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ABSTRACT OF THE DISSERTATION 

PRENATAL ENVIRONMENTAL EXPOSURE AND NEURODEVELOPMENTALLY 

IMPORTANT GENE EXPRESSION IN MALFORMED BRAIN TISSUE FROM 

PEDIATRIC INTRACTABLE EPILEPSY PATIENTS 

by 

Brenda Luna 

Florida International University, 2011 

Miami, Florida 

Professor Deodutta Roy, Major Professor 

The primary objective of this proposal was to determine whether mitochondrial oxidative 

stress and variation in a particular mtDNA lineage contribute to the risk of developing cortical 

dysplasia and are potential contributing factors in epileptogenesis in children.  The occurrence of 

epilepsy in children is highly associated with malformations of cortical development (MCD).  It 

appears that MCD might arise from developmental errors due to environmental exposures in 

combination with inherited variation in response to environmental exposures and mitochondrial 

function.  Therefore, it is postulated that variation in a particular mtDNA lineage of children 

contributes to the effects of mitochondrial DNA damage on MCD phenotype.  Quantitative PCR 

and dot blot were used to examine mitochondrial oxidative damage and single nucleotide 

polymorphism (SNP) in the mitochondrial genome in brain tissue from 48 pediatric intractable 

epilepsy patients from Miami Children’s Hospital and 11 control samples from NICHD Brain and 

Tissue Bank for Developmental Disorders.   

Epilepsy patients showed higher mtDNA copy number compared to normal health 

subjects (controls). Oxidative mtDNA damage was lower in non-neoplastic but higher in 

neoplastic epilepsy patients compared to controls.  There was a trend of lower mtDNA oxidative 
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damage in the non-neoplastic (MCD) patients compared to controls, yet, the reverse was observed 

in neoplastic (MCD and Non-MCD) epilepsy patients.  The presence of mtDNA SNP and 

haplogroups did not show any statistically significant relationships with epilepsy phenotypes. 

However, SNPs G9804A and G9952A were found in higher frequencies in epilepsy samples. 

Logistic regression analysis showed no relationship between mtDNA oxidative stress, mtDNA 

copy number, mitochondrial haplogroups and SNP variations with epilepsy in pediatric patients. 

The levels of mtDNA copy number and oxidative mtDNA damage and the SNPs G9952A and 

T10010C predicted neoplastic epilepsy, however, this was not significant due to a small sample 

size of pediatric subjects.  Findings of this study indicate that an increase in mtDNA content may 

be compensatory mechanisms for defective mitochondria in intractable epilepsy and brain tumor. 

Further validation of these findings related to mitochondrial genotypes and mitochondrial 

dysfunction in pediatric epilepsy and MCD may lay the ground for the development of new 

therapies and prevention strategies during embryogenesis.   
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CHAPTER I 

 

INTRODUCTION 

Overview 

Epilepsy is a chronic neurological disorder, characterized by spontaneous 

recurring seizures.  The incidence of epilepsy is highest for children and the elderly.  A 

proportion of patients have seizures that are resistant to traditional anti-epilepsy 

medicines (intractable or refractory epilepsy) (Alexander and Godwin, 2006).  The 

occurrence of epilepsy is highly associated with malformations of cortical development 

(MCD), which are developmental brain lesions that consist of dysplastic neuronal lesions 

(malformations) (Schwartzkroin and Walsh, 2000; Hua and Crino, 2003; Hader et al., 

2004; Rickert, 2006; Wong, 2007).  MCD are increasingly being recognized as the cause 

of intractable epilepsy. MCD presents a broad spectrum of structural changes which 

appear to result from changes in precursor neuronal or neuronal cells during cortical 

development at various stages such as: proliferation, migration, differentiation, and 

apoptosis (Becker et al., 2004).   

Treatment with anti-epileptic drugs (AEDs) is usually ineffective, and children 

with MCD may require surgical removal of the affected area of the brain (Yasin et al., 

2010).  In surgical series, focal cortical malformations and low-grade tumors 

(gangliomas, gangliocytomas, dysembryoplastic neuroepithiliomas, and astrocytomas) 

(Saneto and Wyllie, 2000). Two of the most common MCD found in resected tissue from 

children afflicted with intractable epilepsy are tuberous sclerosis (TSC), and focal cortical 

dysplasia (FCD) (Fassunke et al., 2004).  A significant proportion of FCD patients are not 
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appropriate surgical candidates or continue to have seizures despite the surgery.  The 

molecular mechanisms underlying the formation of MCD are still largely unknown and 

the treatments for epilepsy due to MCD are often ineffective or limited (Wong, 2009).  

Therefore, MCD formation and the occurrence of epileptic seizures in children is a great 

public health concern.   

Several reports indicate prenatal events are likely to be involved in the 

pathogenesis of MCD (Montenegro et al., 2002). Since brain development commences 

early in fetal life and continues until adolescence, exposure to environmental chemicals at 

an early stage may be the leading cause of neurodevelopmental disorders (Allen and 

Walsh, 1999).  Several studies indicate that genetic and environmental factors contribute 

to causation of MCD and lead to neurodevelopmental delay (Kuzniecky and Barkovich, 

2001).  Human and animal studies have demonstrated that in utero exposure to 

environmental agents such as: chemical (ethanol), physical (ionizing radiation) and 

biological factors (toxoplasmosis) result in neuronal migrational disorders (Chevassus-

au-Louis et al., 1998; Gressens, 2000).  Environmental events causing injury to the 

central nervous system (CNS) that have been associated with MCD include: head injury, 

stroke, and hypoxic-ischemic injury.  Insights into the mechanisms of MCD formation 

during brain development may yield new therapies for seizures associated with MCD and 

may even provide new strategies for the preventions of MCD during embryogenesis 

(Kisby et al., 2006; Pettersson et al., 2003).  

 Oxidative stress is one of the major risk factors for neurodegenerative diseases. 

Recently, there has been increasing evidence supporting the association between 

oxidative stress and epilepsy (Kunz, 2002; Waldbaum and Patel, 2010).  Mitochondrial 



3 

function plays a crucial role in reactive oxygen species (ROS) production.  Mitochondrial 

DNA (mtDNA) variations can cause inefficient oxidative phosphorylation leading to the 

accumulation of ROS, DNA damage, and increased brain lesion risk.  During evolution, 

several mutations have accumulated in mtDNA, representing specific single nucleotide 

polymorphisms (SNPs), allowing human populations to be categorized into various 

mtDNA haplotypes and haplogroups (Petterson et al., 2003; Abu-Amero et al., 2006).  

The roles of various mtDNA variations in the pathogenesis of MCD are scarce.  In this 

study, it is proposed that mitochondrial haplogroup and mtDNA variations can be risk 

contributors to MCD.  It is possible that the effect of mitochondrial genetic background is 

influenced by physiologic or environmental conditions, such as the hormonal state of an 

individual.  Whether the same group of mtDNA SNPs or haplogroups affects the risk of 

greater oxidative damage to mtDNA and of developing epileptic lesion requires further 

investigation.  Since mitochondria may play an important role in modulating oxidative 

stress, the identification of significant mtDNA SNPs and haplogroups associated with 

MCD would suggest that mitochondria may be involved in gene-environment interactions 

that may affect the pathogenic mechanism of disease.  Overall, the goal of this study was 

to investigate the mtDNA background and oxidative damage with an individual's risk of 

MCD in intractable pediatric epilepsy patients.  To achieve this goal brain tissue samples 

from forty-eight pediatric intractable epilepsy patients (non-neoplastic, n=23 and 

neoplastic, n=25) who have undergone brain resection surgery at the Miami Children’s 

Hospital, Miami, FL, during 2008-2009 were collected, and as references, eleven normal, 

non-epileptic, pediatric brain tissues were obtained from the NICHD Brain and Tissue 

Bank for Developmental Disorders at the University of Maryland. 
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Research Objectives  

Specific Aims 

Aim 1:  To compare mitochondrial DNA damage and mitochondrial DNA copy number 

in MCD and non-MCD pediatric intractable epilepsy patients.   

 

Aim 2:  To determine the single nucleotide polymorphism (SNP) in 

neurodevelopmentally important mitochondrial genes that encode for enzymes known to 

generate and detoxify reactive oxygen species (ROS) and mitochondrial haplotypes in 

MCD and non-MCD pediatric intractable epilepsy patients.   

 

Aim 3:  To determine the relationship between mitochondrial DNA damage, 

mitochondrial DNA copy number, mitochondrial haplotypes, and SNP variations in genes 

that encode for enzymes known to generate and detoxify ROS with the phenotype of 

MCD and non-MCD in pediatric intractable epilepsy patients. 
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CHAPTER II 

 

LITERATURE REVIEW 

Epilepsy 

Epilepsy is a neurological disorder of the central nervous system (CNS) which is 

characterized by recurrent seizures.  Epilepsy results from excessive synchronous firing 

of neurons in cortical networks (Prasad et al., 1999; Paredes and Baraban, 2002).  Seizure 

disorders are often classified as either symptomatic or idiopathic (cryptogenic) epilepsies.  

Symptomatic epilepsies are due to an identifiable cause, such as a metabolic disorder, 

brain trauma, or intracranial tumors; whereas, idiopathic disorders occur in the absence of 

identifiable causal factors (Mefford et al., 2010).  

 The overall incidence of epilepsy in North America is approximately 50 per 

100,000 persons each year, and the prevalence is 5-10 per 1,000 (Theodore et al., 2006).  

Thus, more than 3 million people in North America have epilepsy.  The incidence of 

epilepsy is highest for children below five years of age, and the elderly (Donner and 

Snead, 2006).  The majority of epilepsy in North Americans is cryptogenic, that is, there 

is no identifiable condition or insult.  Many childhood epilepsies are refractory to medical 

medicine (Statstrom et al., 2000).  

According to Shinnar and Pellock (2002), epilepsy affects approximately 0.5 to 

1% of all children through the age of 16 years.  The majority of active epilepsy cases are 

of childhood onset.  About 1.5 million Americans, including as many as 325,000 children 

between 5 and 14 years of age, have active epilepsy.  Every year in the United States, 120 
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of every 100,000 persons seeks medical attention for a newly recognized seizure, and of 

these 300,000 patients (40%, 120,000) are children under the age of 18 (Shinnar and 

Pellock, 2002).  The median age of seizure onset is between 5 and 6 years (Shinnar and 

Pellock, 2002).  Overall, epilepsy is the most common treatable serious neurologic 

disorder in children and young adults. It is also the third most common of all serious 

neurologic disorders. 

Persons afflicted with epilepsy are more likely to report reduced health-related 

quality of life than controls (Theodore et al., 2006).  Individuals with epilepsy tend to 

have reduced income, less likely to have full-time employment, and suffer from the 

persistent stigma.  According to Smeets et al. (2007), people with epilepsy experience 

objective restrictions, including those related to driving or working in situations in which 

they might be liable for injuries. “Mortality is increased in patients with epilepsy, and 

increased mortality risk in childhood-onset mortality is primarily seen in patients with 

neurologic abnormalities or intractable epilepsy (Shimmar and Pellock, 2002).”  The 

occurrence of childhood epilepsy appears to have long-term impact on education, 

employment, marriage, and fertility (Shimmar and Pellock, 2002).  Despite the high costs 

and severe disability, epilepsy may attract somewhat less research funding from public 

and private sources than other less common chronic neurological disorders (Theodore et 

al., 2006). 

A person with epilepsy may periodically experience epileptic seizures.  The most 

common types of epilepsy include petit mal, psychomotor epilepsy, and grand mal.  Petit 

mal occurs almost exclusively in children.  Children experiencing a petit mal seizure lose 

contact with reality for 5 to 30 seconds but do not lose consciousness or display 
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convulsions (Van De Graff, 2000).  Psychomotor epilepsy involves involuntary lip 

smacking or hand clapping.  In addition, if motor areas in the brain are not stimulated, a 

person with psychomotor epilepsy may wander aimlessly until the seizure subsides.  A 

serious form of epilepsy, grand mal seizure, is characterized by periodic convulsive 

seizures that render a person unconscious (Van De Graff, 2000).  According to Scher 

(2003), comparatively less attention has been focused on the pathogenic mechanisms 

leading to epileptogenesis during the perinatal stage of brain development through one 

month of postnatal life.  Thus, profound brain injury from maternal-placental-fetal-

neonatal disease has profound effects on brain development contributing to a spectrum of 

neurologic disorders including epilepsy, cognitive and behavioral disorders. 

Refractory (Intractable) Epilepsy 

 A significant number of patients with epilepsy will have continued uncontrolled 

seizures despite the availability of many anti-epileptic medications (Saneto and Wyllie, 

2000).  According to Beleza (2009), refractory epilepsy is established when there is 

inadequate seizure control despite using potentially effective AEDs at tolerable levels for 

1 to 2 years.  Refractory epilepsy patients show increased risk of psychiatric, 

psychosocial, and medical morbidities. Various studies have suggested that onset of early 

intractable seizures may be a significant risk factor for impairment of intellectual 

functioning and adaptive abilities (Saneto and Wyllie, 2000).  Resective surgery, based 

on the removal of the entire epileptogenic area without causing permanent neurological 

deficit, is one of the treatment forms for refractory epilepsy (Beleza, 2009).  In surgical 

series, focal cortical malformations and low-grade tumors were the most common in 

infants with intractable epilepsy.  According to Saneto and Wyllie (2000), low-grade 
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tumors included gangliomas, gangliocytomas, dysembryoplastic neuroepithiliomas, and 

astrocytomas.   

  The occurrence of epilepsy is highly associated with malformations of cortical 

development (MCD) which consists of dysplastic neuronal lesions (malformations) 

(Schwarktzkroin and Walsh, 2000; Hua and Crino, 2003; Hader et al., 2004; Rickert, 

2006).  The seizure type usually reflects the topology of the malformation.  Focal seizures 

occur with focal or multifocal MCD and secondarily generalized seizures with diffuse or 

bilateral MCDs (Kuzniecky and Jackson, 2008).  Currently, the molecular mechanisms 

responsible for the pathogenesis of MCD are not known.   According to Paredes and 

Baraban (2002), early-onset epileptic disorders associated with MCD are often resistant 

to conventional antiepileptic treatments and the regions characterized by disorganized 

cortex act as seizure foci.   

Focal cortical dysplasia (FCD) is commonly found in resected tissue from 

children afflicted by refractory epilepsy (Hader et al., 2004; Munkata et al., 2007).  

According to Guerrini et al. (2003), about 40% of children with drug-resistant epilepsy 

demonstrate cortical malformations.  In addition, there is an incidence of about 80% of 

cortical dysplasia in epileptic children younger than 3 years of age and is the most 

frequent pathology found in pediatric surgery patients (Cepeda et al., 2006).  However, 

the specific role played by the malformations in epileptogenesis remains unclear.  

Therefore, neuronal lesion formation and the occurrence of epileptic seizures in children 

is a great public health concern.   
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Malformations of Cortical Development 

 Malformations of cortical development (MCD) are developmental brain lesions.  

MCD are characterized by abnormal formation of the cerebral cortex (Crino, 2004).   

