarks experienced significant overhead as can be seen in Figure 6 for both 
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the 1-process-per-node (6a) and the 2-process-per-node (6b) executions. Both figures 

show the virtualization penalty (i.e. execution time on the VM divided by execution time 

on bare metal) as the number of nodes is increased. Again, we observe that using the 

smaller input data results in more overhead. Again, the penalty is attenuated when the 

(bare metal) computation ratio drops below 60%, as can be seen in the 8-node, 1 

process-per-node Class A execution in Figure 6a. With 2 processes-per-node (Figure 6b), 

this occurs when the cluster is larger than 8 nodes, since the virtualization penalty stops 

increasing from 4 to 8 nodes. With 2 processes-per-node, virtualization causes additional 

latency multiplexing the network interface between the 2 processors, so the virtualization 

penalty is not attenuated despite the low computation ratios. Since the computation ratio is 

bigger with the larger problem sizes, the penalty monotonically increases with the number 

of nodes. 

Our results thus far have given an overview of the performance impact of 

virtualization. To estimate a job’s execution time, and to anticipate the maskability of its 

communication when it shares the CPU with other applications (assuming at least one is 

tightly coupled), we need to know its virtualization overhead. In Tables 2 and 3, we 

tabulate the virtualization overhead (in CPU percentage) for all the experiments carried 

out using 1-process-per-node and 2-processes-per-node executions, respectively.  
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(a) 

 
(b) 

Figure 6. Virtualization penalty for the original LU benchmark, running (a) 1- and (b) 
2- processes per node. 

Table 2. Percentage of CPU used for virtualization overhead running 1 process per VM 
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App (Input) 1 node 2 node 4 node 8 node 

LU-MZ (A) 

LU-MZ (B) 
LU-MZ (C) 
LU (A) 
LU (B) 
LU (C) 
WRF (jan00) 
WRF (75x4) 

0.7 
0.7 
0.8 
0.7 
0.7 
0.9 
0.9 
0.7 

3.2 
2.4 
2.0 
5.5 
4.5 
3.2 
5.1 
5.0 

6.6 
4.8 
3.0 
10.4 
10.7 
5.3 
7.0 
7.5 

6.1 
5.2 
2.9 
10.0 
8.2 
5.8 
8.5 
8.5 

 

Table 3. Percentage of CPU used for virtualization overhead running 2 processes per VM 
App (Input) 1 node 2 node 4 node 8 node 

LU-MZ (A) 

LU-MZ (B) 
LU-MZ (C) 
LU (A) 
LU (B) 
LU (C) 
WRF (jan00) 
WRF (75x4) 

0.7 
0.7 
0.7 
0.7 
0.8 
0.7 
0.6 
0.7 

4.8 
6.0 
3.0 
7.4 
9.5 
9.2 
5.5 
5.6 

4.3 
4.8 
3.0 
8.4 
11.4 
11.7 
6.8 
7.9 

4.0 
5.2 
2.9 
9.4 
7.3 
8.7 
8.7 
7.4 

III.6 Performance Analysis With Shared-CPU Executions 

III.6.1 Sharing CPU Among Loosely Coupled Jobs 

We ran multiple simultaneous serial executions of WRF and FAST to measure the 

execution time impact due to CPU sharing. We found no significant slowdown compared 

to running the jobs sequentially. With WRF, we ran up to 8 multiplexed serial instances of 

the jan00 domain, which takes 25 minutes to complete and uses 200 megabytes of RAM, 

and running simultaneously took roughly the same amount of time to finish all 8 as 

running sequentially. We ran a similar experiment with FAST to see if it would be affected 

more than WRF, since its more memory intensive, but we found that the makespan of 4 
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simultaneously-executed jobs was within 1% of the time it would take to run them 

sequentially, using the average FAST execution time as a basis. The relation for FAST can 

be seen in Figure 7, where we plot the completion time of all jobs as a function of the 

number of simultaneous jobs. A linear trend line is used to show that the relationship is 

roughly linear. As a result, we conclude that execution time prolongation due to CPU 

sharing for loosely coupled jobs can be accurately predicted as the product of the 

computation time and the inverse of the CPU allocation of the job. This model will work 

with a up to 8 jobs for WRF and up to 4 jobs for FAST. These are reasonable limits 

considering the memory requirements of each application. 

 

  

Figure 7. Effect of multiplexing up to 4 FAST jobs on one CPU on makespan. 
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III.6.2 Sharing CPU Among Tightly Coupled Jobs 

The execution time of shared-CPU tightly coupled jobs is harder to predict since a 

significant portion of their execution is spent performing I/O. We now study the 

shared-CPU behavior of the tightly coupled applications mentioned earlier, and compare 

our findings to the expected behavior described in Sections III.3.1 and III.3.2. We start 

with an observation that confirms that by collocating 2 parallel jobs and multiplexing the 

CPU, we reduce the makespan of the two jobs compared to running them sequentially, by 

virtue of communication masking, despite the virtualization penalty. 

We start by running two instances of the 2-task Compcomm parallel benchmark, 

described in Section III.4.2, on 2 physical machines. One physical machine hosts the 2 

master VMs and the other the 2 slave VMs. Each VM runs one parallel task. In each 

physical machine, both VMs multiplex the same processor. The non-multiplexed and 

multiplexed execution times, for different message sizes, are shown in Figure 8(a) and (b), 

respectively. Both figures show execution time (vertical axis) as a function of message 

size (horizontal axis). Three relations are plotted in each figure. The dark solid line shows 

the total communication time, including virtualization overhead. The lighter dashed line 

only shows the CPU time pertaining to the virtualization overhead. The light dotted line 

shows the wall clock time. In the multiplexed case, the latter is the makespan of the two 

jobs. Note that the difference between the total communication and virtualization 

overhead lines is the physical communication time. We find that the majority of the 
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physical communication time can be masked as long as the computation ratio is above 50% 

or so. Also, comparing the wall clock execution times of the two figures we can infer that 

the makespan when multiplexing the two jobs is faster than running them sequentially, 

especially if message sizes are large. For the final data point, the execution time increased 

significantly because the computation ratio dropped below 50%, hence less 

communications could be masked. 

Our initial expectation, under the assumption that messages can be transferred while 

collocated jobs are in the working state, was that the makespan would be roughly twice 

the application’s CPU time, plus the virtualization overhead, and a small penalty for 

context switching. In the case of this benchmark, context switch overhead is minor since 

the memory footprint is small. Looking at Figure 8, it can be seen that there is some 

additional overhead beyond the virtualization overhead. For example, when using a 

message size of 44 kB, the expected makespan under this assumption is 113.2 seconds, 

whereas the measured makespan is 117.2 seconds. Using Paraver, we found the additional 

overhead was due to jobs’ communication intervals occasionally overlapping, resulting in 

wasted CPU cycles. In other words, not all communications were masked by computations. 

This can be seen in Figure 9, where we plot a portion of the Paraver execution trace 

visualization. In the figure, we show the temporal execution pattern for several iterations 

of executions in the dedicated CPU (Figure 9a) and shared CPU (Figure 9b) cases. Each 

bar in the figure represents a worker; e.g. J(N,W) is the Wth worker of Job N. Black 
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sections represent states where the worker is running (i.e. requesting or using CPU), dark 

gray sections represent states where the worker is synchronizing (with another worker), 

and light gray sections represent when a worker is sending data. There is overlap in the 

second communication iteration shown in Figure 9b, resulting in idle CPU cycles. 

 
(a) 

 

(b) 

Figure 8. Overall I/O time, virtualization overhead, and makespan as a function of 
message size, with (a) a single Compcomm job and (b) 2 multiplexed Compcomm jobs. 
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The overlap of communications will affect the results of the performance model, since 

it is not possible to analytically determine when they will occur. However, we expect them 

to be rare, as they were for the experiment corresponding to Figure 9, with most tightly 

coupled jobs. Also, note that this would not be a problem when multiplexing a CPU-bound 

loosely coupled job with the tightly coupled job(s). Collocating these two kinds of jobs 

will help yield optimal utilization of the CPU in virtualized environments. In addition, 

since tightly coupled jobs execute at the rate of the worker with the least available CPU, it 

is possible for many physical machines to have underutilized CPU due to fragmentation. 

By collocating loosely coupled and tightly coupled tasks, this problem can be avoided as 

well. 

               

Figure 9. Execution trace of Compcomm. (a) dedicated CPU, (b) shared CPU. 
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CHAPTER IV 

EXECUTION TIME PREDICTION METHODOLOGY 

In this chapter, we discuss the performance prediction methodology to address two related 

problems: computation time prediction and scalability prediction. Computation time 

prediction refers to predicting how much CPU time an application requires to execute, 

given an input problem. Since we deal with shared-CPU environments, we also account 

for different CPU allocations. Scalability prediction refers to predicting how the execution 

time of an application will increase/decrease depending on the number and type of 

machines being used to run it. 

