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1. The Point labeling always be labeled horizontally.  

2. The LineString labeling has much different way to be drawn since it is not 

always be horizontal but its labeling almost always oriented in a direction 

locally parallel to the line.  

3. The Polygon labeling always be labeled horizontally but the Polygon object 

positing is much more complicated. 

The Point Horizontal Labeling 

On a map, a character of one label of a point object can be included in a circle of 

radius r. The label of this object cannot overlap with this circle. The candidate positions 

for a point object are spread as regularly as possible around this circle. Point object are 

almost always labeled horizontally in practice. Our Point label placing rule is followed 

our regular placing rule which allows four positions to be labeled, it listed in Figure 16. 

 

Figure 8 The World_Nations Layer Horizontally Labeled 

Figure 18 shows the Point vector data (World_Nations Layer) horizontally labeled 

on our vector map engine. 
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The LineString labeling 

The LineString labeling has following 2 steps: 

1. Merging the segment objects into one LineString object 

2. Labeling the LineString object with oriented in a direction locally parallel to 

the line, as well as each character in one label is to perpendicularity to the line. 

1.  Merging the Segments into LineString 

The LineString objects (roads, streets, highways) are represented with broken line 

objects (the segment object) in original vector data format (shapefile).  

Therefore, there would be many duplicated segment labels to be drawn on the 

map if the LineString objects to be labeled directly from original shapefile without any 

object merging. Given figure 19 is to show this duplicated segment labeling: 

 

Figure 9 Many Duplicated Segments Labeling 
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To avoid this, first of all, in each map tile (256pixles*256pixles), merging as 

many segments (which belongs to the one same LineString object) as possible into one 

LineString object is needed. Figure A2 and A3 show this merging process: 

First, checking if two segments have the same LineString object name, if so, 

second, checking if the starting point and ending point of two segment have the same 

coordinates, if so, merging them into one LineString object, all of the others cases, ignore 

them , which means all of them are in different LineString object. 

 

Figure 10 Merged LineString Labeling 

Figure 10 shows the LineString labeling in our vector map engine after applied 

merging algorithm, the result is not crowd and easy to read. 

2. Labeling 

In practice, the label associated with a line is almost always oriented in a direction 

locally parallel to the line, as well as each character in one label is to perpendicularity to 

the line. 
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Our LineString label placing rule limits LineString labels to three possible 

candidate positions along with a line, which includes the middle position, the one-third 

position (at one-third away from the starting point), and the two-third position (at two-

third away from the starting point). Once any character in any label cannot be placed, it 

would be trying to the next candidate position until placed or ignored (which means there 

is no space to be placed). 

Figure 11 illustrate how candidate positions are generated for LineString. 

 

Figure 11  Three Candidate Labeling Position 

The Polygon Labeling 

The Polygon object labeling has much more complicity than Point and LineString 

labeling, since Polygon labeling has much more cases need to be considered: 

1. The very small polygon labeling 

2. The very big polygon labeling 

3. The regular polygon labeling 

To define if a polygon is a very small polygon or not, the spatial bounding box 

(The minimum bounding rectangle) is needed. The minimum bounding rectangle (MBR), 

also known as bounding box or envelope, is an expression of the maximum extents of a 
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2-dimensional object (e.g. point, line, and polygon) within its 2-D (x, y) coordinate 

system, in other words min(x), max(x), min(y), max(y). [24] 

1. The very small polygon labeling 

A very small polygon can be considered as a point object. In our system, the very 

small polygon is defined as a polygon whose spatial bounding boxes (The minimum 

bounding rectangle) occupies the area less than 20 40 pixels×  in each corresponding 

resolution. The candidate generation is done as for point object in this case. 

2. The very big polygon labeling 

Basically, the very big polygon labeling, like continental, country, province or 

states, would be shown only at very zoom-out resolution, the very big polygon labeling 

always be labeled horizontally in the center of Polygon object. 

3. The regular polygon labeling 

The regular polygon labeling should always be labeled horizontally in the center 

of Polygon object. 

3.4.4. Legend String 

Legend String (LS) is a layer control convention between the user interfaces 

(client application) and the backend vector data visualization system. The client 

application collects user commands by a flash-based checklist toolkit Legend Layer 

Control. The Legend Layer Control lists all available layers in it and provides checkboxes 

to allow the user to customize the layer composition. Once the layers are checked, the 
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client application collects user’s commands and converts the commands into LS and 

finally sends the customized LS to the backend vector data visualization system. The 

convention of Legend String has three syntaxes to customize map layers: 

1. Layers Priority: The +  is used to delimit layers in LS. The order of layers in 

LS reflects the priority of layer rendering. For instance, layerA layerB+  means that both 

layerA  and layerB rendered in map, and layerA  has higher rendering priority of than 

layerB . 

2. Level Visibility: The –  is used to indicate the level range of layer visibility. 

Given a lower bound level and an upper bound level with delimited by a symbol – , the 

layer is expected to be shown within this specified level visible range. 

3. Layer Coloring and Transparency:  The color and transparency values in LS 

are typically expressed using 8 hexadecimal digits, with each pair of the hexadecimal 

digits representing the sample values of the Alpha, Red, Green and Blue channel, 

respectively. For example, the Legend String 80FFFF00  represents a 50.2% opaque 

yellow.  

While the 21-level views setup in our system, for every vector dataset, we pre-

generate 21 vector subsets for each level of detail. Since the difference of pixel spaces in 

each level of details, at some cases, especially in zoomed-out levels, some vertices in 

vector object that are all going to render into the same pixel on screen. In terms of this 

principle, a pixel distance based data reduce process is applied in the 21 vector subsets. 

Because our map is cut into a 256 256×  pixels tile each, and its relatively low 
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granularity provided by the tile causes many vertices or objects in 21 vector subsets not 

in the tile-of-view to be loaded, we propose a tile granularity subset that only containing 

the vertices and objects to be rendered in the tile-of-view. The tile granularity subset is 

determined by a quad tile intersecting with its corresponding 21 level subsets. For 

example, tile 0 subset at level 1, it is determined by an square area of [(0,0), (256,0), 

(256,256), (0, 256), (0,0)] intersecting with level 1 subset. We define a ST_intersect 

geography process followed OpenGIS Specifications (Standards) [4] as follows: 

 _ ( ; )li
ij ijT ST Intersect s t=  

A semi-colon delimits two arguments li
ijan tds , ljs  denotes LOD subset at level i, 

ijt  is used to indicate the jth tile at level i, ijT  denotes the jth tile subset at level i, n is the 

number of level, the subsets at level i is denoted as follows: 

 [ ]1 2, ,...,iT
i i ims T T T=  

 :where  

 4nm =  

The entire 21-level subsets gridded into Tile subsets are denoted by TS  as follows: 

