

T—NANSYS

Noncommercial use only

Figure 18 NuVision Engineering Nozzle
Maximum Shear Stress: 3105 (Pa)
Avg. Shear Stress: 55.6 (Pa)

Figure 19 Pareto Design: ID 5749
Maximum Shear Stress: 2083 (Pa)
Avg. Shear Stress: 43.8 (Pa)

Figure 20 Pareto Design: ID 40277
Maximum Shear Stress: 3150 (Pa)
Avg. Shear Stress: 66.7 (Pa)

56

—ANSYS

Noncommercial use only

Figure 18 NuVision Engineering Nozzle Figure 21 Pareto Design: ID 40286
Maximum Shear Stress: 3105 (Pa) Maximum Shear Stress: 3382 (Pa)

Avg. Shear Stress: 55.6 (Pa) Avg. Shear Stress: 64.5 (Pa)
7 ANSYS

Noncommercial use only

Figure 22 Pareto Design: ID 58308
Maximum Shear Stress: 2925 (Pa)
Avg. Shear Stress: 67.0 (Pa)

57

The performance of the Pareto designs was evaluated by determining the
percentage difference in shear stress values against the NuVision Engineering
design, as shown in Table 13. It can be seen from the table that design ID 5749
underperformed against NuVision's nozzle design by 33% and 21% for maximum
shear stress and average shear, respectively. However, design ID 40277 and ID
40286, exceeded both the objectives of optimization against the NuVision

Engineering design.

Table 13 Performance evaluation of NuVision Engineering nozzle and Pareto design nozzle

ANSYS FLUENT Performance Evaluation
(%)
mF Max Shear Avg. Shear Max Shear Avg. Shear
ID Stress (Pa) Stress (Pa) Stress Stress
5749 2083 44 -33 -21
40277 3150 67 1.3 20
40286 3382 65 8.8 16
58308 2925 67 -5.8 21

Examining the Pareto designs produced by modeFrontier, Table 14
demonstrates the best design achieved through the optimization process,

initiated with 100 initial real designs.

Table 14 The best design of the Pareto frontier

Pareto Angle(deg.) Left Right Nozzle Distance Maximum Average
(mF) Below the Radius Radius Height Between Shear Shear
ID Horizontal (cm) (cm) (cm) Radii Stress Stress
(cm) (Pa) (Pa)

58

49887 54.98 1.0 1.0 12.7 1.1 3475 59

Figure 23 is the contour plot of the shear stress generated by the best design.
Design ID 49887 nozzle performed 11.88% higher in maximum shear stress and
6.68% higher in average shear stress when compared with the NuVision

Engineering design.

= ANSYS

Noncommercial use only

Figure 23 Best Design: ID 49887

4.7 Comparative Analysis of Two Optimization Algorithms: Use of

Another Evolutionary Method for Design Optimization

Using modeFrontier, an alternate algorithm was incorporated to optimize the
nozzle design, the particle swarm algorithm. Table 15 shows the virtual designs
that were selected after the response surface was created with 112 real designs

optimized in an earlier section of this chapter. The 112 real designs were

59

subjected to the same process optimization procedure; the only distinction was
the use of the multi-objective particle swarm algorithm. The performance

between the designs generated from these two algorithms is compared here.

Table 15 Design randomly selected to verify the optimization with the used of particle
swarm

ID Angle(deg.) Left Right Nozzle Distance Maximum Average

Below the = Radius Radius Height Between Shear Shear
Horizontal (cm) (cm) (cm) Radii Stress Stress
(cm) (Pa) (Pa)
12298 54.98 1.0 1.0 12.7 1.1 3105 53
24496 49.32 1.0 1.0 13.1 1.4 2889 58
25995 51.68 1.0 1.0 13.2 1.4 2947 57
49600 50.96 1.0 1.0 13.1 1.4 2938 57

For convenience purposes Table 8 is presented here again and is labeled Table
16.

Table 17 contains the analysis between virtual designs and real designs using
the particle swarm algorithm. Evaluating only the data in Table 17, the virtual
design values under predicted all the values of the objectives against real design

values.

Table 16 Calculation of the error between real designs and virtual designs after adding
Test Case #102 to Test Case # 110 in developing the response surface using the genetic

algorithm

modeFrontier ANSYS FLUENT % Error
ID Maximum Average Maximum Average Maximum Average
Shear Shear Shear Shear Shear Shear
Stress Stress Stress Stress Stress Stress
(Pa) (Pa) (Pa) (Pa)
284 1123 55 1022 46 9.8 0.2

60

4109 2372 69 2348 45 1.0 55
4682 3040 52 3241 56 6.2 7.0
6897 2645 52 2780 55 4.9 5.3

Table 16 Calculation of the error between real designs and virtual designs using the
particle swarm algorithm and a response surface

modeFrontier ANSYS % Error
ID Maximum Average Maximum Average Maximum Average
Shear Shear Stress Shear Shear Shear Shear
Stress (Pa) Stress Stress Stress Stress
(Pa) (Pa) (Pa)
12298 3105 53 3451 61 -10 13
24496 2889 58 3407 61 -15 -4.7
25995 2947 S/ 3235 66 -8.9 -14
49600 2938 S/ 3240 67 -9.3 -14

