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Fig. 11.5  The schematic diagram of the HIL WAMS hardware implementation 

11.4.1 Normal Operation Test 

In this test, the system was observed under normal operation condition. The 30 kW 

load on bus 2 was supplied locally from the PV-power plant and the other 30 kW load on 

bus 3 was supplied by the generating station sharing the PV-energy. In this case, all the 

PMUs show stable readings within the references. From Figs. 11.6-11, the three PMUs 

read accurate information about line voltage abV , the voltage amplitude of about 296 V 

starting from 0 sec for buses 1 and 2. At bus 3, zero voltage amplitude for the first 0.1 

sec; since load bus was not connected to the network. After 0.1 sec, breaker 4(CB4) will 

connect load bus 3 to the network, the same average voltage amplitude level appears at 

other buses with a phase difference of 2.65 degrees under stable operation for all 

readings. The exported data by the simulated PMUs to the control center show that the 

developed WAMS succeeded to accurately reflect the system status in real-time (online). 

For a complete verification of its performance, another test with a fault occurrence is 

required. 
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Fig. 11.6  PMU1 readings under normal operation condition (simulation) 

Vab (100 v/div, 30 ms)
 

Amplitude
Vab (100 v/div, 30 ms)

Phase Difference (180 
degree/div, 30 ms)

 

(a)           (b) 

Fig. 11.7  PMU1 readings under normal operation condition (experimental): (a) The 
line voltage (100 V/div, 30ms) and (b) The voltage amplitude (100 V/div, 30 ms) and 

phase difference (180 degree/div, 30 ms) 
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Fig. 11.8  PMU2 readings under normal operation condition (simulation) 
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(a)           (b) 

Fig. 11.9  PMU2 readings under normal operation condition (experimental): (a) The 
line voltage (100 V/div, 30ms) and (b) The voltage amplitude (100 V/div, 30 ms) and 

phase difference (180 degree/div, 30 ms) 
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Fig. 11.10  PMU3 readings under normal operation condition (simulation) 
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(a)           (b) 

Fig. 11.11  PMU3 readings under normal operation condition (experimental): (a) 
The line voltage (100 V/div, 30ms) and (b) The voltage amplitude (100 V/div, 30 ms) 

and phase difference (180 degree/div, 30 ms) 
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11.4.2 Fault Operation Test 

In this test, a three phase to ground short circuit fault occurred at bus 3 then was 

repeated for bus 2. Figures 11.12, 13 show the single-line diagram for the hybrid AC/DC 

power network during fault occurrence at B3 and B2, respectively.  
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Fig. 11.12  Hybrid AC/DC power network during fault occurrence located at bus 3 
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Fig. 11.13  Hybrid AC/DC power network during fault occurrence located at bus 2 

Figures 11.14, 15 show the readings for all PMUs at the 3-buses. The whole system 

shows normal operation for 0.2 sec while bus 3 was loaded after 0.1 sec. The fault has 

occurred after 0.2 sec and it is cleared after 0.05 sec later. PMUs 1 and 2 read larger 

phase differences (10.8 and 11 degrees, respectively) than in the normal mode (2.16 and 

2.18 degrees, respectively). Accordingly, the voltage amplitude dropped by 40 V which 

means that the fault is not located on those buses area. On the other hand, PMU 3 has 
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extremely large phase difference change (54 degrees) associated with a large drop in the 

voltage amplitude as a result of the fault that occurrence in this area. Consequently, the 

control center must send a control signal to the relay to release the circuit breaker at that 

bus upon receiving these data in real time from the PMUs to protect the other generation 

stations which are the most valuable part in the power network. Protecting against such 

damage prevents cascaded turnoff of stations which may result in major blackouts in the 

power system [164]. Furthermore, it helps analysts to determine the type of fault that has 

occurred using the data transmitted from PMUs. Additionally, the fault test is repeated 

for bus 2 (PV-plant area) to confirm the validity of PMU readings in showing the 

behavior for the system health status. Figures 11.16, 17 show the system response while 

the fault occurred at bus 2. We can notice that PMU2 observed the fault status at B2 

while PMU1 and PMU3 indicate the fact that the fault is located inside the network but 

neither at B1 nor B3. This test can be utilized for studying the depth of observability for 

each PMU which will optimize the number of PMUs inside the WAMS network. Also, it 

leads to better economic operation and higher system reliability [165]. 
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Fig. 11.14  PMUs readings during fault occurrence located at bus 3 (simulation) 



