

 37

and non-virtualized environments. By doing so, we can provide improved insight on the

virtualization overhead of different scientific applications being applied to different input

problem sizes. For tightly coupled applications, we distinguish between computation and

I/O time. There is little disk I/O needed for the jobs we run, so we do not consider it

necessary to separate it from I/O due to inter-process communication via network.

III.5.1 Terminology

We refer to the ratio of virtualized execution time to bare metal execution time as the

virtualization penalty. The extra CPU time that the hypervisor requires for I/O operations

is referred to as virtualization overhead.

III.5.2 Performance Analysis of Image Processing with FSL

One caveat with the image processing applications used is that their execution times vary

due to random components in the algorithms. MELODIC executions vary more because

the main algorithm is iterated until converging and the number of steps required to

converge depends on a random initial variable. For example, we performed 20 executions

of the same data set on the same physical machine and observed an 8% difference in

execution time between the fastest and slowest execution. FAST times varied less than 2%,

since the heuristics used are guaranteed to converge in only “a few iterations” [62]. The

data sets used are discussed in Section III.4.1.

 38

Image Segmentation

Since there is no communication of data involved when executing separate studies in

parallel, we expected the bare metal and virtualized performance of Xen to be roughly the

same. Surprisingly, the virtualized executions were 10-15% faster. We performed profiled

executions using Oprofile to understand why. The execution profiles were similar for all

data sets, so in describing this phenomenon, we focus on the first data set from MCH. In

Figure 2, we show the execution time of the 7 most time-consuming functions (labeled

A-E for brevity) in the VM (using circles) and BM (using squares) configurations. As can

be seen, function A, which corresponds to the convolution function, has a disparity

between the BM and VM executions. Furthermore, running the program through the GNU

debugger (gdb) revealed that the function is only slowed down in the BM when processing

about the kth direction in the i,j,k space. This function is called 30 times and consists of

193 million additions and multiplications and 6.03 million assignments of a 3 dimensional

local variable per call when processing a 256x256x190 image and using a 40x40x32

convolution kernel. According to the profiler, memory operations consumed the bulk of

the time, suggesting that virtualization-related cache optimization is the reason for the

speedup. This coincides with a similar observation made in [36] when the authors ran

BLAST [37] jobs, in which they suggested that VM double caching caused the virtualized

execution to be faster.

 39

Figure 2. Execution times of the 7 most time-consuming functions of FAST.

Image Registration

Comparing the VM and BM performance of the MELODIC image registration

experiments was not straightforward due to the aforementioned randomness in the

algorithm. Specifically, The ICA algorithm does not terminate until it converges, and the

number of steps required until it converges depends on the random initial value. We

observed anywhere from 63 to 136 steps before converging for identical executions, hence

there was some variation in the resulting execution times.

While this variation makes it difficult to measure the effect of virtualization, the

results clearly showed that the VM executions were slightly slower when simultaneously

processing 2 data sets per node. When only one data set at a time was processed on each

node, the average overhead was negligible. When all data sets were submitted at once (but

A B C D E F G
0

100

200

300

400

Function ID

E
xe

cu
tio

n
T

im
er

 (
s)

BM
VM

 40

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 30
0

2000

4000

6000

8000

10000

12000

14000

16000

Dataset ID

E
xe

cu
tio

n
T

im
e

 (
s)

4n BM
4n VM
solo BM
solo VM

only allowing one CPU per job), the overall VM slowdown was 13%, 10%, and 13% for

1-, 2-, and 4-node executions, respectively.

Figure 3 compares the completion times of each data set from the MCH repository for

the VM and BM experiments for single-node, single process (solo) and 4-node,

2-process-per-node (4n) executions. The relationship between the VM and BM executions

is always the same, with the BM finishing slightly faster in the latter scenario.

Figure 3. Execution time of MELODIC when run solo and when using 4 nodes.

 41

III.5.3 Virtualization’s Impact on Tightly Coupled Applications

We now discuss the virtualization impact on tightly coupled applications. Since the impact

of virtualization on these applications varies so much depending on the characteristics of

the job, it is more complex to describe, and thus we dedicate a relatively large amount of

space to discussing it.

Compcomm

We begin the discussion on tightly coupled application performance with the compcomm

benchmark, whose algorithm was shown in Figure 1. To gain insight on the relationship

between computation ratio, message size, and virtualization overhead, we vary the number

of computations per iteration and the message sizes. Computations per iteration values

used are 25, 50, 100, and 200; Message size values used are 0.64, 1.28, 40, 8.75, 17.5, 35,

70 and 140 kB. In Figure 4, we plot the virtualization penalty (vertical axis) for different

MPI message sizes as the duration of the computation cycle (horizontal axis) is increased.

We observe an inverse relationship between computation cycle length and virtualization

penalty. The figure shows that the penalty tends towards unity as the length of compute

iterations is increased. For message sizes below 8.5kB, the virtualized executions are

actually slightly faster. We attribute this to reduced operating system noise in the VM

nodes as we observed that idle bare metal nodes experience more than 15 times as many

interrupts as idle vm-container nodes.

 42

Looking at the relationship between message size and overhead (keeping computation

duration constant), we see a significant increase in virtualization penalty as the message

size is increased, especially when the computation cycle duration is less than 0.2 seconds,

because the communication time is a significant portion of the execution time. Only the

executions with 140 kB remained at over 2% overhead when the computation duration

reaches 0.67 seconds. It is observed that 140kB is large compared to the message sizes

used by the applications we experimented with. Hence, we can deduce that the

virtualization overhead is minor for well balanced tightly coupled applications as long as

the problem size is not small.

Figure 4. Effect of increasing computation cycle duration on virtualization penalty.

 43

NPB LU and LU-MZ Benchmarks

We now look at how the relationship between computation ratio, message size, and

virtualization overhead observed using Compcomm compares to that of actual applications

for which communication requirements vary for each worker. Figure 5 shows the overall

communication and computation times for 2-process-per-node LU-MZ executions with

Class A (Figure 5a) and Class C (Figure 5b) for 1, 2, 4, and 8 nodes. The BM and VM

times are shown in adjacent rectangles for each configuration. Since the performance

penalty was below 6% for the 1-process-per-node executions, we do not show them. The

times depicted in the figures were obtained from the timers built into the benchmarks. The

communication times include physical communication as well as virtualization overhead.

Comparing the figures, we can see that using a smaller input results in a larger

performance penalty on multi-node executions compared to the larger input.

Using Xen’s command line tools revealed that virtualization overhead was less than 2%

larger for Class A, which does not explain the larger difference in performance penalty.

We analyzed the communication pattern of the execution using the Paraver trace analysis

tool [70], which revealed that when running Class A, the average duration of the

computation cycles was only 72 milliseconds, which implies that there was high

communication frequency. For Class C (Figure 5b), the duration is 520 milliseconds,

resulting in a much smaller virtualization penalty. This coincides with the observations

from the compcomm experiments, where we found that the virtualization penalty increases

 44

as computation rate decreases. However, the largest virtualization penalty with compcomm

was 35%, compared to 62% for LU-MZ. The other culprits are load imbalance and

contention between the processors when accessing the network interface.

(a)

(b)
Figure 5. Communication and computation times for LU-MZ (a) Class A and (b) Class C,

using 2 processes per node.

1 2 4 8
0

10

20

30

40

50

60

70

80

Number of Nodes

(C
om

pu
ta

tio
n
 ,

C
o
m

m
un

ic
a
tio

n
)

T
im

e
 [s

]

Computation
Communication

VMVMBMVMBMVMBM BM

1 2 4 8
0

500

1000

1500

2000

2500

3000

Number of Nodes

(C
om

p
ut

a
tio

n
,

C
o

m
m

u
n

ic
a

tio
n

)
T

im
e

 [
s]

Computation
Communication

VMBM VMBM VMBM VMBM

 45

Another observation is that the overall execution times with 8 node Class A

executions are roughly equal for the VM and BM. This is because the (non-virtualized)

computation ratio is only 53%. Since the CPU spends so much time idle, the virtualization

overhead has a negligible effect on overall execution time.

We repeated these experiments with the other coarse grained NPB CFD benchmarks

(SP-MZ and BT-MZ), with similar observations. With 1 process per node, the

virtualization penalty increased roughly linearly as a function of the parallelism and never

surpassed 10%. With 2 processes per node, the pattern of the virtualization penalty was

similar to LU-MZ.

Next, we repeated the experiments with the original (fine-grained) LU, SP, and BT

benchmarks. As expected, the virtualization penalty was greater since the fine-grained

implementation performs more frequent message passing (e.g. between 0.6 and 0.7

milliseconds between most messages for 8-node Class A runs, which is two orders of

magnitude more frequent than with the MZ benchmark). Also, a larger amount of data is

transferred during the execution; for example, a 4-processor execution of LU, Class A

transfers a total of 122 megabytes of data with the fine-grained implementation but only

34 megabytes with the coarse-grained implementation. Looking back at Figure 2, we see

that when the length of the computation cycles is below 100 milliseconds, quadrupling the

message sizes results in a large virtualization penalty. Unlike the MZ benchmarks, the

original benchmarks experienced significant overhead as can be seen in Figure 6 for both

 46

the 1-process-per-node (6a) and the 2-process-per-node (6b) executions. Both figures

show the virtualization penalty (i.e. execution time on the VM divided by execution time

on bare metal) as the number of nodes is increased. Again, we observe that using the

smaller input data results in more overhead. Again, the penalty is attenuated when the

(bare metal) computation ratio drops below 60%, as can be seen in the 8-node, 1

process-per-node Class A execution in Figure 6a. With 2 processes-per-node (Figure 6b),

this occurs when the cluster is larger than 8 nodes, since the virtualization penalty stops

increasing from 4 to 8 nodes. With 2 processes-per-node, virtualization causes additional

latency multiplexing the network interface between the 2 processors, so the virtualization

penalty is not attenuated despite the low computation ratios. Since the computation ratio is

bigger with the larger problem sizes, the penalty monotonically increases with the number

of nodes.

Our results thus far have given an overview of the performance impact of

virtualization. To estimate a job’s execution time, and to anticipate the maskability of its

communication when it shares the CPU with other applications (assuming at least one is

tightly coupled), we need to know its virtualization overhead. In Tables 2 and 3, we

tabulate the virtualization overhead (in CPU percentage) for all the experiments carried

out using 1-process-per-node and 2-processes-per-node executions, respectively.

 47

(a)

(b)

Figure 6. Virtualization penalty for the original LU benchmark, running (a) 1- and (b)
2- processes per node.

Table 2. Percentage of CPU used for virtualization overhead running 1 process per VM

 48

App (Input) 1 node 2 node 4 node 8 node

LU-MZ (A)

LU-MZ (B)
LU-MZ (C)
LU (A)
LU (B)
LU (C)
WRF (jan00)
WRF (75x4)

0.7
0.7
0.8
0.7
0.7
0.9
0.9
0.7

3.2
2.4
2.0
5.5
4.5
3.2
5.1
5.0

6.6
4.8
3.0
10.4
10.7
5.3
7.0
7.5

6.1
5.2
2.9
10.0
8.2
5.8
8.5
8.5

Table 3. Percentage of CPU used for virtualization overhead running 2 processes per VM
App (Input) 1 node 2 node 4 node 8 node

LU-MZ (A)

LU-MZ (B)
LU-MZ (C)
LU (A)
LU (B)
LU (C)
WRF (jan00)
WRF (75x4)

0.7
0.7
0.7
0.7
0.8
0.7
0.6
0.7

4.8
6.0
3.0
7.4
9.5
9.2
5.5
5.6

4.3
4.8
3.0
8.4
11.4
11.7
6.8
7.9

4.0
5.2
2.9
9.4
7.3
8.7
8.7
7.4

III.6 Performance Analysis With Shared-CPU Executions

III.6.1 Sharing CPU Among Loosely Coupled Jobs

We ran multiple simultaneous serial executions of WRF and FAST to measure the

execution time impact due to CPU sharing. We found no significant slowdown compared

to running the jobs sequentially. With WRF, we ran up to 8 multiplexed serial instances of

the jan00 domain, which takes 25 minutes to complete and uses 200 megabytes of RAM,

and running simultaneously took roughly the same amount of time to finish all 8 as

running sequentially. We ran a similar experiment with FAST to see if it would be affected

more than WRF, since its more memory intensive, but we found that the makespan of 4

 49

simultaneously-executed jobs was within 1% of the time it would take to run them

sequentially, using the average FAST execution time as a basis. The relation for FAST can

be seen in Figure 7, where we plot the completion time of all jobs as a function of the

number of simultaneous jobs. A linear trend line is used to show that the relationship is

roughly linear. As a result, we conclude that execution time prolongation due to CPU

sharing for loosely coupled jobs can be accurately predicted as the product of the

computation time and the inverse of the CPU allocation of the job. This model will work

with a up to 8 jobs for WRF and up to 4 jobs for FAST. These are reasonable limits

considering the memory requirements of each application.