MCD appear to represent a profound maldevelopment of the cerebral cortical mantle 

(Crino et al., 2002).  MCD are lesions that may be focal or diffuse.  MCD include 

assorted groups of disorders known as neuronal migration disorders (NMDs) and cortical 

dysplasia (CD).  MCD can affect broad regions of the cerebral cortex such as 

hemimegalencephaly and classical lissencephaly, or may be restricted to focal areas such 

as Taylor-type focal cortical dysplasia (FCD) or tuberous sclerosis complex (TSC) 

(Crino, 2004; Montenegro et al., 2007).  In lissencephaly and polymicrogyria the normal 

6-layered organization of the cerebral cortex is replaced by a more primitive 4-layered 

organization.  MCD present a broad spectrum of structural changes which appear to result 

from changes in precursor neuronal or neuronal cells during cortical development at 

various stages such as:  (1) proliferation, (2) migration, (3) differentiation, and (4) 

apoptosis (Becker et al., 2002).     

There is a high clinical association between MCD and epilepsy in infants, 

children, and adults (Hannan et al., 1999; Schwartzkroin and Walsh, 2000; Pillai et al., 

2002; Crino, 2004).  However, not all cortical malformations are linked to epilepsy 

(Schwartzkroin and Walsh, 2000; Crino et al., 2002).  It is estimated that MCD accounts 

for about 20% of all epilepsies (Crino et al., 2002).  MCD-related epilepsy may be 

resistant to anti-epileptic drugs (AEDs) and may require resection.  MCD is the most 

common neuropathologic abnormality encountered in studies from several major 

pediatric epilepsy surgery centers in which resection was performed to treat infantile 
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spasms and intractable seizure disorders of childhood (Crino et al., 2002).  Advances in 

brain imaging have demonstrated high frequencies of cortical malformations in childhood 

epilepsy (Chevassus-au-Louis et al, 1998).  In addition, the more severe the MCD, the 

earlier onset of symptoms and the more severe the epileptic syndrome (Mischel et al., 

1995).  Thus, MCD are increasingly recognized as causes of mental retardation and 

epilepsy.  Yet, the sequence of events which lead to abnormal cortical development 

epileptogenesis is not known.    

According to Montenegro et al. (2002), there are several reports that indicate 

prenatal events are likely to be involved in the pathogenesis of MCD.  Since brain 

development commences early in fetal life and continues until adolescence, exposure to 

environmental chemicals at an early stage may be the leading cause of 

neurodevelopmental disorders (Allen and Walsh, 1999).  In 2006, the National Research 

Council has concluded that 3% of developmental disabilities are a direct consequence of 

exposure to environmental neurotoxins such as alcohol, pesticides, heavy metals, and 

polychlorinated biphenyls (PCBs), and that 25% result from the interaction between 

environmental factors and genetic susceptibility.  In addition, several studies indicate that 

genetic and environmental factors contribute to causation of MCD and lead to 

neurodevelopmental delay (Kuzniecky and Barkovich, 2001).  Therefore, insights into 

the mechanisms of MCD formation during brain development may yield new therapies 

for seizures associated with MCD and may even provide new strategies for the 

preventions of MCD during embryogenesis (Price and Willshaw, 2000). 

 According to Schwarzkroin and Walsh (2000), the majority of diffuse types of 

malformations exhibit normal cell types that are abnormally localized and/or oriented and 
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are associated with abnormal circuits.  In contrast, abnormal cell types such as giant cells 

and balloon cells that may serve as “pacemakers” of epileptic discharge are 

characteristics of focal malformations.  MCD result from abnormalities occurring in the 

three different stages of brain development.  The three stages of brain development 

include: (1) neuronal and glial proliferation, (2) migration, and (3) cortical organization 

(D’Incerti, 2003).  The morphology of individual neurons in most MCD is abnormal, 

which suggests a pervasive disruption of many steps important in neuronal development 

(Crino et al., 2002).  In the occurrence of a seizure, the type of malformation associated 

with any given type of seizure disorder may vary significantly.  For example, infantile 

spasms (IS) have been associated with lissencephaly, tuberous sclerosis, and cortical 

dysplasia (CD) (Schwartzkroin and Walsh, 2000).  On the other hand, distinct forms of 

structural malformations may be associated with diverse manifestations of seizure types 

(Schwartzkroin and Walsh, 2000).  Thus, the variability in types of malformations and 

seizure types reflects the maturational state of the brain, and the brain’s tendency to 

generate either focal or generalized seizures.  In addition, the complexity of these 

relationships is aggravated due to the lack of uniformity in the nomenclature of MCD 

describing both structural and functional abnormalities.   

Origins of MCD 

 It has been postulated that the stage of development in which the abnormality 

occurs is linked with the nature of the dysplastic lesion.  Developmental neurobiologists 

have described six distinct periods of cortical development (Schwartzkroin and Walsh, 

2000).  The six periods of cortical development identified are:  (1) pattern formation, (2) 

cell proliferation, (3) cell fate specification, (4) cell migration, (5) cell differentiation, and 
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(6) synapse/circuitry formation.  During pattern formation the gross divisions of the brain 

are specified.  Neural and glial precursor cells are generated in the ventricular 

proliferative zone during the cell proliferation period.  During cell fate specification the 

destination and general cell type is determined.  Cells migrate from the proliferative zone 

to travel to their designated destination occurs during cell migration.  Cell type 

manifestation is achieved during cell differentiation.  Lastly, specific networks of 

connectivity, as well as, synaptic pruning and apoptosis are determined during 

synapse/circuitry formation (Schwartzkroin and Walsh, 2000; Crino et al., 2002; 

Montenegro et al., 2002).   

 Complex patterns of gene expression occur in each period of development 

resulting in specific intracellular and extracellular mechanisms.  It is stipulated that a 

disruption and/or modification of these signal mechanisms result in abnormalities in the 

cortical structure.  For example, increased cell proliferation may produce too many cells 

and result in an abnormally thickened cortex.  Alterations or absence of appropriate 

migration cues may result in heterotopically placed neuronal populations (Schwartzkroin 

and Walsh, 2000).   Thus, the timing of the abnormality greatly determines the nature of 

the malformation.  Overall, prenatal and/or genetic factors are suspected to play a 

pathogenic role since neuronal migration to cerebral cortex in humans are believed to 

occur in the first half of gestation (Palmini et al., 1994). 

Etiology of Malformations of Cortical Development 

MCD result from abnormalities occurring in the three different stages of brain 

development.  The three stages of brain development include: (1) neuronal and glial 

proliferation, (2) migration, and (3) cortical organization.  The morphology of the 
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individual neurons found in MCD is abnormal, which suggest a pervasive disruption of 

many important steps in neuronal development.  In the occurrence of a seizure, the type 

of malformation associated with any given type of seizure disorder may vary 

significantly.  For example, infantile spasms (IS) have been associated with 

lissencephaly, tuberous sclerosis (TSC), and cortical dysplasia.  The variability in the 

types of malformations and seizure types reflects the maturational state of the brain, and 

the brain’s tendency to generate either focal or generalized seizures.  In addition, the 

complexity of these relationships is aggravated due to the lack of uniformity in the 

nomenclature of MCD describing both structural and functional abnormalities.  However, 

little is known regarding the molecular and biochemical signals that control proliferation, 

migration, and organization of the cells involved in either normal or abnormal cerebral 

cortical development. Yet, several environmental agents such as rubella, lead, methyl 

mercury, alcohol, retinoids, and thalidomide have been identified to be toxic to the 

developing central nervous system (CNS) by interfering with specific developing 

processes (Rodier, 1995).    

Development of Cerebral Cortex 

 The development of the cerebral cortex commences on the seventh week of 

gestation and continues through the twenty-fourth week (Crino et al., 2002).  The cerebral 

cortex is formed in four stages.  During the first stage, mitosis and proliferation of the 

progenitor cells in the embryonic vascular zone (VZ) and from the ganglionic eminence 

(GE) occurs.  In the second stage of cerebral cortex formation, cells exit mitotic phases of 

the cell cycle and commit to neural lineage.  The third stage is characterized by the 

dynamic migration of post-mitotic neurons from the VZ and GE.  The final stage of 
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cerebral cortex formation is the establishment of the cortical laminae consisting of six 

layers (layers I-VI) (Crino et al., 2002).  Through the process of cortical lamination, 

nascent cells migrate from the VZ along the radial glial fibers into the developing cortical 

plate through an “inside-out gradient.”  Neurons which are destined to reside in the 

deeper laminae (layer VI) arrive first in the cortical plate.  Thus, the subsequent groups of 

neurons migrate through each preceding layer and established layer (Crino et al., 2002).   

Types of MCD 

 MCD may be categorized as: (1) cell fate, proliferation, and specification 

disorders, (2) disorders of neuronal migration, or (3) disorders of unspecified mechanism 

or developmental context.   

Cell fate, Proliferation, and Specification Disorders 

Tuberous sclerosis (TS) 

 MCD that are considered cell fate, proliferation, and specification disorders 

includes tuberous sclerosis (TS).  Tuberous sclerosis (TS) is a disorder which involves 

multiple organs and occurs in about 1 in 6000 live births (Miloloza et al., 2002; 

Hengstschlager and Rosner, 2003; Shah and Hunter, 2005).   TS is a complex disorder 

characterized by cortical tubers which are strongly associated with epilepsy (Crino et al., 

2002).  In TS, neuroradiological features include: (1) subependymal hamartomas, (2) 

cortical hamartomas, (3) subcortical hamartomas, (4) linear white matter abnormalities, 

and (5) giant cell subependymal astrocytomas (D’Incerti, 2003).  On imaging studies, 

subependymal hamartomas appear as nodules bulging into the lateral ventricles.  

According to D’Incerti, the nodules are often calcified and easily recognized on CT.  

Both cortical and subcortical hamartomas involve the cortex and subcortical white matter, 
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and there is usually an enlargement of the affected areas.  Giant cell astrocytomas are 

extremely similar to subependymal hamartomas, except that they develop proximally to 

the foramina of Monro and often cause obstructive hydrocephalus, a disorder often 

referred to as “water on the brain” (D’Incerti, 2003).  Giant cells are a unique cell type 

that is not seen in other neurological disorders, except severe FCD.  Hence, giant cells are 

a defining facet of TS.   

 Dysplastic stem cells in the germinal zone give rise to the hamartomas (tubers).  

In addition, the dysplastic stem cells give origin to dysplastic glial cells, dysplastic 

neurons, and cells containing both dysplastic glial and neuron characteristics (Soucek et 

al., 2001; D’Incerti, 2003).  The accumulation of disorganized collections of dysplastic 

cells in the subependymal and cortical regions are a result of the abnormal differentiation 

of dysplastic cells.  Interestingly, the cellular compositions of hamartomas are the same 

as those found in focal cortical dysplasia with balloon cells (D’Incerti, 2003).  Thus, TS 

involves incomplete or defective migration of cortical neurons. 

 Tuberous sclerosis is an autosomal dominant genetic disorder (Crino et al., 1996; 

Ito and Rubin, 1999; Soucek et al., 2001; Wataya-Kaneda et al., 2001; D’Incerti, 2003; 

Narayanan, 2003, Wong, 2007).  TS results from mutations in TSC1 and TSC2, which are 

two non-homologous genes.  Mutations in the TSC1 and TSC2 genes have been 

identified.  In TSC1 the mutation location is 9q34, whereas, the mutation location for 

TSC2 is 16p13.3 (Soucek et al., 2001; Wataya-Kaneda et al., 2001; D’Incerti, 2003; 

Narayanan, 2003, Wong, 2007).  The TSC1 gene encodes for the 130kDa protein known 

as hamartin (Miyata et al., 2004).  According to Crino et al. (2004), hamartin has virtually 

no homology to known vertebrate genes.  The TSC2 gene encodes for the 200K protein 
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tuberin (Crino et al., 2004; Miyata et al., 2004).  Tuberin’s structure differs from that of 

hamartin’s.  The mRNA and proteins of both hamartin and tuberin are expressed in 

normal tissue.  Hamartin and tuberin has been found to be expressed in the brain, liver, 

cardiac muscle, kidney, adrenal cortex, and skin (Crino et al., 2004).  Studies have 

demonstrated that hamartin interacts with the ezrin-radixin-moesin (ERM) family of the 

actin-binding proteins which may contribute to the cell-cell interactions, cell adhesion, 

and cell migration (Lamb et al., 2000).  According to Paredes and Barbaran (2002), 

tuberin displays GTPase activating protein (GAP) activity on Rap1 and Rab5, members 

of the super family of Ras-related proteins.  Rap1 is believed to function in the regulation 

of DNA synthesis and cell cycle transition (Crino et al., 2004).  Tuberin promotes entry 

of the cell cycle into Go phase and inhibits the G1/S phase transition (Astridinis et al., 

2003).  In addition, phosphorylation of tuberin by Akt negatively regulates the inhibition 

of p70S6K.  Hamartin is thought to regulate cell adhesion.  According to Becker et al. 

(2002), loss of heterozygosity (LOH) studies show allelic losses at TSC1 (9p434) and 

TSC2 (16.6p13.3) in lesions of TSC patients and in sporadic tumors of individuals not 

afflicted with TSC indicates a tumor suppressor gene function   Tuberin and hamartin 

serve to form a tumor suppressor complex that plays a central role in the insulin/PI3K-

signalin pathway (Paredes and Barbaran, 2002; Schick et al., 2007a, Wong, 2007).  

Mutations in TSC1 and TSC2, that promote activation of mTOR, cause benign 

hamartomas that rarely metastasize (Fisher and White, 2004).  Therefore, mutations of 

hamartin or tuberin in TSC results in the hyperactivation of the downstream of the mTOR 

pathway and the associated kinase signaling cascades and translational factors which 

result in increased cell growth and proliferation.  
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Disorders of Neuronal Migration 

Lissencephaly 

 Lissencephaly is a severe developmental malformation which is highly associated 

with neurological deficits and epilepsy (Willmore and Ueda, 2002).  According to Crino 

et al. (2004), there are two pathological subtypes of lissencephaly, referred to as (1) type I 

(classical), and (2) type II (cobblestone).  In lissencephaly, there is poor sulcation or the 

smooth surface of the brain is absent (D’Incerti, 2003).  In lissencephaly, there is stunt or 

arrest of neuronal migration resulting by a disruption of radial glial fibers.  As a result of 

the disruption, there is abnormal lamination of the cortex (usually there is disruption of 

the neurons in four layers) (D’Incerti, 2003).  The terms agyria (no gyri) and pachygyria 

(broadened gyri) are used to describe the appearance of the surface the brain.   

Agyria 

 Agyria (complete lissencephaly) refers to the absence of sulci on the brain’s 

surface, whereas, pachygyria (few and broadened gyri) is incomplete lissencephaly.  

Agyria is associated with the deletion of chromosome 17 and it is observed in patients 

with Miller-Dicker syndrome, which was one of the first MCD genes discovered, LIS-1 

(D’Incerti, 2003; Crino et al., 2004).  According to Crino et al. (2004), Miller-Dieker 

lissencephaly syndrome is an autosomal recessive disorder which is characterized by type 

I (classic) lissencephaly, craniofacial dysmorphism, profound mental retardation, and 

epilepsy.   