 

253 

 

Vab (100 v/div, 10 ms)

 

Amplitude
Vab (100 v/div, 10 ms)

Phase Difference (180 
degree/div, 10 ms)

 

(a) 

Vab (100 v/div, 10 ms)

 

Amplitude
Vab (100 v/div, 10 ms)

Phase Difference (180 
degree/div, 10 ms)

 

(b) 

Vab (100 v/div, 10 ms)

 

Amplitude
Vab (100 v/div, 10 ms)

Phase Difference (180 
degree/div, 10 ms)

 

(c) 

Fig. 11.15  PMUs readings during fault occurrence located at bus 3 (experimental): 
(a) PMU1, (b) PMU2 and (c) PMU3 

 



 

254 

 

0.18 0.2 0.22 0.24 0.26 0.28
-400

-200

0

200

400

V
a

b
 R

e
f.

 &
 A

c
tu

a
l PMU 1

 

 

0.18 0.2 0.22 0.24 0.26 0.28
-400

-200

0

200

400
PMU 2

0.18 0.2 0.22 0.24 0.26 0.28
-400

-200

0

200

400
PMU 3

 

 

0.18 0.2 0.22 0.24 0.26 0.28
0

100

200

300

V
a

b
-A

m
p

lit
u

d
e

0.18 0.2 0.22 0.24 0.26 0.28
0

100

200

300

0.18 0.2 0.22 0.24 0.26 0.28
0

100

200

300

0.18 0.2 0.22 0.24 0.26 0.28
0

1

2

3

4

P
h

a
s

e
 A

n
g

le
 (

ra
d

)

Phase Diff. = 11 degree(small)

0.18 0.2 0.22 0.24 0.26 0.28
0

1

2

3

4

time   sec

Phase Diff. = 55 degree(large)

0.18 0.2 0.22 0.24 0.26 0.28
0

1

2

3

4
Phase Diff. = 11.7 degree (small)

Vref Vactual

Bus voltage
slightly 

decrease

Bus voltage 
slightly 

decreased

Faulted Bus

Voltage drops to almost zero

 

Fig. 11.16  PMUs readings during fault occurrence located at bus 2 (simulation) 
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Fig. 11.17  PMUs readings during fault occurrence located at bus 2 (experimental): 
(a) PMU1, (b) PMU2 and (c) PMU3 
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(c) 

Fig. 11.17  PMUs readings during fault occurrence located at bus 2 (experimental): 
(a) PMU1, (b) PMU2 and (c) PMU3 (continued) 

11.5 Conclusion 

A performance analysis for a PMU based WAMS network was presented. The 

developed system was tested under two different possible conditions. The simulated 

PMUs show the real values of a maximum phase difference of 2.18 degrees and normal 

average amplitude reading showing the system stability. In this case, no action is to be 

taken from the control center during dynamic system monitoring.  

During fault state, the PMUs data shows that the system has an unstable part with 

about 55 degrees phase difference. Additionally, a large voltage drop was observed in the 

area of the fault occurrence. This area was isolated via dynamic control signals before 

spreading to other parts resulting in catastrophic failure in some parts of the power 

system or blackouts. Furthermore, the fault test was repeated at different locations to 

study the behavior of each PMU. The depth of observability was identified through 

different fault locations; one PMU can give the status indications for each area. PMU2 

was able to observe B2 locally and give indication for fault located at B3. 
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Furthermore, the developed HFPCS was utilized inside a reduced scale HIL-based 

experimental verification system was test as an experimental verification in this chapter.  