In both cases, we rely on statistical prediction models that use historical job execution 

data as training data to extrapolate for future executions. This approach fits our scenario 

best for two reasons. First, a provider of medical image processing services should know 

basic execution-related characteristics about these applications. This information can be 

obtained by carrying out experiments similar to those presented in the previous chapter. 

Second, many statistical prediction methods are computationally simple, which is a 

requirement for our job scheduling methodology described in the next chapter, since it will 

be necessary to quickly perform one or more execution time predictions in order to make 

real-time job scheduling decisions.  
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IV.1 Overview of the Prediction Methodology 

The methodology used can be described as a hybrid approach to execution time 

prediction, in the sense that the prediction model itself has no application- or 

domain-specific knowledge, but users may add this knowledge after determining the 

factors that affect performance. In other words, the model itself is oblivious to the 

application, but human knowledge about the application improves the model’s accuracy. 

Some existing approaches to performance prediction have general and/or specific 

knowledge about application execution included in the prediction paradigm itself. A 

possible problem with these approaches is that they can be difficult to deploy; for example, 

some of these tools require the application used to be compiled with special tracing 

libraries. Conversely, approaches that are entirely oblivious to the application generally 

suffer worse prediction accuracy [72]. As we will show, we do not try to tailor our model 

to any specific application. Instead, we use knowledge of the application and execution 

platform to improve the model. We now summarize our performance prediction 

methodology.  

Figure 10 depicts our multi-step, iterative performance modeling approach. The 

approach starts with Stage A (Application/Code/ Platform inspection), in which specific 

details about the application and/or execution platform are studied. The purpose of this 

step is to determine what parameters contribute to the execution time of the application. 

An example of a question that this step can answer is how the CPU of the execution 
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platform affects the execution time. The depth of knowledge required for this step depends 

on the application. For example, some applications are I/O-bound, and increasing the CPU 

clock speed will not provide any performance improvement. 

 

 

 

In Stage B, a mathematical model that relates execution time to other parameters, 

based on intuition and specific findings from Stage A, is devised. The main constraint in 

choosing a model is that it must be able to provide real-time execution time predictions in 

order to make fast scheduling decisions. The model is described in the next section.  

In Stage C, we perform executions under different conditions and/or with different 

runtime configurations. We define a runtime configuration as the number of nodes and 

processes per node used for any single execution on a particular system. When we refer to 

Figure 10. Overview of the performance prediction methodology.
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a data set or data series, we are referring to a collection of execution statistics for a single 

instance of all possible runtime configurations (e.g. the execution times for all runs 

performed at a particular time with 8, 16, 32, and 64 nodes).  

Each execution is profiled, i.e. the resources used for the execution are recorded. 

When all executions are finished, the acquired data is fed into the prediction model, which 

estimates the contribution of each parameter (Stage D). Based on these individual 

estimates, the total execution time is estimated for a target execution platform, and 

compared to the actual execution time. The iterations of the A-B-C-D cycle are repeated 

until an average prediction error of 15% or less is achieved. The time it takes to iterate 

through the cycle depends on the data being collected, but the tools were designed to 

provide fast results and use regular text files so that data can be easily added or removed 

using common text-processing tools.  

IV.2 Prediction Model Overview 

The model we use is implemented in a profiling tool, Aprof, described in [71], which 

was developed as part of the Latin American Grid partnership. In this section, we 

summarize the implementation of the model and how it was applied to our work. The 

model assumes that the execution time of an application can be expressed as the product 

of several contributors that affect a job’s execution time. It determines the magnitude of 

their contributions with respect to execution time. Some contributors either vary too much 
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between executions (e.g. the state of CPU registers) or they contribute a negligible amount 

to overall execution time, so the model relies on human intuition about the applications 

being run and the systems they are being run on, obtained in Stage A, to aid in its 

development. For example, the duration of an image processing job depends on the size of 

the input image(s) being processed, so image size should be a strong contributor to 

execution time. We find that using intuitive parameters, based on basic knowledge of the 

algorithm of a given application and the system(s) it runs on, yields predictions that are 

accurate enough for job scheduling. 

 The contribution parameters themselves may be polynomial equations of arbitrary 

length, which results in Equation (1), in which m is the number of parameters, mi is the 

maximum polynomial degree of the current parameter, aij is the coefficient contribution of 

the ith parameter, and ݖ is the ith parameter. Until now, we have had success with a 

simplified model in which the maximum polynomial degree of all parameters is equal to 

one (i.e. first-order polynomials).  

                   (1) 

Based on this assumption, the model attempts to determine the contributions of each 

of these parameters (i.e. the aij values). The resource properties are all combined to form a 

sum-of-products, plus an error term to account for model inaccuracies and absent 

parameters.  Regression analysis is used to determine the values of the coefficients. 
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IV.3 Applying the Model to Computation Time Prediction 

In this section, we describe how we address the problem of predicting the computation 

time of a given application and input, based on historical execution data with different 

inputs. The main problem for this is determining the parameters that contribute most 

significantly to execution time in order to create a model. A constraint on the parameters 

chosen is that they must be programmatically obtainable (e.g. by reading header 

information of the input files) so that job scheduling decisions can be made in real time. 

Since this is application-dependent, we describe the approach for each application 

separately.  

IV.3.1 Image Segmentation  

We analyzed the execution time of FAST using data sets with different sizes and from 

different hospitals. We provide pertinent information in Table 4. We did not find a strong 

correlation between the 3 dimensions (X, Y, Z) of the data sets and their execution time 

requirements. Using the 2 dimensions (i.e. X and Y dimensions only) was actually better, 

but still would result in high error. Instead, we employed aprof, using the size of each 

dimension of the image as explanatory values and the execution time as the exploratory 

value. We obtained a mean execution time prediction error of 2.94%, max of 7.2% and 

min below 0.1%. These parameters can be read from the DICOM or NIFTI header of the 

image files, so they are suitable for our modeling approach. We repeated the test by 
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predicting the execution time of all data sets, but using only two input data of different 

sizes, and the error remained below 10%. 

IV.3.2 Image Registration 

As mentioned earlier, MELODIC is subject to significant execution time variation since 

the duration of the algorithm performed before registering the images depends on the 

number of time steps required to converge, which in turn depends on a randomly-selected 

value. Using the same explanatory variables used for FAST in addition to the size of the 

temporal dimension and applying the model to the MCH data, we obtained a mean 

prediction error of 12.2%, a max of 29%, and a min of 0%. As a result, an extra “safety net” 

must be used when predicting execution times of MELODIC jobs in order to avoid 

deadline violations. 

IV.3.1 LU Benchmark 

The observations made in Section III.5.3 showed that the computational requirements of 

the NPB LU benchmark increase roughly proportionally to the input problem size. The 

relationship is not quite linear due to duplicate computations that occur with tightly 

coupled problems, which is a known problem. Since no new or interesting observations 

were made, we do not comment further on the computation time prediction for LU. 
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Table 4. Execution time and memory utilization for various FAST jobs 

Dataset dimX dimY dimZ Exec. Time Memory Utilization (Bytes) 
CHOA_1 
CHOA_2 
CHOA_3 
CHOA_4 
CHOA_5 
CHOA_6 
CHOA_7 
CHOA_8 
CHOA_9 
CHOA_10 
CHOA_11 
CHOA_12 

 
CHOP_10 
CHOP_11 
CHOP_12 
CHOP_13 
CHOP_3 
CHOP_4 
CHOP_5 
CHOP_6 
CHOP_8 
CHOP_9 

 
BCCH_30 
BCCH_44 

 

176 
176 
176 
176 
176 
176 
176 
176 
176 
176 
176 
176 

 
256 
256 
256 
256 
256 
256 
256 
256 
256 
256 

 
211 
211 

240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 
240 

 
256 
256 
256 
256 
208 
208 
208 
208 
208 
256 

 
288 
288 

256 
256 
256 
256 
256 
256 
256 
256 
256 
256 
256 
256 

 
192 
192 
192 
192 
160 
160 
160 
160 
160 
192 

 
288 
288 

632.0 
702.0 
699.7 
682.7 
662.3 
663.7 
701.7 
671.3 
644.3 
645.0 
663.3 
654.3 

 
1464.0 
1464.0 
1466.0 
1371.0 
534.3 
569.7 
572.3 
608.3 
579.3 
1549.7 

 
1182.0 
1081.7 

1.27E+09 
1.30E+09 
1.24E+09 
1.30E+09 
1.28E+09 
1.30E+09 
1.28E+09 
1.28E+09 
1.26E+09 
9.86E+08 
1.12E+09 
9.57E+08 

1.50E+09 
1.50E+09 
1.50E+09 
1.48E+09 
9.94E+08 
9.48E+08 
1.15E+09 
1.03E+09 
9.59E+08 
1.48E+09 

 
1.64E+09 
1.94E+09 

 

IV.4 Scalability Prediction 

Since the historical execution data of a job may not have execution time requirements with 

currently-available resources, it is necessary to predict how the job will scale under 

different runtime scenarios. Hence, a scalability prediction model is needed to extrapolate 

this information. 
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For loosely coupled applications, scalability prediction is tractable. Multiple studies 

on loosely coupled applications have shown that the relationship between execution time 

and parallelism is roughly linear (e.g. for BLAST [73] and NAS EP [74]), so accurate 

predictions are obtainable. Figure 7 confirms this is the case with FAST as well. With 

bags-of-tasks, the computational requirement of the bag is simply the sum of that of each 

task. The challenge, therefore, is minimizing the makespan of all the jobs by optimally 

packing them among the available resources. Our algorithm for doing this is explained in 

the next chapter. 