 1 2 21, ,...,T T TTS s s s =    
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3.4.5. Quad Tile Dataset Representation 

WKB 

The GIS vector WKB format are regulated by the Open Geospatial Consortium 

(OGC) and described in their Simple Feature Access and Coordinate Transformation 

Service specifications [4]. In system, WKB are selected and implemented as our vector 

data representations. The data WKB are organized by records, each of which represents 

an object in a vector data layer. In terms of WKB specification, our Point PTV


, 

LineString LSV


 and Polygon PGV


 vector data in LOD pixel coordinates which converted 

from latitude and longitude that on the WGS 84 datum are defined as follows: 

PTV


 = ,x yP P    

LSV


 =  [ ]1 2, ,..., ,...,i mv v v v     ,1m i m∈ ≤ ≤N  

 :where  

iv   =  ,xi yiP P    

PGV


 =  [ ]1 2 1, ,..., ,..., ,i mv v v v v     ,1m i m∈ ≤ ≤N  

 :where  

iv   =  ,xi yiP P    

, x yP P  denote the pixel coordinates in two-dimension XY.  
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Quad Tile Dataset 

While the 21-level views setup in our system, for every vector dataset, we pre-

generated 21 vector subsets for each level of detail. Since the difference of pixel spaces in 

each level of details, at some cases, especially in zoomed-out levels, some vertices in 

vector object that are all going to render into the same pixel on screen. In terms of this 

principle, a pixel distance based data reduce process is applied in the 21 vector subsets. 

Because our map is cut into a 256 256×  pixels tile each, and its relatively low 

granularity provided by the tile causes many vertices or objects in 21 vector subsets not 

in the tile-of-view to be loaded, we propose a tile granularity subset that only containing 

the vertices and objects to be rendered in the tile-of-view. The tile granularity subset is 

determined by a quad tile intersecting with its corresponding 21 level subsets. For 

example, tile 0 subset at level 1, it is determined by an square area of [(0,0), (256,0), 

(256,256), (0, 256), (0,0)] intersecting with level 1 subset. We define a ST_intersect 

geographic process followed the OpenGIS Specifications (Standards) as follows: 

 _ ( ; )i
ij ijT ST Intersect s t=  

A semi-colon delimits two arguments i
ijs , t , is 	 denotes LOD subset at level i, t୧୨ 

is used to indicate the jth tile at level i, ijT  denotes the jth tile subset at level i, and hence, 

the subsets at level i is denoted as follows, where the ݊ indicates the number of tile at 

level i: 
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 [ ]1 2, ,...,i
i i ims T T T=  

 :where  

 4nm =  

The entire 21-level subsets gridded into Tile subsets are denoted by ܵ as follows: 

 1 2 21, ,...,S s s s =    

3.4.6. Real-Time Dynamic Layers 

The advantage of our vector data visualization system is its real-time dynamic 

layer. The ability of the real-time dynamic layers is to allow any vector layer overlaying 

any other vector layers in any order during real-time (at least the average response time 

less than 1 seconds, to meet our “real-time” criteria). The ability of real-time dynamic 

layer is gained by the techniques of Legend String, WKB-format quad tile granularity 

dataset and background transparent layer rendering.  

The Legend String and WKB-format tile dataset are presented in Section 2 and 3, 

respectively. The ability of background transparent layer rendering is gained by alpha 

channel technique in Portable Network Graphics (PNG). 32-bit PNG and added an alpha 

channel (8 bits) to control the level of transparency is implemented in our vector data 

visualization system. The alpha channel basically controls the transparency of all the 

other channels. By adding the alpha channel to a map tile image, our system is able to 

control the transparency of the red channel, green channel and the blue channel [25][26]. 

Shown in Figure 4, we build a base layer with fully opaque and set the background of 

each layer to be fully transparent to seamlessly make any vector layer overlaying with 

others vector layers.  



33 
 

 

 

 

 

3.5. Raster Data Visualization 

3.5.1. Raster Data 

Raster data are cell-based spatial datasets. There are also three types of raster 

datasets: thematic data, spectral data and pixel-based pictures. The pixel-based pictures 

format is the only source of our raster imagery engine. Unlike vector data, raster imagery 

data is formed by each pixel.  

3.5.2. Re-projection 

Most of our raw raster data are in UTM projection. Considering the disadvantages 

of UTM projection system, the Tile Mercator projection is applied to our raster imagery 

engine.  Therefore, an UTM to Tile Mercator re-projection is pre-processed in our raster 

engine, which has two major steps: 

• A re-projection from the UTM to the Tile Mercator  

Base Layer 

Dynamic Layers 

Figure 12  Dynamic Map Layers 
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• A conversion from a large tiff image to the quadtree-based JPEG image 

tiles. 

The Related Work 

[27][28] concludes two major re-projection methods have been widely used in 

image process as follows: 

1. Area Weighted Convolution (AWC) [29], which assumes square pixel of 

uniform activity,  

2. Gaussian-pixel convolution (GPC) method, it assumes the activity of each 

pixel is represented by a Gaussian function.[30][31] 

The Re-projection from UTM to Tile Mercator 

The UTM to Tile Mercator re-projection algorithm is an AWC-based, pixel-

driven, nearest-neighbor algorithm. Each nearest-neighbor’s weigh is treated as the same 

weight during the re-projection process. The nearest-neighbor is a neighbor pixel next to 

targeted pixel.  

Figure 13 shows Pixel 1, 2, 3, 4, 6, 7, 8 and 9 are the nearest-neighbors of targeted 

pixel 5. 

Pixel 1 Pixel 2 Pixel 3 
Pixel 4 Targeted Pixel 5 Pixel 6 
Pixel 7 Pixel 8 Pixel 9 

Figure 13  Targeted Pixel and its Nearest-neighbors in Matrix Pixels 
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The re-projection from UTM to Tile Mercator has two steps: 

• The images in UTM: Loop all of the pixels, for each pixel, calculating the 

average color value from this pixel and its all of nearest-neighbors. All pixels 

are treated as the same weight. 

• The image in Tile Mercator: converting each UTM Pixel Coordinates to Tile 

Pixel Coordinates. In Tile image, addressing this pixel and setting the color 

value of this Tile Mercator image pixel as the average color value from its 

corresponding UTM image pixel and UTM image pixel’s all nearest-

neighbors. 

Gridding the UTM Images to the Tile Mercator Images 

Our raster raw data are from various sources, such as USGS Digital Orthophoto 

Quadrangles (DOQs), County Photography, Ikonos Satellite Imagery and Geoeye, all 

various sources raster raw data are in TIFF with UTM to store digital pixels and with 

embedding geographic information. 

The TIFF is a bitmap imagery format, and JEPG is a lightweight image format 

with much smaller size. Considering the data shipping, to archive the best performance, 

the JEPG is used as our raster data format. 