The real-time code for the PMU function was automatically generated using embedded 

target in dSPACE and real time workshop facility (RTW) in the Matlab/Simulink. All 

results obtained confirm the robustness of the HFPCS under severe conditions and the 

effectiveness of the developed WAMS network for smart grid applications. 
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Chapter 12  Discussion of Results, Conclusions and Recommendations for Future 

Work 

12.1 Discussion of Results 

This dissertation presented the dynamic mathematical model of the grid-connected 

hybrid renewable energy system utilizing high-frequency power converters. The VOC 

technique was developed to achieve high performance DC-bus voltage control operation 

as well as active-reactive power injection control. This technique achieved unity power 

factor grid operation (average above 0.975), very fast transient response within a fraction 

of second (0.4 sec) under different possible conditions (wind speed variation and load 

variation) and high efficiency due to reduced number of components (average above 

90%) was achieved. The experimental results obtained from a prototype rated at 250 W 

showed that the current and voltage THD (2.67%, 0.12%), respectively, for the WECS 

with LC-filter is less than 5% limit imposed by IEEE-519 standard. 

A high frequency semicontrolled rectifier topology was developed. This topology 

achieved high efficiency (average above 95%). The UPF (0.998) operation was verified 

for better economic utilization of the generator operation. The system was tested under 

different severe conditions including; full load parallel operation, hard wind speed 

variation, and parameter uncertainties. Load current sharing among the parallel 

converters has been investigated with a small transient voltage dips (<5%). A fast control 

dynamic response was achieved (0.1 second) during wind speed variation. 

The inverter stage is based on a three-phase CSI which has higher power capability 

compared to voltage source inverter. High frequency operation was utilized to achieve 

low voltage and current THD (1.09% and 0.64%) for grid-connection, respectively. The 
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test results obtained from a prototype have demonstrated the system effectiveness for a 

wide power range (0-5 kW). 

A new modularized 4-port high frequency multi-input bridgeless boost converter 

(MIBBC) topology feasible for hybrid energy systems and PHEVs was developed in 

order to optimally utilize the amount of the generated energy. The MIBBC achieved 

higher efficiency (97.8%), when compared to BBC (92.2%) and BPFCC (94.8%). Also, 

the inductor size and weight (0.3 mH: 1.29 lbs) reduced proportionally to the frequency, 

compared to BBC (2 mH: 12.5 lbs), improving the overall efficiency for the system. In 

addition, less cost (more economic) was achieved compared to BPFCC; due to less 

number of switches. Smaller heat sink was needed compared to BPFCC; due to less 

switching losses which lead to less heat dissipation. High current THD (17.03%) was 

investigated but still lower than the compared BBC current THD (35%). Furthermore, 

UPF (0.998) operation was verified for generator input operation, compared to BBC 

(0.835). A fast control dynamic response was achieved (0.1 second) under DC-reference 

step change test.  

The AC-grid connection system performance was investigated with 24 mH inductor 

filter. The experimental test results showed the injected active current with different 

reference active power from 1-6 kW. At low power of 1 kW, the current THD is 12.3% 

(large) but less than the other compared 6 mH (31.2%) and 12 mH (21.8%) inductors. 

However, at larger power of 2 kW, the current THD is 5.93% which is lower than the 

other compared 6 mH (16.1 %) and 12 mH (11.4%) for the same power value. For 3 kW, 

the 24 mH gives a very low harmonic distortion of 1.36 % compared to the 6 mH 

(11.4%) and the 12 mH (7.96%). On the other hand, it can be noticed that the current did 
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not increase when the reference power changed from 4 to 6 kW. Accordingly, the 

controller failed to satisfy the required referenced power which limits the use of larger 

inductors at certain power ranges. We can conclude that the large filter value (24 mH) is 

feasible for small power range (1-2.5 kW) while smaller filter values (12 mH) are 

recommended for larger power range (3-5 kW). Meanwhile, the 6 mH is feasible for 

power ≥ 5 kW. All the obtained results confirm the effectiveness of the developed 

topology for hybrid sustainable energy systems. 

12.2 Conclusions 

The main objective of the dissertation was to develop a high frequency-based power 

converter system (HFPCS), which optimizes the utilization of the hybrid renewable 

power injected into the power grid. Studies and verifications on the developed HFPCS 

confirmed high efficiency, reduced size of the passive components, which leads to high 

output power density realization, low harmonic distortion, high reliability, and low cost.    