The scalability prediction of tightly coupled applications is complicated by their 

tendency to lose efficiency as the parallelism level increases due to redundant 

computations, load imbalance, and/or communication overhead. We mitigate this by using 

several prediction parameters and a large amount of training data. 

We now discuss the scalability prediction approach taken. To limit the initial number 

of variables, we start with the dedicated-CPU case. The main challenges we address in this 

case are extrapolating for different combinations of CPU architectures and parallelism 

levels. For CPU architecture, we include such things as memory and network bandwidth, 

which can be affected by the bus and the number of CPU cores per machine. We ensure 

jobs are not placed on machines that cannot fit the problem into memory, since swapping 

to disk would result in a large execution time penalty that would be difficult to predict. 
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The remainder of this subsection details the work carried out in publications [71,75], 

which addressed scalability prediction for tightly coupled jobs.  

IV.4.1 Overview of Challenges 

We note three barriers to obtaining accurate predictions: the uncertainty of the CPU 

architecture’s impact on the performance of the application, the distribution of nodes 

across machines and within the same machine, and the size of the data center. We now 

summarize these challenges and how we addressed them. 

Extrapolating to Different CPU Architectures 

Whereas CPU clock speed can be used to extrapolate performance among similar CPUs, 

as was shown in [75], different CPUs have much different characteristics, so another 

approach is necessary. A good example of this is the transition to more efficient CPUs 

after hitting the power wall with the Pentium-4 processor. Subsequent processors have 

achieved much better performance with lower clock speeds. To understand why a given 

processor is faster than another requires in-depth knowledge about its design. Such factors 

as pipelining, instructions/cycle, efficiency of internal components, etc. play an important 

role in this. A cycle-accurate simulator similar to the one implemented in [26] would yield 

accurate predictions, but the complexity of modern processors makes this difficult. Also, 

such an approach is not suitable for job scheduling, where real time execution predictions 

are needed. 
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An alternative to low-level modeling of the CPU is to find metrics that correlate well 

with execution time. For example, in [31] the authors ranked several metrics and found 

that for some applications, execution time correlated best with strided access to main 

memory, while for most other applications random access to L1 cache had better 

correlation. In [76], the authors found node bandwidth and latency to be the most 

significant parameters for the scalability of WRF. To properly evaluate the metrics with 

the highest contribution, it is necessary to measure several of them.  

Benchmarking is an alternative that can give a good indication of CPU performance 

for different applications. The caveat with benchmarking is that, for best results, the 

benchmark needs to be representative of the application being modeled, which requires 

some knowledge of the application. Since CPU instruction patterns vary by application, 

the best benchmark for a particular application is the application itself. However, 

benchmarking the scalability of every application that is to run on a given system may not 

be ideal. A good tradeoff is to run a few benchmarks with resource consumption 

characteristics representative of a broad range of applications. Each application that is to 

be run on the system can be mapped to a particular benchmark. For example, WRF 

simulations involve solving differential equations and finite difference approximations, so 

the performance measured using a generic benchmark that ranks a CPU based on its 

performance executing these kinds of calculations should provide a good measure of the 

CPU’s performance when running WRF jobs. 
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We use the product of the CPU clock speed and a constant, the platform contribution, 

to model the CPU parameter. The platform contribution is determined by benchmarking. It 

only needs to be calculated when performing predictions among systems with very 

different CPU architectures. Our results in [71] showed that clock speed is a good 

indicator of the performance of systems with the same or similar CPU architectures, so it 

is not necessary to measure separate platform contribution parameters for systems with 

similar CPUs but different clock speeds. 

Challenges With Multicore Architectures 

Multicore architectures have become commonplace for all types of computing systems, so 

we considered it necessary to accurately predict execution time on multicore systems. To 

determine the optimal parameters to introduce to the model in order to model execution on 

multicore systems, a closer look into multicore architectures is necessary. For parallel jobs 

in which only one core of each node is used and the system specifications are kept 

constant, speedup is affected by interconnection network performance and the 

application's parallelization ability. The latter is a combination of computational 

redundancy, synchronization requirements, etc. When multiple cores are used, several 

complications arise. For one, intra-node communication may take place. Since the 

bandwidth and latency of messages passed inside a processor/bus between processing 

cores is different from that of different nodes communicating through Ethernet, multiple 

communication factors need to be modeled. Furthermore, the cores need to share certain 
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components, such as cache, main memory, network cards, etc. This introduces the 

possibility of contention occurring when accessing different hardware components, 

leaving less effective capacity for each core. For example, if a physical machine has a 

dedicated L2 cache of 1MB, but the arbitration logic is shared, memory bandwidth to each 

core is limited.  

Here, again, knowledge about the application is helpful to determine what parameters 

to model. For example, it has been shown that WRF is memory-bandwidth and latency 

bound [76], so the model needs to account for memory bandwidth in order to provide 

accurate predictions. As a result, we added a memory bandwidth parameter to the model. 

The measured memory bandwidth value is divided by the number of CPU cores used in 

the execution, since it is shared by each of them. 

The behavior of a multicore node itself is generally consistent as long as whatever 

instructions it is executing are constant, so an approach that relies on previous execution 

data is able to cope with the fact that sharing components amongst cores leads to 

non-trivial execution patterns. However, when combining several multicore nodes, 

prediction is complicated by the fact that communication speeds and latencies are much 

different for processors on the same physical machine compared to processors on separate 

physical machines connected via Ethernet. As a result, it is necessary to give the model 

separate parameters for number-of-nodes and cores-per-node. This is in addition to the 

memory bandwidth parameter described in the previous paragraph. 
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IV.4.2 Contribution Parameters Used in the Scalability Model 

Accounting for all the challenges above, a set of contribution parameters were measured 

and added to the prediction model as explanatory variables. Memory bandwidth was 

measured using a tool that performs sequential reads and writes of different amounts of 

data. The read bandwidth for 16MB of sequential data is used as the 

memory-read-bandwidth (MBWRD). The write bandwidth for 16MB of sequential data is 

used as the memory-write-bandwidth (MBWWR). Since the network bandwidth is also 

shared by separate CPU cores, we also use a network bandwidth (NBW) parameter, which 

is the theoretical bandwidth of the underlying network switch.  

Multiple steps of refinement were required to obtain acceptable accuracy with 

multicore experiments. The combination of parameters that best modeled the application 

was MBWRD, MBWWR, number-of-nodes, total processors, network bandwidth, and 

cores-per-node. When predicting across different systems, a platform contribution 

parameter was measured using a benchmark. Inserting these parameters into Equation (1) 

results in Equation (2). In the equation, x refers to the contribution of parameter x to the 

overall execution time. 

    (2) 

Using first-order polynomial equations for each parameter, the equations of the 

contribution parameters are as follows:  

Γ

Texec = ΓMBWRD × ΓMBWWR × Γnn × Γnc × Γp × ΓNBW × Γpc
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Nc is the number of cores-per-node, Nn is the number-of-nodes, NBW is the network 

bandwidth, and pc is the platform contribution. Note that for each parameter, there is a 

constant contribution, i.e. the X0 factor, and a contribution due to the magnitude of the 

resource parameter, i.e. the X1 factor. The memory and network bandwidth parameters are 

divided by the amount of cores used per node since each processing core in the node needs 

to share the memory bus and network card. Parameters that have an inverse relationship 

with execution time (e.g. number-of-nodes) are inversed in the formula. 

IV.4.3 Model Creation and Profiling  

The model is built using data obtained from historical executions of an application. In 

order to automatically generate this data, a system and application monitoring tool was 

developed. We call this tool Amon, which is short for a monitoring tool. The tool was also 

originally developed as part of the LA-Grid partnership and is described in [41]. It was 

rewritten for additional functionality needed by our scheduling methodology described in 

the next chapter, although for the purpose of performance modeling the functionality 

ΓMBWRD = A0 + A1× MBWRD

Nc

ΓMBWWR = B0 + B1× MBWWR

Nc

Γnn = C 0 + C1

Nn

Γnc = D0 + D1

Nc

Γp = E0 + E1

Nc × Nn

Γnet = F 0 + F1× NBW

Nc

Γpc = G 0 + G1

pc
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described in [41] is adequate. Amon performs two main functions, monitoring and 

reporting. In terms of monitoring, it collects resource consumption data for running 

applications by probing the Linux /proc interface at discrete intervals. The resource 

consumption data collected include CPU time, memory, and network bandwidth. Amon’s 

other function, reporting, is performed at two levels. When a job completes, a report of its 

overall resource consumption data is generated and recorded (e.g. to a text file). Reporting 

of instantaneous resource consumption data of a job in progress is also performed on a 

per-request basis. This is used by our job monitoring component to determine the progress 

and execution rate of a job, as described in the next chapter. 