 Agyria has been observed in the male offspring of women with affected by band 

heterotopia.  These male offspring present with a mutation in the doublecortin gene 

(DCX) in chromosome Xq 22.3, also known as X-linked lissencephaly (XLIS) (Wilmore 
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and Ueda, 2002; D’Incerti, 2003; Crino et al., 2004; Wang et al., 2006).  XLIS is also 

characterized by type I lissencephaly.  Interestingly, DCX gene mutations in females 

results in the subcortical band heterotopia syndrome.  The mutations which occur in the 

DCX gene may result from deletion, nonsense, missense, or splice donor mutations.  DCX 

gene encodes a 40kDa protein that is normally expressed during neuronal migration 

(gestational weeks 12 through 20) (Crino et al., 2004).  Thus, DCX mutational effects will 

only be exerted during this neuronal migration.   Overall, LIS-1 and DCX mutations 

account for 70 to 80% of classical lissencephaly syndromes (Crino et al., 2004).   

Microlissencephaly 

 Microlissencephaly is categorized as one of the generalized forms of MCD.  

Severe microcephaly is the main feature always observed in microlissencephaly 

(D’Incerti, 2003).  It has been postulated that microcephaly may be caused by a 

disturbance in neuron proliferation.  In addition, an abnormal gyral pattern with few gyri 

and shallow sulci are also observed in microlissencephaly.  Yet, based on MRI features 

and clinical course, the thickness of the cortex is predominantly normal in 

microlissencephaly.   

Microcephaly 

 Microcephaly has been associated with maternal problems such as: (1) 

alcoholism, (2) diabetes, and (3) German measles (rubella).  Genetic factors may play a 

role in causing some cases of microcephaly.  Newborns affected with microcephaly 

generally exhibit neurological defects and seizures.  In addition, severe impairment in 

intellectual development and disturbances in motor functions may appear later in life. 

Waterham et al. (2007) examined a newborn girl with microcephaly and found defects of 



19 

the fission of both mitochondria and peroxisomes and a dominant-negative mutation in 

the dynamin-like protein 1 gene (DLP1).  DLP1 has been implicated in the fission of 

mitochondria and peroxisomes.  In addition, over expression of the mutant DLP1 in 

control cells reproduced the defects in mitochondria and peroxisome fission (Waterham 

et al., 2007). 

Periventricular nodular heterotopia (PNH) 

 Periventricular nodular heterotopia (PNH) consists of nodules of gray matter that 

are located along the ventricles which result from a total failure of the migration of some 

neurons (Guerrini and Marini, 2006).  Many PNH patients present with epileptic seizures.  

PNH is an X-linked dominant disorder.  PNH displays high rates of male hemizygous 

lethality (Guerrini and Marini, 2006).  Mutations in the FLNA gene which is located in 

Xq28 have been identified in PNH.  FLNA codes for the protein Filamin A.  Models of 

FLNA function postulate that FLNA acts early in development and acts as a switch 

required to neurons to become competent for subsequent migration (Guerrini and Marini, 

2006).  Interestingly, heterozygous FLNA females present borderline to normal 

intelligence and mild to intractable epilepsy.   

Disorders of Unspecified Mechanism or Developmental Context 

Fukuyama muscular dystrophy syndrome (FCMD) 

 Fukuyama muscular dystrophy syndrome (FCMD) is an MCD of unspecified 

mechanism.  FCMD is a rare autosomal recessive disorder which exhibit type II 

lissencephaly (cobblestone lissencephaly) (Crino et al., 2004).  FCMD is associated with 

seizures and debilitating muscular dystrophy.  FCMD has been primarily observed in 

Japan.  FCMD gene is found in chromosome 9q31 and encodes for the protein fukutin.  
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FCMD has been primarily observed in Japan, and it is the most common congenital 

muscular dystrophy in Japan.   

Polymicrogyria (PMG)  

 Polymicrogyria (PMG) is a neuronal disorder in which the cortex exhibits various 

small microgyri which expose a pattern of a 4-layered lamination (Crino et al., 2004).  

PMG reflects an irregular process occurring during the late stages of corticogenesis.  

Montenegro et al.’s (2002), pathologic findings of a necrotic layer in patients with 

layered PMG supports the traditional theory that these abnormalities are a form of 

destructive lesion.  PMG has been associated with a variety of neurological syndromes.  

The majority of children with polymicrogyria have some degree of developmental delay 

or disabilities, feeding difficulties, respiratory problems, mental retardation, and seizures.  

PMG results from differing causes that may be both genetic and non-genetic in nature, 

such as: (1) a genetic disorder (inherited in a sporadic manner), (2) viral infection of the 

baby during the second trimester (i.e. cytomegalovirus infection), (3) insufficient blood 

supply to the baby’s brain during the second trimester (i.e., umbilical cord entanglement), 

and (4) other causes that have yet to be identified.  Yet, the molecular pathogenesis of 

PMG has not been identified.  However, the molecular basis of PMG is beginning to be 

elucidated with the identification of GPR56 gene (for bilateral frontoparietal PMG).  It is 

believed that functional studies of the GPR56 gene product will clarify the causes of 

PMG, possibly the mechanisms of normal cortical development, and the regional 

patterning of the cerebral cortex.   
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Hemimegalencephaly (HME) 

 Hemimegalencephaly, also known as unilateral megalencephaly, is characterized 

by a disproportionately enlarged hemisphere (D’Incerti, 2003).  The affected hemisphere 

contains malformations in the cortex and the white matter.  Abnormal lamination, cortical 

heterotopia, and focal pachygyria are cortical abnormalities found in 

hemimegalencephaly.   Calcification of the intracortical may also be present in 

hemimegalencephaly.  The white matter is abnormally increased in this disorder. The 

opposite hemisphere may be normal.  However, subtle malformations and/or even focal 

dysplasias have been observed radiographically (Crino et al., 2004).  Typical clinical 

manifestations of hemimegalencephaly are hemiparesis, developmental delay, and 

intractable epilepsy.         

Focal Cortical Dysplasias (FCD) 

 Focal cortical dysplasias (FCD) belong to a group of disorders described as 

disorders of cortical development, cortical dysgenesis, cortical dysplasias, or neuronal 

migration disorders (Wang et al., 2006).  FCD is closely associated with medically 

intractable epilepsy (Montenegro et al., 2002; Hua and Crino, 2003).  One of the most 

common neuropathological findings in tissue resected from refractory epileptic pediatric 

patients is FCD.  A surgical series for childhood temporal lobe epilepsy (TLE) revealed 

FCD in 18% of pediatric patients (Miyata et al., 2004).  According to Rickert (2006), 

studies indicate the pathogenesis for FCD may result from multifactorial influences such 

as (1) gene mutations, (2) in utero injuries, (3) peri-natal injuries, or (4) post-natal 

injuries.   
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According to Hildebrandt et al (2005), FCD present with aberrant architectural 

organization of the neocortex and the adjacent white matter.  Histologically, FCD are 

defined by disorganized cortical lamination and the presence of a disorganized cortical 

lamination, heterotopic neurons (HNs), dysplastic neurons (DN), and balloon neurons 

(BN) that derive from a population of cells or post-mitotic neurons during cortical 

development (Hua and Crino, 2003).  FCDs are classified on either their pathological 

characteristics or origin of the pathological elements.  Histological findings in FCD 

include architectural abnormalities.  The observed abnormalities include columnar 

disorganization and cortical laminar disorganization.  Severe forms of FCD are 

characterized by the occurrence of abnormal neuronal elements, such as dysmorphic 

neurons, giant cells, balloon cells, and immature neurons (Wang et al., 2006).  

Dysmorphic neurons have a distorted axon, cell body, and dendrite morphology which 

are caused by the accumulation of neurofilaments in the cytoplasm.  Giant cells are 

normal in shape but have an increased cell size, and there appears to be no accumulation 

of neurofilaments.  According to Hua and Crino (2003), FCD’s histological features 

suggest developmental abnormalities affecting select steps during neural proliferation, 

differentiation or migration.  Nevertheless, the precise developmental stage in which 

FCD are generated is unknown. 

The molecular etiology of FCD has been difficult to define since FCD appears to 

be a sporadic disorder and no family pedigrees have been identified.  In addition, since 

monozygotic twins are discordant for FCD, it has been suggested that FCD may arise 

through non-inherited and possibly multifactorial mechanisms (Hua and Crino, 2003).  

However, a study has suggested that polymorphisms in TSC1 gene is associated with 
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some FCD cases provides a genetic backdrop for environmental events to alter cortical 

lamination.  Hence, gene mutations or altered gene expression induced by environmental 

events in several progenitor cells may alter the structural integrity of nascent neurons 

leading to the heterogeneous and aberrant cell morphologies found in FCD.  Over time, 

researchers have attempted to classify FCD (Rickert, 2006).  

 Currently, there is no uniform classification system for FCD.  Barkowich 

introduced a classification system which organized several types of MCD according to 

embryologic and pathophysiologic features.  Utilizing Barkovich’s classification system, 

cortical dysplasias associated with FCD may be categorized as (1) mild MCD, (2) FCD 

type I, and (3) FCD II (Taylor-type) (Rickert, 2006) (Table 1.0).  

Taylor-Type FCD 

 Taylor-Type FCD, also known as FCDbc (FCD-balloon cell type), is a subtype of 

FCD which has been linked to chronic intractable epilepsy (Becker et al., 2002; Hua and 

Crino, 2003; Hildebrandt et al., 2005; Wang et al., 2006).  In Taylor-Type FCD, 

histopathological analysis has demonstrated glioneuronal malformations which are 

greatly similar to cortical tubers in patients with tuberous sclerosis.  Taylor-Type FCD 

lesions display a derangement of the cortical laminar structure, and are composed of 

dysplastic cytomegalic neurons, and balloons cells.  In a surgical series, Taylor-Type 

FCD was the most common developmental pathology identified (Sisodaya, 2004).  The 

incidence for Tyler-Type FCD is not well known because high-resolution magnetic 

resonance imaging (MRI) in studies may not always allow its detection.   

The molecular etiology of FCD has been difficult to define since FCD appears to 

be a sporadic disorder and no family pedigrees have been identified.  Monozygotic twins 
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are discordant for FCD.  Therefore, it has been suggested that FCD may arise through 

non-inherited and possibly multifactorial mechanisms.  Currently, the exploration for 

FCD candidate genes is an area of intense research.   

Gangliogliomas and Dysembrioplastic neuroepithelial tumors 

 Gangliogliomas are composed of neoplastic, highly differentiated glial cells, and 

dysplastic neurons (Schick et al., 2007a).  Gangliogliomas are the most frequent tumors 

found in patients with focal epilepsy (Schick et al., 2007b).  Gangliogliomas account for 

5% of childhood tumors (Schick et al., 2007a).  The histological hallmarks of 

gangliogliomas are the combination of dysplastic neurons that are combined with 

neoplastic glial cells.  According to Schick et al. (2007a), gangliogliomas’ neoplastic 

nature is provided by the proliferative activity of the glial cells.  Several features of 

gangliogliomas, such as (1) their focal nature, (2) differentiated glioneuronal phenotype, 

and (3) clinical character, indicate an origin of a developmentally compromised or 

dysplastic precursor lesion.  CD34, a stem cell epitope, is greatly expressed in 

gangliogliomas (Rickert, 2006; Schick et al., 2007a).   Gangliomas are low grade tumors 

classified as WHO grade I or II (Rickert and Paulus, 2001).  Dysembrioplastic 

neuroepithelial tumors (DNETs), which are comprised of ‘floating neurons’ and 

oligodendroglial-like elements, are the second major group of glioneuronal tumors (Table 

2.0).   DNETs are classified as WHO grade I and considered as a mixed neuroglial tumor 

and research has suggested a probable developmental defect occurring during the second 

trimester in utero (Chang et al., 2010; Spalice et al., 2010). 
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MCD Genes 

 Information regarding the molecular pathogenesis of MCD has been available 

only since the past decade.  According to Crino et al (2002), MCD may be observed in 

large chromosomal rearrangements and as the consequence of a single gene mutation.  

Eight genes have been identified through positional cloning strategies in human pedigrees 

with inherited types of MCD (Table3.0) (Crino et al, 2002).  These genes include: TSC1, 

TSC2, LIS-1, DCX, and FCMD.  Further research is needed to elucidate other genes 

involved in MCD.  Montenegro et al. (2002) believe that abnormal migration in MCD is 

mainly genetically determined, either as a familial trait or a de novo mutation, however, 

prenatal events could act in conjunction with genetic predisposition to determine the final 

phenotype.   

Effects of Environmental Factors and MCD 

 The developing central nervous system (CNS) is much more vulnerable to injury 

from toxic agents than the adult (developed) CNS (Rodier, 1995).  Environmental events 

causing injury to the CNS that have been associated with MCD include: hypoxic-

ischemic injury, head injury, and stroke.  According to Ottman (1997), approximately 

25% of prevalent epilepsy is associated with an antecedent central nervous system injury 

(e.g., head trauma, stroke, or brain infection) and, accordingly, is classified as 

"symptomatic."  Human and animal studies have demonstrated that in utero exposure to 

environmental factors such as (1) teratogenic, (2) physical, and (3) biological factors 

result in neuronal migrational disorders (Table 4.0).  These environmental factors 

include: (1) infection with cytomegalovirus, (2) infection with toxoplasmosis, (3) ethanol, 

(4) cocaine, and (5) ionizing radiation (Chevassus-au-Louis et al., 1999; Gressens, 2000).  
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In addition, the effect of environmental agent on the developing brain differs depending 

on the stage in which the insult is delivered (Rodier, 1995). 

Teratogenic Factors 

 Alcohol and cocaine interfere with neurogenesis and neuronal migration which 

results in microcephaly and disorganized cortical cytoarchitecture.  In addition, 

administration of cocaine to pregnant mice and monkeys induce abnormal addressing of 

neurons in the neocortical plate (Fantel, et al, 1997; Gressens, 2000).  Animal models 

induce cortical dysplasia though the exposure of (1) freeze lesion, (2) irradiation, and (3) 

methlylazoxymethanol (MAM) (Bernadete and Kriegstein, 2002).  The MCD model that 

most realistically replicates the morphology of human cortical dysplasia is based on the 

prenatal exposure to MAM (Chevassus-au-Louis,1998; Gressens, 2000; Choi, 2005; 

Harrington et al., 2007).  MAM is an anti-proliferative, cytotoxic, and DNA alkylating 

agent that induces cerebral heterotopias that are very similar to those observed in human 

cortical dysplasia.  MAM alters migration and differentiation of neurons leading to 

heterotopia.  Injection of MAM into a pregnant rats at day 14 or 15 exposes the fetuse(s) 

disrupts cell proliferation at the time of neocortical and hippocampal neuron formation.  

Prenatal MAM exposure results in cortical dysplasia, microcephaly, periventricular 

heterotopia, and hippocampal heterotopia (Watanabe, et al., 1998).  Prenatal exposure to 

thalidomide in the rat model results in the inhibition of angiogenesis and significant 

morphological alterations in cortical and hipocampal regions (Hallene et al., 2006). 

Thalidomide exposure resulted in abnormal neuronal development that was associated 

with vascular malformations and a leaky blood-brain barrier.  In addition, neuronal 

hyperexcitability was found in these abnormal regions (Hallene et al., 2006).  However, 
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the mechanisms by which all of these teratogenic environmental factors disturb neuronal 

migration are not known.       