A comparison between Table 16 and Table 17 reveals the designs in Table 17 to
have larger shear stress values obtained from the real ANSYS FLUENT
simulations. This confirms that particle swarm evolutionary optimization

algorithm is capable of converging further than a genetic algorithm. Specifically,

e The best Pareto-optimal design obtained using the particle swarm
optimizer was 23% better than the current NuVision Engineering design in
achieving maximum shear stress at the tank bottom (as opposed to
11.88% improvement achieved when using genetic algorithm) as
confirmed by the ANSYS FLUENT flow-field analysis software.

e The best Pareto-optimal design obtained using the particle swarm

optimizer was 18% better than the current NuVision Engineering design in

61

achieving maximum average shear stress at the tank bottom (as opposed

to 6.68% improvement achieved when using genetic algorithm) as

confirmed by the ANSYS FLUENT flow-field analysis software.
The iterative process of the particle swarm optimization algorithm allows it to
produce larger values for the objectives. When an "ideal" trait is identified within
a population, the algorithm stores this trait i.e. parameter. Further generations
are produced, and similarly, the "ideal" trait is identified. The trait carried on to
subsequent generations is the additive result of the best of the population and
the best from the genealogy. With genetic algorithm, on the contrary, there is a
possibility that the "ideal" trait may be lost in subsequent generations due to
mutation phase. However, influential characteristics from the "ideal" trait in
particle swarm are always carried to subsequent generations. This yields better
solutions in achieving the objectives. Presented below is Figure 24, comparing
shear stress distributions on the bottom of a waste tank calculated for the
NuVision Engineering nozzle, a Pareto optimal nozzle designed using genetic
algorithms (ID 49887), and a Pareto optimal nozzle designed using particle
swarm algorithm (.PS_ID 60480). Both optimized nozzles produce larger shear
stress values than the currently used commercially available nozzle (NuVision
Engineering). However, between ID 49887 and PS_ID 60480 (derived by a
genetic algorithm and a particle swarm algorithm, respectively) the optimized
nozzle designed by particle swarm generated larger values of shear stress at the

bottom of the waste tank (Table 18).

62

NuVision Engineering

ID 49887

PS_ID 60480

Figure 24 Contour plots of shear stress produce by the NuVision Engineering , ID 49887,

and PS_ID 60480 nozzle design.

Table 18 Comparison of calculated performances of the commercially available nozzle and

two nozzles designed using different optimization algorithms.
Best design obtained
using genetic
algorithm

Commercially
available design
(NuVision Eng.)

Maximum 100%
Shear Stress
(Pa)

Average 100%
Shear Stress
(Pa)

111.88%

106.68%

63

Best design
obtained using
particle swarm
algorithm

123.00%

118.00%

CHAPTER YV

CONCLUSIONS AND FUTURE WORK

The optimum design has been identified and its design parameters are listed in

Table 14. This research examines the evolution of 112 designs. The best

parameters listed in Table 14 were derived through the optimization process of

these 112 designs. The steps that were followed are outlined below:

1.

2.

Perform ANSYS FLUENT runs at Sobol points.

Compile a table of real data.

Create a response surface ONLY real data.

Run the optimization.

Pick a few optimized virtual designs and verify manually by plugging in the
same input parameters into ANSYS FLUENT and running the simulation.
Compare the optimized virtual points with the real ANSYS FLUENT runs

to determine if the error is acceptable.

If the errors are not acceptable after the verification:

7.

8.

Perform more real ANSYS FLUENT runs at new Sobol points.

Add the new real data to the table created in Step 2, that has ONLY real
data.

Create a new response surface with the updated table that has ONLY real

data.

10.Run a new optimization.

64

11.Pick a few optimized virtual points and verify manually by plugging in the
same input parameters into ANSYS FLUENT and running the simulation.

12.Compare the optimized virtual points with the real ANSYS FLUENT runs
to determine if error is acceptable.

If error is unsatisfactory, repeat steps 7-12.

Improvement of the response surface error cannot occur without adding more
real data. To refine areas of interest, i.e. region of optimum points, real data
must be added to regions where there is a concentration of optimized points. In
the research one step of refinement was conducted. Eight additional designs
were added to the original 100 designs. The percentage errors were minimal. It
was of interest to examine the area of the response surface where the optimum
designs were clustered. Refinement of this region increases the accuracy of the
resulting maximum shear stress value and highest value of average shear stress.

Four more designs were added to achieve this.

Thus, after implementing 112 designs of experiment to create the response
surface, discrepancies between the real design values for maximum shear stress

and average shear stress and virtual design were present.

Increasing the real initial designs from 100 to 150 may reduce the error between
real and virtual designs, thus, improving the response surface. Future work
should include refining the response surface globally and locally in the region

were optimum designs are clustered.

65

Another approach to refine the response surface would be to add real designs
after every 50" generation. The response surface is created after the 50™
generation. Then real designs are included to refine the response surface. A
second response surface is created after the 100" generation. Additional real
designs further refine the subsequent response surfaces. This process is
continued until the 500™ generation is derived. This process should yield an

improvement in the accuracy of the response surface.