To automate the data collection stage, several shell scripts were created to run jobs 

with different configurations. Additional scripts were created for the evaluation of the 

model in order to test with several different input parameters and data set sizes. 

IV.4.4 Model Evaluation 

In addition to our infrastructure at CATE described in Section III.1, we used three 

additional systems, two of which were from large research data centers, which allowed us 

to test our scalability prediction at a much larger scale and to perform predictions across 

different CPU architectures. One is Marenostrum, from the Barcelona Supercomputing 

Center and the other is Abe, a Teragrid [4] cluster from the University of Illinois at Urbana 

Champaign. The specifications of all the systems used are tabulated in Table 5. The table 

shows the CPU used in each physical machine of each cluster, the number of such 
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CPUs/cores per machine, the maximum number of nodes used, and the interconnection 

technology. 

Table 5. Systems used to test our performance prediction methodology 

 
Host Name CPU 

Cores 
per node 

Max 
Nodes Interconnect 

Mind 
Xeon Netburst  

3.6GHz 
2 16 1 gigabit Ethernet 

Abe 
Xeon Clovertown 

2.33GHz 
8 64 10 gigabit ethernet 

Marenostrum 
Power 970MP 

2.3GHz 
4 128 Myrinet 

In the benchmarking process, four sets of execution data were obtained for each 

configuration and the average execution time of each run was measured. In cases where an 

outlier was detected, it was discarded. To test our hypothesis that using a platform 

contribution parameter based on a relatively generic benchmark can model the CPU 

performance of similar applications, we use the NPB BT-MZ, Class A benchmark’s 

reported operations-per-second value as the platform contribution parameter and use WRF 

as the test application. On Abe and Marenostrum, 8-, 16-, 32-, and 64-node execution data 

were used. On Mind, 4-, 8-, 12-, and 16-node execution data were used. For all systems, 1-, 

2-, and 4-processes per node were used. On the large systems (i.e. Abe and Marenostrum) 

execution time can vary from run to run due to differences in node interconnection, so we 

worked around this as described in [75] to obtain consistent results. 
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Since CPU cores on separate nodes affect execution time differently than CPU cores 

on the same node, there is a non-linear relationship between execution time and the total 

number of CPU cores. Since we use a linear model, it is necessary to distinguish between 

processes running on separate nodes and processes running on separate processors/cores 

within a node. Figure 11 shows that when the number of cores-per-node is kept constant, 

the execution pattern is linear or semi-linear and predictable. A similar relation holds when 

keeping number of nodes constant while varying the number of cores. In the figures, we 

use the inverse of number-of-nodes, since the execution time is inversely proportional to 

the number of nodes (i.e. more nodes should result in lower execution time).  

We summarize the results with an evaluation of prediction accuracy when using 

different architectures, numbers of nodes, and numbers of cores. Additional results when 

only varying a subset of these are shown in [75]. For this study, we used input data from 

Abe and Mind to predict first for Abe and then for Mind. Out of all the experiments 

performed, the maximum error observed was 10.12% and the mean was 6.74%. Figure 12 

shows the actual versus predicted execution times. The error was obtained using Equation 

(3), where tactual is the actual execution time and tpredicted is the predicted time. 

      (3) 

 

 

error = 100 ×
tacual − tpredicted

tactual
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Figure 11. Execution time versus parallelism, keeping number-of-cores constant. 

 

Figure 12. Actual versus predicted execution times for Abe and Mind. 

IV.4.5 Extending the Prediction Methodology to Virtualized Platforms 

We now show how the scalability prediction model was modified to account for 

virtualization, as presented in [77].  
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As we saw via the example in Figure 5, when run in a VM, a job’s CPU time remains 

roughly the same, but its I/O time increases due to virtualization overhead. To address this, 

we modify the prediction methodology. Instead of modeling the overall wall clock 

execution time, we predict communication and computation times separately. For the 

computation time, the user time (i.e. CPU time spent in user space) collected by Amon was 

used. Communication time is not as simple to obtain using a lightweight monitor such as 

Amon. We use a simple estimator, tio or simply iotime, which is the difference between 

wall clock time and user time, as shown in Equation (4).  

݁݉݅ݐ݅                         = ݐ = ௪ݐ −  ௨      (4)ݐ

Before evaluating the revised model’s ability to predict execution time, we test the 

efficacy of the values chosen to separate the CPU and I/O times by comparing them to the 

values of communication and computation time reported by the timers included with the 

NPB benchmarks. The computed correlation coefficients for all configurations of the VM 

executions of LU-MZ were 0.99 (computation) and 0.95 (communication). We consider 

this a good starting point for the model, hence, we use CPU time as the computation time 

estimate and iotime for the communication.  
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We measured the synchronous MPI bandwidth of the BM and VM configurations 

using a simple ping-pong testi that measures the bandwidth for transfers of different 

message sizes ranging from 8 Bytes to 1 MByte. The test was run 20 times and the 

average bandwidth of all runs was taken. The BM node was consistently about 40% faster 

throughout the range of message sizes evaluated. According to [78], the message sizes for 

the LU-MZ benchmarks range from approximately 220-350 kB for Class B to 600-950 kB 

for Class C, for systems with 2-16 processors. Since there is not much variation in the 

measured bandwidth for this range, the average of the 128, 256, 512, and 1024 kB 

measurements are used as the network bandwidth metric. 

It was only necessary to evaluate the modified model with tightly coupled 

applications, since the other applications do not have significant I/O times. The resource 

consumption parameters used to estimate the computation times were: inverse number of 

nodes, inverse number of processes per node, and inverse memory bandwidth. To predict 

I/O time, the number of nodes, number of processes per node, and inverse of network 

bandwidth were used. The network bandwidth was adjusted according to the number of 

processes per node. Runtime configurations consisted of using 1, 2, 4, and 8 nodes and 1 

and 2 processes per node, for a total of 16 data points per experiment. The overall error 

was calculated using Equation (5), in which io is the iotime and u is the CPU time. 
                                                 

ihttp://www.scl.ameslab.gov/Projects/mpi_introduction/para_pingpong.html 
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The actual and predicted computation and communication times for the LU and 

LU-MZ benchmarks with up to 8 nodes are shown in Figure 13. The predictions were 

performed separately for each class and for each implementation (i.e. original and MZ), 

for a total of 6 sets of experiments. The mean and median prediction errors were 13% and 

4%, respectively.  

ݎݎݎ݁ =  |(ೌೠೌା௨ೌೠೌ)ି(ೞೌା௨ೞೌ)|(ೌೠೌା௨ೌೠೌ) 100           (5) 

The same experiments were repeated for WRF, using the same run time 

configurations and the jan00 and 75x4 domains. The actual and predicted execution times 

are shown in Figure 14. The mean and median errors in this case were 9% and 6%, 

respectively. The mean error was more tolerable for WRF since using larger problem sizes 

results in less sporadic virtualization penalty. The NPB results were skewed due to the 

higher error of the Class A predictions. 

IV.5 Modeling the Effect of CPU Sharing on Execution Time 

In Section III.2 we described some of the reasons for using CPU sharing in multi-tenant, 

shared-CPU scenarios. In Section III.6.2, we demonstrated that multiplexing tightly 

coupled jobs with other jobs, such that during the communication cycles of one job the 

computation cycles of another can be performed, the makespan of the two jobs is reduced 

compared to running them sequentially. Hence, we deemed it necessary to implement a 

mathematical model for predicting execution time expansion due to CPU multiplexing. 
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We do this for both loosely coupled and tightly coupled jobs and assess the accuracy of the 

model empirically.  

 
Figure 13. Predicted and actual CPU and I/O times for LU and LU-MZ. 

 
Figure 14. Predicted and actual computation and I/O times for WRF. 

Before discussing the model itself, we discuss consistency and reproducibility issues 

that could hinder the accuracy of the model. In [79], the authors found that the Xen Credit 
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Scheduler can suffer from CPU allocation error, resulting in unfair load balancing when 

VMs are multiplexing the CPU. We did not encounter this particular problem when 

running identical parallel jobs, although we did note that the virtualization overhead 

caused by them was not included in the processor allocation decisions. For example, if a 

tightly coupled job requires 4% CPU for virtualization overhead and its multiplexing the 

CPU with a serial job, each job will only get roughly 48% of the CPU; the exact amount it 

gets is unpredictable. This needs to be accounted for in the model, as we discuss later. 