In terms of Quadtree indexing system, all raster images are organized by Quadtree 

data structure. Therefore, each raster imagery tile is a JPEP image with 256 by 256 pixels 

in Tile Mercator.  
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These gridded raster imagery tiles finally are formed in a Quadtree-based dataset.  

And each source has one Quadtree-based dataset. And each tile has a unique key as 

follows: 

A unique key = source name + quadkey. 

The UTM to Tile Mercator image gridding algorithm has following steps: 

• The Bottom Level Gridding 

Current bottom level is the Level 21 (resolution=0.075 meter). In this level, 

cutting source images into 256 pixels by 256 pixels each, each tile assigned a unique key 

after its generated. 

• The Rest of Levels Processed in Bottom-up Gridding 

After Level 21 tiles generated, Level 20 is the next. In terms of the Level of Detail, 

a square area of one Level 20 tile covered equals four Level 21 tiles covered. Therefore, a 

bottom-up processing is formed as follows:  

1. For each tile in Level 20, merging its four children tiles from Level 21 into 

one tile with 4×256×256 pixels 

2. Cutting this tile into 256×256 grids, each grid has 4×4 pixels, calculating the 

average color value from this grid. 

3. For each pixel of Level 20, setting its value as the average color value from 

the grid 
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After Level 20 is ready, Level 19 is the next. This process is repeated until the top 

level, Level 1. This generation process designed from the bottom of the system to the top 

of the system, it is a bottom-up gridding. 

A Re-projection from UTM to Tile Mercator 

UTM to Tile Mercator re-projection is a pre-processing as follows: 

• Re-projecting UTM images into Tile Mercator images. 

• Converting the raw tiff large images into the quadtree-based JPEG tiles. 

The UTM to Tile Mercator re-projection algorithm is applied in Step 1, the UTM 

to Tile Mercator image gridding algorithm implemented in Step 2. This pre-processing is 

formed in following detailed steps: 

o Parsing the TIFF to retrieve geospatial information and saving this location 

information to plaint file 

o Getting the tile’s 4 vertices coordinates and its resolution from plaint file 

o Creating a hash table to save tiles’ unique quardkey and its geospatial 

information. 

o Cutting the bottom Level 21 tiles:  

When process a TIFF image: 

o Verify this quadkey is hit existed in hash table,  
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o Hit: generating the quadkey and cutting TIFF into the JEPG tile image, 

inserting this quadkey and information into the hash table 

o No Hit: loading this tile and form steps as follows: 

For each pixel when (pixel.RGB == 000000) 

Filling the color value of this pixel as the average color value from its 

corresponding UTM image pixel and UTM image pixel’s all of nearest-neighbors.  

Bottom-up generating Level 20 to Level 1 tiles:  

o For each tile in up level, merging its four children tiles from its bottom level 

into one tile with 4×256×256 pixels 

o Cutting this tile into 256×256 grids, each grid has 4×4 pixels, calculating the 

average color value from this grid. 

o For each pixel of up level, setting its value as the average color value from the 

grid 

The Raster Data Visualization 

Shown in Figure 12, the raster data is able to be visualized by building a base 

layer as raster imagery and set the background of other vector layers to be fully 

transparent. This hybrid mode seamlessly makes the vector data overlaying with raster 

data. The hybrid vector and raster data visualization means offering a combined satellite 

and map view. 
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3.6. Experiment: Implementations of Real-Time Dynamic Layers 

In this section, we present two implementations of our proposed real-time 

dynamic layers.  

3.6.1. Cluster Setup 

All the implementations in this section were conducted on a cluster of 16 virtual 

machines provided by TerraFly [32] team. The cluster setup followed our proposed 

approach of Quadkey Suffix-based Parallel Tiling, which we described in section 3.3. 

3.6.2. Real-Time Dynamic Layers with ADC WorldMap vector data  

ADC WorldMap [33] vector data is a topographical background map data of all 

countries from the entire world. The data has the most detailed digital atlas at a 

1:1,000,000 map accuracy scale. The data are available in the following volumes: 

Table 1 ADC WorldMap Vector Volumes 

Vector Layer  Definition  
World_Nations  Borders for the countries of the World  
World_Admin  Level 1 political boundaries for the countries of the World 
Airports  Airport points and labels  
BuiltUp_Areas  Urban Sprawl  
Capitals  Country Capitals  
Cities_Greater_900K  Cities with population greater than 900,000  
Cities_75K_to_900K  Cities with population between 75,000 and 900,000  
Cities_up_to_75k  Cities with population up to 75,000  
Cities_Unknownpop  Cities with population unknown.  
World_Cities  All cities in the world  
Cultural_Landmarks  Cultural landmarks of the world  
Water_Poly  Lakes and other water polygon features  
Water_Line  Rivers and other water line features  
Glacier  Glacier & other permanent ice fields  
Seas_Bays  Seas and bays labels  
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Grid1  1 degree Lat/Long Grid  
Grid5  5 degree Lat/Long Grid  
Grid15  15 degree Lat/Long Grid  
Mountains  Mountain labels  
Physiography  Craters, cliffs, faults, rock outcrops  
Marine Ports  Major marine ports of the world  
Railroad_Track  Railway track  
Railway_Stations  Freight and passenger railway station  
Major_Routes  Major highways and interstates  
Minor Routes  Highways and other routes  
Utilities  Power transmission lines  

 

Two vector data pre-processing are carried out: one is for the reduced 21-level 

intermediate subsets for each layer, the other one is for the Quad Tile subsets. Two of 

dynamic layers samples loaded with ADC vector data is given as follows: 

Sample A : 

A sample of a vector visualization map with real-time dynamic layers is shown in 

Figure 2: 

 

Figure 14  Sample A Dynamic Layers 
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A Legend String for Figure 5 is composed as follows: 

_ _ _ _ _

_

World Nations Water Poly Water Line Major Routes Minor Routes Capitals

World Cities

+ + + + + +

 

This Legend String denotes that the data visualization composed with layers: 

World _ Nations,  Water _ Poly,  Water _ Line,  Major _ Routes,  Minor _ Routes,  

Capitals and World_Cities. And the rendering priority in this map belongs to: 

 _World Nations  >   _Water Poly  >  _Water Line  >  _Major Routes  >  

_Minor Routes  >    _Capitals World Cities> . 