Figure 7. Effect of multiplexing up to 4 FAST jobs on one CPU on makespan.

 50

III.6.2 Sharing CPU Among Tightly Coupled Jobs

The execution time of shared-CPU tightly coupled jobs is harder to predict since a

significant portion of their execution is spent performing I/O. We now study the

shared-CPU behavior of the tightly coupled applications mentioned earlier, and compare

our findings to the expected behavior described in Sections III.3.1 and III.3.2. We start

with an observation that confirms that by collocating 2 parallel jobs and multiplexing the

CPU, we reduce the makespan of the two jobs compared to running them sequentially, by

virtue of communication masking, despite the virtualization penalty.

We start by running two instances of the 2-task Compcomm parallel benchmark,

described in Section III.4.2, on 2 physical machines. One physical machine hosts the 2

master VMs and the other the 2 slave VMs. Each VM runs one parallel task. In each

physical machine, both VMs multiplex the same processor. The non-multiplexed and

multiplexed execution times, for different message sizes, are shown in Figure 8(a) and (b),

respectively. Both figures show execution time (vertical axis) as a function of message

size (horizontal axis). Three relations are plotted in each figure. The dark solid line shows

the total communication time, including virtualization overhead. The lighter dashed line

only shows the CPU time pertaining to the virtualization overhead. The light dotted line

shows the wall clock time. In the multiplexed case, the latter is the makespan of the two

jobs. Note that the difference between the total communication and virtualization

overhead lines is the physical communication time. We find that the majority of the

 51

physical communication time can be masked as long as the computation ratio is above 50%

or so. Also, comparing the wall clock execution times of the two figures we can infer that

the makespan when multiplexing the two jobs is faster than running them sequentially,

especially if message sizes are large. For the final data point, the execution time increased

significantly because the computation ratio dropped below 50%, hence less

communications could be masked.

Our initial expectation, under the assumption that messages can be transferred while

collocated jobs are in the working state, was that the makespan would be roughly twice

the application’s CPU time, plus the virtualization overhead, and a small penalty for

context switching. In the case of this benchmark, context switch overhead is minor since

the memory footprint is small. Looking at Figure 8, it can be seen that there is some

additional overhead beyond the virtualization overhead. For example, when using a

message size of 44 kB, the expected makespan under this assumption is 113.2 seconds,

whereas the measured makespan is 117.2 seconds. Using Paraver, we found the additional

overhead was due to jobs’ communication intervals occasionally overlapping, resulting in

wasted CPU cycles. In other words, not all communications were masked by computations.

This can be seen in Figure 9, where we plot a portion of the Paraver execution trace

visualization. In the figure, we show the temporal execution pattern for several iterations

of executions in the dedicated CPU (Figure 9a) and shared CPU (Figure 9b) cases. Each

bar in the figure represents a worker; e.g. J(N,W) is the Wth worker of Job N. Black

 52

sections represent states where the worker is running (i.e. requesting or using CPU), dark

gray sections represent states where the worker is synchronizing (with another worker),

and light gray sections represent when a worker is sending data. There is overlap in the

second communication iteration shown in Figure 9b, resulting in idle CPU cycles.

(a)

(b)

Figure 8. Overall I/O time, virtualization overhead, and makespan as a function of
message size, with (a) a single Compcomm job and (b) 2 multiplexed Compcomm jobs.

0

20

40

60

80

100

120

140

160

15.1 18.1 21.8 26.1 31.4 44 61.6 86.1 120 169

T
im

e
(s

ec
on

ds
)

Message Size (kBytes)

iotime

virtualization overhead

 wall clock

0

20

40

60

80

100

120

140

160

15.1 18.1 21.8 26.1 31.4 44 61.6 86.1 120 169

T
im

e
(s

ec
on

d
s)

Message Size (kBytes)

Total comm.

virtualization overhead

wall clock time

 53

The overlap of communications will affect the results of the performance model, since

it is not possible to analytically determine when they will occur. However, we expect them

to be rare, as they were for the experiment corresponding to Figure 9, with most tightly

coupled jobs. Also, note that this would not be a problem when multiplexing a CPU-bound

loosely coupled job with the tightly coupled job(s). Collocating these two kinds of jobs

will help yield optimal utilization of the CPU in virtualized environments. In addition,

since tightly coupled jobs execute at the rate of the worker with the least available CPU, it

is possible for many physical machines to have underutilized CPU due to fragmentation.

By collocating loosely coupled and tightly coupled tasks, this problem can be avoided as

well.

Figure 9. Execution trace of Compcomm. (a) dedicated CPU, (b) shared CPU.

 54

CHAPTER IV

EXECUTION TIME PREDICTION METHODOLOGY

In this chapter, we discuss the performance prediction methodology to address two related

problems: computation time prediction and scalability prediction. Computation time

prediction refers to predicting how much CPU time an application requires to execute,

given an input problem. Since we deal with shared-CPU environments, we also account

for different CPU allocations. Scalability prediction refers to predicting how the execution

time of an application will increase/decrease depending on the number and type of

machines being used to run it.

In both cases, we rely on statistical prediction models that use historical job execution

data as training data to extrapolate for future executions. This approach fits our scenario

best for two reasons. First, a provider of medical image processing services should know

basic execution-related characteristics about these applications. This information can be

obtained by carrying out experiments similar to those presented in the previous chapter.

Second, many statistical prediction methods are computationally simple, which is a

requirement for our job scheduling methodology described in the next chapter, since it will

be necessary to quickly perform one or more execution time predictions in order to make

real-time job scheduling decisions.

 55

IV.1 Overview of the Prediction Methodology

The methodology used can be described as a hybrid approach to execution time

prediction, in the sense that the prediction model itself has no application- or

domain-specific knowledge, but users may add this knowledge after determining the

factors that affect performance. In other words, the model itself is oblivious to the

application, but human knowledge about the application improves the model’s accuracy.

Some existing approaches to performance prediction have general and/or specific

knowledge about application execution included in the prediction paradigm itself. A

possible problem with these approaches is that they can be difficult to deploy; for example,

some of these tools require the application used to be compiled with special tracing

libraries. Conversely, approaches that are entirely oblivious to the application generally

suffer worse prediction accuracy [72]. As we will show, we do not try to tailor our model

to any specific application. Instead, we use knowledge of the application and execution

platform to improve the model. We now summarize our performance prediction

methodology.

Figure 10 depicts our multi-step, iterative performance modeling approach. The

approach starts with Stage A (Application/Code/ Platform inspection), in which specific

details about the application and/or execution platform are studied. The purpose of this

step is to determine what parameters contribute to the execution time of the application.

An example of a question that this step can answer is how the CPU of the execution

 56

platform affects the execution time. The depth of knowledge required for this step depends

on the application. For example, some applications are I/O-bound, and increasing the CPU

clock speed will not provide any performance improvement.

In Stage B, a mathematical model that relates execution time to other parameters,

based on intuition and specific findings from Stage A, is devised. The main constraint in

choosing a model is that it must be able to provide real-time execution time predictions in

order to make fast scheduling decisions. The model is described in the next section.

In Stage C, we perform executions under different conditions and/or with different

runtime configurations. We define a runtime configuration as the number of nodes and

processes per node used for any single execution on a particular system. When we refer to

Figure 10. Overview of the performance prediction methodology.

 57

a data set or data series, we are referring to a collection of execution statistics for a single

instance of all possible runtime configurations (e.g. the execution times for all runs

performed at a particular time with 8, 16, 32, and 64 nodes).

Each execution is profiled, i.e. the resources used for the execution are recorded.

When all executions are finished, the acquired data is fed into the prediction model, which

estimates the contribution of each parameter (Stage D). Based on these individual

estimates, the total execution time is estimated for a target execution platform, and

compared to the actual execution time. The iterations of the A-B-C-D cycle are repeated

until an average prediction error of 15% or less is achieved. The time it takes to iterate

through the cycle depends on the data being collected, but the tools were designed to

provide fast results and use regular text files so that data can be easily added or removed

using common text-processing tools.

IV.2 Prediction Model Overview

The model we use is implemented in a profiling tool, Aprof, described in [71], which

was developed as part of the Latin American Grid partnership. In this section, we

summarize the implementation of the model and how it was applied to our work. The

model assumes that the execution time of an application can be expressed as the product

of several contributors that affect a job’s execution time. It determines the magnitude of

their contributions with respect to execution time. Some contributors either vary too much

 58

between executions (e.g. the state of CPU registers) or they contribute a negligible amount

to overall execution time, so the model relies on human intuition about the applications

being run and the systems they are being run on, obtained in Stage A, to aid in its

development. For example, the duration of an image processing job depends on the size of

the input image(s) being processed, so image size should be a strong contributor to

execution time. We find that using intuitive parameters, based on basic knowledge of the

algorithm of a given application and the system(s) it runs on, yields predictions that are

accurate enough for job scheduling.

 The contribution parameters themselves may be polynomial equations of arbitrary

length, which results in Equation (1), in which m is the number of parameters, mi is the

maximum polynomial degree of the current parameter, aij is the coefficient contribution of

the ith parameter, and ݖ௜௝ is the ith parameter. Until now, we have had success with a

simplified model in which the maximum polynomial degree of all parameters is equal to

one (i.e. first-order polynomials).

 (1)

Based on this assumption, the model attempts to determine the contributions of each

of these parameters (i.e. the aij values). The resource properties are all combined to form a

sum-of-products, plus an error term to account for model inaccuracies and absent

parameters. Regression analysis is used to determine the values of the coefficients.

∏
−

= =

=
1

0 0

m

i

m

j

j
iijexec

i

zaT

 59

IV.3 Applying the Model to Computation Time Prediction

In this section, we describe how we address the problem of predicting the computation

time of a given application and input, based on historical execution data with different

inputs. The main problem for this is determining the parameters that contribute most

significantly to execution time in order to create a model. A constraint on the parameters

chosen is that they must be programmatically obtainable (e.g. by reading header

information of the input files) so that job scheduling decisions can be made in real time.

Since this is application-dependent, we describe the approach for each application

separately.

IV.3.1 Image Segmentation

We analyzed the execution time of FAST using data sets with different sizes and from

different hospitals. We provide pertinent information in Table 4. We did not find a strong

correlation between the 3 dimensions (X, Y, Z) of the data sets and their execution time

requirements. Using the 2 dimensions (i.e. X and Y dimensions only) was actually better,

but still would result in high error. Instead, we employed aprof, using the size of each

dimension of the image as explanatory values and the execution time as the exploratory

value. We obtained a mean execution time prediction error of 2.94%, max of 7.2% and

min below 0.1%. These parameters can be read from the DICOM or NIFTI header of the

image files, so they are suitable for our modeling approach. We repeated the test by

 60

predicting the execution time of all data sets, but using only two input data of different

sizes, and the error remained below 10%.

IV.3.2 Image Registration

As mentioned earlier, MELODIC is subject to significant execution time variation since

the duration of the algorithm performed before registering the images depends on the

number of time steps required to converge, which in turn depends on a randomly-selected

value. Using the same explanatory variables used for FAST in addition to the size of the

temporal dimension and applying the model to the MCH data, we obtained a mean

prediction error of 12.2%, a max of 29%, and a min of 0%. As a result, an extra “safety net”

must be used when predicting execution times of MELODIC jobs in order to avoid

deadline violations.

IV.3.1 LU Benchmark

The observations made in Section III.5.3 showed that the computational requirements of

the NPB LU benchmark increase roughly proportionally to the input problem size. The

relationship is not quite linear due to duplicate computations that occur with tightly

coupled problems, which is a known problem. Since no new or interesting observations

were made, we do not comment further on the computation time prediction for LU.