Physical Factors 

 In animal studies, freeze lesions are produced by touching a freezing probe to the 

skull surface of the newborn rats.  Loss of normal cortical layering beneath the site of 

contact occurs.  As a result of microgyrus develops with the formation of a four-layered 

cortex instead of a normal neocortex (Schwartzkroin and Walsh, 2000).  In addition, the 

number of cells reduces in the dysplastic region in freeze lesion. Ionizing radiation is an 

environmental agent with the property of killing neurons (Rodier, 1995).  Irradiation of 

fetal rats at day 12 through 19 produces cortical abnormalities which range from subtle 

cortical thinning to a dramatic cell loss and dysplasia.  Irradiation exposure interferes 

with DNA replication in proliferating cells (Schwartzkroin and Walsh, 2000).  Irradiation 

treatment effects range from subtle cortical thinning, loss of cell numbers, to severe 

dysplasia.  Lastly, other prenatal traumas such as hypoxia can damage the radial glial 

fibers and may give rise to migration abnormalities resulting in heterotopic cell clusters 

and/or thinned cortex and may be accompanied by abnormal cortical lamination.  

 Studies have shown that during and after hypoxic injury vascular endothelial 

growth factors (VEGF) is upregulated.  There are four VEGF-like families: (1) placental 

growth factor (PIGF), (2) VEGFB, (3) VEGFC, and (4) VEGFD.  VEGF induces 

angiogenesis, vascular permeability, and inflammation (Croll et al., 2004; Troost et al, 

2008).  VEGF has been implicated in the breakdown of the blood-brain-barrier after 

hypoxic injury.  After pilocarpine-induced status epilepticus (SE) there is an increase of 

VEGF in neurons and glia.  In addition, to the breakdown of the blood-brain-barrier, 
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hypoxic injury also results in endothelial apoptosis, upregulation of adhesion molecules, 

and angiogenesis.  VEGF also activates glia and could impact seizure.  VEGF also 

induces inflammation that is characterized by monocytic infiltrate.  VEGF is upregulated 

by IL-1 and TNF-α, coincidentally, these cytokines are upregulated after seizures.  

Hence, suggesting that IL-1 and TNF-α increase the potential for seizures (Croll et al., 

2004).  Interestingly, VEGF also presents neuroprotective and could protect vulnerable 

cells from damage associated with seizures.  VEGF protects cultured hippocampal 

neurons against glutamate excitotoxicity and seizure-induce injury (Croll et al., 2004).  

VEGF exerts its neuroprotective actions by activating the Akt survival pathway.  Thus, in 

response to hypoxic insult VEGF’s actions are both damaging and neuroprotective.   

 According to Troost et al. (2008), members of the VEGF family are key signaling 

proteins in angiogenesis induction and regulation during development and pathological 

conditions.  Signals mediated through the VEGF family proteins and their receptors have 

demonstrated direct effects on neurons and glial cells.  Troost et al (2008) investigated 

the expression of VEGFA, VEGFB, and their receptors (VEGFR-1 and VEGF-2) in FCD 

type IIB with intractable epilepsy.  Their study findings demonstrated a high expression 

of VEGFA, VEGFB, and VEGF receptor in the dysplastic neurons.  The high expression 

of both VEGFA and VEFG with their receptors in the FCD specimens suggests 

autocrine/paracrine effects on dysplastic neurons.  These effects could play a role in FCD 

development by the death of abnormal neurons (Troost et al., 2008).   

Biological Factors 

 Maternal disease may contribute to uteroplacental insufficiency syndromes that 

may alter brain development after injury throughout the ante partum period or during 
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stresses of labor and delivery.  For example, pathophysiologic mechanisms that are 

involved in asphyxia and inflammation may be expressed by placental function and 

structures.  Placental vasculopathies or pathological lesions which may adversely affect 

fetal organ structure and function may result from the injury to the villus, stromal, or 

vascular components within maternal or fetal surfaces of the placenta (Scher, 2003).  In 

addition, fetal brain infections may result in brain malformation.  Prenatal infection with 

toxoplasmosis has resulted in brain malformation, mental retardation, and seizures 

(Gressens, 2000).  Other fetal brain infections that have been found in brain 

malformations are rubella, cytomegalovirus, and herpes simplex. 

Gene-environment Interactions and MCD 

 Since MCD may result from an abnormality during prenatal brain development, 

the gene-environment interactions must be considered.  The developing organism is a 

biological system that is maturing over specific time intervals during which adverse 

conditions result in environmental stress. The time intervals in which environmental 

stress may occur are embryonic, fetal, and perinatal periods.  These adverse conditions 

include exposure to environmental factors (teratogenic, physical, or biological) and 

environmental events (i.e. hypoxic-ischemic injury, head injury, and stroke).  The stage 

in brain development in which these events occurs influence the expression of a disease 

process resulting in brain injury that may expressed as neonatal seizures and epileptic 

disorders (Kisby et al., 2006).  Thus, post-mitotic alterations in structure and functions 

may result epigenetic effects combined with inherited traits.   

 As previously mentioned, MCD are traditionally classified by the prenatal stages 

of brain development.  Yet, there is genetic variability of expression are observed through 
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the variable phenotype expressions of the same disorders as described for tuberous 

sclerosis.  After environmental stress pleomorphisms can define a disease with differing 

patterns of malformation.  Differing brain lesions reveal the stage of neural 

developmental process and the susceptibility of the specific brain regions in response to 

injury.  Gene expression alterations for specific molecular processes on the cells, such as 

neurotransmitters and synapses will later assist in the occurrence of neonatal seizures and 

later as epilepsy during childhood.   

Epigenetics 

 Epigenetics refers to the heritable traits (over rounds of cell division and 

sometimes transgenerationally) that do not involve changes to the underlying DNA 

sequence.  It is important to recognize that a large percentage of early-onset seizure 

disorders, mainly associated with cortical encephalopathy, are generated by epigenetic 

influences, such as trauma to the immature brain which occur during pregnancy or during 

the birth process (Schwartzkroin and Walsh, 2000).  The effects of epigenetics on brain 

function and structure have been demonstrated in animal models of asphyxia.  After an 

acute asphyxial insult there are changes in global gene expression within the immature 

brain.  In presynaptic and postsynaptic activities epigenetic effects result in either up-

regulation or down-regulation of gene activities.  Hence, epigenetic alterations in gene-

expression the asphyxial model resulted in global alterations in synaptic brain activity 

(Schwartzkroin and Walsh, 2000).  Hence, in MCD gene-environment interactions may 

grade degrees of risk in the context of genetic pleomorphism and environmental factors.  

Gene profiles may predispose specific mother-fetal pairs to the harmful effects of 

environment factors such as trauma, infection, and asphyxia.  
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MCD Epileptogenesis 

 Many studies addressing environmental factors that result in MCD try to identify 

the mechanisms that result in the epileptogenesis in MCD.  Abnormal electrical discharge 

in the brain results in epileptic activity (Paredes and Baraban, 2002).  Currently, there are 

several hypotheses regarding the mechanisms of epileptogenesis in MCD, primarily in 

FCD.  These hypotheses may be classified whether they stipulate that the seizure starts 

within the lesion or the perilesional (surrounding) regions.  According to Paredes and 

Baraban (2002), aberrant electrical activity in cortical malformations could result from 

synaptic changes that may occur on the postsynaptic cell itself, such as receptor 

alterations.  Various studies have demonstrated abnormalities in postsynaptic 

neurotransmitter receptor subtypes in resected dysplasia tissue.   

Neuronal Excitotoxicity 

Neurons are specialized brain cells for the rapid transmission of information over 

long distances.  Neurons receive information at their dendrites and integrate the 

information in the cell body (Raven and Johnson, 1996).  Information is transmitted in 

neurons in the form of electrical impulses that are sent out from the cell body along the 

axon.  Excitotoxicity contributes to neuronal degeneration and may play a role in epilepsy 

(Arundine and Tymianski, 2003).  Excitotoxicity is the pathological process in which 

neurons are damaged and killed by the over- activation of receptors by excitotoxins such 

as neurotransmitters (Aarts and Tymianski, 2003).  Neurotransmitters which act as 

excitotoxins are N-methyl-D-aspartate (NMDA), kainic acid, and glutamate.  High levels 

of calcium ions (Ca++) enter the cell due to the excitotoxin’s actions.  The high influx of 

Ca++ activates several enzymes which damage the cell’s structures and DNA.  The 
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activated enzymes include phospholipases, endonucleases, and proteases.  Neuronal 

damage and death are associated with lesions which result in epileptic seizure. In 

addition, among the mechanisms that govern neuronal migration, the neurotransmitters 

GABA and glutamate deserve particular attention because neurotransmitters and 

receptors are expressed early in the developing brain, neurotransmitters may act as 

paracrine signaling molecules in the immature brain, and neurotransmitters regulate 

intracellular calcium required for many cellular functions, including cytoskeletal dynamic 

changes (Manent and Represa, 2007). 

Transmission of Nerve Impulses:  Neuron Communication 

 Neurons are known as voltage-gated ion channels because membrane potential 

changes in response to neurotransmitter stimulation (Raven and Johnson, 1996).  The 

diffusion of Na+ and K+ can result in an impulse (action potential).  In neurons, the Na+ 

and K+ channels differ from those in most cells because the channels have gates that 

open and close when the membrane potential is altered.  Action potentials result when 

depolarization reaches a threshold.  Action potentials follow an all-or-none law (Raven 

and Johnson, 1996).  Action potentials pass down the axon and eventually reach the end 

of the axon and its branches.  The arrival of the action potential to the end of the axon 

causes the membrane to depolarize and results in the release of neurotransmitters from 

the synaptic cleft.  The neurotransmitter, glutamate, binds to the receptor proteins of the 

postsynaptic cell.  The binding of glutamate to the receptor open chemically gated ion 

channels found on the postsynaptic membrane.  In contrast to the voltage-gated channels 

in the axon membrane, these postsynaptic channels are not opened by membrane 
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depolarization (Raven and Johnson, 1996).  Chemical junctions are an advantage because 

different neurotransmitters can elicit postsynaptic cell response.   

Glutamate Receptors  

 Glutamate receptors play a vital role in the mediation of excitatory synaptic 

transmission.  Glutamate exerts its signaling role by acting on glutamate receptors 

(Danbolt, 2001).  Activation of glutamate receptors is responsible for synaptic 

transmission, and several forms of synaptic plasticity.  Glutamate receptors are 

categorized as either metabotropic (G-protein coupled) receptors or ionotropic (ion 

channel gated) receptors.  A review of the literature available on glutamate receptors 

revealed more information regarding ionotropic glutamate receptors actions in glutamate 

mediated excitotoxicity than metabotropic glutamate receptors.  

Mitochondria can modulate neuronal excitability and synaptic transmission.  In 

epilepsy, the energy consumption and the Ca++ load of neuronal cells increases during 

epileptiform activity (Kunz et al., 1999).  The opening of the Ca++ channels in the 

mitochondria causes oxidative stress through the release of free radicals.  The free 

radicals cause DNA damage which lead to cell damage and/or apoptosis.  In addition, 

mitochondria lack many of the mechanisms to repair DNA damage caused by radical 

oxidation.  Therefore, the mitochondria can be damaged at the DNA level.  Neuronal 

damage and death leads to lesions which are associated with epileptic seizures.  

According to Waldbaum and Patel (2010), mitochondrial oxidative stress and dysfunction 

are emerging as key factors that not only result from seizures, but may also contribute to 

epileptogenesis. 
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Mitochondria and Oxidative Stress 

Mitochondria  

 Mitochondrial oxidative stress and dysfunction are contributing factors to various 

neurological disorders (Waldbaum and Patel, 2010).  Mitochondria are tubular organelles 

1 to 3 μm long that are found in all types of eukaryotic cells.  Mitochondria are double 

membrane organelles that change their size and position in their dynamic movement.  

Mitochondrial morphology varies in response to environmental and cellular 

differentiation.  They form connected and filamentous network structures in fibroblast 

and are arranged along the myofibrils in skeletal muscle, and are coiled around the 

flagella in sperm (Tagauchi et al., 2007).  The outer membrane in mitochondrion is 

smooth, whereas the inner membrane is folded into numerous layers referred to as cristae 

(Raven and Johnson, 1996, p.102).  There are two compartments to the cristae: (1) a 

matrix (lye inside the inner membrane) and (2) the outer compartment /intermembrane 

space (lye between the two mitochondrial membranes).  Proteins that carry out oxidative 

metabolism (the oxygen-requiring process by which energy in macromolecules are stored 

in adenosine triphosphate [ATP]) are found on or within the surfaces of the inner 

membrane.  Biochemical evidence suggests the majority of cerebral ATP consumption is 

used for operation of the electrogenic activity of neurons (Chen et al., 2010). 

Mitochondria also functions in heme, lipid, amino acid biosynthesis, and fatty acid 

oxidation among other functions (Sugimoto, 2008).  Hence, mitochondria are essential 

for energy production in the cell and are often referred to as the “power plant” for 

eukaryotic cells.   
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Mitochondrial Production of Reactive Oxygen Species 

 ATP is the energy currency utilized by cells. The ATP molecule transfers the 

energy captured during respiration to the many sites in the cell where it is used (Raven 

and Johnson, 2004, pp.187).  ATP is composed of a sugar (ribose) which is bound to an 

organic base (adenine) and a chain of three phosphate groups (each phosphate group is 

negatively charged).  Energy is released when the phosphate bonds in ATP are 

hydrolyzed.   

Cells produce ATP in two different ways: (1) substrate-level phosphorylation, and 

(2) electron transport chain.  In substrate-level phosphorylation, ATP is formed by 

transferring a phosphate group to an adenosine diphosphate (ADP) from a phosphate-

bearing intermediate (Johnson and Raven, 1996).  For example, during glycolysis the 

chemical bonds of glucose are shifted around in reactions that provide the energy needed 

to form ATP.  Even though this process is inefficient, many cells utilize substrate-level 

phosphorylation to derive their ATP.  In the second process, electrons are harvested and 

transferred in the electron transport chain.  Most organisms combine these two processes 

in the oxidative phosphorylation.   

 Oxidative phosphorylation is accomplished through a complex series of enzyme-

catalyzed reactions that may be broken down into four stages.  For example, the first 

stage of extracting energy from glucose is a 10-reaction biochemical reaction pathway 

known as glycolysis.  During glycolysis, the enzymes needed to catalyze the glycol tic 

reactions are found in the cytoplasm of the cell.  During glycolysis two ATP molecules 

are utilized to prepare glucose, and four ATP molecules are created through substrate 

level phosphorylation.  Thus, glycolysis only yields two ATP molecules per glucose 
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molecule that is catabolized (Raven and Johnson, 1996).  In addition, once the glycolysis 

process is complete two pyruvate molecules are formed.  In the second stage, the 

pyruvate is converted into carbon dioxide and acetyl-CoA.  In the third stage, acetyl-CoA 

is introduced into a cycle of nine reactions known as the Krebs cycle (citric acid cycle), 

which generate two ATP molecules.  In the final stage, the electrons carried by NADH 

are used to drive the synthesis of ATP by the electron transport chain.  In addition, 

glycolysis can occur in the absence of oxygen.  However, the harvesting of electrons for 

the electron transport chain can’t take place indefinitely in anaerobic conditions because 

oxygen serves as the final electron acceptor of the electrons harvested from glucose.  