Unique nozzle designs which could be investigated include those having three
and four orifices. The three orifices on the nozzle are aligned at 90°, 210°, and
320°. Another arrangement which can be investigated is a nozzle with orifices
aligned at 0°, 90°, 180°, and 270°. The addition of swirl effects to the three and
four-orifice nozzles is also of interest. Furthermore, the effects of three and four-
orifice nozzles with opposing velocities should be considered. The

aforementioned topics should be addressed in future work.

66

10.

11.

REFERENCES

NuVision Engineering. (2009). Demonstration of Power Fluidic ~ Mixing
Technology to Enhance Chemical Cleaning Operations in High Level
Waste Tanks. Mooresville, North Carolina

McKeel, C.A. (2008). Type | Tank Liner Integrity under oxalic acid
induced corrosion. T-CLC-F-00383.

Wiersma, B.J. (2010). Alternative and Enhanced Chemical Cleaning:
Corrosion Studies Results FY2010. Savannah River National
Laboratory, SRNL-STI-2010-00555.

Hay, M.S., and Koopman, D.C. (2009). Review of Alternative
Enhanced Chemical Cleaning Options for SRS Waste Tanks.
Savannah River National Laboratory, SRNLSTI-2009-00500.

McKendrick, D., Biggs, S.R., Fairweather, M., & Rhodes, D. (2008).
Physical Modeling of Axisymmetric Turbulent Impinging Jets used
within the Nuclear Industry for Mobilization of Sludge.

Patwardhan, A., & Gaikwad, S. (2003). Mixing in tanks agitated by
jets. Institution of Chemical Engineers , 211-220.

Forster, D., Nelson, D.R., & Stephen, M.J. (1977). Large distance and
long-time properties of a randomly stirred fluid. Physical Review, A-
16, 732-749.

Dannevik, W.P., Yakhot, V. & SA Orszag. (1987). Analytical theories

of turbulence and the epsilon-expansion. Physical Fluids, 30, 2010-
2029

Paravareh, A., Rahimi, M., Yarmohammadi, M., & Alsairafi, A.

(2009). Experimental and CFD study on the effect of jet position on
reactant dispersion performance. International Communications in
Heat and Mass Transfer, 1096-1102.

Ranade, V. (1996). Towards Better Mixing Protocols by Designing
Spatially Periodic Flows: The case of a Jet Mixer. Chemical
Engineering Science, 2637-2642.

Yakhot, V. & Orszag. SA,. (1986). Renormalization group analysis of

turbulence: |. Basic theory. Journal of Scientific Computing, Vol 1
No 1, 3-51.

67

12.Forster, D., Nelson, D.R., & Stephen, M.J. (1977). Large distance and
long-time properties of a randomly stirred fluid. Physical Review, A-
16, 732-749.

13. Dannevik, W.P., Yakhot, V. & SA Orszag. (1987). Analytical theories
of turbulence and the epsilon-expansion. Physical Fluids, 30, 2010-
2020.

14. Tan, J. (2010). A study of solving Navier-Stokes equations with a finite
volume method based on polygonal unstructured grids and the
computational analysis of ground vehicle aerodynamics. (Doctoral
dissertation).

15. ANSYS FLUENT Theory Guide 12.0

16. Koziel, S., & Yang, X. (2011). Computational Optimization, Methods
and Algorithms. Belin, Springer-Velag.

17. Colaco, M., Orlande, Helcio R.B., &, Dulikravich G.S., (2006). Inverse
and Optimization Problems in Heat Transfers. Journal of the
Brazililian Society of Mechanic Science & Engineering , 28, 1-15.

18. Naka, S., Yura, T.G. & Fukuyama, Y. (2001). Practical Distribution
State Estimations Using Hybrid Particle Swarm Optimization.
Proceedings IEEE Power Engineering Society, Winter Meeting, 815-
820.

19. Kennedy, J. & Eberhart, R. (1995). Particle Swarm Optimization.
Proceedings of the 1995 IEEE International Conference on Neural
Networks, 1942-1948.

20. Jin, R., Chen, W., & Simpson, T. (2000). Comparative Studies of
Metamodeling Techniques under Multiple Modeling Criteria.
American Institute of Aeronautics and Astronautics, 1-11.

21. Jameson, A. & L. Martinelli. (1998). Mesh Refinement and Modeling
Errors in Flow Simulations. AIAA Journal, 36, 676-686.

22. Roache, P.J. (1998). \Verification and Validation in Computational
Science and Engineering. Albuquerque, NM: Hermosa Publishers.

23. Logan, R. & Nitta, C. (2005). Comparing 10 methods for Solution
Verification and Linking to Model Validation.

68

APPENDICES

Appendix A: Use of Another Algorithm for the Response Surface

Generation

The following data show how the use response surface generation algorithm has
an effect on the accuracy and reliability of optimization results. The values
present in Table 18 are gain by the use of the kriging algorithm in modeFrontier
optimization software to create the response surface. Large errors exist between

the values for the real designs and virtual designs.