 61

Table 4. Execution time and memory utilization for various FAST jobs

Dataset dimX dimY dimZ Exec. Time Memory Utilization (Bytes)
CHOA_1
CHOA_2
CHOA_3
CHOA_4
CHOA_5
CHOA_6
CHOA_7
CHOA_8
CHOA_9
CHOA_10
CHOA_11
CHOA_12

CHOP_10
CHOP_11
CHOP_12
CHOP_13
CHOP_3
CHOP_4
CHOP_5
CHOP_6
CHOP_8
CHOP_9

BCCH_30
BCCH_44

176
176
176
176
176
176
176
176
176
176
176
176

256
256
256
256
256
256
256
256
256
256

211
211

240
240
240
240
240
240
240
240
240
240
240
240

256
256
256
256
208
208
208
208
208
256

288
288

256
256
256
256
256
256
256
256
256
256
256
256

192
192
192
192
160
160
160
160
160
192

288
288

632.0
702.0
699.7
682.7
662.3
663.7
701.7
671.3
644.3
645.0
663.3
654.3

1464.0
1464.0
1466.0
1371.0
534.3
569.7
572.3
608.3
579.3
1549.7

1182.0
1081.7

1.27E+09
1.30E+09
1.24E+09
1.30E+09
1.28E+09
1.30E+09
1.28E+09
1.28E+09
1.26E+09
9.86E+08
1.12E+09
9.57E+08

1.50E+09
1.50E+09
1.50E+09
1.48E+09
9.94E+08
9.48E+08
1.15E+09
1.03E+09
9.59E+08
1.48E+09

1.64E+09
1.94E+09

IV.4 Scalability Prediction

Since the historical execution data of a job may not have execution time requirements with

currently-available resources, it is necessary to predict how the job will scale under

different runtime scenarios. Hence, a scalability prediction model is needed to extrapolate

this information.

 62

For loosely coupled applications, scalability prediction is tractable. Multiple studies

on loosely coupled applications have shown that the relationship between execution time

and parallelism is roughly linear (e.g. for BLAST [73] and NAS EP [74]), so accurate

predictions are obtainable. Figure 7 confirms this is the case with FAST as well. With

bags-of-tasks, the computational requirement of the bag is simply the sum of that of each

task. The challenge, therefore, is minimizing the makespan of all the jobs by optimally

packing them among the available resources. Our algorithm for doing this is explained in

the next chapter.

The scalability prediction of tightly coupled applications is complicated by their

tendency to lose efficiency as the parallelism level increases due to redundant

computations, load imbalance, and/or communication overhead. We mitigate this by using

several prediction parameters and a large amount of training data.

We now discuss the scalability prediction approach taken. To limit the initial number

of variables, we start with the dedicated-CPU case. The main challenges we address in this

case are extrapolating for different combinations of CPU architectures and parallelism

levels. For CPU architecture, we include such things as memory and network bandwidth,

which can be affected by the bus and the number of CPU cores per machine. We ensure

jobs are not placed on machines that cannot fit the problem into memory, since swapping

to disk would result in a large execution time penalty that would be difficult to predict.

 63

The remainder of this subsection details the work carried out in publications [71,75],

which addressed scalability prediction for tightly coupled jobs.

IV.4.1 Overview of Challenges

We note three barriers to obtaining accurate predictions: the uncertainty of the CPU

architecture’s impact on the performance of the application, the distribution of nodes

across machines and within the same machine, and the size of the data center. We now

summarize these challenges and how we addressed them.

Extrapolating to Different CPU Architectures

Whereas CPU clock speed can be used to extrapolate performance among similar CPUs,

as was shown in [75], different CPUs have much different characteristics, so another

approach is necessary. A good example of this is the transition to more efficient CPUs

after hitting the power wall with the Pentium-4 processor. Subsequent processors have

achieved much better performance with lower clock speeds. To understand why a given

processor is faster than another requires in-depth knowledge about its design. Such factors

as pipelining, instructions/cycle, efficiency of internal components, etc. play an important

role in this. A cycle-accurate simulator similar to the one implemented in [26] would yield

accurate predictions, but the complexity of modern processors makes this difficult. Also,

such an approach is not suitable for job scheduling, where real time execution predictions

are needed.

 64

An alternative to low-level modeling of the CPU is to find metrics that correlate well

with execution time. For example, in [31] the authors ranked several metrics and found

that for some applications, execution time correlated best with strided access to main

memory, while for most other applications random access to L1 cache had better

correlation. In [76], the authors found node bandwidth and latency to be the most

significant parameters for the scalability of WRF. To properly evaluate the metrics with

the highest contribution, it is necessary to measure several of them.

Benchmarking is an alternative that can give a good indication of CPU performance

for different applications. The caveat with benchmarking is that, for best results, the

benchmark needs to be representative of the application being modeled, which requires

some knowledge of the application. Since CPU instruction patterns vary by application,

the best benchmark for a particular application is the application itself. However,

benchmarking the scalability of every application that is to run on a given system may not

be ideal. A good tradeoff is to run a few benchmarks with resource consumption

characteristics representative of a broad range of applications. Each application that is to

be run on the system can be mapped to a particular benchmark. For example, WRF

simulations involve solving differential equations and finite difference approximations, so

the performance measured using a generic benchmark that ranks a CPU based on its

performance executing these kinds of calculations should provide a good measure of the

CPU’s performance when running WRF jobs.

 65

We use the product of the CPU clock speed and a constant, the platform contribution,

to model the CPU parameter. The platform contribution is determined by benchmarking. It

only needs to be calculated when performing predictions among systems with very

different CPU architectures. Our results in [71] showed that clock speed is a good

indicator of the performance of systems with the same or similar CPU architectures, so it

is not necessary to measure separate platform contribution parameters for systems with

similar CPUs but different clock speeds.

Challenges With Multicore Architectures

Multicore architectures have become commonplace for all types of computing systems, so

we considered it necessary to accurately predict execution time on multicore systems. To

determine the optimal parameters to introduce to the model in order to model execution on

multicore systems, a closer look into multicore architectures is necessary. For parallel jobs

in which only one core of each node is used and the system specifications are kept

constant, speedup is affected by interconnection network performance and the

application's parallelization ability. The latter is a combination of computational

redundancy, synchronization requirements, etc. When multiple cores are used, several

complications arise. For one, intra-node communication may take place. Since the

bandwidth and latency of messages passed inside a processor/bus between processing

cores is different from that of different nodes communicating through Ethernet, multiple

communication factors need to be modeled. Furthermore, the cores need to share certain

 66

components, such as cache, main memory, network cards, etc. This introduces the

possibility of contention occurring when accessing different hardware components,

leaving less effective capacity for each core. For example, if a physical machine has a

dedicated L2 cache of 1MB, but the arbitration logic is shared, memory bandwidth to each

core is limited.

Here, again, knowledge about the application is helpful to determine what parameters

to model. For example, it has been shown that WRF is memory-bandwidth and latency

bound [76], so the model needs to account for memory bandwidth in order to provide

accurate predictions. As a result, we added a memory bandwidth parameter to the model.

The measured memory bandwidth value is divided by the number of CPU cores used in

the execution, since it is shared by each of them.

The behavior of a multicore node itself is generally consistent as long as whatever

instructions it is executing are constant, so an approach that relies on previous execution

data is able to cope with the fact that sharing components amongst cores leads to

non-trivial execution patterns. However, when combining several multicore nodes,

prediction is complicated by the fact that communication speeds and latencies are much

different for processors on the same physical machine compared to processors on separate

physical machines connected via Ethernet. As a result, it is necessary to give the model

separate parameters for number-of-nodes and cores-per-node. This is in addition to the

memory bandwidth parameter described in the previous paragraph.

 67

IV.4.2 Contribution Parameters Used in the Scalability Model

Accounting for all the challenges above, a set of contribution parameters were measured

and added to the prediction model as explanatory variables. Memory bandwidth was

measured using a tool that performs sequential reads and writes of different amounts of

data. The read bandwidth for 16MB of sequential data is used as the

memory-read-bandwidth (MBWRD). The write bandwidth for 16MB of sequential data is

used as the memory-write-bandwidth (MBWWR). Since the network bandwidth is also

shared by separate CPU cores, we also use a network bandwidth (NBW) parameter, which

is the theoretical bandwidth of the underlying network switch.

Multiple steps of refinement were required to obtain acceptable accuracy with

multicore experiments. The combination of parameters that best modeled the application

was MBWRD, MBWWR, number-of-nodes, total processors, network bandwidth, and

cores-per-node. When predicting across different systems, a platform contribution

parameter was measured using a benchmark. Inserting these parameters into Equation (1)

results in Equation (2). In the equation, x refers to the contribution of parameter x to the

overall execution time.

 (2)

Using first-order polynomial equations for each parameter, the equations of the

contribution parameters are as follows:

Γ

Texec = ΓMBWRD × ΓMBWWR × Γnn × Γnc × Γp × ΓNBW × Γpc

 68

Nc is the number of cores-per-node, Nn is the number-of-nodes, NBW is the network

bandwidth, and pc is the platform contribution. Note that for each parameter, there is a

constant contribution, i.e. the X0 factor, and a contribution due to the magnitude of the

resource parameter, i.e. the X1 factor. The memory and network bandwidth parameters are

divided by the amount of cores used per node since each processing core in the node needs

to share the memory bus and network card. Parameters that have an inverse relationship

with execution time (e.g. number-of-nodes) are inversed in the formula.

IV.4.3 Model Creation and Profiling

The model is built using data obtained from historical executions of an application. In

order to automatically generate this data, a system and application monitoring tool was

developed. We call this tool Amon, which is short for a monitoring tool. The tool was also

originally developed as part of the LA-Grid partnership and is described in [41]. It was

rewritten for additional functionality needed by our scheduling methodology described in

the next chapter, although for the purpose of performance modeling the functionality

ΓMBWRD = A0 + A1× MBWRD

Nc

ΓMBWWR = B0 + B1× MBWWR

Nc

Γnn = C 0 + C1

Nn

Γnc = D0 + D1

Nc

Γp = E0 + E1

Nc × Nn

Γnet = F 0 + F1× NBW

Nc

Γpc = G 0 + G1

pc

 69

described in [41] is adequate. Amon performs two main functions, monitoring and

reporting. In terms of monitoring, it collects resource consumption data for running

applications by probing the Linux /proc interface at discrete intervals. The resource

consumption data collected include CPU time, memory, and network bandwidth. Amon’s

other function, reporting, is performed at two levels. When a job completes, a report of its

overall resource consumption data is generated and recorded (e.g. to a text file). Reporting

of instantaneous resource consumption data of a job in progress is also performed on a

per-request basis. This is used by our job monitoring component to determine the progress

and execution rate of a job, as described in the next chapter.

To automate the data collection stage, several shell scripts were created to run jobs

with different configurations. Additional scripts were created for the evaluation of the

model in order to test with several different input parameters and data set sizes.

IV.4.4 Model Evaluation

In addition to our infrastructure at CATE described in Section III.1, we used three

additional systems, two of which were from large research data centers, which allowed us

to test our scalability prediction at a much larger scale and to perform predictions across

different CPU architectures. One is Marenostrum, from the Barcelona Supercomputing

Center and the other is Abe, a Teragrid [4] cluster from the University of Illinois at Urbana

Champaign. The specifications of all the systems used are tabulated in Table 5. The table

shows the CPU used in each physical machine of each cluster, the number of such

 70

CPUs/cores per machine, the maximum number of nodes used, and the interconnection

technology.

Table 5. Systems used to test our performance prediction methodology

Host Name CPU

Cores
per node

Max
Nodes Interconnect

Mind
Xeon Netburst

3.6GHz
2 16 1 gigabit Ethernet

Abe
Xeon Clovertown

2.33GHz
8 64 10 gigabit ethernet

Marenostrum
Power 970MP

2.3GHz
4 128 Myrinet

In the benchmarking process, four sets of execution data were obtained for each

configuration and the average execution time of each run was measured. In cases where an

outlier was detected, it was discarded. To test our hypothesis that using a platform

contribution parameter based on a relatively generic benchmark can model the CPU

performance of similar applications, we use the NPB BT-MZ, Class A benchmark’s

reported operations-per-second value as the platform contribution parameter and use WRF

as the test application. On Abe and Marenostrum, 8-, 16-, 32-, and 64-node execution data

were used. On Mind, 4-, 8-, 12-, and 16-node execution data were used. For all systems, 1-,

2-, and 4-processes per node were used. On the large systems (i.e. Abe and Marenostrum)

execution time can vary from run to run due to differences in node interconnection, so we

worked around this as described in [75] to obtain consistent results.

 71

Since CPU cores on separate nodes affect execution time differently than CPU cores

on the same node, there is a non-linear relationship between execution time and the total

number of CPU cores. Since we use a linear model, it is necessary to distinguish between

processes running on separate nodes and processes running on separate processors/cores

within a node. Figure 11 shows that when the number of cores-per-node is kept constant,

the execution pattern is linear or semi-linear and predictable. A similar relation holds when

keeping number of nodes constant while varying the number of cores. In the figures, we

use the inverse of number-of-nodes, since the execution time is inversely proportional to

the number of nodes (i.e. more nodes should result in lower execution time).