A related issue is consistency. To determine if significant variation in execution time 

can be expected from multiplexed Xen executions, we ran 15 consecutive executions of 

compcomm and measured the durations of the computation and communication iterations. 

The number of iterations was set to 200. For the first set of tests, only one instance was 

run (i.e. no multiplexing). We then repeated it with a pair of 2-worker instances of 

compcomm running on 2 physical machines, so that in each physical machine, the 2 

workers were multiplexing the CPU. Using analysis of variance (ANOVA), we found that 

communication cycles did not experience significant variation across runs or across 

iterations for both tests. The durations of the computation iterations were not normally 

distributed and we were unable to transform the data such that they would be, so ANOVA 

was not performed. Instead, we calculated the mean durations for the multiplexed and 

non-multiplexed executions. The mean remained at a consistent 67 milliseconds for 

non-multiplexed executions. When multiplexed, the mean varied between 86 and 93 
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milliseconds, since the amount of computation required before synchronizing can be 

different each time a job enters the working state. Considering the default 30 millisecond 

time slice used by Xen, the numbers seem reasonable. 

An issue faced when predicting the multiplexed execution time of WRF and NPB is 

the fact that workers communicate at different frequencies and have different overall 

computation requirements. For example, the CPU time used by each worker of an 8-node 

WRF execution of the jan00 domain varied between 150 and 220 seconds. To address this, 

we need to use the computational requirement of the worker(s) that are multiplexing the 

CPU, since the worker with the slowest execution rate will limit that of the others. This is 

depicted in Figure 15, where we show the CPU time required by each worker (using black 

circles) and the time required to execute the workload when one node is multiplexed 

(using gray asterisks). The figure shows the execution time for each of the eight possible 

multiplexed nodes. We see that the more CPU time the multiplexed worker needs, the 

more the overall execution time is prolonged, since the workers with less computational 

requirements must synchronize with them. Another issue is that the lengths of computation 

and communication iterations vary, but the variation was not significant enough to require 

the use of temporal requirements, i.e. the steady state execution pattern of all applications 

used was roughly constant with a small period of time (under a second). 
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Figure 15. CPU time of different workers and execution time when multiplexing each one. 

IV.5.1 Description of the Model 

The model estimates the execution time of a job based on its computation and I/O 

requirements, the scheduling parameters of the VM it is executed on, its virtualization 

overhead, and the parameters of other VMs sharing the CPU. It assumes that the 

computation and I/O requirements are known from a previous execution and/or using a 

performance prediction model. We further assume that only coarse-grained computation 

and I/O requirements are known, since this data can be easily obtained using a lightweight 

resource monitor. An example of coarse-grained knowledge would be the total 

computation time of the job on a given system. Although it is possible to obtain relatively 

fine-grained resource consumption data with a lightweight performance monitor, the 

applications we studied have consistent steady state resource consumption behavior, so 

pursuing this task was deemed unnecessary. 
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The high level equation used to model execution time is shown in (6). We refer to the 

overall execution time as Texec and separate it into non-collocated, non-multiplexed (solo) 

and collocated, multiplexed (coll) portions; the solo time is further separated into active 

and I/O portions. The active time is the portion of time in which the application can 

consume CPU cycles. The I/O portion is the time that it can only perform physical I/O 

because it is constrained by a cap. The computation portions include the time the 

application itself spends performing computation as well as the virtualization overhead. 

The I/O time includes the time spent physically transferring data. Note that the model 

assumes that while multiplexing, all I/O will take place while a job is in the non-working 

state. This is a safe assumption for the workloads used in the sense that their computation 

ratios are above 50% and their shares are never lower than 50%. One caveat is that there 

could be overlap of I/O cycles, as was shown in Figure 9b. This is not an issue when 

multiplexing with at least one serial job, since it can always use the CPU. 

                       ܶ௫ = ܶ + ௦ܶ,௧௩ + ௦ܶ,ூை      (6) 

We now describe the individual components of (6). For clarity, we describe the model 

for the case in which there are up to 2 multiplexed VMs per physical machine. In the 

formulas, we refer to the job being modeled as Job 1 (J1) and the collocated job as Job 2 

(J2). In describing the equations, we assume that both jobs arrive at the same time, so they 

first execute collocated and when one of them completes, the other can then use the full 

CPU. This simplifies the explanation of the equations. In practice, jobs begin and end 
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arbitrarily, so the formulas would use the remaining times instead of the overall times. The 

model assumes that communications can be performed during the non-working states and 

ignores the context switch overhead since we found it to be negligible in the experiments 

carried out in Section III.5.2. 

First, we define the collocated computation rate (rcoll) in (7). Its value is the smaller of 

the cap of the VM the job is executed on and its net share relative to the collocated job. Its 

net share is the larger of its cap and its share, which in turn is based on its weight and that 

of the collocated job, as well as the collocated job’s cap. For example, assuming both jobs 

have equal weight, if the collocated job is capped at ¼, the net share of the job is ¾. 

ଵݎ = min [ܿܽଵ, max ൬100 × ௪௧ೕభ௪௧ೕభା௪௧ೕమ , 1 − [ଶ൰ܽܿ × ଵଵ  (7) 

Tcoll is the wall clock time spent collocated; it is shown in (8), where ݐே  is the 

CPU time required for job N, including virtualization overhead. The equation assumes that 

a job will always have computations to perform when it is given the CPU, which implies 

that neither job has an rcoll larger than its solo computation rate. For example, if all jobs 

have equal weight, this implies that neither job has a computation rate below 50% for two 

jobs, 33% for 3 jobs, etc.  This is a reasonable assumption given the computation rates of 

the jobs we tested in our experiments, as well as the data available in the CTC and SDSC 

workload traces of the parallel workloads archive [56]. Another caveat is that the formula 

assumes that communication overlap between the two jobs will not delay the execution. 

We observed only minor overlap, and did not expect this to affect accuracy significantly. 
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With these assumptions, the collocated time can be expressed as a function of the 

collocated computation rates (7) of the jobs and their computational requirements. The 

formula takes the lesser of the two jobs’ computation times multiplied by their collocated 

execution rates. 

                     Tcoll = min tcomp
j1 × 100

rcoll
j1

, tcomp
j 2 × 100

rcoll
j 2









       (8) 

Tsolo,active is the time spent processing computations and communications while no 

other job is sharing the CPU. The equation is shown in (9) for job 1, where tcomp is the 

computation time of the job (excluding virtualization overhead), tvirt is the virtualization 

overhead, Tcoll is the real (wall clock) time spent collocated, capj1 is the cap of job 1, and 

rcoll is the computation rate (7) while collocated. For the virtualization overhead, ݐ௩௧ଵ  is 

the overhead observed executing job 1 and ݐ௩௧ଵାଶ is the overhead observed executing 

jobs 1 and 2 with the same CPU. Basically, we subtract the computation portion of the job 

that was performed while collocated from the total known computation time, then account 

for additional virtualization overhead and additional execution time prolongation due to 

the cap. 

 Tsolo,active
j1 = 100

capj1

× 1+ tvirt
j1( )












× tcomp − Tcoll × rcoll

j1

1+ tvirt
j1+ j2









    (9) 

Tsolo,IO, shown in (10), is the additional time spent processing I/O while the job has a 

dedicated CPU. It accounts for cases where cap<100, in which some I/O can take place 
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while the VM is forcibly put into the non-working state. The equation subtracts this time 

from the remaining wall clock time to determine the additional communication time 

required, if any. The remaining time is the difference between the (historical) 

communication time (tIO) and the amount completed while collocated. The latter is the 

product of the job’s communication ratio (
௧ೀ்) and the collocated time (Tcoll). This value is 

then reduced by the idle time due to cap.  

The CPU time required for virtualization overhead is small relative to the physical 

communication time of the parallel applications we experimented with (refer back to 

Tables 2 and 3), so we do not expect the cap to limit any communication from being 

performed during the non-working states since the VM will build credits while the 

physical transfer of the data is occurring. 

     (10) 

IV.5.2 Model Evaluation 

Table 6 shows the required CPU and I/O times for a number of empirical tests using WRF 

with the jan00 input domain with different cap values, for 1 and 2 node executions. The 

prediction error, obtained using (11), is also shown. As observed in [19-20] for web 

workloads, virtualization overhead is predictable if the communication pattern is constant. 

We measured the mean virtualization overhead and applied it to (9) and (10) to determine 

the overall computation times. 

Tsolo,IO = tio − tio

T
Tcoll







− Tsolo,active × 100 − cap

100
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             (11) 

Executions with 1 and 2 nodes and with cap settings of 100 and 50 were performed. 

The execution times at 100% were used for the tIO and tcomp  values. The non-zero 

prediction error is due to sporadic virtualization overhead due to operating system noise. 

The results indicate that the model provides good estimates for the effect of different cap 

settings on execution time.  