Table 17 Use of the Kriging for the response surface generation

modeFrontier ANSYS FLUENT Error %
ID Maximum Average Maximum Average Maximum Average

Shear Shear Shear Shear Shear Shear
Stress Stress Stress Stress Stress Stress
(Pa) (Pa) (Pa) (Pa)

65827 2573 61 2233 45 15

65856 2147 46 2494 48 14

66064 2871 46 3039 52 55

66075 3132 48 2540 48 23.3

66144 2529 63 2308 45 9.6

66185 2462 66 2198 45 12

66240 2795 58 2604 58 7.3

66370 2566 61 2718 50 5.6

69

35
3.3
11
0.52
39
48
0.69
23

Appendix B: Tables of Values

Test Angle Left Right Nozzle Distance Maximum Average
Case (deg.) Radius Radius Height Between Shear Shear
Belowthe (cm) (cm) (cm) Radii Stress Stress
Horizon (cm) (Pa) (Pa)

1 40.39 0.6 0.4 16.5 0.7 1214 23
3 47.89 0.7 0.6 15.2 0.9 1364 19
5 51.64 0.9 0.5 14.6 1.3 1395 223
6 36.64 0.6 0.8 17.1 1.0 453 19
7 44 14 0.5 0.6 15.8 1.2 674 15
8 29.14 0.8 0.9 13.3 0.8 706 25
9 44.20 0.6 0.5 14.1 1.1 1424 35
10 29.20 0.9 0.9 16.6 0.7 954 44
11 51.70 0.7 0.7 15.4 1.2 2697 44
12 36.70 0.4 1.0 12.8 0.9 2530 43
13 47.95 1.0 0.5 16.0 1.0 1923 43
14 32.95 0.6 0.8 13.5 1.3 1414 49
15 40.45 0.5 0.6 14.7 0.8 1133 33
16 25.45 0.8 0.9 17.3 1.2 2530 43
17 53.58 0.5 0.7 16.9 1.2 1511 37
18 38.58 0.8 0.4 14.4 0.9 1244 37
19 46.08 0.9 0.9 13.1 1.4 2747 57
20 31.08 0.6 0.6 15.7 1.0 810 34
21 42.33 0.8 0.8 13.8 0.9 2139 47
22 27.33 0.5 0.5 16.3 1.3 697 38
23 49.83 0.7 1.0 17.6 0.8 1959 42
24 34.83 1.0 0.7 15.0 1.1 1661 56
25 50.76 0.7 0.6 13.0 1.3 2117 44
26 35.76 0.4 0.9 15.5 0.9 1185 41

70

27 43.26 0.6 0.4 16.8 1.1 1066 33
28 28.26 0.9 0.8 14.2 0.7 1050 45
29 47.01 0.5 0.7 17.4 0.8 1259 33
30 32.01 0.8 1.0 14.9 1.2 1419 55
31 54.51 1.0 0.5 13.6 1.0 2899 45
32 39.51 0.7 0.8 16.2 1.3 1646 48
33 41.39 0.9 1.0 15.8 1.3 2026 56
34 26.39 0.5 0.6 13.3 1.0 862 39
35 48.89 0.4 0.8 14.6 1.1 1894 39
36 33.89 0.7 0.5 171 0.8 662 39
37 52.64 0.6 0.9 15.2 0.7 2078 38
38 37.64 0.9 0.6 17.7 1.0 1102 41
39 45.14 0.8 0.7 16.5 0.9 1686 41
40 30.14 0.5 0.4 13.9 1.2 772 36
41 52.17 0.9 0.8 17.5 0.8 1891 58
42 37.17 0.6 0.5 15.0 1.2 1117 39
43 44.67 0.4 1.0 13.7 1.0 2208 39
44 29.67 0.8 0.6 16.2 1.3 1082 58
45 40.92 0.7 0.7 13.1 1.2 2111 47
46 25.92 1.0 0.4 15.6 0.9 787 42
47 48.42 0.8 0.9 16.9 1.1 2137 51
48 33.42 0.5 0.6 14.3 0.7 932 35
49 46.55 0.7 0.5 14.7 0.8 1488 35
50 31.55 0.4 0.8 17.2 1.1 763 38
51 54.05 0.6 0.6 15.9 0.9 1702 37
52 39.05 0.9 0.9 13.4 1.3 2427 58
53 50.30 0.5 0.5 15.3 1.4 1560 36
54 35.30 0.8 0.8 12.8 1.0 1836 51
55 42.80 0.9 0.7 14.0 1.2 2146 51

71

56 27.80 0.6 1.0 16.6 0.9 909 47
57 43.73 0.4 0.9 16.4 1.0 1518 39
58 28.73 0.7 0.6 13.8 1.4 1166 46
59 51.23 0.9 0.7 15.1 0.8 2077 42
60 36.23 0.6 0.4 17.7 1.2 743 34
61 54.98 0.8 0.9 14.5 1.1 2876 51
62 39.98 0.5 0.6 17.0 0.8 930 32
63 47.48 0.7 0.8 15.7 1.3 2088 45
64 32.48 1.0 0.5 13.2 0.9 1341 45
65 49.36 0.6 0.7 13.5 0.9 1801 37
66 34.36 0.9 1.0 16.1 1.2 1668 58
67 41.86 0.8 0.5 17.3 0.7 1081 34
68 26.86 0.5 0.8 14.8 1.1 774 44
69 45.61 1.0 0.6 16.7 1.1 1363 39
70 30.61 0.7 0.9 14.2 0.8 1109 44
71 53.11 0.5 0.4 12.9 1.3 2251 35
72 38.11 0.9 0.7 15.4 1.0 870 36
73 48.19 0.5 1.0 14.9 0.9 2291 73
74 33.19 0.8 0.7 17.5 1.3 1127 46
75 40.69 1.0 0.8 16.2 0.8 1704 47
76 25.69 0.7 0.5 13.7 1.1 813 41
77 44 .44 0.8 0.9 15.6 1.2 2265. 51
78 29.44 0.4 0.6 13.0 0.8 1229 35
79 51.94 0.6 0.7 14.3 1.4 2265 45
80 36.94 0.9 0.4 16.8 1.0 1063 40
81 42.56 0.6 0.5 171 1.0 1135 35
82 27.56 1.0 0.9 14.6 1.3 1417 60
83 50.06 0.8 0.4 13.3 0.8 1996 34
84 35.06 0.5 0.7 15.9 1.1 1022 39