We summarize the results with an evaluation of prediction accuracy when using

different architectures, numbers of nodes, and numbers of cores. Additional results when

only varying a subset of these are shown in [75]. For this study, we used input data from

Abe and Mind to predict first for Abe and then for Mind. Out of all the experiments

performed, the maximum error observed was 10.12% and the mean was 6.74%. Figure 12

shows the actual versus predicted execution times. The error was obtained using Equation

(3), where tactual is the actual execution time and tpredicted is the predicted time.

 (3)

error = 100 ×
tacual − tpredicted

tactual

 72

Figure 11. Execution time versus parallelism, keeping number-of-cores constant.

Figure 12. Actual versus predicted execution times for Abe and Mind.

IV.4.5 Extending the Prediction Methodology to Virtualized Platforms

We now show how the scalability prediction model was modified to account for

virtualization, as presented in [77].

0

500

1000

1500

2000

2500

3000

3500

0 1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2

E
xe

cu
ti

on
 T

im
e

(s
)

Inverse Number of Nodes

1 core

2 cores

4 cores

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

E
xe

cu
ti

on
 T

im
e

(s
)

Actual

Predicted

 73

As we saw via the example in Figure 5, when run in a VM, a job’s CPU time remains

roughly the same, but its I/O time increases due to virtualization overhead. To address this,

we modify the prediction methodology. Instead of modeling the overall wall clock

execution time, we predict communication and computation times separately. For the

computation time, the user time (i.e. CPU time spent in user space) collected by Amon was

used. Communication time is not as simple to obtain using a lightweight monitor such as

Amon. We use a simple estimator, tio or simply iotime, which is the difference between

wall clock time and user time, as shown in Equation (4).

݁݉݅ݐ݋݅ = ௜௢ݐ = ௪௔௟௟ݐ − ௖௣௨ (4)ݐ

Before evaluating the revised model’s ability to predict execution time, we test the

efficacy of the values chosen to separate the CPU and I/O times by comparing them to the

values of communication and computation time reported by the timers included with the

NPB benchmarks. The computed correlation coefficients for all configurations of the VM

executions of LU-MZ were 0.99 (computation) and 0.95 (communication). We consider

this a good starting point for the model, hence, we use CPU time as the computation time

estimate and iotime for the communication.

 74

We measured the synchronous MPI bandwidth of the BM and VM configurations

using a simple ping-pong testi that measures the bandwidth for transfers of different

message sizes ranging from 8 Bytes to 1 MByte. The test was run 20 times and the

average bandwidth of all runs was taken. The BM node was consistently about 40% faster

throughout the range of message sizes evaluated. According to [78], the message sizes for

the LU-MZ benchmarks range from approximately 220-350 kB for Class B to 600-950 kB

for Class C, for systems with 2-16 processors. Since there is not much variation in the

measured bandwidth for this range, the average of the 128, 256, 512, and 1024 kB

measurements are used as the network bandwidth metric.

It was only necessary to evaluate the modified model with tightly coupled

applications, since the other applications do not have significant I/O times. The resource

consumption parameters used to estimate the computation times were: inverse number of

nodes, inverse number of processes per node, and inverse memory bandwidth. To predict

I/O time, the number of nodes, number of processes per node, and inverse of network

bandwidth were used. The network bandwidth was adjusted according to the number of

processes per node. Runtime configurations consisted of using 1, 2, 4, and 8 nodes and 1

and 2 processes per node, for a total of 16 data points per experiment. The overall error

was calculated using Equation (5), in which io is the iotime and u is the CPU time.

ihttp://www.scl.ameslab.gov/Projects/mpi_introduction/para_pingpong.html

 75

The actual and predicted computation and communication times for the LU and

LU-MZ benchmarks with up to 8 nodes are shown in Figure 13. The predictions were

performed separately for each class and for each implementation (i.e. original and MZ),

for a total of 6 sets of experiments. The mean and median prediction errors were 13% and

4%, respectively.

ݎ݋ݎݎ݁ = |(௜௢ೌ೎೟ೠೌ೗ା௨ೌ೎೟ೠೌ೗)ି(௜௢೐ೞ೟೔೘ೌ೟೐೏ା௨೐ೞ೟೔೘ೌ೟೐೏)|(௜௢ೌ೎೟ೠೌ೗ା௨ೌ೎೟ೠೌ೗) 100 (5)

The same experiments were repeated for WRF, using the same run time

configurations and the jan00 and 75x4 domains. The actual and predicted execution times

are shown in Figure 14. The mean and median errors in this case were 9% and 6%,

respectively. The mean error was more tolerable for WRF since using larger problem sizes

results in less sporadic virtualization penalty. The NPB results were skewed due to the

higher error of the Class A predictions.

IV.5 Modeling the Effect of CPU Sharing on Execution Time

In Section III.2 we described some of the reasons for using CPU sharing in multi-tenant,

shared-CPU scenarios. In Section III.6.2, we demonstrated that multiplexing tightly

coupled jobs with other jobs, such that during the communication cycles of one job the

computation cycles of another can be performed, the makespan of the two jobs is reduced

compared to running them sequentially. Hence, we deemed it necessary to implement a

mathematical model for predicting execution time expansion due to CPU multiplexing.

 76

We do this for both loosely coupled and tightly coupled jobs and assess the accuracy of the

model empirically.

Figure 13. Predicted and actual CPU and I/O times for LU and LU-MZ.

Figure 14. Predicted and actual computation and I/O times for WRF.

Before discussing the model itself, we discuss consistency and reproducibility issues

that could hinder the accuracy of the model. In [79], the authors found that the Xen Credit

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

E
xe

cu
ti

on
 T

im
e

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

5

Actual Time
Estimated Time
Actual IO Time
Estimated IO Time

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

3.E+06

4.E+06

4.E+06

5.E+06

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

1.E+07

1.E+07

1.E+07

IO
 T

im
e C

P
U

 T
im

e

Actual CPU Time

Estimated CPU Time

Actual IO Time

Estimated IO Time

 77

Scheduler can suffer from CPU allocation error, resulting in unfair load balancing when

VMs are multiplexing the CPU. We did not encounter this particular problem when

running identical parallel jobs, although we did note that the virtualization overhead

caused by them was not included in the processor allocation decisions. For example, if a

tightly coupled job requires 4% CPU for virtualization overhead and its multiplexing the

CPU with a serial job, each job will only get roughly 48% of the CPU; the exact amount it

gets is unpredictable. This needs to be accounted for in the model, as we discuss later.

A related issue is consistency. To determine if significant variation in execution time

can be expected from multiplexed Xen executions, we ran 15 consecutive executions of

compcomm and measured the durations of the computation and communication iterations.

The number of iterations was set to 200. For the first set of tests, only one instance was

run (i.e. no multiplexing). We then repeated it with a pair of 2-worker instances of

compcomm running on 2 physical machines, so that in each physical machine, the 2

workers were multiplexing the CPU. Using analysis of variance (ANOVA), we found that

communication cycles did not experience significant variation across runs or across

iterations for both tests. The durations of the computation iterations were not normally

distributed and we were unable to transform the data such that they would be, so ANOVA

was not performed. Instead, we calculated the mean durations for the multiplexed and

non-multiplexed executions. The mean remained at a consistent 67 milliseconds for

non-multiplexed executions. When multiplexed, the mean varied between 86 and 93

 78

milliseconds, since the amount of computation required before synchronizing can be

different each time a job enters the working state. Considering the default 30 millisecond

time slice used by Xen, the numbers seem reasonable.

An issue faced when predicting the multiplexed execution time of WRF and NPB is

the fact that workers communicate at different frequencies and have different overall

computation requirements. For example, the CPU time used by each worker of an 8-node

WRF execution of the jan00 domain varied between 150 and 220 seconds. To address this,

we need to use the computational requirement of the worker(s) that are multiplexing the

CPU, since the worker with the slowest execution rate will limit that of the others. This is

depicted in Figure 15, where we show the CPU time required by each worker (using black

circles) and the time required to execute the workload when one node is multiplexed

(using gray asterisks). The figure shows the execution time for each of the eight possible

multiplexed nodes. We see that the more CPU time the multiplexed worker needs, the

more the overall execution time is prolonged, since the workers with less computational

requirements must synchronize with them. Another issue is that the lengths of computation

and communication iterations vary, but the variation was not significant enough to require

the use of temporal requirements, i.e. the steady state execution pattern of all applications

used was roughly constant with a small period of time (under a second).

 79

Figure 15. CPU time of different workers and execution time when multiplexing each one.

IV.5.1 Description of the Model

The model estimates the execution time of a job based on its computation and I/O

requirements, the scheduling parameters of the VM it is executed on, its virtualization

overhead, and the parameters of other VMs sharing the CPU. It assumes that the

computation and I/O requirements are known from a previous execution and/or using a

performance prediction model. We further assume that only coarse-grained computation

and I/O requirements are known, since this data can be easily obtained using a lightweight

resource monitor. An example of coarse-grained knowledge would be the total

computation time of the job on a given system. Although it is possible to obtain relatively

fine-grained resource consumption data with a lightweight performance monitor, the

applications we studied have consistent steady state resource consumption behavior, so

pursuing this task was deemed unnecessary.

 80

The high level equation used to model execution time is shown in (6). We refer to the

overall execution time as Texec and separate it into non-collocated, non-multiplexed (solo)

and collocated, multiplexed (coll) portions; the solo time is further separated into active

and I/O portions. The active time is the portion of time in which the application can

consume CPU cycles. The I/O portion is the time that it can only perform physical I/O

because it is constrained by a cap. The computation portions include the time the

application itself spends performing computation as well as the virtualization overhead.

The I/O time includes the time spent physically transferring data. Note that the model

assumes that while multiplexing, all I/O will take place while a job is in the non-working

state. This is a safe assumption for the workloads used in the sense that their computation

ratios are above 50% and their shares are never lower than 50%. One caveat is that there

could be overlap of I/O cycles, as was shown in Figure 9b. This is not an issue when

multiplexing with at least one serial job, since it can always use the CPU.

 ௘ܶ௫௘௖ = ௖ܶ௢௟௟ + ௦ܶ௢௟௢,௔௖௧௜௩௘ + ௦ܶ௢௟௢,ூை (6)

We now describe the individual components of (6). For clarity, we describe the model

for the case in which there are up to 2 multiplexed VMs per physical machine. In the

formulas, we refer to the job being modeled as Job 1 (J1) and the collocated job as Job 2

(J2). In describing the equations, we assume that both jobs arrive at the same time, so they

first execute collocated and when one of them completes, the other can then use the full

CPU. This simplifies the explanation of the equations. In practice, jobs begin and end

 81

arbitrarily, so the formulas would use the remaining times instead of the overall times. The

model assumes that communications can be performed during the non-working states and

ignores the context switch overhead since we found it to be negligible in the experiments

carried out in Section III.5.2.

First, we define the collocated computation rate (rcoll) in (7). Its value is the smaller of

the cap of the VM the job is executed on and its net share relative to the collocated job. Its

net share is the larger of its cap and its share, which in turn is based on its weight and that

of the collocated job, as well as the collocated job’s cap. For example, assuming both jobs

have equal weight, if the collocated job is capped at ¼, the net share of the job is ¾.

௖௢௟௟௝ଵݎ = min [ܿܽ݌௝ଵ, max ൬100 × ௪௘௜௚௛௧ೕభ௪௘௜௚௛௧ೕభା௪௘௜௚௛௧ೕమ , 1 − [௝ଶ൰݌ܽܿ × ଵଵ଴଴ (7)

Tcoll is the wall clock time spent collocated; it is shown in (8), where ݐ௖௢௠௣௝ே is the

CPU time required for job N, including virtualization overhead. The equation assumes that

a job will always have computations to perform when it is given the CPU, which implies

that neither job has an rcoll larger than its solo computation rate. For example, if all jobs

have equal weight, this implies that neither job has a computation rate below 50% for two

jobs, 33% for 3 jobs, etc. This is a reasonable assumption given the computation rates of

the jobs we tested in our experiments, as well as the data available in the CTC and SDSC

workload traces of the parallel workloads archive [56]. Another caveat is that the formula

assumes that communication overlap between the two jobs will not delay the execution.

We observed only minor overlap, and did not expect this to affect accuracy significantly.