In Table 7, we show the times for multiplexed executions in which a node of a parallel 

job multiplexes the CPU with a serial job. Columns 1 and 4 indicate the physical nodes on 

which workers of the job executed. We vary the cap of each job, using values of 25, 50, 75, 

and 100. For the first 6 rows, the parallel job has 2 workers and the serial job is 

multiplexing the CPU with the first worker of the parallel job. The modeled execution 

time for all but five of these is within 4% of the actual time. These four outliers are due to 

the way Xen's Credit Scheduler distributes the CPU cycles. We found that it is biased 

towards the parallel job: it consumed 51% of the CPU before virtualization overhead (56% 

after the 5% consumed by the hypervisor for virtualization overhead) instead of the 50% it 

would be allotted if the scheduler distributed the capacity fairly. A similar problem was 

identified and a solution was given in [79], using Xen’s EDF scheduler. Since the model 

assumes each VM gets an equal share but the parallel job gets a larger share, its execution 

time is overestimated while that of the serial job is underestimated. Note that the most 

error = Pr edictedRunTime − ActualRunTime

ActualRunTime
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inaccurate estimates occur when there is no constraint on the capacity of the parallel job 

(i.e. cap=100). This is because when it does have a cap, the scheduler enforces the 

constraint for the job and virtualization overhead combined (i.e. the application itself gets 

less than its cap), which more accurately fits the model. 

In each of the next 4 rows, the parallel job has 4 workers and each of these rows show 

the times for the case in which a different worker was multiplexing the CPU, starting with 

node 1 in row 7 and ending with node 4 in row 10. The estimated Tcoll for all of these 

suffers due to the scheduler’s allocation bias for the parallel job. The modeled Tcoll 

accuracy for these executions varies significantly; when multiplexed on the first or third 

node, the modeled time is over predicted by 7 to 10% whereas when the second or fourth 

nodes are multiplexed, the predicted time is within 3%. This is because the second and 

fourth nodes have smaller computational loads than the others, so the bias for the parallel 

job is propagated less. 

The last two rows show the results when job 2 has 8 workers. For the semi-last row, 

the first worker was multiplexed with the serial job and for the last row, the eighth worker 

was multiplexed. The results are similar to those of the 4-node experiment. When node 1 

is multiplexing the two jobs, the estimate of the collocated execution time is accurate since 

the CPU allocation to the parallel job was 50% before virtualization overhead. However, 

the CPU allocation for the serial job was just 42% since 8% of the CPU was used for 

virtualization overhead, so the makespan of the serial job was underestimated by 11%.  
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To test the model while accounting for the bias towards parallel jobs, we modified the 

equation for the execution rate (7) to reflect our observation that the Credit Scheduler 

distributes the net capacity available after virtualization overhead, and accounting for the 

fact that the cap will be enforced including the virtualization overhead. The new 

(estimated) execution rate equation is shown in (12). Table 8 shows the results when using 

the updated formula. Note that the estimates for executions in which the cap is less than 

100 are the same, so we indicate this by putting them in parenthesis. Now, when the 

parallel job has 2 workers we observe that the estimated times are almost all within 3%. 

The only exception is when the parallel job is capped at 75%, for which the overhead is 

off by 6%. With 4 workers, the estimates improve, although Tcoll is still off by 6-7% when 

the second or fourth workers are multiplexed. With 8 workers, most times are 

underestimated significantly. This is because (12) is just a rough estimate of Xen’s 

allocation. For example, we found that when there is significant virtualization overhead, 

the CPU capacity is not evenly distributed among the VMs. 

        (12) 

Table 6. Model evaluation with 1 Job, no CPU sharing 
#Nodes Cap CPU Time I/O Time Error(%) 

1 100 1495 0 -0.18 
1 50 1495 1559 -0.12 
2 100 747 89 2.56 
2 50 747 816 -1.55 

 

 

rcoll,adj = max 100 − cap, rcoll − (tvirt
j1+ j2 ×100) 
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Table 7. Model evaluation with 2 jobs sharing a CPU         

Job 1 (Serial) Job 2 (Parallel) 
Nodes Cap Error(%) Node(s) Cap Error(%) 

1 
1 
1 
1 
1 
1 

100 
50 
50 
100 
25 
75 

1.47 
2.59 
-4.49 
0.66 
-5.43 
3.50 

1,2 
1,2 
1,2 
1,2 
1,2 
1,2 

100 
50 
100 
50 
75 
25 

9.16 
-2.69 
9.61 
-2.97 
-5.94 
-2.31 

1 
2 
3 
4 

100 
100 
100 
100 

2.26 
4.53 
1.46 
0.46 

1-4 
1-4 
1-4 
1-4 

100 
100 
100 
100 

7.17 
4.08 
10.19 
3.44 

1 
8 

100 
100 

-9.22 
1.31 

1-8 
1-8 

100 
100 

3.40 
-2.73 

 
Table 8. Model evaluation with 2 jobs sharing the CPU and using the adjusted model 

Job 1 (Serial) Job 2 (Parallel) 
Nodes Cap Error(%) Node(s) Cap Error(%) 

1 
1 
1 
1 
1 
1 

100 
50 
50 
100 
25 
75 

1.40 
(2.59) 
-1.35 
(0.66) 
(-5.43) 
(3.50) 

1,2 
1,2 
1,2 
1,2 
1,2 
1,2 

100 
50 
100 
50 
75 
25 

2.02 
(-2.69) 
2.44 

(-2.97) 
(-5.94) 
(-2.31) 

1 
2 
3 
4 

100 
100 
100 
100 

1.24 
3.61 
0.45 
-0.39 

1-4 
1-4 
1-4 
1-4 

100 
100 
100 
100 

-2.57 
-4.29 
0.17 
-4.82 

1 
8 

100 
100 

-9.78 
0.94 

1-8 
1-8 

100 
100 

-9.30 
-15.36 
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CHAPTER V 

DEADLINE-DRIVEN DYNAMIC SCHEDULING 

We now describe the job scheduling methodology used. As discussed in Chapter I, 

medical jobs often have deadlines. To know if a computing system can meet a job’s 

deadline, it must be able to estimate whether the job can be scheduled such that it 

completes in time. In this chapter, we describe our job scheduling methodology, including 

our multi-objective scheduling algorithm that addresses the deadline satisfaction problem 

by harnessing the performance prediction methodology outlined in the previous chapter. 

V.1 Design Overview 

Our results in the previous chapter demonstrated that execution time predictions within 15% 

are possible when applying our prediction methodology to FAST and WRF. While more 

sophisticated models can be developed to reduce this error, a certain amount of error is 

unavoidable on modern systems due to their complex CPU architectures, distributed 

nature, etc. This creates a challenge for deadline satisfaction, so we went with a pragmatic 

approach when designing our scheduling methodology. Our system actively monitors a 

job’s progress and when a deadline violation seems imminent under the current system 

state, additional resources are apportioned to the affected job(s) or it is migrated to a host 

with more free resources available. 
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We used a multi-objective scheduling approach. After deadline satisfaction, the next 

objective the scheduler satisfies is the maximization of resource utilization. The intent, in 

this case, is to allow as many jobs as possible so that the system is constantly loaded. The 

third objective is minimizing jobs’ response times. Response time can be reduced by 

prioritizing short-duration jobs and by migrating tasks to maintain synchronized execution. 

However, maximizing throughput (in order to maximize utilization) tends to leave jobs 

running at just enough CPU allocation to finish before their deadline, negatively affecting 

response time.  

V.2 Implementation 

In order to satisfy all objectives and ensure that the system functions autonomously, 

several components were created to automatically determine if new jobs are schedulable, 

their optimal placement, availability of resources, and job status. We now discuss the 

implementation of these components and their interactions. 

V.2.1 Tools 

Amon and Aprof are used to monitor job status and predict resource requirements for new 

jobs. In addition, it is necessary to separately monitor the resource allocation of each VM, 

since virtualization overhead can result in a job receiving less net CPU capacity than it 

requires to complete and we observed non-intuitive CPU allocation with certain parallel 

applications. For this purpose, we developed another monitor, which we call xhmon, short 
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for Xen Hypervisor Monitor. It is implemented as a Linux daemon that periodically 

monitors the resource utilization of VMs and listens for requests for specific utilization 

data. The information that can be requested from xhmon includes a VM’s mean, median, 

minimum, or maximum CPU utilization, all of which are recalculated at discrete intervals.  

V.2.2 Components 

In this section, we discuss the steady state functionality of the four components of the 

scheduling methodology. Their names are Predictor, Scheduler, Resource Manager, and 

Job Monitor. All components are implemented as Linux daemons. The Resource Manager 

and Job Monitor update resource and job status parameters at discrete intervals. Since 

most jobs take several minutes to run, we use an interval of 60 seconds to maintain a 

reasonable monitoring overhead. The Scheduler is constantly listening for new job events, 

upon which it calls the Predictor to determine the job’s computation requirements and 

subsequently whether or not it can be scheduled in time for its deadline. Now, we describe 

the individual components. 