A discussion was given on the simulated dynamic model of the developed converter 

starting from the dynamic formulations. Various types of simulations were performed and 

various algorithms were developed and tested. The results were verified for several 

factors including various power conversion topologies. The VOC technique was used for 

high performance control operation. The simulation results showed the response of the 

converter at different power outputs (1-10 kW). The Master-Slave control scheme was 

developed for a uniform current distribution among parallel converters when connected 

to cover higher power ratings than that of the currently available semiconductor power 

switches. The simulation results showed uniform current operation when using two 

converters. The synchronous frame 2nd order SPLL was developed to give a fast detection 
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for the variable speed operation resulting in the phase and frequency variation. The test 

results confirmed the required performance. 

The VOC technique was used for grid connected a voltage source inverter. The 

simulation and experimental results showed the validity of the control scheme in injecting 

the wind power as active or reactive power in order to compensate the grid power state. A 

VSI was introduced to work as a dynamic VAR compensator for regulating the system’s 

voltage and stabilizing grid unbalance issues. The simulation and experimental tests for 

different situations of grid disturbance verified the compensator’s instantaneous reaction 

to stabilize the grid voltage and allow sensitive loads to operate safely. 

An effective high frequency semi-controlled boost rectifier topology feasible for grid-

connected low speed direct-driven PMWGS was developed. The UPF operation was 

verified for better economic utilization of the generator operation. The DC-bus voltage 

control technique was developed for parallel integrated PMWGSs based on a hysteresis 

algorithm. This algorithm was used for reducing the generator harmonics. The developed 

topology was tested under various severe conditions including: full load parallel 

operation, hard wind speed variation, and parameter uncertainties in wind patterns. 

A DSC-board containing a digital signal processor was designed to imbed the control 

scheme. The controller was fabricated and tested for use as the control unit of the system 

to satisfy all performance requirements. Each component of the system was built and 

tested separately, and then the whole system was connected and tested in the laboratory.  

The experimental tests were implemented on line using a PC as a user interface tool. 

Appropriate software was developed, interfacing the experimental setup in the power 



 

261 

 

system test bed.  The most important practical considerations were taken into 

consideration for HFPCS operation and the power injection into the grid. 

A novel modularized 4-port high frequency multi-input bridgeless boost converter 

(MIBBC) topology feasible for hybrid energy systems and PHEVs was developed to 

optimally utilize the amount of the generated energy. The hybrid PI-hysteresis control 

algorithm was designed for reducing the AC-input source harmonics. A direct digital 

control (DDC) approach was used for designing the cascaded digital control strategy to 

control the DC-input sources operation. The digital PI-controllers were designed to 

achieve the required phase margin and critical frequency in a complete control scheme. 

The simulation and experimental results confirm the effectiveness of the developed 

HFPCS for the grid-connected hybrid renewable energy systems. 

12.3 Future Work and Recommendations 

Suggestions for further studies that can be conducted as future additions or studies are 

numerous. Such future works and/or additions can be used to extend this work in the 

following ways: 

• Utilization of intelligent controllers instead the conventional PI-controllers may 

give more flexibility to the power system. 

• Enhancing the functionality of the developed HFPCS through the new 

communication aspects that promote the converter to be a smart element engaged 

in larger networks (WAMS) and fault diagnosis operations. 

• Studying multiphase converters to reduce the ripple-current notches (for 

minimum-size inductors according to the component of the shelf and also for 

reduced switching losses). 
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• Studying the cascading structure possibility in order to reach larger voltage levels 

with less stress on the switching devices. 

• Testing and comparing different types of the advanced semiconductor switching 

devices (SiC and GaN) under high frequency operation as a promising way for 

reducing switching losses as well as enhancing the power density. 

• Applying the recommended steps mentioned in chapter 10 in order to scale up the 

utilization of the developed HFPCS for larger power rating operation.         

• Investigating the system performance under the disturbances that might happen to 

the converter behavior due to the unbalance wind generator state or during fault 

condition.  

• Focusing on parallel converters’ operation that may rise to a problem such as a 

circulating current among the converter units.   

• Optimizing the size of the HFPCS by replacing the existing components with the 

advanced components, packaging and manufacturing technologies.  

• Improving the MIBBC large current harmonic distortion through studying an 

additional filter that can be connected between the grid and the converter circuit 

to reduce the harmonic contents. 

• Developing usable, high-fidelity models of advanced high frequency power 

converter topologies for PHEVs, which are gaining popularity because of the 

environmental consideration “go green” factor. 
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