Therefore, without oxygen cells are restricted to substrate-level phosphorylation to obtain 

ATP, and some organisms respire by utilizing different electron acceptors. Overall, 

pyruvate oxidation, Krebs cycle, and ATP production takes place in the mitochondria of 

all eukaryotic cells.   

 Mitochondrial metabolism also generates the majority of the reactive oxygen 

species (ROS) production in cells (St-Pierre et al., 2006).  ROS results when unpaired 

electrons escape the electron transport chain.  The generation of ROS in normal cells, 

including neurons, is under tight homeostatic control.  Antioxidants such as glutathione, 

vitamin E, carotenoids, and ascorbic acid help to detoxify ROS by reacting with most 

oxidants (Klein and Ackerman, 2003).  ROS react with molecular oxygen to generate 

superoxide.  It is estimated that under normal physiological conditions up to 1% of the 

mitochondrial electron flow leads to the formation of superoxide (O2-) and interferences 

in electron transport increases O2-.  However, oxidative stress in not limited to 

mitochondrial metabolic processes because ROS may be produced by environmental 
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events such as: (1) ionizing radiation exposure, (2) cytotoxic chemical exposure, (3) drug 

exposure, or (4) by professional phagocytosis resulting from the defense against invading 

pathogens (Langley and Ratan, 2004).                                                                        

 Superoxide is the primary ROS created by mitochondria.  Within the cell O2- is 

rapidly converted to hydrogen peroxide (H2O2) by superoxide dismutases, SOD1, SOD2, 

and SOD3.  Through a Fenton reaction H2O2 reacts with reduced transition metals to 

produce the high reactive hydroxyl radical (-OH). O2- also reacts with nitric oxide (NO) 

to create cytotoxic peroxynitrite anions (ONOO-).  Peroxynitrite reacts with carbon 

dioxide which results in protein damage through the formation of nitrotyrosine and lipid 

oxidation (Klein and Ackerman, 2003).  Hence, ROS can also react with nitrous oxide 

(NO) to generate reactive nitrogen species (RNS).  Superoxide reacts with DNA, 

proteins, and lipids.  O2- selectively attacks guanine.  The most commonly produced base 

lesion, and the most often measured as an index of oxidative DNA damage is 8-

hydroxyguanosine (8-OHdG) (Wiseman and Halliwell, 1995).  O2- plays an important 

role in several physiological and pathophysiological conditions such as ischemia-

reperfusion injury, neurodegenerative disease, and aging (St-Pierre et al., 2006).  

 According to Finkel and Gutkind (2003), there is a growing consensus that 

oxidative stress plays an integral role in both aging, and the pathophysiology of most 

neurodegenerative diseases.  It is apparent that oxidative stress induced injury in the 

nervous system results from the overproduction of oxidants and/or the dysfunction of 

endogenous oxidant defenses (Langley and Ratan, 2004; Harrison et al., 2005).  In 

addition, ROS can also cause damage to the mitochondrial genome (Fishel et al., 2007).  
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Therefore, the maintenance of low ROS levels is crucial to normal cell functions, and 

prolonged increase in mitochondrial activity inherently risk increasing ROS levels.   

Mitochondrial DNA damage during epileptogenesis 

 Acute consequences of status epilepticus (SE) are oxidative stress and 

mitochondrial dysfunction (Jarret et al., 2008).  Currently, the role of mitochondrial 

oxidative stress and genomic instability during epileptogenesis is not known.  Jarret et al. 

(2008) used the kainite rat model of temporal lobe epilepsy (TLE) to investigate 

mitochondrial DNA (mtDNA) damage and changes in the mitochondrial base excision 

repair pathway (mtBER) in the hippocampus for 3 months after SE.  Results of the study 

demonstrated a time-dependent increase in the frequency of mtDNA lesions.  The 

increase in mtDNA lesions was accompanied by an increase in mitochondrial H2O2 

production and a decrease of mtDNA repair capability (Jarret et al., 2008).  In addition, 

there was an elevated expression mRNA and protein of the mtBER protein 8-oxoguanine 

glycosylase (Ogg1) and DNA polymerase gamma (Pol gamma).  Hence, the increase of 

oxidative mtDNA damage, mitochondrial H2O2 production and alterations in the mtBER 

pathway present evidence for mitochondrial oxidative stress in epilepsy.  Thus, 

suggesting that mitochondrial injury may be a contributing factor in epileptogenesis.  

ROS, Mitochondria and the Neuron Cell Cycle 

 Examination of the current literature on the effect of oxidative stress on the cell 

cycle reveals increases in ROS-induced DNA damage are correlated with cell cycle 

arrest.  ROS have been implicated in cell signaling, specifically through mitogens (Klein 

and Ackerman, 2003).  The discovery that oxidative stress can trigger a program of cell 

death in neurons with features of apoptosis was significant (Langley and Ratan, 2004).  
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During embryonic development neuronal precursors produce larger numbers of neurons 

than needed, and this excess in neurons are later eliminated by apoptosis during a 

restricted embryonic period (Langley and Ratan, 2004; Liu et al., 2004).  Even though 

neuronal apoptosis plays a crucial role in the development of the nervous system, it is 

also an underlying element in neurodegenerative diseases (Becker and Bonni, 2006).  

According to Langley and Ratan (2004), there is a growing body of evidence indicating 

that deregulation of the cell cycle can either (1) trigger apoptosis, or (2) increase 

sensitivity to apoptotic inducers.  In 1994, the first indication that mitochondria play an 

active role apoptosis occurred.  The observation that mitochondria were needed for 

nuclear apoptotic changes, such as: (1) chromatin condensation, and (2) nuclear 

fragmentation, in the extracts of Xenopus eggs (Crompton, 2000).  These observations 

lead to insights of mitochondrial role in apoptosis.  According to Crompton (2001), 

apoptosis is executed by caspases, proteolytic enzymes that are expressed constitutively 

as inactive proenzymes, and that are activated by cleavage of the N-terminal prodomain.  

In addition, it is well recognized that ROS are formed during the reperfusion of ischemic 

tissue and may result in brain malformations and uteroplacental ischemia during the fetal 

stages of gestation (Fantel et al., 1998).   

 The central nervous system (CNS) is vulnerable to oxidative stress.  The major 

reasons being that the CNS (1) posses a low level of antioxidant enzymes, such as 

catalase and gluthathione peroxidase, (2) have a high content of easily oxidized substrates 

such as membrane polyunsaturated lipids, and (3) an inherently high flux of ROS 

generated during neurochemical reactions such as dopamine oxidation and energy 

metabolism (Langley and Ratan, 2004).  The increased and unobstructed ROS can lead to 
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death via several pathways including necrosis or apoptosis.  The most common oxidative 

product of DNA is 8-hydroxy-2’-deoxyguanosine (8-OHdG), a major DNA lesion 

resulting from free radical attack that has been demonstrated to alter the base-pairing 

properties (GC -> TA transversions) of guanine in in vitro assays (Kasai, 1997).  

According to Lin et al (2002), under enhanced oxidative stress, the amount of 8-OHdG in 

mtDNA has been found to increase although base excision repair (BER) system of 

oxoguanine glycosylase (hOGG) and DNA ligase are present in the mitochondria.  

Human oxoguanine glycosylase 1 (hOGG1) recognizes 8-OHdG and catalyze, through 

cleavage of the N-glycosyl bond between the sugar and the base to generate an 

apurinic/apyrimidinic (AP) site, resulting in the removal of phosphodiester bond in 

modified DNA (Wei and Lee, 2002).  Inactivation of hOGG1 may result in the 

accumulation of point mutations and deletions in mtDNA (Higushi, 2007).  The amount 

of 8-OHdG is elevated in both neuronal nuclear and mitochondrial DNA in disease 

regions of patients with neurodegenerative disorders and has been correlated with 

increase incidence of cancer and cell cycle abnormalities (Klein and Ackerman, 2003).   

According to Wiseman and Halliwell (1995), oxidative DNA base damage, measured as 

8-OHdG, has been detected in mitochondrial DNA at steady-state levels several-fold 

higher than in nuclear DNA.  This apparent increased net oxidative damage in 

mitochondrial DNA compared with nuclear DNA may be due the proximity of 

mitochondrial DNA generated during electron transport, lack of histone proteins to 

protect DNA against attack, or inefficient repairs, resulting in base damage accumulates 

in higher levels in mitochondrial DNA.  Two markers of oxidative DNA damage are 

thymine glycol (TG) and 8-OHdG.  According to Waldbaum and Patel (2010), TG is an 
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adduct that can lead to cell death by blocking polymerase action.  It has been shown that 

8-OHdG is one of the important oxidative lesions related to mitochondrial dysfunction 

and aging (Lin et al., 2002).  Mutations that impair the mtDNA BER pathway have been 

linked with chronic epilepsy (Jarrett et al., 2008).   

Oxidative stress can cause other mutational events such as: (1) strand breaks, (2) 

discontinuous loss of heterozygosity, (3) large deletions, (4) protein/DNA-cross-links, 

and (5) modification of base pairs (Waldbaum and Patel, 2010).  Hence, mutations may 

result if the oxidation of DNA surpasses the cell’s DNA-repair capacity leads to loss of 

genome stability.  However, cumulative damage in neurons is contingent on other factors 

of susceptibility, such as: (1) exposure to environmental genotoxins, (2) polymorphisms 

in genes that are involved in either cellular functions or in metabolism of toxins (Klein 

and Ackerman, 2003).  Animal models of hypoxia-ischemia and traumatic brain injury 

(TBI) has demonstrated developmental differences in apoptotic neuronal death.  

According to Robertson (2004), the mechanisms responsible for these differences are 

unknown, but it is stipulated that they are likely multifaceted and related to mitochondrial 

response to injury.  Mitochondrial involvement and oxidative stress may be contributing 

factors in neurodegenerative disorders (Sas et al., 2007).  Currently, there is ongoing 

research in the field of neurodegeneration to understand how genetic and environmental 

factors plot to tip the balance of oxidant and antioxidants in favor or oxidants in the CNS 

(Langley and Ratan, 2004).    

Mitochondrial DNA and Point Mutations 

Mitochondria contain their own DNA as a circular duplex.  mtDNA is inherited 

maternally with a vertical non-Mendelian pattern (Solano et al., 2001).  Interestingly, 
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mtDNA located in the cytoplasm from the ovum is transmitted to the zygote and sperm 

rarely contribute mtDNA to the zygote.  This results because there is a high number of 

mtDNA in the ovum, about 100,000 and 200,000 copies compared to the few hundred in 

spermatozoids (Solano et al., 2001).  In addition, the spermatozoid mitochondria that can 

enter the fertilized egg are eliminated through an active process.  Hence, mothers and all 

of their offspring share the same mtDNA.  mtDNA is randomly distributed to daughter 

cells in a process known as replicative segregation; and only the daughters will pass the 

mitochondrial genome to all of the members of the next generation.  Heteroplasmy occurs 

if there is a mixture of mutant and normal mtDNA.  According to Sherman (1997), the 

proportion of mutant to normal mtDNA can change after one cell division.  Any two 

offsprings are likely to receive differing proportions of mutant mtDNA from a 

heteroplasmic mother. Therefore, the mtDNA resulting in the offspring can be in one of 

three states: (1) a mixture of normal and mutant mtDNA (heteroplasmy), (2) purely 

normal, or (3) purely mutant mtDNA (homoplasmy).  Hence, this trend may potentially 

cause the variable phenotypes observed in the offspring.  Mitochondrial genetics differ 

from Mendelian genetics.  Some of the peculiarities of mitochondrial genetics are 

uniparental inheritance, cellular polyploidy, and a deviation from the standard genetic 

code.  These features dictate the functional consequences of pathogenic mtDNA 

mutations (Tuppen et al., 2010). 

mtDNA produces some of the proteins needed for mitochondrial oxidative 

metabolism (Raven and Johnson, 1996; Wang et al., 2006).  Each mitochondrion contains 

multiple copies of a 16,569 base-pair circular DNA duplex.  mtDNA encodes 13 subunits 

of enzyme complexes which play a role in energy production, including seven subunits 
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(ND1, ND2, ND3, DN4L, ND5L, and ND6) of rotenone-sensitive NADH-ubiquinone 

oxidoreductase (complex I), one subunit (cytochrome b) of ubiquinol-cytochorme c 

oxidoreductase (complex III), three subunits (COI, COII, and COIII) of cytrochrome c 

oxidase (complex IV), and two subunits (ATPases 6 and 8) of complex V with 22 tRNAs 

and two rRNA  (12S and 16S) subunits (Tsutsui et al. 2009).  However, the majority of 

the genes that produce the proteins (enzymes) utilized in oxidative metabolism and 

divisions are located in the nucleus (Sherman, 1997; Jeng et al., 2008).  Mitochondrial 

replication would be impossible without nuclear participation, and mitochondria cannot 

be grown in a cell-free culture (Johnson and Raven, 1996). Damaged mitochondrion can 

replicate because the nuclear DNA (nDNA) encodes the enzymes needed for 

mitochondrial replication.  Increased abundance of defective mtDNA that encodes for 

respiratory enzymes may lead to impaired electron transport, result in enhanced 

production of ROS, further oxidative damage, and damage to the mitochondria (De la 

Monte et al., 2000).   mtDNA mutations can be categorized as those that impair 

mitochondrial protein synthesis and those that affect any of the 13 respiratory chain 

subunits encoded by the mitochondrial genome (DiMauro, 2007).  For example, 

deficiency of primary coenzyme Q10 (CoQ10) is included as a respiratory chain disorder 

due to its pivotal role as an electron carrier from complex I and II to complex III.  CoQ10 

deficiency encompasses fiver major phenotypes such as encephalomyopathy, severe 

infantile multisystemic disease, Leigh syndrome, isolated myopathy, and cerebellar ataxia 

(DiMauro, 2007).  Advances in mitochondria research have revealed that mutations in the 

mtDNA lead to a number of genetic disorders.   
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According to Sherman (1997), the full range of diseases that have a mitochondrial 

component are unknown, yet, clearly involve disorders such as: acute leukemia, 

Alzheimer’s disease (AD), cardiomyopathy (CM), chronic progressive external 

ophthalmoplegia, colorectal cancer, deafness, fatal infantile cardiomyopathy (FICP), 

gastroesopageal reflux (GER), mitochondrial encephalomyopathy, lactic acidosis and 

stroke-like episodes (MELAS), myoclonic epilepsy with ragged red fibers (MERRF), 

Leber Hereditary Optic Neuropathy (LHON),  Parkinson’s disease (PD), maternally 

inherited hypertropic cardiomyopathy (MHCM), multiple sclerosis (MS), non-insulin 

dependent diabetes mellitus (NIDDM), Chronic intestinal pseudo-obstruction (CIPO), 

non-syndromic hearing loss, progressive encephalopathy (PEM), sensorineural hearing 

loss (SNHL), strokes, and sudden infant death syndrome (SIDS) (Table 5.0) (Filiano et 

al., 2002; Bai et al., 2007; Tzen et al., 2007).  A list of all of the known disorders 

associated with mtDNA variations is available at MITOMAP:  Human Mitochondrial 

Genome Database.  Diminished mtDNA repair mechanisms and mitochondrial genomic 

instability have been implicated as important factors in several neurodegenerative 

diseases (Jarrett et al., 2008).  MEERF and MELAS are the most prominent examples of 

the occurrence of epileptic seizures caused by mitochondrial dysfunction (Kunz, 2002; 

Chen et al., 2010).  The mechanisms of mitochondrial dysfunction during epileptogenesis 

are unclear. 