 82

With these assumptions, the collocated time can be expressed as a function of the

collocated computation rates (7) of the jobs and their computational requirements. The

formula takes the lesser of the two jobs’ computation times multiplied by their collocated

execution rates.

 Tcoll = min tcomp
j1 × 100

rcoll
j1

, tcomp
j 2 × 100

rcoll
j 2









 (8)

Tsolo,active is the time spent processing computations and communications while no

other job is sharing the CPU. The equation is shown in (9) for job 1, where tcomp is the

computation time of the job (excluding virtualization overhead), tvirt is the virtualization

overhead, Tcoll is the real (wall clock) time spent collocated, capj1 is the cap of job 1, and

rcoll is the computation rate (7) while collocated. For the virtualization overhead, ݐ௩௜௥௧௝ଵ is

the overhead observed executing job 1 and ݐ௩௜௥௧௝ଵା௝ଶ is the overhead observed executing

jobs 1 and 2 with the same CPU. Basically, we subtract the computation portion of the job

that was performed while collocated from the total known computation time, then account

for additional virtualization overhead and additional execution time prolongation due to

the cap.

 Tsolo,active
j1 = 100

capj1

× 1+ tvirt
j1()












× tcomp − Tcoll × rcoll

j1

1+ tvirt
j1+ j2









 (9)

Tsolo,IO, shown in (10), is the additional time spent processing I/O while the job has a

dedicated CPU. It accounts for cases where cap<100, in which some I/O can take place

 83

while the VM is forcibly put into the non-working state. The equation subtracts this time

from the remaining wall clock time to determine the additional communication time

required, if any. The remaining time is the difference between the (historical)

communication time (tIO) and the amount completed while collocated. The latter is the

product of the job’s communication ratio (
௧಺ೀ்) and the collocated time (Tcoll). This value is

then reduced by the idle time due to cap.

The CPU time required for virtualization overhead is small relative to the physical

communication time of the parallel applications we experimented with (refer back to

Tables 2 and 3), so we do not expect the cap to limit any communication from being

performed during the non-working states since the VM will build credits while the

physical transfer of the data is occurring.

 (10)

IV.5.2 Model Evaluation

Table 6 shows the required CPU and I/O times for a number of empirical tests using WRF

with the jan00 input domain with different cap values, for 1 and 2 node executions. The

prediction error, obtained using (11), is also shown. As observed in [19-20] for web

workloads, virtualization overhead is predictable if the communication pattern is constant.

We measured the mean virtualization overhead and applied it to (9) and (10) to determine

the overall computation times.

Tsolo,IO = tio − tio

T
Tcoll







− Tsolo,active × 100 − cap

100









 84

 (11)

Executions with 1 and 2 nodes and with cap settings of 100 and 50 were performed.

The execution times at 100% were used for the tIO and tcomp values. The non-zero

prediction error is due to sporadic virtualization overhead due to operating system noise.

The results indicate that the model provides good estimates for the effect of different cap

settings on execution time.

In Table 7, we show the times for multiplexed executions in which a node of a parallel

job multiplexes the CPU with a serial job. Columns 1 and 4 indicate the physical nodes on

which workers of the job executed. We vary the cap of each job, using values of 25, 50, 75,

and 100. For the first 6 rows, the parallel job has 2 workers and the serial job is

multiplexing the CPU with the first worker of the parallel job. The modeled execution

time for all but five of these is within 4% of the actual time. These four outliers are due to

the way Xen's Credit Scheduler distributes the CPU cycles. We found that it is biased

towards the parallel job: it consumed 51% of the CPU before virtualization overhead (56%

after the 5% consumed by the hypervisor for virtualization overhead) instead of the 50% it

would be allotted if the scheduler distributed the capacity fairly. A similar problem was

identified and a solution was given in [79], using Xen’s EDF scheduler. Since the model

assumes each VM gets an equal share but the parallel job gets a larger share, its execution

time is overestimated while that of the serial job is underestimated. Note that the most

error = Pr edictedRunTime − ActualRunTime

ActualRunTime

 85

inaccurate estimates occur when there is no constraint on the capacity of the parallel job

(i.e. cap=100). This is because when it does have a cap, the scheduler enforces the

constraint for the job and virtualization overhead combined (i.e. the application itself gets

less than its cap), which more accurately fits the model.

In each of the next 4 rows, the parallel job has 4 workers and each of these rows show

the times for the case in which a different worker was multiplexing the CPU, starting with

node 1 in row 7 and ending with node 4 in row 10. The estimated Tcoll for all of these

suffers due to the scheduler’s allocation bias for the parallel job. The modeled Tcoll

accuracy for these executions varies significantly; when multiplexed on the first or third

node, the modeled time is over predicted by 7 to 10% whereas when the second or fourth

nodes are multiplexed, the predicted time is within 3%. This is because the second and

fourth nodes have smaller computational loads than the others, so the bias for the parallel

job is propagated less.

The last two rows show the results when job 2 has 8 workers. For the semi-last row,

the first worker was multiplexed with the serial job and for the last row, the eighth worker

was multiplexed. The results are similar to those of the 4-node experiment. When node 1

is multiplexing the two jobs, the estimate of the collocated execution time is accurate since

the CPU allocation to the parallel job was 50% before virtualization overhead. However,

the CPU allocation for the serial job was just 42% since 8% of the CPU was used for

virtualization overhead, so the makespan of the serial job was underestimated by 11%.

 86

To test the model while accounting for the bias towards parallel jobs, we modified the

equation for the execution rate (7) to reflect our observation that the Credit Scheduler

distributes the net capacity available after virtualization overhead, and accounting for the

fact that the cap will be enforced including the virtualization overhead. The new

(estimated) execution rate equation is shown in (12). Table 8 shows the results when using

the updated formula. Note that the estimates for executions in which the cap is less than

100 are the same, so we indicate this by putting them in parenthesis. Now, when the

parallel job has 2 workers we observe that the estimated times are almost all within 3%.

The only exception is when the parallel job is capped at 75%, for which the overhead is

off by 6%. With 4 workers, the estimates improve, although Tcoll is still off by 6-7% when

the second or fourth workers are multiplexed. With 8 workers, most times are

underestimated significantly. This is because (12) is just a rough estimate of Xen’s

allocation. For example, we found that when there is significant virtualization overhead,

the CPU capacity is not evenly distributed among the VMs.

 (12)

Table 6. Model evaluation with 1 Job, no CPU sharing
#Nodes Cap CPU Time I/O Time Error(%)

1 100 1495 0 -0.18
1 50 1495 1559 -0.12
2 100 747 89 2.56
2 50 747 816 -1.55

rcoll,adj = max 100 − cap, rcoll − (tvirt
j1+ j2 ×100) 

 87

Table 7. Model evaluation with 2 jobs sharing a CPU

Job 1 (Serial) Job 2 (Parallel)
Nodes Cap Error(%) Node(s) Cap Error(%)

1
1
1
1
1
1

100
50
50
100
25
75

1.47
2.59
-4.49
0.66
-5.43
3.50

1,2
1,2
1,2
1,2
1,2
1,2

100
50
100
50
75
25

9.16
-2.69
9.61
-2.97
-5.94
-2.31

1
2
3
4

100
100
100
100

2.26
4.53
1.46
0.46

1-4
1-4
1-4
1-4

100
100
100
100

7.17
4.08
10.19
3.44

1
8

100
100

-9.22
1.31

1-8
1-8

100
100

3.40
-2.73

Table 8. Model evaluation with 2 jobs sharing the CPU and using the adjusted model

Job 1 (Serial) Job 2 (Parallel)
Nodes Cap Error(%) Node(s) Cap Error(%)

1
1
1
1
1
1

100
50
50
100
25
75

1.40
(2.59)
-1.35
(0.66)
(-5.43)
(3.50)

1,2
1,2
1,2
1,2
1,2
1,2

100
50
100
50
75
25

2.02
(-2.69)
2.44

(-2.97)
(-5.94)
(-2.31)

1
2
3
4

100
100
100
100

1.24
3.61
0.45
-0.39

1-4
1-4
1-4
1-4

100
100
100
100

-2.57
-4.29
0.17
-4.82

1
8

100
100

-9.78
0.94

1-8
1-8

100
100

-9.30
-15.36

 88

CHAPTER V

DEADLINE-DRIVEN DYNAMIC SCHEDULING

We now describe the job scheduling methodology used. As discussed in Chapter I,

medical jobs often have deadlines. To know if a computing system can meet a job’s

deadline, it must be able to estimate whether the job can be scheduled such that it

completes in time. In this chapter, we describe our job scheduling methodology, including

our multi-objective scheduling algorithm that addresses the deadline satisfaction problem

by harnessing the performance prediction methodology outlined in the previous chapter.

V.1 Design Overview

Our results in the previous chapter demonstrated that execution time predictions within 15%

are possible when applying our prediction methodology to FAST and WRF. While more

sophisticated models can be developed to reduce this error, a certain amount of error is

unavoidable on modern systems due to their complex CPU architectures, distributed

nature, etc. This creates a challenge for deadline satisfaction, so we went with a pragmatic

approach when designing our scheduling methodology. Our system actively monitors a

job’s progress and when a deadline violation seems imminent under the current system

state, additional resources are apportioned to the affected job(s) or it is migrated to a host

with more free resources available.

 89

We used a multi-objective scheduling approach. After deadline satisfaction, the next

objective the scheduler satisfies is the maximization of resource utilization. The intent, in

this case, is to allow as many jobs as possible so that the system is constantly loaded. The

third objective is minimizing jobs’ response times. Response time can be reduced by

prioritizing short-duration jobs and by migrating tasks to maintain synchronized execution.

However, maximizing throughput (in order to maximize utilization) tends to leave jobs

running at just enough CPU allocation to finish before their deadline, negatively affecting

response time.

V.2 Implementation

In order to satisfy all objectives and ensure that the system functions autonomously,

several components were created to automatically determine if new jobs are schedulable,

their optimal placement, availability of resources, and job status. We now discuss the

implementation of these components and their interactions.

V.2.1 Tools

Amon and Aprof are used to monitor job status and predict resource requirements for new

jobs. In addition, it is necessary to separately monitor the resource allocation of each VM,

since virtualization overhead can result in a job receiving less net CPU capacity than it

requires to complete and we observed non-intuitive CPU allocation with certain parallel

applications. For this purpose, we developed another monitor, which we call xhmon, short

 90

for Xen Hypervisor Monitor. It is implemented as a Linux daemon that periodically

monitors the resource utilization of VMs and listens for requests for specific utilization

data. The information that can be requested from xhmon includes a VM’s mean, median,

minimum, or maximum CPU utilization, all of which are recalculated at discrete intervals.

V.2.2 Components

In this section, we discuss the steady state functionality of the four components of the

scheduling methodology. Their names are Predictor, Scheduler, Resource Manager, and

Job Monitor. All components are implemented as Linux daemons. The Resource Manager

and Job Monitor update resource and job status parameters at discrete intervals. Since

most jobs take several minutes to run, we use an interval of 60 seconds to maintain a

reasonable monitoring overhead. The Scheduler is constantly listening for new job events,

upon which it calls the Predictor to determine the job’s computation requirements and

subsequently whether or not it can be scheduled in time for its deadline. Now, we describe

the individual components.

Predictor

The Predictor determines the resource requirements of new jobs. It can use either generic

prediction parameters or application-specific parameters for improved accuracy. For the

latter case, additional programming can be performed to extract pertinent information

from the input data. The decision to use the application-specific parameters is made

 91

automatically when the name of the application pertaining to the job matches an

application for which the Predictor has a specific prediction method. Based on our

findings in Chapters III and IV, we bind the parameters dimX, dimY, dimZ for image

processing applications to the Predictor. We use a third-party NIFTI library for reading

these parameters from the input data programmatically. The Predictor distinguishes

among the different parallel job types, such that for bags-of-tasks jobs each task’s

computation requirement is evaluated separately, whereas for tightly coupled jobs the

overall job requirements with different levels of parallelism is predicted.

Scheduler

The Scheduler is responsible for matching jobs to resources in order to satisfy scheduling

objectives. Resource requirements are queried from the Predictor and resource availability

is queried from the Resource Manager. When there are multiple resources to choose from,

different heuristics can be used to optimize scheduling performance. It also collects

scheduling performance data, which include system utilization, deadline violation rates,

and response times.

Figure 16a shows pseudocode for the two main functions carried out by the Scheduler,

i.e. processing job arrivals and job completions. We defer describing the details of these

functions until after describing the Resource Manager and Job Monitor, since they are

involved in this functionality.