Sample B : 

In sample B, we place Utilities and Railrod_Track over the other layers except 

base layer World _ Nations . And hence the Legend String and the rendering priority are 

modified as follows: 

_ _ _ _

_ _ _

World Nations Utilities Railrod Track Water Poly Water Line

Major Routes Minor Routes Capitals World Cities

+ + + + +
+ + +

 

_ _ _ _

_ _ _

World Nations Utilities Railrod Track Water Poly Water Line

Major Routes Minor Routes Capitals World Cities

> > > > >
> > >

 

The layers Utilities  and Railrod _ Track  on vector map dynamically overlaying 

with others is shown in Figure 6. 
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Figure 15  Sample B Dynamic Layers 

3.6.3. Time Series with SOAR vector data  

A time series is a sequence of dynamic vector layer at real-time, measured 

typically at successive times spaced at uniform time intervals (3 seconds). The time series 

of vector visualization creates the animated time sequence by fading-in and fading–out 

with vector layers in the specific timeline. SOAR stands for the Service Oriented 

Atmospheric Radiances [34][35][36]. SOAR vector data provides vector data for AIRS 

and MODIS-Aqua, respectively. The SOAR vector data is in a binary format and 

logically built with 360 ൈ 360 grids. Each grid is of 4 bytes that contains the radiance or 

brightness value of that particular 1 ൈ 0.5 gridded region. For instance, the value of the 

top left grid denotes the radiance or brightness value of the region of -180 to -179 in 

longitude and 90 to 89.5 in latitude. We first convert SOAR format into our WKB format 

and we load AIRS and MODIS-Aqua in Channel 20 in following dates: 

Table 2 SOAR Vector Volumes 

AIRS 01/2005, 02/2005, 04/2005, 05/2005, 07/2005, 08/2005 
01/2006, 02/2006, 03/2006, 05/2006, 06/2006, 08/2006 
01/2007, 02/2007, 03/2007, 04/2007, 05/2007, 06/2007, 07/2007, 
09/2007, 10/2007 
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MODIS-
Aqua 

01/2005, 02/2005, 03/2005 

 

The two of data pre-processing (21-level subsets and Quad Tile subsets) are 

carried out for AIRS and MODIS-Aqua, respectively. Figure 15 shows a Time Series for 

AIRS, a Legend String composed with all the loaded AIRS data. Each of AIRS data 

divided by Date is set as base layer in each sequence. The layer World_Nations	has less 

priority than AIRS and rendered on top of base layer. 

  

Figure 16  AIRS Channel 20 Radiance at 01/2005 

Figure 16 shows a MODIS-Aqua Time Series, a Legend String composed with 

01/2005, 02/2005 and 03/2005 vector data and the layer World_Nations put on top of 

layer MODIS-Aqua. 



44 
 

 

Figure 17  MODIS-Aqua Channel 20 Radiance at 01/2005 

 

3.7. Conclusion and Future Work 

In this section, a vector data visualization GIS with real-time dynamic layers is 

formed, proposed and implemented. The ability of real-time dynamic layers is gained by 

the techniques of our proposed Quadkey Suffix-based Parallel Tiling, Legend String, 

WKB-format quad tile granularity dataset and background transparent layer rendering. 

Two of implementations of vector data visualization applied with our proposed 

techniques are presented.  The research for vector data transmission has become 

prevalent. In the future, we plan to support the visual multi-resolution representations of 

vector data with real-time dynamic layers in our system. 
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4. Performance Improvement of Vector Data Mapping 

Web Mapping and Geospatial applications often need to process and display as a 

user-controlled map with large volumes of vector data. Improving the performance of 

vector data mapping and visualization remains a challenging issue. This paper presents, 

analyzes, and reports on implementation and benchmarking of three approaches for 

improving the performance of vector data visualization and mapping.  Approach 1 

projects and reduces the raw vector data into Level of Detail (LOD) data. The purpose of 

this approach is to reduce the size of raw data but without loss of visual vector imagery 

map quality. Approach 2 is to grid and assemble a reduced LOD dataset into a Quadtree 

granularity dataset, to reduce the dataset granularity in order to speed up the data retrieval 

and loading. Approach 3 is server-side vector data caching. 

4.1. Introduction and Related Work 

With the increasing use of the GIS data visualization, the performance of vector 

data visualization become of critical concern. In recent decades, LOD and Quadtree [37] 

techniques are used widely to facilitate the performance improvement. 

LOD techniques provide different representations of the same geometric object, 

with each representation having a different level of details. LOD techniques are the 

methods used to generate the multiple resolution representations of vector data objects. 

Two types of LOD techniques presently used are discrete and continuous LODs. The 

discrete multi-resolution representation of polygonal models was proposed in [38]. 
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Continuous LODs intend to increase or decrease the resolution of a polygon mesh 

through a series of geometry vertices and edges [39]. Continuous LODs was introduced 

and implemented in GIS in [7]. Our data reduce work targeted with the second category 

Continuous LOD datasets. By using pixel distance in Continuous LOD, we reduce the 

raw vector datasets into a hierarchical vector datasets of different levels of detail. 

A quadtree is a tree data structure in which each internal node has exactly four 

children. The Quadtree data structure has been named and formed in [40] by Raphael 

Finkel and J.L. Bentley in 1974. [41] introduces Quadtree into image processing, 

computer graphics, geographic information systems and robotic. In recent decades, 

Quadtree was widely used in GIS field. [42] describes a quadtree spatial indexing 

implemented in a large GIS database product. [43] presents a triangulation model is based 

on the restricted quadtree triangulation in a 2D large scale terrain visualization.  

Several performance improvements formed in recent decades. [44] presented a 

use of pyramids and hash indices on the server side to speed up large maps. Caching is 

designed to enhance concurrent data access. Compressed binary representation is 

implemented on both server and client sides to reduce transmission volume [45]. There 

was no vector data reduce process in [45], the solution in [45] is not able to do neither 

vector data culling or handle the vector objects with large amount vertices. [46] presents 

a quadtree based data grouping with raw data in order to do polygon culling and solve the 

polygon vector objects with large amount vertices. [46] also proposes a vector data 

reduce without loss of visual terrain image quality based on level of details, it 

dynamically determine the pixel distance and choose the appropriate polygon resolution. 
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[37] focused on polygon vector object only and its dynamic determination solution suit 

for a map with different resolution (with elevation data). Our work intends to reduce the 

size of raw vector data for all of types: Point, LineString and Polygon. And also a 

weighting factor is considered. While many points could be reduced to one point, giving 

each point a weighting factor is able to determine which one is expected to be shown on 

map. Our data gridding process is based on pre-generated LOD datasets, dealing with 

reduced LOD datasets directly. Our data gridding process also is a process for vector data 

culling. 

In order to make vector data visualization as fast and responsive as possible, three 

approaches for improving the performance of vector data visualization are formed, 

proposed and implemented in this paper. Approach 1 intends to project and reduce the 

raw vector data into LOD data. The purpose of this process is to reduce the size of raw 

data but without loss of visual map imagery quality. Approach 2 is proposed for gridding 

and assembling reduced LOD dataset into Quadtree granularity dataset, it intends to 

reduce the dataset granularity to speed up the data retrieval and loading. Approach 3 is 

the server side vector data caching. Approach 1 and 2 are pre-processing that designed 

for speeding up the vector data rendering and loading during the first time request. They 

reduce the overhead unnecessary and redundant in real time computation. Approach 3 is 

used to expedite the response time for the vector data that have been cached in database. 