Mitochondrial DNA Copy Number Variations 

 According to Liu et al. (2006), the number of mitochondria per cell is maintained 

within a constant range in response to the energy need of the cell to maintain normal 

physiologic functions.  mtDNA mutations often result in respiratory chain defects 
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resulting in decreased ATP production, enhanced ROS and free radical production in 

mitochondria.  Mitochondrial dysfunction or cell apoptosis result upon the decline in the 

copy number of mtDNA or the accumulation oxidative damage and mtDNA mutations 

reaches a critical point, thus, resulting in defective energy metabolism of the target 

tissues (Liu et al., 2006).  Alteration of mtDNA copy number in affected copy numbers 

has been suggested play a role in the pathogenesis and progression of mitochondrial 

diseases (Liu et al., 2006; Park et al., 2009).  Studies have documented the presence of 

inheritable copy number variations (CNVs) in the human genome, and copy number 

aberrations (CNAs), which are acquired somatic alterations, have been observed in tumor 

tissues (Sun et al., 2009; Zhang et al., 2010).  For example, in nasal polyp tissues, an 

increase of mtDNA is the result of a compensatory mechanism thought to be triggered by 

endogenous and exogenous oxidative stress elicited by mtDNA mutations (Park et al., 

2009).  Additionally, in the skeletal muscle of patients with mitochondrial 

encephalomyopathies such as MERRF, MELAS, and CPEO demonstrated proliferation 

of abnormal mitochondria (Liu et al., 2006).  Research has suggested that an increase in 

mtDNA content in affected tissues result from a compensatory mechanisms triggered by 

elevated endogenous and exogenous stress that may be elicited by mtDNA mutations.  

Diseases caused by an excess mtDNA proliferation are less common (Montier et al., 

2009).   

In contrast, mtDNA copy number was found to decrease in tissues from patients 

with neonatal giant-cell hepatitis, mtDNA depletion syndrome, mitochondrial 

neurogastrointestinal enchephalomyopathy, renal cell carcinoma, liver disease, biliar 

atresia, type 2 diabetes, cardiomyopathy, and breast cancer (Liu et al., 2006; Montier et 
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al., 2009).  Interestingly, even though there are a limited number of human studies which 

directly evaluate mitochondrial function after a traumatic brain injury (TBI), they have 

generally supported the findings seen in animal models of TBI.  Mitochondria isolated 

from the brain of human victims of TBI have demonstrated impaired rates of respiration 

and ATP synthesis (Robertson, 2004).  In addition, depletion of mtDNA is one of the 

hallmarks of mtDNA dysfunction (Lewit et al., 2007).  These findings indicate that either 

and increase or decrease in mtDNA copy number may play a role in the pathogenesis of 

mitochondrial disorders.   

Mitochondrial DNA Variations, Haplotypes, and Haplogroups 

 Point mutations, nucleic acid modifications, and large-scale deletions are the most 

prevalent forms of mtDNA mutations.  All of which play a role in mitochondrial 

dysfunction and apoptosis.  mtDNA damage, as a result of environmental insults and/or 

enhanced by genetic predisposition, is attracting attention as the origin of mitochondrial 

dysfunction.  During evolution, several mutations have accumulated in mitochondrial 

DNA (mtDNA), representing specific single nucleotide polymorphisms (SNPs), allowing 

human populations to be categorized into various mtDNA haplotypes (combination of 

several SNPs on single chromosomes) and haplogroups (Petterson et al, 2003; Pakendorf 

and Stoneking, 2005; Abu-Amero et al, 2006) (Table 6.0).    

According to Pakendorf and Stoneking (2005), haplogroups represent related 

groups of sequences that are defined by shared mutations and tend to show regional 

specificity.  Analysis of population-specific mtDNA polymorphisms has allowed the 

reconstruction of human pre-history, and analysis of maternally inherited diseases has 

demonstrated that some mtDNA diseases show a strong continental bias (Wallace et al., 
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1999).  mtDNA polymorphism have sequentially accumulated as women migrated west 

of Africa and into the other continents.  According to Wallace et al. (1999), selection and 

drift may have influence the rapid shift in the mtDNA lineages that are observed between 

continents.  Thus, the accumulated mtDNA mutations and variations that are observed in 

high frequency are associated with specific mtDNA haplotypes and haplogroups.   

Analysis of human mtDNA evolution has been necessary for addressing 

anthropological questions and clinical studies addressing age and origin of Africans, 

Europeans, Asians, and Native Americans (refer to Table 7.0 for mtDNA haplogroups).   

Two major databases regarding human mitochondrial genome and variations are: (1) 

MITOMAP:  Human Mitochondrial Genome Database and (2) GiiB-JST mtSNP 

database:  Human Mitochondrial Genome Polymorphism Database (Umetsu and Yuasa, 

2005).  Studies investigating the role of various mitochondrial haplogroups in the 

pathogenesis of MCD are scarce. 

Oxidative stress is one of the major risk factors for neurodegenerative diseases.  

Mitochondrial DNA (mtDNA) variations can cause inefficient oxidative phosphorylation 

leading to the accumulation of ROS, DNA damage, and may lead to increased brain 

lesion risk.  Since the roles of various mtDNA variations in the pathogenesis of MCD are 

scarce.  Studies exploring the presence and the roles of mitochondrial haplogroup 

background and mtDNA variations as risk contributors to MCD are needed.  Overall, the 

goal of this study is to investigate the mtDNA background and oxidative damage in 

intractable pediatric epilepsy patients with MCD phenotype.  
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Table 1.0.   
Cortical dysplasia classification in epilepsy 
 
Type of                            
Focal Dysplasia 

              
Subtype 

                                                                                
Major morphological feature(s) 

Mild MCD Type I 
Type II 

Excess neurons in layer I 
Excess neurons outside layer I 

FCD Type I Type Ia 
Type Ib 

Cortical dislamination only 
Cortical dislamination and giant neurons 

FCD Type II 
(Taylor-Type FCD) 

Type IIa 
Type IIb 

Cortical dislamination and dysmorphic neurons 
Cortical dislamination, dysmorphic neurons and 
balloon cells 

 

Table 2.0.   
Classification of Malformations of Cortical Development (MCD) 
 
Malformations due to abnormal glial 
and neuronal proliferation 
 

Dysembrioplastic neuroepithelial tumors 
(DNET) 
Focal cortical dysplasia (FCD) 
Fukuyama muscular dystrophy syndrome 
(FMDS) 
Gangliomas 
Hemimegalencephaly 
Microcephaly 
Microlissencephaly 
Megalencephaly 

Malformations due to abnormal 
neuronal migration  

Lissencephaly 
Cobblestone dysplasia 
Periventricular nodular heterotopia (PNH) 

Malformations due to abnormal 
cortical organization 

Polymicrogyria 
Schizencephaly 

Malformations due to abnormal cell 
fate proliferation 

Tuberous sclerosis (TS) 
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Table 3.0.  
 Susceptibility Genes of MCD Syndromes 
 
MCD Gene Locus Protein 
Tuberous Sclerosis (TS) TSC1 9q34 Hamartin 
Tuberous Sclerosis (TS) TSC2 16p13 Tuberin 
X-linked lissencephaly 
(XLIS) 

DCX Xq22 Doublecortin (DCX) 

Subcortical band 
heterotopia** 

DCX Xq22 Doublecortin (DCX) 

Miller-Dieker lissencephaly LIS-1 17p13 PAFAH1B1*** 
Fukuyama congenital 
muscular dystrophy (FCMD) 

FCMD 9q31 Fukutin 

Muscle-eye-brain disease 
(MEB)** 

POMGnT1 1p32 POMGnT1*** 

Periventricular nodular 
heterotopia (PH) 
 

FLN1 Xq28 Filamin 1 

**Not discussed in this review 
***PAFAH1B1 – platelet activating factor acetyldydrolase β subunit 
     POMGnT1- protein O-manose β 1,2-N-acetylglucosaminyltransferase 
 
 

Table 4.0.   
Environmental Factors of MCD 
 

Environmental Factor Agent 
Teratogenic Alcohol 

Cocaine 
Methlylazoxymethanol (MAM) 
Thalidomide 

Physical Freeze lesion  
Hypoxic-ischemic injury 
Head Trauma 
Ionizing radiation 
Ultraviolet (UV) radiation 

Biological Cytomegalovirus 
Herpes simplex 
Rubella 
Toxoplasmosis 
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Table. 5.0.   
Mitochondrial variants reported in Diseases and Haplogroups 
 

Region Variant Reported in Patients 

tRNA Phe G583A Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS) 

tRNA Phe A606G Exercise intolerance/ myoglobinuria 

tRNA Phe T618C Mitochondrial myopathy 

12S rRNA G709A Non-syndromic hearing loss 

12S rRNA T1095C Sensorineural Hearing Loss (SNHL) 

12S rRNA T710C Colorectal tumor; mtDNA haplogroup (Hg)-L1b 

12S rRNA C1310T Diabetes mellitus 

12S rRNA A1555G Maternally inherited deafness  or aminoglycoside-induced deafness 

tRNA Val G1606A Ataxia, myoclonus, and deafness 

tRNA Val G1642A MELAS 

16S rRNA G1719A Hg-I, X 

16S rRNA T1738C colorectal tumor 

16S rRNA C3093G MELAS 

16S rRNA G3196A Alzheimer’s Disease and Parkinson’s Disease (ADPD) 

16S rRNA T3197C Hg-U5 

tRNA Leu A3243G MELAS, (Chronic Progressive External Ophthalmoplegia) CPEO; Diabetes/deafness 

tRNA Leu A3243T Mitochondrial myopathy 
ND1 T3308C MELAS, colorectal tumor 
ND1 T3394C Leber Hereditary Optic Neuropathy (LHON);  Non-insulin dependent diabetes mellitus 

(NIDDM); acute leukemia 

ND1 C3594T Hg-L(L1 or L2) 

ND1 A3397G ADPD 

ND1 A4136G LHON 

tRNA Ile A4269G Fatal Infantile Cardiomyopathy (FICP) 
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Table. 5.0.  (cont.) 
Mitochondrial variants reported in Diseases and Haplogroups 
 

Region Variant Reported in Patients 

tRNA Ile T4274C CPEO 

tRNA Ile A4295G Maternally inherited hypertropic cardiomyopathy (MHCM) 

tRNA Ile G4298A CPEO / Multiple Sclerosis (MS) 

tRNA Ile G4309A CPEO 

tRNA Ile A4317G Fatal Infantile Cardiomyopathy (FICP) 

tRNA Ile A4320T Mitochondrial encephalocardiomyopathy 

tRNA Gln T4336C ADPD 

tRNA Met T4409C Mitochondrial myopathy 

ND2 A4917G LHON, Hg-T 

tRNA Trp G5521A Mitochondrial myopathy 

tRNA Trp G5549A Dementia/ chorea 

tRNA Ala T5628C CPEO 

tRNA Asn A5692G CPEO 

tRNA Cys A5814G Mitochondrial encephalopathy 

tRNA Tyr T5874G Exercise intolerance 

tRNA Ser(UCN) A7445G SNHL 

tRNA Ser(UCN) A7497A Mitochondrial myopathy 

tRNA Ser(UCN) T7511C SNHL 

COX II G8251A SNHL; Hg-I,W 

ATP6 G8994A SNHL; Hg-W 

ATP6 G9055A Hg-K, longevity, ↓PD 

CO III G9438A LHON 

CO III G9738T LHON 
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Table. 5.0.  (cont.) 
Mitochondrial variants reported in Diseases and Haplogroups 
 

Region Variant Reported in Patients 
CO III G9804A LHON 
CO III G9952A Mitochondrial Encephalopathy 
CO III T9957C Progressive encephalopathy (PEM); MELAS 

tRNA Gly T9997C MHCM 
tRNA Gly A10006G Chronic intestinal pseudo-obstruction (CIPO) 
tRNA Gly T10010C PEM 
tRNA Gly T10034C Hg-I 
tRNA Gly A10044G Gastroesophageal reflux (GER) / Sudden infant death syndrome (SIDS) 

ND3 A10398G ↓PD, ↓AD;A-↑Breast Cancer  (BRCA) in AA; Hg-I, J, L, M 
ND3 C10400T Hg-M 

tRNA LeuCUN A12308G Hg-U&K; CPEO / Stroke / Cardiomyopathy (CM) 
ND5 G13368A Hg-T 
ND5 G13708A Hg-J; LHON 

tRNA Thr G15915A Mitochondrial myopathy 
tRNA Thr A15923G Lethal infantile mitochondrial myopathy 
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Table 6.0.   
Mitochondrial haplogroups 
 

Haplogroup Diagnostic mtDNA Variation (SNP) 

A A663G 
B 8280:8290 =A[delCCCCCTCTA]G 
C A13263G 
D C5178A 
E C13626T 
F T6392C 
G A4833G 
H C7028C 
I A4529T , T10034C, A10398G 
J A10398G and G13078A 

L0, L1, L2 C3594T 
L3 C3594C 
M C10400T + A10398G 
N C10400C + A10398A and T10873T 
P T10118C 
Q A5843G 
R C12705C 
S T8404C 
T A4917G 
V G4580A 
W A11947G 
X C6371T 
Y G8392A 
Z T9090C 

HV-group C14766C 
TJ-group T4216C 

UK-group  A12308G and G9055A 
  

 
Table 7.0.   
mtDNA lineage 
 

Ancestry Haplogroups 

African L0, L1, L2, L3, M, and N 
Asian A, B, C, D, E, F, G, M, N P, Q, Y, and Z 

European F, B, H, Hv, I, J, K, P, R, T, U, V, X, and W 
Native American A, B, C, and D 

Siberia G, Y, and Z 
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CHAPTER III 

 

MANUSCRIPT 1 

MITOCHONDRIAL DNA BACKGROUND AND OXIDATIVE DAMAGE IN 

INTRACTABLE EPILEPSY  

PEDIATRIC PATIENTS  

Abstract 

Objectives:  Research mitochondrial background and mitochondrial DNA 
(mtDNA) damage in pediatric intractable epilepsy patients.  mtDNA oxidative 
damage and copy number are indices of mitochondrial damage. Mitochondrial 
damage may play a role in the pathology of intractable epilepsy.  The purpose of 
this study is to determine and compare mtDNA variants (SNPs) and mtDNA 
oxidative damage in intractable epilepsy patients with malformations of cortical 
development (MCD) and non-MCD with non-epileptic controls. 
 
Methods:  Brain tissue specimens were collected from 21 pediatric intractable 
epilepsy patients from Miami Children’s Hospital and 11 controls (non-epileptic) 
from UMB.  Oxidative mtDNA damage as indicated by mtDNA∆Ct (formation of 
8-OHdG) and relative mtDNA copy number were determined for each tissue by 
quantitative real-time PCR (QPCR).  A total of 10 SNPs associated with 
mitochondrial myopathies were genotyped by allele-specific oligonucleotide dot 
(ASO) blot analysis. In female samples, a summary Bayesian network was 
created to investigate the relationship of these variables. 
 