 92

Resource Manager

The Resource Manager tracks the CPU and memory utilization of virtual machines and

physical machines. It is also responsible for keeping a pool of VMs available on physical

machines that can allocate new jobs without violating the deadlines of existing jobs, such

that response times of new jobs can be decreased as described in Section III.2.

Figure 16b outlines the steady state functionality of the Resource Manager. This

consists of 2 functions, VM probing and VM deployment. In the probing stage, the CPU

consumption rates of VMs are probed using xhmon. Since virtualization overhead can

impede a job’s progress, each job’s current and minimum execution rates are probed using

the Job Monitor’s socket interface. Using this information, VM slots, which indicate

points in time that VMs can be deployed and the amount of CPU capacity they can receive

at these times, are created for each physical machine.

The concept of VM slots is depicted in Figure 17, where we show how the state of a

physical machine initially running 3 jobs (J1-3) on 3 VMs changes over time. The CPU

allocation of each job is depicted using the height of the box it is enclosed in. The

completion times of J1 and J2 at their current CPU allocation are ଵܶ෡ and ଶܶ෡ , respectively.

Initially, the full CPU capacity of the machine is required to ensure all remaining jobs

finish before their deadlines. When J1 completes, its share (of roughly 25%) becomes

available, hence a VM slot of 25% CPU is created. Now, the slot can be used to run a new

job or the other two VMs can use the excess capacity. Similarly, when J2 completes at ଶܶ෡ ,

 93

its slot of roughly 25% additional CPU capacity opens up. When J3 completes at ଷܶ෡ , a slot

with the full CPU capacity becomes available.

The current heuristic employed by the Resource Manager is as follows. If a job is

receiving less CPU capacity than its minimum, it gets the available capacity in existing

slots, up to its newly calculated minimum capacity. Theoretically, this should not happen,

but in practice scheduling error can result in tasks getting less than their minimum. If there

is still available capacity after accounting for this, a VM is created or migrated to the

available slot so that later job arrivals can use it. This is what we refer to as the VM

deployment functionality of the Resource Manager. If a job has exceeded its predicted

computation time and is still running, all excess capacity is allocated to it, as this implies

its execution time was underestimated and the possibility of a deadline violation is

increased. The excess capacity is distributed among the running VMs.

Job Monitor

As its name implies, the Job Monitor keeps track of jobs’ progress, particularly their CPU

consumption progress and execution rates. It works with the Resource Manager to ensure

jobs are getting enough resources to complete before their deadlines. The Job Monitor

also attempts to minimize a job’s response time. For example, for bags-of-tasks workloads,

it attempts to balance jobs such that they finish at equal times.

An overview of the Job Monitor’s functionality is shown using pseudocode in Figure

16c. At discrete intervals, each job’s rate and CPU consumption progress is probed using

 94

Amon’s reporting interface. If a deadline violation is possible with the job’s current min

CPU allocation, the min value is increased. The Job Monitor merely updates this

information; the Resource Manager is responsible for updating allocations based on the

job’s parameters. The job status can be queried by probing the Job Monitor’s socket

interface, which returns the current and minimum execution rates for a given job.

V.2.3 Interaction Among Components

To better understand the scheduling methodology, we now discuss some additional details

about the implementation in terms of how the components interact with each other. In

Figure 18, we show a time line and the activities of each component from a job’s arrival

until its completion. The Resource Manager reallocates CPU to different VMs

continuously at discreet intervals, based on updates from the Job Monitor, and updates slot

availability accordingly. This is indicated in blue text in the figure. The first component to

respond to a job arrival is the Scheduler. It obtains a prediction of a job’s execution time

from the Predictor (not shown). This requirement is sent to the Resource Manager, who

updates its available slots and returns the list to the Scheduler. Assuming the job can

complete before its deadline, it is assigned to a set of slots according to some scheduling

heuristics. The Resource Manager is also responsible for allocating a VM on the physical

 95

machine, if necessary. This can be a new VM or a free VM can be migrated from another

physical machine.

(a)

(b)

(c)

Figure 16. Component overview: (a) Scheduler, (b) Resource manager, (c) Job Monitor

function job_arrival():
 predict_job_resource_requirements()
 determine_schedulability_from_available_resources()
 assign_resources_to_job()
function job_completion():
 unmap_resources()
 allocate_reserved_jobs()

function update_vm_slots():
 for each physical_machine:
 for each job_on_this_physical_machine:
 get_job_rate_and_min()
 if imminent_deadline_violation:
 reallocate_extra_capacity_to_job_in_danger
 update_slots_times_and_capacities()
 deploy_vms_for_available_slots
function probe_vms():
 for each VM:
 update resource utilization()

function monitor():
 probe_job_rate_and_progress()
 update vm_min_cpu()

 96

Figure 17. Slot availability at different times for a physical machine.

Figure 18. Timeline: interaction of scheduling components during a job's lifecycle.

V.3 Scheduling Heuristics

The heuristics presented in this section are optimized for medical jobs, which resemble the

bags of tasks model, where multiple tasks with different computation requirements are

 97

submitted together. Unlike tightly coupled jobs, the execution rates of each task are

independent of each other. On the other hand, the results may not be useful until all tasks

have finished so they benefit from synchronized execution.

Optimal job scheduling becomes computationally intractable as the number of tasks

and machines increases, so heuristics must be employed to best meet the scheduling

objectives. We use a best-fit based heuristic in making the job placement decisions, which

places jobs on the resources that best fit its requirements. This can be visualized by

thinking of tasks as moldable rectangles that need to be fit into different-sized bins. In

Figure 19, we show how the execution time of an image segmentation task varies based on

its CPU allocation/share. The dashed rectangles indicate three of the different shapes that

the task can assume. Its height is equal to its CPU share and its width is equal to the time it

takes to complete at a given CPU share. Since the task is CPU-constrained, the area of the

rectangles is constant. The maximum width is the job’s deadline. Looking back at Figure

17, we see a similar concept with slots. Hence, the objective of the best-fit algorithm is to

match each task rectangle to the slot rectangle that provides the tightest fit.

By ensuring that the width of each task’s rectangle does not exceed the job’s deadline,

we satisfy the first scheduling objective. Since we focus on CPU-bound medical

applications, utilization is maximized by virtue of accepting as many jobs as possible,

which implies strong execution time prediction accuracy. The third objective, minimizing

 98

response times, requires periodic monitoring of job execution rates, since even perfect

initial job schedules can be disrupted by new job arrivals.

Figure 19. Assumed execution time model for image segmentation jobs.

V.4 Evaluation

The motivation for our scheduling methodology was to optimize scheduling behavior for

incoming FSL jobs. While FSL provides the ability to automatically spread the workload

using the Oracle GridEngine batch processing system, it does not provide any mechanisms

for deadline satisfaction nor does it perform active load balancing as our approach does.

Additionally, it does not automatically account for memory constraints, which resulted in

out-of-memory errors when multiple image processing tasks execute on a single physical

machine. Our baseline scheduler, therefore, is using GridEngine to process the workload.

Doing so will compare how our overall scheduling methodology (i.e. virtualization and

performance prediction) can improve scheduling performance. To compare our scheduling

algorithm to another performance-aware scheduling algorithm, we use the popular

 99

first-come-first-serve-plus-backfill scheduling algorithm [15]. We use our Predictor to

determine if jobs can be backfilled.

V.4.1 Workload

We use a workload consisting of 66 functional MRI data sets requiring image

segmentation using FAST. Each of the 66 images is grouped into a separate job with a

different arrival time and deadline. Jobs require between 4 and 10 tasks each. The times

between arrivals of jobs also vary. We create random job arrival patterns and deadlines to

mimic real world workloads. By using a relatively small workload, we can clearly explain

the results obtained.

V.4.2 Scheduling Algorithms

• GridEngine: Uses FSL’s built-in functionality to submit jobs via GridEngine. We

do not use any of our scheduling components for this. Instead, we deployed

GridEngine on Mind. We designate one VM as the GridEngine master and the rest

as GridEngine execution hosts. Note that GridEngine is unaware of the underlying

physical machine on which the VM runs.

• FCFS: Despite many advances in the scheduling literature, first-come-first-serve

with backfill remains a popular choice for its simplicity and its balance of fairness

and resource utilization. It works as follows. Jobs are processed in order of arrival.

When a job requiring more nodes than are currently available arrives, it reserves a

 100

set of nodes able to run the job at a later time (provided that it can finish before its

deadline). If smaller jobs arrive before this reservation time and can be scheduled

such that the reservation of the large job is not violated, they are backfilled, i.e. they

are scheduled before the large job. This algorithm does not consider partial CPU

allocations, i.e. each task gets a full CPU to run on and physical machines running a

job cannot be scheduled on until they complete the job. In order to determine if

smaller jobs can be backfilled, FCFS traditionally depends on user-generated

execution time estimates. For this test, we use our prediction methodology to predict

the execution time. If a deadline cannot be satisfied, the job is skipped.

• ElaDUR: This is the scheduling algorithm we implement. Its name is short for

Elastic-Deadline-Utilization-Response. It is based on the principles already

discussed in this chapter: the resource allocation is elastic, such that multiple jobs

can share a CPU as long as the deadlines of existing jobs are not jeopardized.

Deadline-Utilization-Response is the list of scheduling objectives in order of

priority.

Intuitively, using GridEngine would result in more deadline violations because it does

not have any mechanisms for determining whether incoming jobs can complete before

their deadlines. Also, it is absent of mechanisms to determine the physical CPU allocation

that VMs have, so it may select VMs with less than a full CPU’s capacity even if there are

free CPUs available. This causes higher expansion factor and in turn a greater propensity

 101

to fail deadlines. On the other hand, FCFS does not allocate multiple VMs per physical

machine, so if there are not enough idle physical machines available to schedule a job

(either immediately or in the future) in time for its deadline to be met, it does not schedule

it. ElaDUR affords more flexible allocations, which should result in more jobs being

allowed into the system. Neither FCFS nor ElaDUR are expected to violate deadlines

unless the execution time of a task is underestimated. To prevent deadline violations, we

conservatively add 10% to the predicted execution time of each task, which is 3% more

than maximum error observed in the experiment in Section IV.3.1, where we used our

predictor to predict the computation time of FAST.

V.4.3 Results

The arrival time, deadline, and number of tasks of each job is shown in Table 9. The

scheduling performance of each algorithm is shown in Table 10. The table shows the

average utilization and expansion factors, as well as the number of deadline violations, the

number of jobs processed, and the time elapsed between the first job arrival and the last

job completion. The expansion factor is the ratio of the job’s response time (completion

time minus arrival time) to its computation time, i.e. it measures the job’s response time

relative to its computation time. We consider this a better measure of responsiveness than

using only the response time, since longer jobs are less sensitive to response time delays.

The results align with the expectations summarized in the previous subsection.

GridEngine processed all job, but in doing so violated the deadlines of 70% of them. The

 102

VMs were initially deployed such that 6 physical machines were running one VM, 1

physical machine was running 2 VMs, and 1 physical machine was running 4 VMs.

During the workload processing, for 2 jobs all 4 VMs on the latter physical machine was

active, resulting in the tasks’ execution times quadrupling while other physical machines

remained idle. This was the culprit for the high average expansion factor and for some of

the deadline violations.

FCFS had the lowest expansion factor because all tasks received a dedicated CPU, so

only queuing delay contributes to the expansion factor and due to the mixture of job

arrivals and deadlines, only one job could be queued with enough time left over to

complete before its deadline.

ElaDUR only had to turn down 1 job, so it enjoyed a higher average utilization and

job processing rate. Note that its performance corresponded with its scheduling objectives:

there were no deadline violations, utilization was kept high, but expansion factor was

higher than FCFS because certain jobs received a small amount of CPU in order to

accommodate the deadlines of other jobs on the same physical machine.

Due to the relatively long gap in job arrivals between the 9th and 10th jobs, ElaDUR

and FCFS finished the last job at roughly the same time. However, the cluster was idle for

longer periods of time during the workload processing when using FCFS since ElaDUR

processed more jobs.