It is designed for the second time and succeeding requests performance improvement. 
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The structure of this part is as follows. Section 1 details the previous relevant 

work in this area. Section 2 details a performance improvement solution. Section 3 details 

the 14 experiments and their analysis. Section 4 details the conclusion and future works. 

 

4.2. A Performance Improvement Solution 

 

LOD, Level of Detail, our vector map engine have 21 LOD datasets, it is 

organized by Levels and its format is WKB.  

Actually, LOD datasets is an intermediate datasets for vector map engine, all of 

LOD datasets would be processed into Quadtree Nodes Datasets (see Quadtree-based 

gridding data), which is the only data source of vector map engine. 

LOD datasets generation is a pre-processing for raw data’s reducing, which means 

reducing many duplicated vertices from raw data. The duplicated vertices occupy the 

same pixel in 256*256 map tile based on Pixel Coordinates.  

The purpose of Elimination of Superfluous LOD pro-processing is to ensure one 

pixel in final map imagery tile uniquely only represents one geographic vertex of 21-

Level LOD datasets. In other words, thus in view of map tile imagery, using Pixel 

Coordinates, the LOD data pre-processing is a lossless data compression process for 

shapefile raw data. 
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4.2.1. Vector Data Projection 

In order to make the vector data visualization on map seamless and to ensure that 

map tiles from different sources line up properly, a single projection for the entire world 

is needed. A Tile-based square Mercator projection is applied in our vector data 

visualization on map. Since the Mercator projection goes to infinity at the poles, it 

doesn’t actually show the entire world. Using a square aspect ratio for the map, the 

maximum latitude shown is approximately 85.05 degrees. To simplify the calculations, 

we use the spherical form of this projection, not the ellipsoidal form. Since the projection 

is used only for map display, and not for displaying numeric coordinates, we do not need 

the extra precision of an ellipsoidal projection. The spherical projection causes 

approximately 0.33% scale distortion in the Y direction, which is not visually noticeable 

[5]. In addition to the projection, the ground resolution or map scale must be specified in 

order to render a map, at each successive Level of Detail (LOD), the map width and 

height grow by a factor of 2, according our imagery data source, we choose to divide 

Level of Detail into 21 levels, the range of ground resolution (meters/pixel) from 

78,271.5170 to 0.0746. 

4.2.2. LOD 

LOD, level of detail, it is defined in Table 1. At the lowest level of detail (Level 

1), the map is 512 by 512 pixels. At each successive level of detail, the map width and 

height grow by a factor of 2: Level 2 is 1024 by 1024 pixels, Level 3 is 2048 by 2048 

pixels, and Level 4 is 4096 by 4096 pixels, and so on. Table 1 shows the LOD levels and 

their corresponding map size and ground resolution in our system. 
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Table 3 LOD levels, Map Size and Ground Resolution 

Level of Detail Map Width and 
Height (pixels) 

Ground Resolution 
(meters / pixel) 

1 512 78,271.517 
2 1,024 39,135.758 
3 2,048 19,567.879 
4 4,096 9,783.939 
5 8,192 4,891.969 
6 16,384 2,445.984 
7 32,768 1,222.992 
8 65,536 611.496 
9 131,072 305.748 
10 262,144 152.874 
11 524,288 76.8 
12 1,048,576 38.4 
13 2,097,152 19.2 
14 4,194,304 9.6 
15 8,388,608 4.8 
16 16,777,216 2.4 
17 33,554,432 1.2 
18 67,108,864 0.6 
19 134,217,728 0.3 
20 268,435,456 0.15 
21 536,870,912 0.075 

 

In general, the width W and height H of the LOD map (in pixels) can be 

calculated by the width w and height h  of a map tile as following: 

 W H= = 2 iNw × 2 iNh= ×   256 2 iN= ×  

 :where  

 w h= = 256 pixels 

Let M  denotes a map set with all of levels maps and m୧denotes the ith W H×  

pixels LOD map. 
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M   = 

1

2

N

m

m

m

 
 
 
 
 
 


 

 :where  

im  =  i iW H pixels×  

Let l


 denote a square polygon vector to represent the LOD map with pixel 

coordinates,  l

₁  is a square polygon vector for level 1 map is shown in Figure 1. 

 

 

 

Figure 18  LOD Level 1 

A square polygon LOD map vector sets L  with entire levels l

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following:  
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4.3. Approach 1: Vector Data Reduce 

 

Approach 1 is proposed to project and reduce the raw vector data into LOD data. 

The purpose of this process is to reduce the size of raw data but without loss of visual 

map imagery quality in terms of pixel coordinates. First, we introduce the vector data in 

pixel coordinates. Second, we state a single vector object project into LOD levels by 

using the Kronecker product [38]. Third, we further deduce all levels LOD datasets. 

Fourth, we propose the algorithm of data reduce on all of the vector types and reduced 

with a weighting factor. Finally, we deduce our reduced vector datasets for entire LOD 

levels. 

4.3.1. Vector Data in Pixel Coordinates 

 

We define three geography functions as follows: 

 1( )f long ( )180 360Long= + ÷  

 2 ( )f lat ( )( )0.5 log( 1 sin (1 sin )) (4 360lat lat= − + ÷ − ÷ ×  

 ( )3 256 2 jN
jf N = ×  

The latitude and longitude are assumed to be on the WGS 84 datum [39], given 

latitude and longitude coordinates in degrees, and the level of detail jN , the pixel XY 

coordinates  xP and yP  at level j of a vertex can be calculated as follows: 
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 ( )1 3( )x jP f long f N= ×  

 ( )2 3( )y jP f lat f N= ×  

 :where  

 sin sin( 180)lat lat π= × ÷  

 

Therefore, by applying above formula, the geography vector V


 with latitude 

longitude coordinates can be converted into its geometric pixel coordinates equivalent 

vector 'V


: 

 

'
1

' ' ' '
1 2

' ' ' '
1 2 1

[ ]

[ , ,..., ]

[ , ,..., , ]

lj

lj lj slj

lj lj slj lj

v

V v v v

v v v v


= 




 

 :where  

'
i ljv =  ,ix iyP P Levelj ∈   

  m is natural number greater than 1 

 

 

 

4.3.2. Single vector data projected within LOD 

The Kronecker product is used to indicate the single object vector projected 

within all of LOD L  in this section. Let F  denote a function pair 

( ) [ ]1 2( ),  ( )F v f flong lat= . For simplicity, we present a LineString vector V