Results:  In female samples, relative mtDNA copy number were higher in 
intractable epilepsy patients compared to non-epileptic control samples (p=0.01).  
Oxidative mtDNA damage was lower in epileptics compared to non-epileptic 
control samples (p=0.24), and lower in MCD compared to non-MCD (p=0.58). 
mtSNP G9952A was found in higher frequencies in epilepsy samples. Bayesian 
network showed several significant relationships (p < 0.05) between epilepsy, 
MCD, oxidative mtDNA damage, mtDNA copy number, and the mtSNPs 
G9952A, G3196A, T3197C, A10006G, and A10398G in female samples. 
 
Conclusion:  These data suggest that the mtSNPs explored are associated with 
intractable epilepsy phenotypes.  mtDNA copy number and mtDNA∆Ct may serve 
as useful biomarkers of mtDNA damage and can be used to evaluate 
mitochondrial oxidative damage in epilepsy etiologies.  These results indicate 
that increases in mtDNA content may be compensatory mechanisms for defective 
mitochondria in intractable epilepsy.  Findings suggest mitochondria play a role 
in the development of epilepsy.  Thus, means to suppress oxidative damage may 
be beneficial to intractable epilepsy patients. 
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Epilepsy is a chronic neurological disorder characterized by spontaneous 

recurring seizures.  The incidence of epilepsy is highest for children and the elderly.  A 

proportion of patients have seizures that are resistant to traditional anti-epilepsy 

medicines (intractable or refractory epilepsy) (Alexander and Godwin, 2006).  Over 30% 

of epileptic patients are medically intractable (Lopez et al., 2007).  The occurrence of 

epilepsy is highly associated with malformations of cortical development (MCD) which 

are developmental brain lesions that consist of dysplastic neuronal lesions 

(malformations) (Schwartzkroin and Walsh, 2000; Hua and Crino, 2003; Hader et al., 

2004; Rickert, 2006; Wong, 2007).  MCD are increasingly being recognized as the cause 

of intractable epilepsy.  

 MCD presents a broad spectrum of structural changes which appear to result 

from changes in precursor neuronal or neuronal cells during cortical development at 

various stages such as: proliferation, migration, differentiation, and apoptosis (Becker et 

al., 2004).  Treatment with anti-epileptic drugs (AEDs) is usually ineffective, and 

children with MCD may require surgical removal of the affected area of the brain (Yasin 

et al., 2010).  Two of the most common MCD found in resected tissue from children 

afflicted with intractable epilepsy are tuberous sclerosis (TSC), and focal cortical 

dysplasia (FCD) (Fassunke et al., 2004).  The molecular mechanisms underlying the 

formation of MCD are still largely unknown and the treatments for epilepsy due to MCD 

are often ineffective or limited (Wong, 2009).   

Epilepsy results from excessive synchronous firing of neurons in cortical 

networks (Prasad et al., 1999; Paredes and Baraban, 2002).  Despite several attempts to 

elucidate the cause of epilepsy, to date, results have not been satisfactory.  Epilepsy is a 
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common feature of mitochondrial encephalopathies that are caused by defective oxidative 

phosphorylation in the CNS (Zsurka et al., 2010).  It has been proposed that the 

accumulation of mitochondrial DNA (mtDNA) mutations and the alteration in the 

execution of apoptosis, contribute to the onset of neurodegenerative diseases (Lee et al., 

2005).  A role for mitochondrial dysfunction and oxidative stress in intractable epilepsy 

patients has been suggested (Shah et al., 2002; Waldbaum and Patel, 2010a). 

Mitochondria contain their own genome, mtDNA, which consists of a 16.5-kb 

circular double-stranded DNA (dsDNA) molecule containing 37 genes (Bai et al., 2008). 

Mitochondria functions in oxidative phosphorylation, heme, lipid, amino acid 

biosynthesis, and fatty acid oxidation among other functions (Sugimoto, 2008).  

Mammalian cells contain several hundreds to more than a thousand mitochondria.  The 

size, shape and abundance of mitochondria vary drastically in different cell types and 

may change under differing energy demands and physiological or environmental 

conditions.  In a cell, the abundance of mitochondria is determined by biogenesis and 

division of the organelles.  The quantity of mitochondria per cell is tighly regulated by 

activation of specific transcription factors and signaling pathways (Lee and Wei, 2005).  

The major source of ATP in cortical neurons is provided by mitochondrial oxidative 

phosphorylation (Chuang, 2010).  Mitochondrial metabolism also generates the majority 

of the reactive oxygen species (ROS) production in cells (St-Pierre et al., 2006).  ROS 

results when unpaired electrons escape the electron transport chain.  The most commonly 

produced base lesion by ROS, and the most often measured as an index of oxidative 

DNA damage is 8-hydroxyguanosine (8-OHdG) (Wiseman and Halliwell, 1995).  The 

brain is believed to be particularly susceptible to the damaging effects of ROS damage 
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due to its high metabolic rate and reduced capability for cellular regeneration compared 

to other organs (Anderson, 2004).  Mitochondria can modulate neuronal excitability and 

synaptic transmission since oxidative phosphorylation provides the major source of ATP 

in neurons and participate in cellular calcium homeostasis (Devi et al, 2008).   

Mitochondrial oxidative stress and dysfunction are contributing factors to several 

neurological disorders (Shokolenko et al., 2009; Waldbaum and Patel, 2010b).  

Encephalomyopathies have been found in children in association with defects in 

mitochondrial structure and function.  Some of these disorders are acute leukemia, 

Alzheimer’s disease (AD), cardiomyopathy (CM), chronic progressive external 

ophthalmoplegia, colorectal cancer, deafness, fatal infantile cardiomyopathy (FICP), 

gastroesopageal reflux (GER), mitochondrial encephalomyopathy, lactic acidosis and 

stroke-like episodes (MELAS), myoclonic epilepsy with ragged red fibers (MERRF), 

Leber Hereditary Optic Neuropathy (LHON),  Parkinson’s disease (PD), maternally 

inherited hypertropic cardiomyopathy (MHCM), multiple sclerosis (MS), non-insulin 

dependent diabetes mellitus (NIDDM), non-syndromic hearing loss, progressive 

encephalopathy (PEM), sensorineural hearing loss (SNHL), strokes, and sudden infant 

death syndrome (SIDS) (Filiano et al., 2002; Bai et al., 2007; Tzen et al., 2007).  Among 

mitochondrial disorders, infantile spasms have been reported in complex III deficiency 

(Shah et al., 2002).  In this study, we investigate the presence of oxidative mtDNA 

damage, constitutional mtDNA copy number, mtDNA SNPs, and haplogroups as sources 

of genetic diversity that may contribute to the development of pediatric intractable 

epilepsy. 
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Methods 

Collection of brain tissue from pediatric intractable epilepsy patients 

Brain tissue samples from 21 pediatric non-neoplastic intractable epilepsy patients 

who have undergone brain resection surgery at the Miami Children’s Hospital, Miami, 

FL, during 2008-2009 were collected.  Tissues obtained during surgical resection were 

immediately snap-frozen in liquid nitrogen and stored at -80°C.  As references, eleven 

normal, non-epileptic, pediatric brain tissues were obtained from the NICHD Brain and 

Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore, MD 

and stored at -80°C.  This study was approved by the Florida International University’s 

Institutional Review Board. 

DNA extraction  

Freshly excised human neuronal (brain) tissue was stored in liquid nitrogen and 

frozen in -80°C until ready for processing.  The frozen neuronal tissue was homogenized, 

while on ice, using a Janke and Kunkle TP-18-10 blade type homogenizer in which 1 ml 

of Trizol® was added.  The homogenate was transferred to a 2.0-ml microcentrifuge 

tube. DNA was then isolated and purified via Phenol-Chloroform extraction.  The 

precipitated DNA was pelleted and resuspended in1X TE buffer.  The integrity of the 

DNA was verified following electrophoresis through 2% agarose gels.  

Determination of and mtDNA copy number and mitochondrial DNA oxidative damage 

by quantitative real time PCR 

 Quantitative real-time PCR (QPCR) assays were performed using Applied 

Biosystems 7300 System with a final volume of 25uL reaction mixture containing 50ng 

DNA template, 12.5uL SYBR Green PCR Master Mix (Qiagen), and 10mM of each 
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primer.  The sequences for the primers used for the amplification of the mitochondrial 

gene NADH Dehydrogenase 1 (ND1) were: mtF3212, 5’-

CACCCAAGAACAGGGTTTGT-3’ and  mtR3319, 5’-TGGCCATGGGATTGTTAA-

3’.  The sequences of the primer for the nuclear housekeeping gene 18s rRNA, used for 

the normalization in the QPCR analysis, were: 18s1546F, 5’-

TAGAGGGACAAGTGGCGTTC-3’and 18s650R, 5’-CGCTGAGCCAGTCAGTGT-3’ 

(Bai et al., 2004; Lin et al, 2008).  The QPCR conditions were set up as follows: hot start 

at 95° C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 

minute.  The fluorescence intensity was measured at the end of the extension phase at 

60°C.  All samples were performed in duplicated and a non-template negative control 

was included in each reaction.   

A total of 50ng of DNA was used in QPCR for the determination of the threshold 

cycle number (Ct) of the 18s rRNA and ND1 genes.  Ct values can be used as a measure 

of input copy number and the Ct value differences were used to quantify the mtDNA 

copy number relative to the 18s rRNA gene with the following equation:                         

Relative copy number= 2∆Ct, where ∆Ct is the Ct 18s rRNA – Ct ND1 (Szuhai et al., 

2001; Bai et al., 2004; Lewis et al., 2007; Edwards, 2009; Lee et al, 2010). 

Since degree of oxidative mtDNA damage is reflected by an abundance of 8-

OHdG formation in mtDNA, the content of 8-OHdG in mtDNA, an index for cellular 

oxidative damage, was determined by QPCR and presented as ∆Ct (Ayala-Torres et al., 

2000).  As indicated by Lin et al (2008), the amplification efficiency would decrease after 

treatment of the DNA sample with hOGG1 to remove the 8-OHdG residue to form an 

abasic site.  The content of 8-OHdG in the samples’ mtDNA was determined by treating 
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the 200ng sample with 2 units of hOGG1 (New England Biolabs, M024S) at 37° C for 1 

hour and 5 minutes to remove the 8-OHdG residue to form a basic site.  The digested 

mtDNA were amplified by QPCR using the primers for ND1 gene.  PCR amplification 

efficiencies of DNA templates containing a single 8-OHdG or two 8-OHdGs at least 13 

base pairs apart are not significantly disturbed (Ct1), however, the presence of an abasic 

site in DNA after treatment of hOGG1 would dramatically reduce the PCR efficiency, 

thus, increasing the Ct value (Ct2) (Lin et al., 2008).  The degree of oxidative mtDNA 

damage, mtDNA∆Ct, was defined as ∆Ct= Ct2 (hOGG1 treatment) – Ct1 (no hOGG1 

treatment) (Lin et al., 2008; Su et al., 2010).  Each analysis was performed in duplicate, 

and the mean value of ∆Ct was calculated for each sample.  Hence, the larger the ∆Ct, the 

more abundant the 8-OHdG and more oxidative damage present in the sample.   

mtDNA genotyping 

A total of 50ng of DNA was used in Quantitative PCR (QPCR) to amplify the 

mitochondrial genome with 19 primer sets (Table A.8) designed by Bai et al. (2007) to 

include the mtDNA regions containing 10 reported mtDNA variations (SNPs).  The 

mtDNA variations are distributed along the rRNA, tRNA, COIII and ND3 regions of the 

mitochondrial genome.  The mtDNA variations studied have been reported in patients 

with varying diseases such as:  Alzheimer’s disease, Parkinson’s disease, Leber’s 

hereditary optic neuropathy (LHON), deafness, chronic progressive external 

ophthalmoplegia (CPEO), chronic intestinal pseudo-obstruction (CIPO) and other 

diseases (Table 1.3). 

QPCR assays to amplify 19 regions of the mitochondrial genome (Table A.8) 

were performed using Applied Biosystems 7300 System with a final volume of 25uL 
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reaction mixture containing 50ng DNA template, 12.5uL SYBR Green PCR Master Mix 

(Qiagen), and 10mM of each primer.  The QPCR conditions were set up as follows: hot 

start at 95° C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 

1 minute.  Two microliters of QPCR products were spotted on Hybond N+ membrane 

(GE).  Dot blot preparation and hybridization conditions are available in the Appendix 

(Table A.11).  The allele-specific oligonucleotide (ASO) probes for the mtDNA variants 

are listed in Table A.9 (Bai et al, 2007).  These probes were labeled with Dioxigenin 

(DIG) (Roche, DIG Oligonucleotide 3'-End Labeling Kit).  Both the variant and wild type 

controls for each ASO blot were included as controls.  mtDNA haplogroups I, J, L, M 

and U5 were classified according to Table A.7. 

Bayesian network 

 In female samples, Bayesian Network Inference with Java Objects (Banjo) ©  

software was used to determine influence scores and to create a directed acyclic graph 

(DAG) to represent the Bayesian network showing  the probablilistic relationships 

between epilepsy status, MCD status, relative mtDNA copy number, oxidative mtDNA 

damage, and the mtSNPs with influence scores (absolute value) higher than 0.1.  The top 

three scoring networks were used to generate a consensus network. 

Statistical Analysis 

Continuous variables were studentized to identify and remove outliers. 

Logarithmic transformation of data was used since the original values of the relative 

mtDNA copy number and the content of 8-OHdG in mtDNA showed non normal 

distributions.  The continuous variables between groups were compared using the 

Student’s t-test and Fisher’s exact test for comparisons of the frequency of dichotomous 
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features.  Pearson’s correlation test was used to test the relationship between mtDNA 

copy number and the content of 8-OHdG in mtDNA.  Analysis was carried out using 

Fisher’s exact test for each individual mtSNP and haplogroup.   

Logistic regression was used to determine the adjusted odds ratio.  Epilepsy 

patients were sub-divided as those being malformations of cortical development (MCD) 

and non-MCD as per Barkovich MCD classification system (Barkovich et al., 2005).  

Logistic regression was also used to explore if epilepsy, MCD, or non-MCD phenotypes 

were dependent on mtSNPs, haplogroups, level of mtDNA oxidative damage, and level 

of relative mtDNA copy number, model adjusted by age.  In female samples, Banjo © 

software was used to determine influence scores and to create a directed acyclic graph 

(DAG) to represent the Bayesian network showing  the probablilistic relationships 

between epilepsy status, MCD status, relative mtDNA copy number, oxidative mtDNA 

damage, and the mtSNPs.  In addition, Pearson correlations were determined for these 

relationships.  Statistical analyses were performed using SPSS version 18.0 for Microsoft 

Windows.  Statistical significance was set at P < 0.05. 

Results 

Demographics and clinical information 

The demographic and pathology information of the pediatric non-neoplastic 

intractable epilepsy patients are shown in Table 1.1, and for the 11 control samples in 

Table 1.2.  After the removal of outliers there were 18 pediatric non-neoplastic epilepsy 

patients (MCD=12, non-MCD=6).  MCD cases accounted for ~66% of the non-neoplastic 

intractable epilepsy cases.  The majority (92%) of patients with MCD are classified as 

malformations due to abnormal glial and neuronal proliferation.  The groups did not 
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significantly differ in ages.  Using correlation methods, we demonstrate that mtDNA 

copy number and the degree of oxidative DNA damage were not significantly correlated 

(Pearson correlation= -0.28, p=0.19) (Fig. 1.1). 