 103

Table 9. Parameters of jobs used for evaluating the scheduling algorithm

No. Arrival time (min.) #Tasks Deadline (min.)
1
2
3
4
5
6
7
8
9
10

0
20
50
55
67
68
70
80
81
121

8
10
8
4
4
4
4
8
8
8

15
15
40
20
100
10
10
10
20
10

Table 10. Performance comparison of the 3 scheduling algorithms

Scheduler Utilization Exp.
Factor

Violations Jobs
processed

Completion of
last job (minutes)

GridEngine
FCFS

ElaDUR

53%
55%
72%

2.4
1.1
1.5

7
0
0

10
7
9

186
131
130

 104

CHAPTER VI

CONCLUSION AND FUTURE WORK

The work discussed in this dissertation harnesses modern advances in virtualization

technology to address the issue of deadline-driven job scheduling. Since the performance

of a given job scheduling algorithm is dependent on the arrival patterns and applications

of the workload being processed, we focused our work on a specific application that

would benefit our medical collaborators as well as researchers in the lab. Throughout the

dissertation, however, we provided additional insight into how the findings made

throughout this work could be extended to other scientific applications (e.g. fluid

dynamics). This insight was provided in the form of extensive performance analyses and

performance models for these applications.

To this end, we looked into three pertinent issues. First, recognizing the need for

performance modeling in order to satisfy scheduling deadlines, we started with an in-depth

analysis of the performance of different scientific applications via empirical evaluation on

a compute cluster. Since virtualization provides key benefits for resource provisioning, we

went on to explore the effects of virtualization on scientific workloads. This included

studying the overhead caused by the virtualization software itself as well as the impact of

CPU sharing on application performance, since it is common to pack multiple virtual

machines on the available physical machines.

 105

Among our findings, we confirmed that the performance of typical medical image

processing workloads consisting of a large amount of independent tasks is not affected

significantly by virtualization. In terms of CPU sharing, the tasks scaled proportionally to

the share of CPU they were given. By virtue of this, a linear scalability model could be

used, which is ideal for making real time scheduling decisions, since this kind of model

can be implemented using computationally simple algorithms. Using a performance

prediction model based on regression analysis, we were able to predict the scalability of

tightly coupled parallel applications with an average error of 15% and the computation

time of individual image segmentation tasks to within 7% for different-sized images.

We then applied the performance prediction model to a deadline-driven job

scheduling methodology. We developed several components to enable job scheduling on

virtual machines combined with autonomous resource management to ensure deadlines

are satisfied while maximizing utilization and minimizing response time. Through our

collaboration with a consortium of hospitals, we obtained 66 sets of fMRI image data of

different sizes to process in order to evaluate our scheduling algorithm. The scheduling

algorithm was compared to a current solution for batch scheduling image processing jobs

and to a traditional, but virtual machine aware first-come-first-serve scheduling algorithm.

We found that our scheduling algorithm processed more jobs without jeopardizing any

deadlines. It also utilized the available resources significantly better than the other two

algorithms.

 106

The fact that our algorithm performed better confirms the benefits of virtualization in

terms of job scheduling discussed early on in this dissertation. We observed no

performance impact from virtualization on the workloads used for the scheduling

evaluation, in fact we found that virtualized executions can outperform regular executions,

which suggests that further work should go into developing production environments for

virtualization-aware scientific job scheduling. Our observations and models provide

additional insight for doing this, which we consider an interesting direction for future

work.

Additional future work could consist of further refinements to the prediction model

itself and more optimizations to the scheduling algorithm. Specifically, migration can be

harnessed to further improve resource utilization and/or other goals such as energy

efficiency. Another direction would be to look into resource federation. Currently, our

scheduler rejects jobs for which there are not enough resources to satisfy deadlines. An

alternative is to allow federation of resources from other administrative domains to lease

external resources when local resources are not adequate, as long as they can provide a

performance guarantee.

 107

LIST OF REFERENCES

[1] L. M. Vaquero, L. R. Merino, J. Caceres, and M. Lindner, “A break in the clouds:

towards a cloud definition,” In proc. SIGCOMM Comput. Commun. Rev. 39, 1,
pp.50-55, Seattle, WA, USA, Aug. 2008.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "Above the Clouds: A Berkeley
View of Cloud Computing". Technical Report EECS-2009-28, EECS Department,
University of California, Berkeley, 2009.

[3] I. Foster, Y. Zhao, I. Raicu, S. Lu, “Cloud Computing and Grid Computing
360-Degree Compared,” In proc. Grid Computing Environments Workshop (GCE
’08), pp. 1-10, Austin, Texas, USA, Nov. 2008.

[4] C. Catlett, “TeraGrid: Analysis of Organization, System Architecture, and Middleware
Enabling New Types of Applications,” HPC and Grids in Action, Ed. Lucio
Grandinetti, IOS Press 'Advances in Parallel Computing' series, Amsterdam, 2007.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield, “Xen and the art of virtualization.” In proc. 19th ACM symposium
on Operating Systems Principles (SOSP '03), pp. 164-17, Bolton Landing, New
York, USA, Oct. 2003.

[6] VMware Inc. 2006. VMware ESX server: Platform for virtualizing servers, storage
and networking;

[7] Google Inc. 2012, Google App Engine [URL], http://code.google.com/appengine/

[8] W. Gentzsch, “HPC in the Cloud: use cases from research and industry,” Presentation
given at 4th annual Utility and Cloud Computing Conference, Dec. 2012.

[9] G. E. Moore (1965). "Cramming more components onto integrated
circuits" (PDF). Electronics Magazine. p. 4.

[10] O. Sonmez, N. Yigitbasi, A. Iosup, and D. Epema, “Trace-based evaluation of job
runtime and queue wait time predictions in grids,” In proc. 18th ACM International
Symposium on High Performance Distributed Computing (HPDC '09), pp. 111-120,
Munich, Germany, Jun. 2009.

 108

[11] D. Tsafrir and D.G. Feitelson, “Instability in parallel job scheduling simulation: the
role of workload flurries,” In proc. 20th International Parallel and Distributed
Processing Symposium (IPDPS'06), pp. 73-73, Rhodes Island, Greece, Apr. 2006.

[12] J. K. Ousterhout, “Scheduling Techniques for Concurrent Systems,” In proc. 3rd
International Conference on Distributed Computing Systems (ICDCS), pp. 22–30,
Fort Lauderdale, Florida, USA, Oct. 1982.

[13] M. Stillwell, F. Vivien, H. Casanova. “Dynamic Fractional Resource Scheduling for
HPC Workloads.” In proc. 2010 International Parallel and Distributed Processing
Symposium (IPDPS '10), Atlanta, Georgia, USA, Apr. 2010.

[14] M. Stillwell, F. Vivien, H. Casanova, "Dynamic Fractional Resource Scheduling
versus Batch Scheduling," IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 3, pp. 521-529, Mar. 2012.

[15] J. Skovira, W. Chan, H. Zhou, D. Lifka, “The EASY - LoadLeveler API Project,”
Proc. Job Scheduling Strategies for Parallel Processing Systems (JSSPP ’96), pp.
41-47, 1996.

[16] D. Wall, P. Kudtarkar, V. Fusaro, R. Pivovarov, P. Patil, and P. Tonellato. “Cloud
computing for comparative genomics.” BMC Bioinformatics, vol. 11, no. 259, May
2010.

[17] R. Barga, D. Gannon, D. Reed, “The Client and the Cloud: Democratizing Research
Computing,” IEEE Internet Computing, vol. 15, no. 1, pp. 72-75, Feb. 2011.

[18] Amazon Elastic Compute Cloud [URL]. Amazon (2012),
http://aws.amazon.com/solutions/case-studies.

[19] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and modeling
resource usage of virtualized applications,” In proc. 9th ACM/IFIP/USENIX
International Conference on Middleware (Middleware '08), pp. 366-387, Leuven,
Belgium, Dec. 2008.

[20] L. Cherkasova and R. Gardner, “Measuring CPU overhead for I/O processing in the
Xen virtual machine monitor,” In proc. USENIX Annual Technical
Conference (ATEC '05), Anaheim, California, USA, Apr. 2005.

[21] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Paravirtualization for HPC
Systems,” Workshop on XEN in HPC Cluster and Grid Computing Environments

 109

(XHPC), held in conjunction with The International Symposium on Parallel and
Distributed Processing and Application (ISPA ‘06), Sorrento, Italy, Dec. 2006.

[22] W. Huang, J. Liu, B. Abali, and D. K. Panda. “A case for high performance
computing with virtual machines.” In proc. 20th annual international conference on
Supercomputing (ICS '06), pp. 125-134, Queensland, Australia, Jun. 2006.

[23] A. Tikotekar, G. Valle, T. Naughton, H. Ong, C. Engelmann, and S. L. Scott, “An
Analysis of HPC Benchmarks in Virtual Machine Environments,” In proc. Euro-Par
2008 Workshops - Parallel Processing, Gran Canaria, Spain, Aug. 2008.

[24] P. M. Papadopoulos, M. J. Katz, and G. Bruno. 2001. “NPACI Rocks Clusters: Tools
for Easily Deploying and Maintaining Manageable High-Performance Linux
Clusters.” In proc. 8th European PVM/MPI Users' Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
Springer-Verlag, London, UK, 10-11.

[25] N. Regola and J. C. Ducom, “Recommendations for Virtualization Technologies in
High Performance Computing,” In proc. 2nd International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 409-416, Athens, Greece, Dec.
2011.

[26] D. E. Lang , T. K. Agerwala , K. M. Chandy, “A modeling approach and design tool
for pipelined central processors,” In proc. 6th annual symposium on Computer
architecture, pp. 122-129, 1979.

[27] S. Kounev, “Performance Prediction, Sizing and Capacity Planning for Distributed
E-Commerce Applications,” Technical report, Technische Universität Darmstadt,
Germany, Jan. 2001.

[28] Q. Zhang, L. Cherkasova, N. Mi, and E. Smirni, “A regression-based analytic model
for capacity planning of multi-tier applications. In proc. 11th Cluster Computing, pp.
197-211, Tsukuba, Japan, Sep. 2008.

[29] D. Wall, P. Kudtarkar, V. Fusaro, R. Pivovarov, P. Patil, and P. Tonellato. “Cloud
computing for comparative genomics.” BMC Bioinformatics, vol. 11, no. 259, May
2010.

[30] W. Huang, M. Koop and D.K. Panda, “Efficient One-Copy MPI Shared Memory
Communication in Virtual Machines,” In proc. 11th IEEE Cluster, Tsukuba, Japan,
Sep. 2008.

 110

[31] T. Chen, M. Gunn, B. Simon, L. Carrington, and A. Snavely, “Metrics for ranking
the performance of supercomputers,” Cyberinfrastructure Technology Watch
Journal: Special Issue on High Productivity Computer Systems, vol. 2. Feb. 2007.

[32] W. Smith, I. T. Foster, and V. E. Taylor, “Predicting application run times using
historical information,” Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, pp. 122-142, 1998.

[33] Jesús Labarta, Sergi Girona, Vincent Pillet, Toni Cortes, and Luis Gregoris, “DiP: A
parallel program development environment,” In proc. 2nd International EuroPar
Conference on Parallel Processing, pp. 665-674, Lyon, France, Aug. 1996.

[34] R. M. Badia, F. Escalé, E. Gabriel, J. Gimenez, R. Keller, J. Labarta, and M. S.
Muller, “Performance prediction in a grid environment,” In proc. 1st European
Across Grids Conference, pp. 257-264, 2003.

[35] D. Katramatos and S.J. Chapin, "A Cost/Benefit Estimating Service for Mapping
Parallel Applications on Heterogeneous Clusters," In proc. 7th IEEE International
Conference on Cluster Computing, pp. 1-12, Osaka, Japan, Sep. 2005.

[36] H. Rasheed, R. Gruber, and V. Keller, “IANOS: An intelligent application oriented
scheduling middleware for a HPC grid”. CoreGRID Tech. Rep. TR-0110, 2007.

[37] L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance prediction of
parallel applications using partial execution,” In proc. 18th Supercomputing
Conference, pp. 40–49, Seattle, Washington, Nov 2005.

[38] D. Schanzenbach and H. Casanova, “Accuracy and responsiveness of CPU sharing
using Xen's cap values,” Technical Report ICS2008-05-01, Computer and
Information Sciences Dept., University of Hawai'i at Manoa, 2008.

[39] B. Urgaonkar , P. Shenoy , T. Roscoe, “Resource overbooking and application
profiling in a shared Internet hosting platform,” ACM Transactions on Internet
Technology (TOIT), vol. 9, no. 1, pp. 1-45, Feb. 2009.

[40] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Capacity Management and
Demand Prediction for Next Generation Data Centers,” In proc. International
Conference on Web Services (ICWS), pp. 43-50, Salt Lake City, Utah, USA, Jul.
2007.