Predictor 

The Predictor determines the resource requirements of new jobs. It can use either generic 

prediction parameters or application-specific parameters for improved accuracy. For the 

latter case, additional programming can be performed to extract pertinent information 

from the input data. The decision to use the application-specific parameters is made 
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automatically when the name of the application pertaining to the job matches an 

application for which the Predictor has a specific prediction method. Based on our 

findings in Chapters III and IV, we bind the parameters dimX, dimY, dimZ for image 

processing applications to the Predictor. We use a third-party NIFTI library for reading 

these parameters from the input data programmatically. The Predictor distinguishes 

among the different parallel job types, such that for bags-of-tasks jobs each task’s 

computation requirement is evaluated separately, whereas for tightly coupled jobs the 

overall job requirements with different levels of parallelism is predicted.  

Scheduler 

The Scheduler is responsible for matching jobs to resources in order to satisfy scheduling 

objectives. Resource requirements are queried from the Predictor and resource availability 

is queried from the Resource Manager. When there are multiple resources to choose from, 

different heuristics can be used to optimize scheduling performance. It also collects 

scheduling performance data, which include system utilization, deadline violation rates, 

and response times.  

Figure 16a shows pseudocode for the two main functions carried out by the Scheduler, 

i.e. processing job arrivals and job completions. We defer describing the details of these 

functions until after describing the Resource Manager and Job Monitor, since they are 

involved in this functionality. 
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Resource Manager 

The Resource Manager tracks the CPU and memory utilization of virtual machines and 

physical machines. It is also responsible for keeping a pool of VMs available on physical 

machines that can allocate new jobs without violating the deadlines of existing jobs, such 

that response times of new jobs can be decreased as described in Section III.2.  

Figure 16b outlines the steady state functionality of the Resource Manager. This 

consists of 2 functions, VM probing and VM deployment. In the probing stage, the CPU 

consumption rates of VMs are probed using xhmon. Since virtualization overhead can 

impede a job’s progress, each job’s current and minimum execution rates are probed using 

the Job Monitor’s socket interface. Using this information, VM slots, which indicate 

points in time that VMs can be deployed and the amount of CPU capacity they can receive 

at these times, are created for each physical machine.  

The concept of VM slots is depicted in Figure 17, where we show how the state of a 

physical machine initially running 3 jobs (J1-3) on 3 VMs changes over time. The CPU 

allocation of each job is depicted using the height of the box it is enclosed in. The 

completion times of J1 and J2 at their current CPU allocation are ଵܶ  and ଶܶ , respectively. 

Initially, the full CPU capacity of the machine is required to ensure all remaining jobs 

finish before their deadlines. When J1 completes, its share (of roughly 25%) becomes 

available, hence a VM slot of 25% CPU is created. Now, the slot can be used to run a new 

job or the other two VMs can use the excess capacity. Similarly, when J2 completes at ଶܶ , 
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its slot of roughly 25% additional CPU capacity opens up. When J3 completes at ଷܶ , a slot 

with the full CPU capacity becomes available.  

The current heuristic employed by the Resource Manager is as follows. If a job is 

receiving less CPU capacity than its minimum, it gets the available capacity in existing 

slots, up to its newly calculated minimum capacity. Theoretically, this should not happen, 

but in practice scheduling error can result in tasks getting less than their minimum. If there 

is still available capacity after accounting for this, a VM is created or migrated to the 

available slot so that later job arrivals can use it. This is what we refer to as the VM 

deployment functionality of the Resource Manager. If a job has exceeded its predicted 

computation time and is still running, all excess capacity is allocated to it, as this implies 

its execution time was underestimated and the possibility of a deadline violation is 

increased. The excess capacity is distributed among the running VMs. 

Job Monitor 

As its name implies, the Job Monitor keeps track of jobs’ progress, particularly their CPU 

consumption progress and execution rates. It works with the Resource Manager to ensure 

jobs are getting enough resources to complete before their deadlines. The Job Monitor 

also attempts to minimize a job’s response time. For example, for bags-of-tasks workloads, 

it attempts to balance jobs such that they finish at equal times.  

An overview of the Job Monitor’s functionality is shown using pseudocode in Figure 

16c. At discrete intervals, each job’s rate and CPU consumption progress is probed using 
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Amon’s reporting interface. If a deadline violation is possible with the job’s current min 

CPU allocation, the min value is increased. The Job Monitor merely updates this 

information; the Resource Manager is responsible for updating allocations based on the 

job’s parameters. The job status can be queried by probing the Job Monitor’s socket 

interface, which returns the current and minimum execution rates for a given job. 

V.2.3 Interaction Among Components 

 

 

To better understand the scheduling methodology, we now discuss some additional details 

about the implementation in terms of how the components interact with each other. In 

Figure 18, we show a time line and the activities of each component from a job’s arrival 

until its completion. The Resource Manager reallocates CPU to different VMs 

continuously at discreet intervals, based on updates from the Job Monitor, and updates slot 

availability accordingly. This is indicated in blue text in the figure. The first component to 

respond to a job arrival is the Scheduler. It obtains a prediction of a job’s execution time 

from the Predictor (not shown). This requirement is sent to the Resource Manager, who 

updates its available slots and returns the list to the Scheduler. Assuming the job can 

complete before its deadline, it is assigned to a set of slots according to some scheduling 

heuristics. The Resource Manager is also responsible for allocating a VM on the physical 
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machine, if necessary. This can be a new VM or a free VM can be migrated from another 

physical machine. 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

(c) 

 

 
Figure 16. Component overview: (a) Scheduler, (b) Resource manager, (c) Job Monitor

function job_arrival(): 
  predict_job_resource_requirements() 
  determine_schedulability_from_available_resources() 
  assign_resources_to_job() 
function job_completion(): 
  unmap_resources() 
  allocate_reserved_jobs()   

 

function update_vm_slots(): 
  for each physical_machine: 
    for each job_on_this_physical_machine: 
      get_job_rate_and_min() 
  if imminent_deadline_violation: 
    reallocate_extra_capacity_to_job_in_danger 
  update_slots_times_and_capacities() 
  deploy_vms_for_available_slots 
function probe_vms(): 
  for each VM: 
    update resource utilization() 
 

function monitor(): 
  probe_job_rate_and_progress() 
  update vm_min_cpu() 
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Figure 17.  Slot availability at different times for a physical machine. 

 

Figure 18. Timeline: interaction of scheduling components during a job's lifecycle. 

V.3 Scheduling Heuristics 

The heuristics presented in this section are optimized for medical jobs, which resemble the 

bags of tasks model, where multiple tasks with different computation requirements are 
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submitted together. Unlike tightly coupled jobs, the execution rates of each task are 

independent of each other. On the other hand, the results may not be useful until all tasks 

have finished so they benefit from synchronized execution.  

Optimal job scheduling becomes computationally intractable as the number of tasks 

and machines increases, so heuristics must be employed to best meet the scheduling 

objectives. We use a best-fit based heuristic in making the job placement decisions, which 

places jobs on the resources that best fit its requirements. This can be visualized by 

thinking of tasks as moldable rectangles that need to be fit into different-sized bins. In 

Figure 19, we show how the execution time of an image segmentation task varies based on 

its CPU allocation/share. The dashed rectangles indicate three of the different shapes that 

the task can assume. Its height is equal to its CPU share and its width is equal to the time it 

takes to complete at a given CPU share. Since the task is CPU-constrained, the area of the 

rectangles is constant. The maximum width is the job’s deadline. Looking back at Figure 

17, we see a similar concept with slots. Hence, the objective of the best-fit algorithm is to 

match each task rectangle to the slot rectangle that provides the tightest fit.  

By ensuring that the width of each task’s rectangle does not exceed the job’s deadline, 

we satisfy the first scheduling objective. Since we focus on CPU-bound medical 

applications, utilization is maximized by virtue of accepting as many jobs as possible, 

which implies strong execution time prediction accuracy. The third objective, minimizing 
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response times, requires periodic monitoring of job execution rates, since even perfect 

initial job schedules can be disrupted by new job arrivals. 

 
Figure 19. Assumed execution time model for image segmentation jobs. 

V.4 Evaluation 

The motivation for our scheduling methodology was to optimize scheduling behavior for 

incoming FSL jobs. While FSL provides the ability to automatically spread the workload 

using the Oracle GridEngine batch processing system, it does not provide any mechanisms 

for deadline satisfaction nor does it perform active load balancing as our approach does. 

Additionally, it does not automatically account for memory constraints, which resulted in 

out-of-memory errors when multiple image processing tasks execute on a single physical 

machine. Our baseline scheduler, therefore, is using GridEngine to process the workload. 

Doing so will compare how our overall scheduling methodology (i.e. virtualization and 

performance prediction) can improve scheduling performance. To compare our scheduling 

algorithm to another performance-aware scheduling algorithm, we use the popular 
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first-come-first-serve-plus-backfill scheduling algorithm [15]. We use our Predictor to 

determine if jobs can be backfilled. 