72

85 53.81 0.9 0.6 12.7 1.1 2826 45
86 38.81 0.6 0.9 15.2 0.7 1428 40
87 46.31 0.4 0.5 16.5 1.2 1045 31
88 31.31 0.7 0.8 14.0 0.9 1214 47
89 47.25 0.9 0.8 13.8 0.7 2564 45
90 32.25 0.6 0.4 16.4 1.1 747 36
91 54.75 0.5 0.9 17.6 0.9 1833 38
92 39.75 0.8 0.6 15.1 1.3 1656 45
93 51.00 0.5 0.8 17.0 1.3 1827 44
94 36.00 0.9 0.5 14.5 1.0 1347 43
95 43.50 0.7 1.0 13.2 1.2 2428 53
96 28.50 0.4 0.7 15.7 0.8 605 36
97 52.87 0.8 0.5 16.0 0.9 1813 35
98 37.87 0.5 0.8 13.5 1.2 1734 30
99 45.37 0.7 0.6 14.8 1.0 1996 52
100 30.37 0.7 1.0 17.3 1.4 1108 51
*DATA ENTER AFTER 100 ORIGINAL DOE, TO REFINE RSM
Test Angle(deg.) Left Right Nozzle Distance Maximum Average
Case Belowthe Radius Radius Height Between Shear Shear
Horizon (cm) (cm) (cm) Radii Stress Stress
(cm) (Pa) (Pa)
102 29.47 0.4 0.9 14.7 0.7 782 39
103 37.20 0.8 0.5 15.4 0.7 1039 36
104 48.51 0.8 0.6 17.3 0.8 1595 37
105 50.85 0.6 0.5 16.4 1.4 1688 37
106 39.60 0.6 0.7 16.8 0.9 1130 37
107 30.23 0.4 1.0 14.9 1.1 1741 45
108 27.42 0.8 0.9 16.3 0.8 1008 47
109 38.67 0.6 0.7 12.8 0.9 1715 39
110 48.04 1.0 0.5 14.7 1.3 2532 50

73

**PARETO DESIGN INCORPORATED INTO RESPONSE SURFACE

Test Angle(deg.) Left Right Nozzle Distance Maximum Average

Case Belowthe Radius Radius Height Between Shear Shear
Horizon (cm) (cm) (cm) Radii Stress Stress
(cm) (Pa) (Pa)

284 28.60 0.8 0.7 16.2 1.3 1122 55
4682 54.92 0.9 0.9 12.7 1.1 3040 52
4721 49.93 0.9 1.0 14.8 1.3 2093 40
6897 52.15 0.9 1.0 14.6 1.0 2645 52
4109 49.63 0.5 1.0 14.9 0.9 2372 69

74

Appendix C: Sobol’s Algorithm Code Used to Create a Matrix of

Random Numbers

#include <stdlib.h>
#include <iostream.h>
#include <time.h>

#include "sobol.h"

/ kkkkkkkkkkkkkhkkkkkhkkkkkkhhkhhkhhkhkhkkkkkhkkkhkkkkhkkkhkhkhkhkkkhkkhkkkhkkkkhkkkkkkkkkkkkkk

int bit_hi1_base 2 (intn)
/ kkkkkkkkkkkhhkkhkhkhkkhhkkhhkkhhkkhhkkhhkhhkkhkhhkkhhkkhhkkhhkkhhkhkhkkhkhkkhhkkhhkkhhkhkkkhkkhkkhkkhkkkk

/1l

/I Purpose:

/1l

/[BIT_HI1_BASE_2 returns the position of the high 1 bit base 2 in an integer.
/1l

I
I
10 1010
I 11 1011
I 12 1100
I 13 1101
I 14 1110
I 15 1111

/I Example:

/1l

I N Binary Hi1

Il =mm e e

1l 0 0 O

/1l 1 1 1

1l 2 10 2

/l 3 11 2

1l 4 100 3

/1l 5 101 3

1l 6 110 3

/1l 7 111 3
8 4
9 4

75

I 16 10000 5
17 10001 5
/1023 1111111111 10
// 1024 10000000000 11
/[1025 10000000001 11

Il

/I Modified:

Il

/I 13 March 2003
Il

/I Author:

Il

/I John Burkardt
Il

/I Parameters:

Il

/I Input, int N, the integer to be measured.
/I N should be nonnegative. If N is nonpositive, BIT_HI1_BASE 2
/I will always be 0.