 111

[41] D.G. Feitelson and L. Rudolph, “Gang Scheduling Performance Benefits for
Fine-Grain Synchronization,” Journal of Parallel and Distributed Computing, vol.
16, pp. 306-318, 1992.

[42] A. Gupta, A. Tucker, and S. Urushibara, “The impact of operating system scheduling
policies and synchronization methods of performance of parallel applications,” In
proc. 1991 ACM SIGMETRICS conference on Measurement and modeling of
computer systems (SIGMETRICS '91), pp. 120-132, 1991.

[43] S. T. Leutenegger and M. K. Vernon, “The performance of multiprogrammed
multiprocessor scheduling algorithms,” SIGMETRICS Perform. Eval., Rev. 18, 1, pp.
226-236, 1990.

[44] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,
“Performance Analysis of Cloud Computing Services for Many-Tasks Scientific
Computing,” IEEE Trans. on Parallel and Distributed Systems, vol. 22, no. 6, pp.
931-945, Feb/Apr 2011.

[45] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job scheduling — a
status report,” In proc. 10th international conference on Job Scheduling Strategies
for Parallel Processing (JSSPP'04), Springer-Verlag, Berlin, Heidelberg, pp. 1-16.
2004.

[46] D. Gupta, L. Cherkasova, R. Gardner, A. Vahdat, “Enforcing Performance Isolation
Across Virtual Machines in Xen,” HP Laboratories Report No. HPL-2006-77, 2006.

[47] H. Casanova, M. Gallet, and F. Vivien, “Non-clairvoyant scheduling of multiple
bag-of-tasks applications,” In proc. 16th international Euro-Par conference on
Parallel processing, pp. 168-179, Caparica, Portugal, Sep. 2005.

[48] G. Katsaros, R. Kübert, G. Georgina, T. Wang, “Monitoring: A Fundamental Process
to Provide QoS Guarantees in Cloud-based Platforms,” In Cloud Computing:
Methodology, System, and Applications, CRC Press, Aug. 2011.

[49] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user runtime estimates
inherently inaccurate?,” In 10th Workshop on Job Scheduling Strategies for Parallel
Processing, 2004.

[50] D. Tsafrir, Y. Etsion, and D. G. Feitelson. “Backfilling using system-generated
predictions rather than user runtime estimates,” IEEE Trans. Par. Distr. Sys.,
18:789–803, 2007.

 112

[51] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, R. Buyya, “An autonomic cloud
environment for hosting ECG data analysis services,” Future Generation Computer
Systems, Volume 28, Issue 1, pp. 147-154, ISSN 0167-739X, Jan. 2012.

[52] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: A Software Platform for .NET-based
Cloud Computing, High Speed and Large Scale Scientific Computing,” pp. 267-295,
ISBN: 978-1-60750-073-5, IOS Press, Amsterdam, Netherlands, 2009.

[53] H. Kim; M. Parashar, D.J. Foran, L. Yang, "Investigating the use of autonomic
cloudbursts for high-throughput medical image registration," In proc. 10th IEEE/ACM
Conference on Grid Computing, pp.34-41, Banff, AB, Canada, Oct. 2009.

[54] H. Kim, S. Chaudhari, M. Parashar, and C. Marty, “Online risk analytics on the
cloud,” In proc. 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID ’09), pp. 484-489, Shanghai, China, May 2009.

[55] Distributed Systems Architecture Research Group: OpenNEbula Project [URL].
Universidad Complutense de Madrid (2009), http://www.opennebula.org.

[56] The parallel workloads archive, http://www.cs.huji.ac.il/labs/parallel/workload. 2012.

[57] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. “KVM: the Linux virtual
machine monitor,“ In The 2007 Ottawa Linux Symposium, pp. 225-230, Jul. 2007.

[58] D. Chisnall, “The Definitive Guide to the Xen Hypervisor,” (Prentice Hall Open
Source Software Development Series), Prentice Hall PTR, Upper Saddle River, NJ,
2007.

[59] G. Dunlap, “Xen Scheduler Update,” unpublished whitepaper, presented at Xen
Summit Asia, Nov. 2009.

[60] S. M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E.J. Behrens,
H. Johansen-Berg, P.R. Bannister, M. De Luca, I. Drobnjak, D.E. Flitney, R. Niazy,
J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J.M. Brady, and P.M. Matthews.
“Advances in functional and structural MR image analysis and implementation as
FSL.” NeuroImage. 23(S1), 2004, 208-219.

[61] P. Jezzard, P. M. Matthews, and S. M. Smith. ”Functional MRI: An introduction to
methods.” England: Oxford University Press.

 113

[62] Y. Zhang, M. Brady, and S. Smith. “Segmentation of brain MR images through a
hidden Markov random field model and the expectation maximization algorithm.”
IEEE Trans. Med. Imag., January 2001, 20 (1), 45-57.

[63] M. Jenkinson, P. R. Bannister, J. M. Brady, and S. M. Smith, “Improved optimization
for the robust and accurate linear registration and motion correction of brain images.”
NeuroImage, 2002, 17 (2), 825-841.

[64] C. F. Beckmann and S. M. Smith. “Probabilistic independent component analysis for
functional magnetic resonance imaging.” IEEE Trans. on Med. Imag., 23(2):
137-152, 2004.

[65] D. Bailey, E. Barscz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.
Fineberg, P. Frederickson, T. Lasinkski, R. Schreiber, H. Simon, V.
Venkatakrishnan, and S. Weeratunga, “The NAS Parallel Benchmarks,” (March
1994) NAS Technical Report RNR-94-007, NASA Ames Research Center, Moffett
Field, CA.

[66] R. van der Wijngaart and H. Jin, "NAS Parallel Benchmarks, Multi-Zone Versions,”
(July 2003) NAS Technical Report NAS-03-010, NASA Ames Research Center,
Moffett Field, CA.

[67] H. Jin, R. Van der Wijngaart, "Performance Characteristics of the Multi-Zone NAS
Parallel Benchmarks," In proc. 18th International Parallel and Distributed
Processing Symposium (IPDPS 04), Santa Fe, New Mexico, USA, Apr. 2004.

[68] A. Matsunaga, M. Tsugawa, and J. Fortes. “CloudBLAST: Combining MapReduce
and Virtualization on Distributed Resources for Bioinformatics Applications,” In
proc. Fourth IEEE International Conference on eScience (ESCIENCE '08), pp.
222-229, Indianapolis, Indiana, USA, Dec. 2008.

[69] S. F. Altschul, W. Miller, E.W. Myers, and D.J. Lipman, "Basic local alignment
search tool," J Mol Biol, vol. 215, no. 3, pp. 403–410.

[70] T. Cortes V. Pillet, J. Labarta, and S. Girona, “Paraver: A tool to visualize and
analyze parallel code,” In WoTUG-18, pp. 17–31, Manchester, U.K., Apr. 1995.

[71] S. M. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado, H. Duran, and X.
Collazo, “A modeling approach for estimating execution time of long-running
scientific applications.” In Proc. 22nd IEEE International Parallel & Distributed
Processing Symposium, the Fifth High-Performance Grid Computing Workshop,
Miami, FL, USA, 2008.

 114

[72] Coregrid Network of Excellence Deliverable Number D.RMS.06, “Review of
performance prediction models and solutions,” 2006.

[73] A. Darling, L. Carey, and W. Feng, “The Design, Implementation, and Evaluation of
mpiBLAST,” In proc. 4th International Conference on Linux Clusters: The HPC
Revolution, June 2003.

[74] C. Clémençon, K. M. Decker, V. R. Deshpande, A. Endo, J. Fritscher, P. R. Lorenzo,
N. Masuda, A. Müller, R. Rühl, W. Sawyer, B. J. N. Wylie, F. Zimmermann, “HPF
and MPI Implementation of the NAS Parallel Benchmarks Supported by Integrated
Program Engineering Tools,” In proc. Parallel and Distributed Computing Systems
(PDCS), Chicago, Illinois, USA, Oct. 1-4, 1996.

[75] J. Delgado, S. M. Sadjadi, H. A. Duran-Limon, M. Bright, and M.
Adjouadi, “Performance prediction of weather forecasting software on multicore
systems,” In proc. 24th IEEE International Parallel & Distributed Processing
Symposium (IPDPS-2010), 11th Parallel and Distributed Scientific and Engineering
Computing (PDSEC) workshop, Atlanta, Georgia, USA, April 2010.

[76] J. Michalakes, J. Hacker, R. Loft, M. O. McCracken, A. Snavely, N. J. Wright, T.
Spelce, B. Gorda, R. Walkup, "WRF nature run," In. proc. 20th ACM/IEEE
conference on Supercomputing, pp. 1-6, Reno, Nevada, USA, Nov. 2007.

[77] J. Delgado, A. S. Eddin, M. Adjouadi, and S. Masoud Sadjadi. “Paravirtualiztion for
Scientific Computing: Performance Analysis and Prediction,” In proc. 2011 IEEE
International Conference on High Performance Computing and Communications
(HPCC ’11), pp. 536-543, Banff, AB, Canada, September 2011.

[78] M. Ben-Yehuda. “The Xen Hypervisor and its IO Subsystem,” Presentation given at
the 2005 IBM Systems and Storage Seminar, Haifa, Israel, Dec. 2005. Available at:
http://www.research.ibm.com/haifa/Workshops/systems-and-storage2005/papers/xen
-io.pdf.

[79] L. Cherkasova, D. Gupta, and A. Vahdat, “When Virtual is Harder than Real:
Resource Allocation Challenges in Virtual Machine Based IT Environments,” HP
Laboratories Report No. HPL-2007-25, 2007.

 115

VITA

JAVIER DELGADO

2004 B.S., Computer Engineering

 Florida International University

 Miami, FL

2007 M.S., Computer Engineering

 Florida International University

 Miami, FL

 2011 Ph.D. Candidate, Electrical Engineering

Florida International University

Miami, FL

PUBLICATIONS

1. J. Delgado, L. Fong, Y. Liu, N. Bobroff, S. Seelam, and M. Sadjadi, “Efficiency

Assessment of Parallel Workloads on Virtualized Resources,” In proc. 2011 Fourth
IEEE International Conference on Utility and Cloud Computing, pp.89-96,
Melbourne, Australia, December 2011.

2. J. Delgado, A. S. Eddin, M. Adjouadi, and S. Masoud Sadjadi. “Paravirtualiztion for
Scientific Computing: Performance Analysis and Prediction,” In proc. 2011 IEEE
International Conference on High Performance Computing and Communications
(HPCC ’11), pp. 536-543, Banff, AB, Canada, September 2011.

3. J. Delgado, S. M. Sadjadi, H. Duran, M. Bright, and Malek Adjouadi, “Performance

prediction of weather forecasting software on multicore systems,” In Proc. 24th
IEEE International Parallel & Distributed Processing Symposium (IPDPS-2010),
11th Parallel and Distributed Scientific and Engineering Computing (PDSEC)
workshop, Atlanta, Georgia, USA, April 2010.

 116

4. J. Delgado and M. Adjouadi. “On the Efficacy of Present Grid Computing Software
for Deploying a Medical Grid,” In proc. 2009 Richard Tapia Celebration of
Diversity in Computing, pp. 81-86, Portland, Oregon, USA, April 2009.

5. J. Delgado and M. Adjouadi, “Towards an Efficient and Extensible Grid-Based Data

Storage Solution,” In proc. 22nd IEEE International Conference on Advanced
Information Networking and Applications, pp. 659-666, Okinawa, Japan, March
2008.

6. J. Delgado, M. R. Guillen, M. Lahlou, and M. Adjouadi, “MIND: A Tiled Display

Visualization System at CATE/FIU,” In proc. IASTED International Conference on
Graphics and Visualization in Engineering (GVE 2007), Clearwater, Florida, USA,
January 2007.

7. S. M. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado, H. Duran, and

X. Collazo, “A Modeling Approach for Estimating Execution Time of
Long-Running Scientific Applications,” In proc. Fifth High-Performance Grid
Computing Workshop, pp. 1-8, Miami, Florida, USA, April 14, 2008.

8. D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, L. Fong, S.
M. Sadjadi, and M. Parashar, “Cloud federation in a layered service model,” Journal
of Computer and System Sciences, Available online, ISSN 0022-0000,
10.1016/j.jcss.2011.12.017, January 2012.

SUBMITTED

1. J. Delgado, A. S. Eddin, S. M. Sadjadi, and M. Adjouadi, “Issues Faced Running
Scientific Applications on Multi-user Virtualized Systems,” Submitted to IEEE
Transactions on Parallel and Distributed Systems.