, the Point 
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and Polygon object vectors have same deduction. A set FV


 applied with this function as 

follows: 

 1 2[ ( ), ( ),..., ( )]F
mV F v F v F v=


 

 

Let G  denote ( )3 jf N , we have set FG  with all of levels applied with this 

function: 

1

2

( )

( )

( )

F

N

G l

G l
G

G l

 
 
 =
 
 
 


 

Therefore, the single object projected within entire LOD levels is denoted by s as 

follows: 

 

 ( ) 2
1 2

1(

( ), ,..., ( )

)

( )

( )

F F
m

N

G l

G l
s V G F v F

l

v

G

v F

 
 
 = ⊗ = ⊗ =    
 
 




 

1[ ( ) ,..., ( ) ]F F
mF v G F v G =  

 ( ) ( )1 1 2 1 1 2( ) ,... (, , , )F F
m mf long f lat G f long f lat G  =         

 ( ) ( )1 1 2 1 1 2( ) ,..., ( ), ,F F F F
m mf long G f lat G f long G f lat G     =      



55 
 

 

( ) ( )

( ) ( )

1 1

1 1 2
2 2

2 2

1

1 1

1 2

( ) ( )

( ) ( )
, ,

( ) ( )

( ) ( )

( ) ( )
 ,

( ) ( )

N N

m m

N N

G l G l

G l G l
f long f lat

G l G l

G l G l

G l G l
f long f lat

G l G l

     
     
     
     
     

      = 
                    
          


 

 

 

 

( )

1 1 1 2 1 1 1 1 2 1

1 1 2 1 1 2

1 1 1

2 2

2 1

    

  
, ,...

( ) ( ) ( ) ( ) ( ) ( ) ( ) (

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

( )  

m m

m

N N m N

G G G G

G G

f long l f lat l f long l f lat l

f long l f lat l f long l

f long G l f lat l f long l

G

G G

      
      
      
      
      
      

  
2 2

2

)

( ) ( )

( )

  

  ( )

  m

m N

f lat l

f la

G

t lG

   
   
    =   
   
    


 

 

1 11 1
11
2 22 2
11

11

 

  
, ,..., ,

l ll l
y ymx xm
l ll l
y ymx xm

lN lNlN lN
y ymx xm

P PP P

P PP P

P PP P

       
       
        =       
       

           

  
 

 

1 1 1 1 ' '
1 1 1 1 1

' '
1 1 1

, ,

, ,

l l l l
x y xm ym l ml

lN lN lN lN
x y xm ym lN mlN

P P P P v v

P P P P v v

   
   =   
      

 

     

 

 

Where the 1 1
1 1,l l

x yP P   denote the pixel XY coordinates in level 1 for vertex 1v . 

4.3.3. Vector datasets projected within LOD 

Let S denote the vector sets composed with multiple vectors s which projected 

within LOD, and thus: 

 [ ]1 2, , , nS s s s= =  
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As the number of pixels differs at each level of detail, so does the number of tiles:  

 2levelLODLevelwidth LODLevelheight tiles= =  

Furthermore, each tile actually can be treated as each node of quadtree. 

4.3.4. LOD vector datasets 

We further define a LOD vector dataset LODS , which divided S  by LOD level, 

therefore, the formula in section 3.3.3 is modified as: 
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4.3.5. Pixel Distance 

Since the pixel XY coordinates is a Cartesian coordinate system specifies each 

pixel uniquely in a plane by a pair of numerical coordinates xP  and yP , which are the 

signed distances from the point to two fixed perpendicular directed lines, measured in the 
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same unit of length. The distance between two pixels of the plane with Cartesian Pixel 

XY coordinates 1 1( , )x yA P P  and 2 2( , )x yB P P  is as following: 

 2 2
1 2 1 2( ) ( )AB x x y yD P P P P= − + −  

In terms of the formula in section 2.1, any two Point vector pixel distance is as 

same as the above formula. Furthermore, Let id  denotes the distance between two 

adjacent vertices, the ith and the (i+1)th, with Cartesian Pixel XY coordinates are as 

following: 

id  
( 1) ( ) ( 1) ( )

2 2( ) ( )
v i v i v i yv i

x x y iP P P P
+ +

= − + −  

4.3.6. Reduce 

 

We have five cases reduce, they include: a group of multiple Point vectors 

reduced into one Point vector, a raw LineString vector reduced into one LineString vector 

but with smaller vertices set, a raw LineString vector reduced into one Point vector, a raw 

Polygon vector reduced into a Polygon vector with smaller vertices set and a raw Polygon 

vector reduced into a Point vector.  

In following formulas,  ' R
ljV


 is used to indicate the reduced object at Level j, δ  is 

a pixel distance threshold, to make a 100% lossless of visual vector imagery map quality, 

we set  0 pixelδ = : 

Case 1:  Multiple Points  
Reduce

→  Point  
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 For a Point set{ }' ' '
1 2 , ,...,ln ln mlnV V V
  

 

At level n if 
0 0

m n

ij
j i

D δ
= =

<  

 Then: ' ' ' '
1 2  R

ln ln ln mlnV V V V= = = =



  

 

 

Case 2: LineString   
Reduce

→  LineString  

For any 
' ' ' '

1 2, ,...,lj lj lj s ljV v v v =  


 

At level j if any id δ<
 

Then 
' '

1i iv v +=
,and then: 

' ' ' ' ' '
1 2 1 1 , ,..., , ,...,R

lj lj lj i lj i lj t ljV v v v v v− + =  


 

:where  

 ( )', ( )R LS
lnt s Dimension V Dimension V< <
 

 

 

Case 3: LineString   
Reduce

→  Point  

For any 
' ' ' '

1 2 , ,...,lj lj lj s ljV v v v =  


at level j if 
0

n

i
i

d δ
=

< then 

' R
ljV =


  '
1 jlv 

   
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Case 4: Polygon   
Reduce

→   Polygon  

For any
' ' ' ' '

1 2 1, ,..., ,lj lj lj slj ljV v v v v =  


 if any id δ<  then
' '

1i iv v +=  and then   

' ' ' ' ' ' '
1 2 1 1 1, ,..., , ,..., ,R

lj lj lj i lj i lj t lj ljV v v v v v v− + =  


 

:where  

( )', ( )R LS
lnt s Dimension V Dimension V< <
 

 

 

Case 5:  Polygon  
Reduce

→  Point  

For any
' ' ' ' '

1 2 1, ,..., ,lj lj lj slj ljV v v v v =  


 if 
0

n

j
i

d δ
=

< then 

' R
ljV =


  '
1 jlv 

   

 

 

 

4.3.7. Reduce with weighting factor 

A weighting factor w is used to give importance to certain object vector in the 

group set. While many points could be reduced to one point, giving each point a 

weighting factor is able to determine which one is expected to be shown on map. Since 

all of three vector types are able to be reduced to a point in map, we have different 

weighting ways to determine them. In general, for Point object vector, the value of 

weighting factor is based on its attributes. For example, we have City vector data sets, the 
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cities objects are weighted by the attributes: population, capital, metropolitan. For 

Polygon and LineString object vectors, their weighting factor values are determined by 

the Polygon area size attribute and LineString length attribute, respectively. And hence, 

our formula in section 4.3.6 is modified as following: 

For a Points set{ }' ' '
1 2, ,...,ln ln mlnV V V
  

 at level n if 
0 0

m n

ij
j i

D δ
= =

< then 

 ( )1 2 , ,..., , :m x naw Max tw w w hen=  

 ' '

s

R
ln max lV V=
 

 

 

This formula denotes the reduced object ' R
lnV


 is set as a point object with the 

maximum value of weighting factor in Points set. 