/[Output, int BIT_HI1_BASE_2, the number of bits base 2.

int bit;
bit = 0;

while (0 <n)
{

bit = bit + 1;
n=n/2

}

return bit;

}

/ kkkkkkkkkkkkkhkhkhkhkkhkkkkhkkhhkhkkhhhkhkkhkkkkkkkhhhkhkhkhkhkkkhkkhkkkkkkkhkkkkkkkkkkkkkk

int bit_lo0_base 2 (intn)

/ kkkkkkkkkkkkkhkkhkkkhkkkkkkhhkhkkhhhkhkkhkkkhkkkkkkhkhkhkhhkhkhkkkhkkhkkkhkkkkhkhkkkkkkkkkkkk

/1l

/I Purpose:

/1l

/[BIT_LOO_BASE_2 returns the position of the low 0 bit base 2 in an integer.
/1l

76

/[Example:

1 1000
I 1001
/I 10 1010
1 1011
12 1100
/I 13 1101
I 14 1110
Il 15 1111
/I 16 10000 1
I 17 10001 2
/1023 1111111111 1
/[1024 10000000000 1
/[1025 10000000001 1
I
/I Modified:
I
/I 13 March 2003
I
/I Author:
I
/[John Burkardt
I
/I Parameters:
I
/I Input, int N, the integer to be measured.
/I N should be nonnegative.
/l
/[Output, int BIT_LOO0 BASE_2, the position of the low 1 bit.
/l
{
int bit;
int n2;

I
1 N Binary LoO
A aaliE e
N0 0 1
I 1 1 2
n 2 10 1
I 3 11 3
4 100 1
I 5 101 2
I 6 110 1
I 7 11 4
8 1
9 2

O-=_2N W=

77

}
/

bit = 0;

while (true)

{
bit = bit + 1;
n2=n/2;

if(n==2%n2)
{

break;

}

n=n2;

}

return bit;

kkkkhkhhhhhhhhkhkhkhhkhkhkhkhhhhhhhhhhhhkhkhkhkhkhkhkhkhkhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhhhhhhkkkkkkkkkkk

void sobol (int dim_num, int *seed, double quasi[])

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

kkkkhkhhhhhhhkhkhkhkhhkhkhhkhhhhhhhhhhhhkhkhkhkhkhkhkhkhkhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhhhhhhkhkkkkkkkkk

Purpose:

SOBOL generates a new quasirandom Sobol vector with each call.
Discussion:

The routine adapts the ideas of Antonov and Saleev.
Reference:

Antonov and Saleev,

USSR Computational Mathematics and Mathematical Physics,

Volume 19, 1980, pages 252 - 256.

Paul Bratley and Bennett Fox,

Algorithm 659:

Implementing Sobol's Quasirandom Sequence Generator,

ACM Transactions on Mathematical Software,

Volume 14, Number 1, pages 88-100, 1988.

Bennett Fox,

78

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Algorithm 647:

Implementation and Relative Efficiency of Quasirandom
Sequence Generators,

ACM Transactions on Mathematical Software,

Volume 12, Number 4, pages 362-376, 1986.

| Sobol,
USSR Computational Mathematics and Mathematical Physics,
Volume 16, pages 236-242, 1977.

| Sobol and Levitan,

The Production of Points Uniformly Distributed in a Multidimensional
Cube (in Russian),

Preprint IPM Akad. Nauk SSSR,

Number 40, Moscow 1976.

Parameters:

Input, int DIM_NUM, the number of spatial dimensions.
DIM_NUM must satisfy 2 <= DIM_NUM <= 40.

Input/output, int *SEED, the "seed" for the sequence.

This is essentially the index in the sequence of the quasirandom
value to be generated. On output, SEED has been set to the
appropriate next value, usually simply SEED+1.

If SEED is less than 0 on input, it is treated as though it were 0.

An input value of 0 requests the first (0-th) element of the sequence.

Output, double QUASI(DIM_NUM), the next quasirandom vector.

{
define DIM_MAX 40

I

static int atmost = 1073741823;
static int dim_num_save = 0;
int i;

inti2;

bool includ[8];

static bool initialized = false;
int j;

intj2;

int k;

int[;

static int lastq[DIM_MAX];
int m;

79

static int maxcol;
int newy;
static int poly[DIM_MAX] =

1, 3, 7, 11, 13, 19, 25, 37, 59, 47,

61, 55, 41, 67, 97, 91, 109, 103, 115, 131,
193, 137, 145, 143, 241, 157, 185, 167, 229, 171,
213, 191, 253, 203, 211, 239, 247, 285, 369, 299

2

static double recipd;

static int seed_save = 0;

int seed_temp;

static int v[DIM_MAX][30];

I
if (linitialized || dim_num != dim_num_save)

initialized = true;

Il

/I Initialize (part of) V.