V.4.1 Workload 

We use a workload consisting of 66 functional MRI data sets requiring image 

segmentation using FAST. Each of the 66 images is grouped into a separate job with a 

different arrival time and deadline. Jobs require between 4 and 10 tasks each. The times 

between arrivals of jobs also vary. We create random job arrival patterns and deadlines to 

mimic real world workloads. By using a relatively small workload, we can clearly explain 

the results obtained. 

V.4.2 Scheduling Algorithms 

• GridEngine: Uses FSL’s built-in functionality to submit jobs via GridEngine. We 

do not use any of our scheduling components for this. Instead, we deployed 

GridEngine on Mind. We designate one VM as the GridEngine master and the rest 

as GridEngine execution hosts. Note that GridEngine is unaware of the underlying 

physical machine on which the VM runs. 

• FCFS: Despite many advances in the scheduling literature, first-come-first-serve 

with backfill remains a popular choice for its simplicity and its balance of fairness 

and resource utilization. It works as follows. Jobs are processed in order of arrival. 

When a job requiring more nodes than are currently available arrives, it reserves a 
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set of nodes able to run the job at a later time (provided that it can finish before its 

deadline). If smaller jobs arrive before this reservation time and can be scheduled 

such that the reservation of the large job is not violated, they are backfilled, i.e. they 

are scheduled before the large job. This algorithm does not consider partial CPU 

allocations, i.e. each task gets a full CPU to run on and physical machines running a 

job cannot be scheduled on until they complete the job. In order to determine if 

smaller jobs can be backfilled, FCFS traditionally depends on user-generated 

execution time estimates. For this test, we use our prediction methodology to predict 

the execution time. If a deadline cannot be satisfied, the job is skipped. 

• ElaDUR: This is the scheduling algorithm we implement. Its name is short for 

Elastic-Deadline-Utilization-Response. It is based on the principles already 

discussed in this chapter: the resource allocation is elastic, such that multiple jobs 

can share a CPU as long as the deadlines of existing jobs are not jeopardized. 

Deadline-Utilization-Response is the list of scheduling objectives in order of 

priority.  

Intuitively, using GridEngine would result in more deadline violations because it does 

not have any mechanisms for determining whether incoming jobs can complete before 

their deadlines. Also, it is absent of mechanisms to determine the physical CPU allocation 

that VMs have, so it may select VMs with less than a full CPU’s capacity even if there are 

free CPUs available. This causes higher expansion factor and in turn a greater propensity 
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to fail deadlines. On the other hand, FCFS does not allocate multiple VMs per physical 

machine, so if there are not enough idle physical machines available to schedule a job 

(either immediately or in the future) in time for its deadline to be met, it does not schedule 

it. ElaDUR affords more flexible allocations, which should result in more jobs being 

allowed into the system. Neither FCFS nor ElaDUR are expected to violate deadlines 

unless the execution time of a task is underestimated. To prevent deadline violations, we 

conservatively add 10% to the predicted execution time of each task, which is 3% more 

than maximum error observed in the experiment in Section IV.3.1, where we used our 

predictor to predict the computation time of FAST.  

V.4.3 Results 

The arrival time, deadline, and number of tasks of each job is shown in Table 9. The 

scheduling performance of each algorithm is shown in Table 10. The table shows the 

average utilization and expansion factors, as well as the number of deadline violations, the 

number of jobs processed, and the time elapsed between the first job arrival and the last 

job completion. The expansion factor is the ratio of the job’s response time (completion 

time minus arrival time) to its computation time, i.e. it measures the job’s response time 

relative to its computation time. We consider this a better measure of responsiveness than 

using only the response time, since longer jobs are less sensitive to response time delays. 

The results align with the expectations summarized in the previous subsection. 

GridEngine processed all job, but in doing so violated the deadlines of 70% of them. The 
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VMs were initially deployed such that 6 physical machines were running one VM, 1 

physical machine was running 2 VMs, and 1 physical machine was running 4 VMs. 

During the workload processing, for 2 jobs all 4 VMs on the latter physical machine was 

active, resulting in the tasks’ execution times quadrupling while other physical machines 

remained idle. This was the culprit for the high average expansion factor and for some of 

the deadline violations. 

FCFS had the lowest expansion factor because all tasks received a dedicated CPU, so 

only queuing delay contributes to the expansion factor and due to the mixture of job 

arrivals and deadlines, only one job could be queued with enough time left over to 

complete before its deadline.  

ElaDUR only had to turn down 1 job, so it enjoyed a higher average utilization and 

job processing rate. Note that its performance corresponded with its scheduling objectives: 

there were no deadline violations, utilization was kept high, but expansion factor was 

higher than FCFS because certain jobs received a small amount of CPU in order to 

accommodate the deadlines of other jobs on the same physical machine. 

Due to the relatively long gap in job arrivals between the 9th and 10th jobs, ElaDUR 

and FCFS finished the last job at roughly the same time. However, the cluster was idle for 

longer periods of time during the workload processing when using FCFS since ElaDUR 

processed more jobs.  
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Table 9. Parameters of jobs used for evaluating the scheduling algorithm 

No. Arrival time (min.) #Tasks Deadline (min.) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
20 
50 
55 
67 
68 
70 
80 
81 
121 

8 
10 
8 
4 
4 
4 
4 
8 
8 
8 

15 
15 
40 
20 
100 
10 
10 
10 
20 
10 

 

Table 10. Performance comparison of the 3 scheduling algorithms 

Scheduler Utilization Exp. 
Factor 

Violations Jobs 
processed 

Completion of 
last job (minutes) 

GridEngine 
FCFS 

ElaDUR 

53% 
55% 
72% 

2.4 
1.1 
1.5 

7 
0 
0 

10 
7 
9 

186 
131 
130 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

The work discussed in this dissertation harnesses modern advances in virtualization 

technology to address the issue of deadline-driven job scheduling. Since the performance 

of a given job scheduling algorithm is dependent on the arrival patterns and applications 

of the workload being processed, we focused our work on a specific application that 

would benefit our medical collaborators as well as researchers in the lab. Throughout the 

dissertation, however, we provided additional insight into how the findings made 

throughout this work could be extended to other scientific applications (e.g. fluid 

dynamics). This insight was provided in the form of extensive performance analyses and 

performance models for these applications.  

To this end, we looked into three pertinent issues. First, recognizing the need for 

performance modeling in order to satisfy scheduling deadlines, we started with an in-depth 

analysis of the performance of different scientific applications via empirical evaluation on 

a compute cluster. Since virtualization provides key benefits for resource provisioning, we 

went on to explore the effects of virtualization on scientific workloads. This included 

studying the overhead caused by the virtualization software itself as well as the impact of 

CPU sharing on application performance, since it is common to pack multiple virtual 

machines on the available physical machines.   
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Among our findings, we confirmed that the performance of typical medical image 

processing workloads consisting of a large amount of independent tasks is not affected 

significantly by virtualization. In terms of CPU sharing, the tasks scaled proportionally to 

the share of CPU they were given. By virtue of this, a linear scalability model could be 

used, which is ideal for making real time scheduling decisions, since this kind of model 

can be implemented using computationally simple algorithms. Using a performance 

prediction model based on regression analysis, we were able to predict the scalability of 

tightly coupled parallel applications with an average error of 15% and the computation 

time of individual image segmentation tasks to within 7% for different-sized images. 

We then applied the performance prediction model to a deadline-driven job 

scheduling methodology. We developed several components to enable job scheduling on 

virtual machines combined with autonomous resource management to ensure deadlines 

are satisfied while maximizing utilization and minimizing response time. Through our 

collaboration with a consortium of hospitals, we obtained 66 sets of fMRI image data of 

different sizes to process in order to evaluate our scheduling algorithm. The scheduling 

algorithm was compared to a current solution for batch scheduling image processing jobs 

and to a traditional, but virtual machine aware first-come-first-serve scheduling algorithm.  

We found that our scheduling algorithm processed more jobs without jeopardizing any 

deadlines. It also utilized the available resources significantly better than the other two 

algorithms. 



  106

The fact that our algorithm performed better confirms the benefits of virtualization in 

terms of job scheduling discussed early on in this dissertation. We observed no 

performance impact from virtualization on the workloads used for the scheduling 

evaluation, in fact we found that virtualized executions can outperform regular executions, 

which suggests that further work should go into developing production environments for 

virtualization-aware scientific job scheduling. Our observations and models provide 

additional insight for doing this, which we consider an interesting direction for future 

work. 

Additional future work could consist of further refinements to the prediction model 

itself and more optimizations to the scheduling algorithm. Specifically, migration can be 

harnessed to further improve resource utilization and/or other goals such as energy 

efficiency. Another direction would be to look into resource federation. Currently, our 

scheduler rejects jobs for which there are not enough resources to satisfy deadlines. An 

alternative is to allow federation of resources from other administrative domains to lease 

external resources when local resources are not adequate, as long as they can provide a 

performance guarantee. 
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