 

 

4.3.8. Reduced Objects projected in LOD 

Each 'V


 can be reduced to 'RV


. Let 'Ro


 replace 'o


 in the formula in section 4.3.4, 

the entire object sets S  and single object in entire LOD sets s with reduced objects are 

denoted by RS  and Rs , respectively. The reduced objects vector sets projected in LOD 

are as following: 
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 :where  

 ,s N ∈N  

The dimension of ' R
lijV


 are reduced into different values, the dimension of S  is 

determined by following: 

 ( ) '( ( ))R
lijDimension S N max Demension V= ×


 

 

In Matrix S , any off-non-zero blocks are zero block matrixes. 

 

4.4. Approach 2: Reduced Vector Data Gridding 

 

In this section, we state the limitation of reduced LOD datasets, and we propose a 

data gridding process to reduce the LOD dataset granularity. 

The vector data reduce can make sure that one pixel only represents one 

geography vector vertex in pixel LOD maps. However, the zoomed-in LOD maps have 
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much more pixel spaces than zoomed-out maps. Therefore, with enlarging the size of 

LOD map (zoomed-in), the LOD reduce gradually lose its effectiveness. In other words, 

the LOD data reduce decreases with the increase of the LOD map size. Figure 2 shows 

LOD data reduced enormously the total vertices number (410,111 vertices in raw) in an 

USA country polygon vector data during top 10 levels. However, the closer to level 10 

and after, the fewer total vertices number are reduced. 

 

Figure 19  Reduced USA Country Object LOD Data 

 

LOD reduce losing effectiveness in zoomed-in levels means that there are still 

enormous computation in zoom-in levels, like traversal across over huge vertices against 

LOD datasets, this enormous computation significantly lowers the performance of vector 

data visualization.  

To solve this problem, a data gridding for the reduced dataset is proposed. The 

purpose of data gridding is to reduce the granularity of the vector dataset to speed up data 

retrieval and loading. In LOD datasets, the vector data are grouped into 21 level subsets. 

The size of subset is increased significantly by increasing the pixel space in zoomed-in 
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levels. In this case, the granularity of 21-level-subset is too huge for vector data loading, 

traversal and retrieval. In order to reduce the granularity of 21-level-subset, we further 

grid the 21-level-subset into Tile subsets. Section 3.2 describes that at each successive 

level of detail, the map width and height grow by a factor of 2:  

im  =  256 2 256 2i iN N
i iW H pixels× = × × × . 

Each tile  is 256 256pixels× , therefore, im  is able to be gridded into iN4  tile map. 

 4 iN
im tile= ×  

The map size grow by a factor of 4, in other words, the map size in each 

successive LOD organized by a quadtree which grow by a factor of 4 as shown in Figure 

19. 

 

Figure 20  The Data Gridding on LOD Levels 

 

Figure 2019 shows each level of LOD dataset gridded into tile subsets. Each tile 

subset determined by its corresponding LOD dataset intersecting with a square tile 

polygon, for example, tile 0 subset at level 1, it is determined by an geography 
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intersection with an square area of [(0,0), (256,0), (256,256), (0, 256), (0,0)] and LOD 

level 1 dataset l1s . We define a ST_intersect geography function followed OpenGIS 

Specifications (Standards) as follows: 

 _ ( ; )i
ij ijT ST Intersect s t=  

A semi-colon delimits two arguments  i
ijs and t , ljs  denotes LOD subset at level i, 

ijt  is used to indicate the jth tile at level i, ijT  denotes the jth tile subset at level i, and 

hence, the entire subsets at level i is denoted as follows: 

 [ ]1 2, ,...,iT
i i ims T T T=  

 :where  

 4nm =  

The entire LOD subset gridded into Tile subsets is denoted by S  as follows: 

 1 2 21, , ,S s s s =    

 

4.5. Approach 3: Map Imagery Tile Server Side Caching 

 

The server side caching is for speeding up the response time for the vector data 

that have been cached in database. It is designed for the second time and succeeding 

requests. The cache database stores the map imagery tiles, which is able to be any 

imagery format, like PNG, GIF, JEPG and so forth. If ay requested map imagery tile is 

found in the cache database, this request would be responded by the cache database 

instead of the vector data visualization system. This is not only comparably faster, but 
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also lowering the server load (computation and data shipping). Otherwise (caching miss), 

the map imagery tile has to be generated in vector data visualization system, which is 

comparably slower and the server load gets increased. Therefore, the more requests are 

responded from the cache database, the better the performance gained.  

Besides the performance improvement from the server side database caching, we 

can also gain the controllable ability for cache management from server side caching, 

such as we can control over what the map imagery should be cached and how long the 

imagery remains and which ones should be updated. In our server side caching system, a 

LRU algorithm is implemented. Least Recently Used (LRU) is an algorithm that discards 

the least recently used items first. This algorithm requires keeping track of what was used 

when, which is expensive if one wants to make sure the algorithm always discards the 

least recently used item. [47][48]. 

The algorithm of vector data LRU caching 

We have implemented two data structure in our caching system: a doubly linked 

list and a hash table. The doubly linked list is implicitly sorted by the age of the vector 

map tile. The hash table indexing this doubly linked list.  

The algorithm of vector data LRU [49] caching is described as following: 

Get the map tile from the cache needs to refresh the map tile in the cache. That is, 

move the node from the middle to the head. 

If no map tile in cache, return NULL 
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If map tile in cache, removing this tile from doubly linked list first, then inserting 

this tile into the head of double linked list, since this is the most recent accessed. And it 

returns the cached tile. 

Besides a refresh action, putting map tile into the cache also needs to maintain the 

cache size and update the content. 

When putting a map tile, if it existed, removing this tile from doubly linked list 

first, then inserting this tile into the head of double linked list 

If not existed, putting this into hash table and inserting this tile into the head of 

double linked list, and then updating the cache size and the content 

4.6. Experiments 

In this section, we setup and perform experiments firstly, and then we present and 

analysis our experimental results. 