Il
v[0][0] = 1;
v[1][0] = 1;
v[2][0] = 1;
v[3][0] = 1;
v[4][0] = 1;
v[5][0] = 1;
v[6][0] = 1;
v[7][0] = 1;
v[8][0] = 1;
v[9][0] = 1;
v[10][0] = 1;
v[11][0] = 1;
v[12][0] = 1;
v[13][0] = 1;
v[14][0] = 1;
v[15][0] = 1;
v[16][0] = 1;
v[17][0] = 1;
v[18][0] = 1;
v[19][0] = 1;
v[20][0] = 1;
v[21][0] = 1;
v[22][0] = 1;
v[23][0] = 1;
v[24][0] = 1;

80

v[25][0] = 1;
v[26][0] = 1;
v[27][0] = 1;
v[28][0] = 1;
v[29][0] = 1;
v[30][0] = 1;
v[31][0] = 1;
v[32][0] = 1;
v[33][0] = 1;
v[34][0] = 1;
v[35][0] = 1;
v[36][0] = 1;
v[37][0] = 1;
v[38][0] = 1;
v[39][0] = 1;

v[2][1] = 1;
v[3][1] = 3;
v[4][1] = 1;
v[3][1] = 3;
v[6][1] = 1;
v 7][1] = 3;
v[8][1] = 3;
v 9][1] = 1,

v[10][1] = 3;
v[11][1] = 1;
v[12][1] = 3;
v[13][1]1 = 1;
v[14][1] = 3;
v[15][1] = 1;
v[16][1] = 1;
v[17][1] = 3;
v[18][1] = 1;
v[19][1] = 3;
v[20][1] = 1;
v[21][1] = 3;
v[22][1] = 1;
v[23][1] = 3;
v[24][1] = 3;
v[25][1] = 1;
v[26][1] = 3;
v[27][1] = 1;
v[28][1] = 3;
v[29][1] = 1;
v[30][1] = 3;

81

v[31][1] = 1;
v[32][1] = 1;
v[33][1] = 3;
v[34][1] = 1;
v[35][1] = 3;
v[36][1] = 1;
v[37][1] = 3;
v[38][1] = 1;
v[39][1] = 3;

v[3][2] = 7;
v[4][2] = 5;
v[3][2] = 1;
v[6][2] = 3;
v[7][2] = 3;
v[8][2] = 7;
v[9][2] = 5;

v[10][2] = 5;
v[11][2] = 7;
v[12][2] = 7;
v[13][2] = 1;
v[14][2] = 3;
v[15][2] = 3;
v[16][2] = 7;
v[17][2] = 5;
v[18][2] = 1;
v[19][2] = 1;
v[20][2] = 5;
v[21][2] = 3;
v[22][2] = 3;
v[23][2] = 1;
v[24][2] = 7;
v[25][2] = 5;
v[26][2] = 1;
v[27][2] = 3;
v[28][2] = 3;
v[29][2] = 7;
v[30][2] = 5;
v[31][2] = 1;
v[32][2] = 1;
v[33][2] = 5;
v[34][2] = 7;
v[35][2] = 7;
v[36][2] = 5;
v[37][2] = 1;

82

v[38][2] = 3;
v[39][2] = 3;

v[9][3] = 1;
v[6][3] = 7;
v 7][3] = 9;
v 8][3] = 13;
vl 9][3] = 11;
v[10][3] = 1;
v[11][3] = 3;
v[12]3] = 7;
v[13][3] = 9;
v[14][3] = 5;
v[15][3] = 13;
v[16][3] = 13;
v[17][3] = 11;
v[18][3] = 3;
v[19][3] = 15;
v[20][3] = 5;
v[21][3] = 3;
v[22][3] = 15;
v[23][3] = 7;
v[24][3] = 9;
v[25][3] = 13;
v[26][3] = 9;
v[27][3] = 1;
v[28][3] = 11;
v[29][3] = 7;
v[30][3] = 5;
v[31][3] = 15;
v[32][3] = 1;
v[33][3] = 15;
v[34][3] = 11;
V[33][3] = 5;
v[36][3] = 3;
v[37](3] = 1;
v[38][3] = 7;
V[39][3] = 9;

v 7][4] = 9;
v[8][4] = 3;
v[9][4] = 27;

v[10][4] = 15;
v[11][4] = 29;
v[12][4] = 21;

83

v[13][4] = 23;
v[14][4] = 19;
v[15][4] = 11;
v[16][4] = 25;

v[17][4] = 7;

v[18][4] = 13;
v[19][4] = 17;

v[20][4] = 1;

v[21][4] = 25;
v[22][4] = 29;

v[23][4] = 3;

V[24][4] = 31;
v[25][4] = 11:

v[26][4] = 5;

v[27][4] = 23;
v[28][4] = 27;
v[29][4] = 19;
v[30][4] = 21;

v[31][4] = 5;
v[32][4] = 1;

v[33][4] = 17;
v[34][4] = 13;

v[35][4] = 7;

v[36][4] = 15;

v[37][4] = 9;

v[38][4] = 31;

v[39][4] = 9;

v[13][5] = 37;
v[14][5] = 33;

Vv[18][5] = 7;
v[16][5] = 5;

v[17][5] = 11;
v[18][5] = 39:
v[19][5] = 63;
v[20][5] = 27
v[21][5] = 17;
v[22][5] = 15:
v[23][5] = 23;
v[24][5] = 29:

v[25][5] = 3;

v[26][5] = 21;
v[27][5] = 13;
v[28][5] = 31;
v[29][5] = 25;

84

I
I
I

v[30][5] = 9;
v[31][5] = 49;
v[32][5] = 33;
v[33][5] = 19;
v[34][5] = 29;
v[35][5] = 11;
v[36][5] = 19;
v[37][5] = 27;
v[38][5] = 15;
v[39][5] = 25;

vi19][6] = 13;
v[20][6] = 35;

v[21][6] = 115;

v[22][6] = 41;
v[23][6] = 79;
v[24][6] = 17;
v[25][6] = 29;