4.6.1. Experiment Setup 

All the experiments in section 4.2 and section 4.3 were conducted on a cluster of 

16 virtual machines provided by TerraFly team. The cluster setup strictly followed our 

Parallel Map Tiling infrastructure and algorithms, which we described in section 3.3. 

We perform 14 experimental tests in 6 scenarios on our vector data visualization 

engine, which is a web-based engine for rendering vector data through web environment. 

The experiment includes 12 comparative experimental tests in 4 scenarios to prove the 

significant performance improvement by applying the performance improvement solution, 
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as we described in section 3. And the other 2 experimental tests in 2 scenarios are to 

demonstrate the performance of vector data visualization engine. All of the 14 

experimental tests belong to the performance test category. All experimental tests were 

performed in one physical server. The simulated Test Scenarios covered the most user 

activities in our current system. Table 2 describes the testing physical server, test tool, 

test time.  

Table 4 The Server, Test Tool and Test Time 

Server Intel Xeon CPU 4*1.60 GHz, 6GB of RAM 

Microsoft Server 2003 x64 Edition 

Test Tool Microsoft Visual Studio 2010 Team Test Suit [17] 

Test Time 10 minutes 

 

For better demonstration, we define: 

A  as the vector data visualization engine NOT applied with the performance 

improvement solution.  

B  as the vector data visualization engine applied with the performance 

improvement solution but EXCLUDED the caching part. 

C  as the vector data visualization engine FULLY applied with the performance 

improvement solution. 

The Scenario 1, 2, 3 and 4 perform 12 comparative experimental tests, and thus 

each scenario has 3 experimental tests, includes scenario testing for the A, B and C, 
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respectively. The Scenario 5 and 6 were tested against C only. The extremely slow and 

many timed-out tiles were emerged during we setup the scenario 5 and 6 to test against A 

and B, and hence we did not perform these scenarios on A and B.  

 

Figure 21  A Tested Map Tile 

 

In Scenario 1, 2, 3 and 4, we choose the ADC WorldMap World_Nations layer as 

our testing vector dataset. The testing web request is a single map tile request, this single 

map tile request is a map tile with 256 pixels width and 256 pixels height, as shown in 

Figure 4, whose geographic coordinates is described as following: 

The upper left vertex: longitude=-0.3515, latitude=85.0511  

The bottom right vertex: latitude=0.3515, longitude=179.6484  

In Scenario 5, the testing request composed with 16 different tiles which fully 

cover the world-wide map in Level 2. The request in Scenario 6 is 84 different tiles 

which fully cover the world-wide map Level 1 (4 tiles), Level 2 (16 tiles) and Level 3 (64 

tiles).  
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Table 5 Test Scenario 

Scenario 1 Single User 

Single Map Tile 

Scenario 2 10 concurrent Users 

Single Map Tile 

Scenario 3 From 10 concurrent Users to 50 concurrent Users 

User Count Step Duration: 

120 seconds 

Single Map Tile 

Scenario 4 From 10 concurrent Users to 50 concurrent Users 

User Count Step Duration:  

10 seconds 

Single Map Tile 

Scenario 5 10 concurrent Users 

16 Different Tiles Fully Cover Level 2 

with Server Side Caching 

Scenario 6 1 User 

84 Different Tiles Fully Cover 3 Levels 

with Server Side Caching 

 

Table 3 describes the 6 scenarios: the Scenario 1 is a typical one-user-one-request 

test. Scenario 2 has 10 concurrent users. The Scenario 3 and 4 are Step Load Test, it sets 

step user count increased from 10 concurrent users to 50 concurrent users, and it sends a 

single tile request to vector map engine. The initial user count is 10 and the maximum 

user count is 50, the step user count set as 10, and step duration set as 120 seconds and 10 
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seconds, respectively. With respect to Scenario 5, the 10 concurrent users are performed 

concurrently. And each user needs to finish a request queue, which has 16 tiles requests 

(one by one performed). In Scenario 6, a single user is setup. The request in Scenario 6 is 

84 different tiles which fully cover Level 1 (4 tiles), Level 2 (16 tiles) and Level 3 (64 

tiles). 

4.6.2. Experimental Result and Analysis 

 

The response time is defined as the time elapsed between the dispatch (time when 

request is ready to execute) to the time when it finishes its job (time upon receipted a 

single map tile) per each user. Suppose we have sample response time { }1 1, , ,r r r
nt t t , the 

u tn n n= ×  where un  denotes the user count and tn  denotes the tile count. And thus the 

arithmetic mean of response time T   is defined via the equation: 

 
0

1 n
r
i

i

T t
n =

= ∶  

Table 4 lists the 14 test results for Scenario 1, 2, 3, 4, 5 and 6, respectively. With 

respect to the testing results in Table 5, from Scenario 1 to Scenario 4, B has 9.36 times, 

8.53 times, 7.39 times and 18.1 times faster than A, respectively. C has 530.67 times, 

135.33 times, 116 times and 295.77 times faster than A, respectively. 
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Table 6 the arithmetic mean of response time for 6 scenarios 

A B C 

Scenario 1: ܶ (Second) 7.96 0.85 0.015 

Scenario 2: ܶ (Second) 20.3 2.38 0.15 

Scenario 3: ܶ (Second) 52.2 7.06 0.45 

Scenario 4: ܶ (Second) 210 11.6 0.71 

Scenario 5: ܶ (Second) N/A N/A 0.155 

Scenario 6: ܶ (Second) N/A N/A 0.062 

 

Figure 5 shows the line chart, which comparatively represent the T  of Scenario 1, 

2, 3, 4 with respect to A, B and C. The x-axis shows T  and the y-axis shows the Test 

Scenario. The graphs show with the increasing web loads, the T  of A soars up. As for B 

and C, the T  keeps slow and slight linear increase. With respect to Scenario 5 and 6, the 

T  for C under Scenario 5 is 0.155 seconds. In Scenario 6, the T  of a single tile is 0.062 

second. These results mean even in such extreme web load cases, the C exhibits excellent 

performance. These experimental test results were expected since the C fully applied with 

the comprehensive performance improvement solution. 
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Figure 22 Experiment Results for 4 scenarios 

 

4.7. Conclusion and Future Works 

 

In this section, first, we model the GIS vector data, and state the projection system. 

Second, we propose and present three performance improvement approaches and 

corresponding deductions. Finally, we perform and describe 14 experimental tests in 6 

scenarios and the experimental test results were expected as our system applied with the 

comprehensive performance improvement solution. 

Considering the enormous computation in vector data reduce and gridding, 

especially some worldwide geospatial vector data, we plan to introduce a sophisticated 

cloud computing framework such as MapReduce [50] or Azure [51] to implement and 

take these enormous computations. 
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