V[26][6] = 119:;

v[27][6] = 75;
v[28][6] = 73;

v[29][6] = 105;

v[30][6] = 7;
v[31][6] = 59;
v[32][6] = 65;
v[33][6] = 21;

v[34][6] = 3;
v[35][6] = 113;
v[36][6] = 61;
v[37][6] = 89;
v[38][6] = 45:

v[39][6] = 107;

V[37][7] = 7;
v[38][7] = 23;
v[39][7] = 39:

Check parameters.

if (dim_num < 2 || DIM_MAX < dim_num)

{

cout << "\n";

cout << "SOBOL - Fatal error\n";

cout <<" The spatial dimension DIM_NUM should satisfy:\n";
cout<<" 2 <=DIM_NUM <=" << DIM_MAX << "\n";

85

I
I
I

I
I
I

I
I
I

I
I
I
I
I
I

I

I
I

cout << " But this input value is DIM_NUM =" << dim_num << "\n";

exit (1);
}

dim_num_save = dim_num;

Find the number of bits in ATMOST.
maxcol = bit_hi1_base_2 (atmost);
Initialize row 1 of V.

for (j = 1;j <= maxcol; j++)

v1-1]0-1] = 1;

Initialize the remaining rows of V.

for (i=1;i<dim_num; i++)

{

The bit pattern of the integer POLY(l) gives the form
of polynomial I.

Find the degree of polynomial | from binary encoding.

j = polyl[i];
m = 0;

while (true)

We expand this bit pattern to separate components
of the logical array INCLUD.

J = poly[i[;
for (k=m-1; k>=0; k--)

86

{

i2=jl2;

includlk] = (j!=(2*j2));
j=12

}
1
/I Calculate the remaining elements of row | as explained
/I in Bratley and Fox, section 2.
1
/I Some tricky indexing here. Did | change it correctly?
1

for (j = m; j < maxcol; j++)

newv = V[i][j-m];
l=1;

for (k=0; k <m; k++)
{

[=2*1;

if (includ[k])

{

newv = (newv * (1 * V[i][j-k-1]));

}
}

V[i][j]] = newy;

¥
/1l
/I Multiply columns of V by appropriate power of 2.
/1l

I =1;
for (j = maxcol-2; j >= 0; j--)
[=2*1;
for (i=0;i<dim_num;i++)
{
vIill] = vIio] = i,
Y
}

I

87

/I RECIPD is 1/(common denominator of the elements in V).
I
recipd = 1.0E+00 / ((double) (2 *1));
}

if (*seed <0)

*seed = 0;

}

if (*seed==0)
{
| =1;
for (i=0;i<dim_num;i++)
{Iastq[i] =0;
}
}

else if (*seed == seed_save + 1)

| = bit_lo0_base 2 (*seed);
}

else if (*seed <= seed_save)

{

seed _save = 0;
I=1;
for (i=0;i<dim_num; i++)
{
lastq[i] = O;

}

for (seed_temp = seed_save; seed_temp <= (*seed)-1; seed_temp++)

{
| = bit_lo0_base 2 (seed_temp);
for (i=0;i<dim_num;i++)
lastq[i] = (lastq[i] * V[i][I-1]);
}

| = bit_lo0_base 2 (*seed);
}

88

else if (seed_save+1 < *seed)

for (seed_temp = seed_save+1; seed_temp <= (*seed)-1; seed_temp++)

{
| = bit 1o0_base 2 (seed temp);

for (i=0;i<dim_num;i++)
{

lastq[i] = (lastq[i] * v[i][l-1]);
Y

¥
| = bit_lo0_base 2 (*seed);

}
I

/I Check that the user is not calling too many times!
I
if (maxcol <1)
{
cout << "\n";
cout << "SOBOL - Fatal errorl\n";
cout <<" Too many calls\n";
cout <<" MAXCOL =" << maxcol << "\n";
cout<<" L= "<<|<<"\n"
exit (2);
}
I
/I Calculate the new components of QUASI.
/I The caret indicates the bitwise exclusive OR.

/1l
for (i=0;i<dim_num;i++)
{
quasi[i] = ((double) lastq[i]) * recipd;
lastq[i] = (lastq[i] * v[i][l-1]);
}

seed_save = *seed;
*seed = *seed + 1;

return;
undef MAX_DIM

89

//**

void timestamp (void)

//**

1

/I Purpose:

1

/[TIMESTAMP prints the current YMDHMS date as a time stamp.

/I Example:

Il

/[May 31 2001 09:45:54 AM
Il

/I Modified:

Il

/I 04 October 2003
Il

/I Author:

Il

/I John Burkardt
Il

/I Parameters:

Il

/I None

//

{

#define TIME_SIZE 40
static char time_buffer[TIME_SIZE];
const struct tm *tm;
size tlen;
time_t now;

now = time (NULL);
tm = localtime (&now);

len = strftime (time_buffer, TIME_SIZE, "%d %B %Y %!:%M:%S %p", tm);
cout << time_buffer << "\n";

return;
#undef TIME_SIZE

90

91