Relative mtDNA copy number 

The measurement of DNA in individual amplifiable DNA segments is measured 

by quantitative real-time PCR (QPCR).  The use of SYBR green in QPCR assays allows 

for the detection of small difference in the starting template using nanograms of DNA.  

The higher threshold cycle (Ct), or shift of the amplification curve to the right, indicates a 

low amount of starting DNA template, thus, decreased DNA content.  Ratios of 

mtDNA/nuclear DNA were used to obtain the relative mtDNA copy number, where a 

lower ratio is representative of a lower initial DNA template, demonstrating a decrease in 

the amount of mtDNA.  We selected the nuclear 18s rRNA gene and mtDNA coding 

region of ND1 gene.  We used QPCR to analyze the relative mtDNA copy number of the 

pediatric intractable epilepsy brain tissues (non-neoplastic) and non-epileptic control 

brain tissues.  Tables 1.4 - 1.8 show the average relative mtDNA copy number for each 

group.  The relative mtDNA copy number (p=0.44) did not significantly differ between 

male and female epilepsy patients (Table 1.5).   A 70% increase in relative mtDNA copy 

number for non-neoplastic epilepsy samples was observed compared to controls                 

(p < 0.001).  Both MCD (2.34, p < 0.001) and non-MCD (2.60, p=0.02) samples 

demonstrated higher relative mtDNA copy numbers compared to controls (1.33).  MCD 

patients presented a lower relative mtDNA copy number (2.34) than non-MCD (2.60) 

epileptic patients, however, statistical significance was not achieved (p=0.58).  Higher 
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relative copy numbers were found in female non-neoplastic epilepsy samples compared 

to controls (p=0.01). 

Oxidative mtDNA damage  

The degree of oxidative mtDNA damage is reflected by an abundance of 8-OHdG 

formation in mtDNA, the content of 8-OHdG in mtDNA, an index for cellular oxidative 

damage, was determined by QPCR and presented as ∆Ct.  The degree of oxidative 

mtDNA damage, mtDNA∆Ct, was determined as ∆Ct= Ct2 (hOGG1 treatment) – Ct1 (no 

hOGG1 treatment), thus, the larger the ∆Ct, the more abundant the 8-OHdG and more 

oxidative damage present in the sample.  Tables 1.4 -1.8 show the oxidative mtDNA 

damage for each group.  Controls had higher oxidative mtDNA damage (0.59) compared 

to non-neoplastic epilepsy (0.43, p=0.47) and MCD (0.30, p=0.28), but lower oxidative 

mtDNA damage compared to non-MCD (0.77, p=0.21) groups, yet, statistical 

significance was not reached.  The degree of oxidative mtDNA damage (p=0.35) did not 

significantly differ between male and female epilepsy patients, and female epilepsy 

samples presented lower oxidative mtDNA damage than controls (p=0.24) (Table1. 5).    

mtDNA genotyping 

 In this study we analyzed the association between ten mitochondrial SNPs and 

non-neoplastic intractable epilepsy (MCD and non-MCD).  Alleles G9804A (p=0.51; 

Adjusted OR=1.27E9, 95% CI [0, NaN]) and G9952A (p=0.27; Adjusted OR=1.48E9, 

95% CI [0, NaN]) were found at higher frequencies in epilepsy samples compared to 

controls.  Controls had higher frequencies for the mitochondrial SNPs G3196A, T3197C, 

A10006G, A10398G, and the haplogroups I, J, L, M, and U5 compared to all non-

neoplastic epilepsy samples (Tables 1. 9 and 1.10), including MCD  (Tables 1.15 and 
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1.16) and non-MCD (Tables 1.12 and 1.13) sub-groups.  The European (I and J), African 

(L and M), and Asian (M) haplogroups were observed in both epilepsy and control 

samples.  The European haplogroup (U5) was not observed in the epilepsy (MCD and 

Non-MCD) samples.  However, no differences in the frequencies of SNPs and 

haplogroups were observed when comparing MCD and Non-MCD sub-groups (Tables 

1.19 and 1.20).  The same trends were observed when comparing female epilepsy 

samples with controls.  In addition, logistic regression revealed that epilepsy, MCD or 

non-MCD phenotypes did not significantly depend on level of relative mtDNA copy 

number, level of oxidative mtDNA damage, mtSNP or haplogroup status (Tables 1.21-

1.26).  A trend that the levels of relative mtDNA copy number and oxidative mtDNA 

damage and for the SNPs A4317G (OR= 1.00E8, 95% CI [0, NaN]) and T10010 (OR= 

1.69E38, 95% CI [0, NaN]) predicted epilepsy phenotype was observed, yet, there were 

large confidence intervals due to large standard error (Table 1.21).   

Bayesian network 

 In the female samples we used Banjo© software to learn a Bayesian network to 

study the relationships among epilepsy status, MCD status, relative mtDNA copy 

number, oxidative mtDNA damage, and the mtSNPs. A summary Bayesian network 

based on the top three Bayesian networks for the female samples was created (Figure 

1.2).  In this network epilepsy status is connected to oxidative mtDNA damage, relative 

mtDNA copy number, and to 6 mtDNA SNPs (T3197C, G3196A, A10398G, A10006G, 

G9952A, and A1555G).  The paths of oxidative mtDNA damage-A10006G-epilepsy; 

oxidative mtDNA damage-relative mtDNA copy number; epilepsy- relative mtDNA copy 

number; G9952A-epilepsy; epilepsy-A103098G, T3197C, G3196A, and A1555G are 
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shown in the summary Bayesian network.  The influence scores between several of these 

variables are depicted on Table 1.27.  The Pearson correlation of between selected 

variables based on the influence scores are found in Table 1.28.  Signficant correlations 

(p < 0.05) were found between epilepsy and MCD status, epilepsy and MCD with 

G9952A, epilepsy and MCD with oxidative mtDNA damage by relative mtDNA copy 

number, epilepsy and MCD with T3197C, G3196A, A10006G, and A10398G, to name a 

few.  Thus, the summary Bayesian network summarizes the relationship between mtDNA 

oxidative damage and copy number, SNPs (genes) and disease (phenotype).   

Discussion 

A role for mitochondrial dysfunction and oxidative stress in intractable epilepsy 

patients has been suggested (Shah et al., 2002; Waldbaum and Patel, 2010a).  Results of 

this study suggest mitochondria may play a critical role in the development of epilepsy. 

In this study we demonstrated that pediatric non-neoplastic intractable epilepsy patients 

(both MCD and non-MCD syndrome) have significantly higher mtDNA copy number 

than controls.  Female epilepsy samples presented signficantly higher mtDNA copy 

number and a trend of lower oxidative mtDNA damage compared to controls.  The 

degree of oxidative mtDNA damage was lower among epilepsy patients, including MCD, 

compared to controls.  No significant differences by gender, regarding relative mtDNA 

copy number and degree of oxidative mtDNA damage, as well as mtDNA SNP and 

haplogroup background, were observed among pediatric epilepsy patients.  The mtDNA 

variants G9804A and G9952A, which code for COIII, were found in higher frequencies 

in the intractable epilepsy patients.  A trend in which G9804A and G9952A, along with 

the level of mtDNA copy number and the level of oxidative mtDNA damage, predict 
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MCD and non-MCD epilepsy phenotypes was observed.  In the female samples G9952A 

was found in higher frequency than controls.  In addition, in female samples, the 

summary Bayesian network demonstrated the statistically significant relationships 

between the oxidative mtDNA damage, relative mtDNA copy number, SNPs (T3197C, 

G3196A, A10398G, A10006G, G9952A, and A1555G), and epilepsy.  Additionally, the 

majority of the epilepsy patients were categorized as MCD that may be further classified 

as malformations due to abnormal glial and neuronal proliferation.  A key event in brain 

development is proliferation which begins around the 20th week of gestation (Lenroot and 

Giedd, 2006). 

Mammalian cells contain several hundreds to more than a thousand mitochondria. 

The size, shape and abundance of mitochondria vary drastically in different cell types and 

may change under differing energy demands and physiological or environmental 

conditions.  In a cell, the abundance of mitochondria is determined by biogenesis and 

division of the organelles.  The quantity of mitochondria per cell is tightly regulated by 

activation of specific transcription factors and signaling pathways (Lee and Wei, 2005).  

The assembly and functioning of the respiratory enzyme complexes in cells require 

coordinated expression the interaction of gene products between the mitochondrial and 

nuclear genomes.  Gene expressions of the mitochondria and nucleus respond in a 

complex manner to various physiological and developmental signals such as growth 

activation, neoplastic transformation, muscle contraction, cell differentiation and 

hormone action (Lee and Wei, 2005).  Control of biogenesis in mitochondria is a 

complex process.  Alterations in intracellular level of ROS are associated with changes in 

mitochondrial abundance, mtDNA copy number, and the expression of respiratory genes.  
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Persistent oxidative stress in mitochondria not only contributes to the somatic mtDNA 

mutations but also alter mtDNA replication rate, leading to an overall decline in the 

mitochondrial respiratory function.   

Replication of mtDNA occurs primarily during the S and G2 phases of the cell 

cycle, but most importantly can occur at any point of the cell cycle.  In addition, mtDNA 

replication does not occur concurrently with the growth and division of organelles, hence, 

mtDNA replication can occur without mitochondrial proliferation.  The copy number of 

mtDNA varies with cell type and is maintained within a range.  mtDNA copy number 

may be modulated according to the energy needs of the cell.  Changes in mtDNA copy 

number in response to exercise and hormone treatment have been observed (Lee and Wei, 

2005).  Currently, it is unclear how copy number of mtDNA and the abundance of 

mitochondria are regulated under different physiological and developmental conditions.   

mtDNA copy numbers can be modulated when physiological conditions are 

changed.  Environmental exposures can generate ROS and may induce the accumulation 

of mtDNA mutations in human tissue. mtDNA is more susceptible to oxidative damage 

due to its lack of histones and limited capacity to repair DNA damage, thus, consequently 

acquires mutations at greater rates than nuclear DNA.  Mitochondrial function is 

compromised as a result of oxidative damage and damage to mtDNA.  Oxidative stress 

stimulates mitochondrial proliferation to meet the energy needs for cell survival including 

repair of damage and synthesis of new proteins.   Oxidative stress causes excess ROS 

production resulting in further oxidative damage.  The increase of mtDNA copy number 

is dependent of the level of oxidative stress, the capacity of intracellular antioxidant 

system, the quality of mitochondria and mtDNA.  The increase of ROS production from a 
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defective respiratory chain is thought to play a role in the increase of mitochondrial 

content.  ROS act as a second messenger to trigger the expression of nuclear respiratory 

factors and mitochondrial transcription factor to induce mitochondrial biogenesis and 

mitochondrial proliferation (Jiang et al., 2005).  Oxidative damage induces an increase in 

mitochondria and mtDNA to compensate for the decline in the function of mitochondrial 

respiration (Shen et al., 2008).  In other words, ROS resulting from oxidative stress 

interact with genetic signaling systems that upregulate gene expression to counteract 

stressor challenges and to re-establish hemeostatis.  Increase in mtDNA copy number has 

been found in diseases. 

The mtDNA copy number in leukocytes from patients aged 30 years and younger 

with MELAS and MERFF showed an increase in mtDNA copy number, and a depletion 

of mtDNA was found in patients 40 years and older (Liu et al., 2006).  Brinckmann et al. 

(2010), found increased mtDNA copy number in the brain tissue of a 16 year old girl 

with MERRF.  According to Lee and Wei (2005), increase in mtDNA copy number is 

associated with elevated levels of oxidative stress in the aging tissues, brain, lung, and 

skeletal muscle of aged individuals. Chen et al. (2007) found increased total mtDNA 

copy number in peripheral leukocytes in Huntington’s disease patients, and the 

transcription levels of mtDNA-encoded enzymes were not significantly elevated.  Chen et 

al. (2007) suggested that the oxidative damage to mtDNA in HD leukocytes has reached 

a threshold over which mtDNA-encoded mRNA expression was suppressed. 

Treatment of human cells with H2O2 and buthionine suphoximine, which deplete 

intracellular glutathione, an anti-oxidant, induces an increase in mtDNA copy number 

and mitochondrial mass (Lee et al., 2000).  Gamma-irradiated mice showed an increase in 
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relative mtDNA copy number in brain and spleen tissues, suggesting that the major 

mechanisms for maintenance of the mitochondrial genome is the induction of synthesis of 

new mtDNA copies because the repair systems in the mitochondria function at a low 

level efficiency (Malakhova, et al., 2005).  It has been suggested that increases of 

mtDNA copy number in aging tissue cells are a result of the feedback response that 

compensates for defective mitochondria bearing impaired respiratory chain or mutated 

mtDNA.  Mitochondrial copy number may be an influence on phenotypic expression.  

There have been several reports showing that oxidative stress may be an 

important mechanism of CNS damage.  Findings by Fukuda et al. (2008) suggest that 

oxidative stress plays an important role in brain damage in children and this damage 

correlates with disease state.  For example in status epilepticus excitatory glutamic acids 

released in massive amounts might injure neurons and the production of free radicals by 

excessive stimulation of excitatory amino acid receptors are considered to be the cause of 

epilepsy (Fukuda et al., 2008).  Increased oxidation by ROS in cellular macromolecules 

after prolonged seizures has been observed, and experimental seizures have shown 

impaired Ca2+ sequestering, excessive ROS production, increased nitric oxide and 

peroxynitrite generations after prolonged seizures at time points preceding neuronal death 

(Waldabaum and Patel, 2010).  Oxidative stress and mitochondrial dysfunction occur as a 

consequence of prolonged epileptic seizure and may contribute to seizure-induced brain 

damage (Patil et al., 2011). 

Temporal lobe epilepsy studies have suggested that preceding neuronal death, 

after status epilepticus, is the increased level of ROS observed in brain slices and slice 

cultures of several models of experimental epilepsy, such as kainite-induced hippocampal 
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damage or pilocarpine damage (Baron et al., 2007).  Concentrations of 8-OHdG in the 

cerebral spinal fluid (CSF) in samples from children with epilepsy were slightly higher 

than control group, but the differences were not statistically significant (Fukuda et al., 

2008).  Shokolenko et al. (2009) provided evidence that in the human colon carcinoma 

(HCT116) cell model treated with H2O2, both DNA repair and degradation processes 

operate on oxidatively damaged mtDNA.  They found that the elimination of damaged 

mtDNA is followed by an accumulation of linear mtDNA molecules, which are thought 

to represent degradation intermediate, that unlike undamaged circular mtDNA molecules, 

they are susceptible to exonucleolitic degradation.  Shokolenko et al. (2009) suggest that 

trends that if a cell is unable to repair all of the damage inflicted by the environmental 

insult (H2O2) in the mitochondrial genome, a fraction of the mtDNA molecules 

undergoes double-strand breaks and is degraded, while moderately damage genomes are 

repaired, reflected by the increase in mtDNA quantity.  Hence, the model presented by 

Shokolenko et al. (2009) provides a mechanistic explanation, in which moderately 

damaged mitochondrial genomes are repaired, for the observation that non-neoplastic 

MCD pediatric epilepsy patients presented a low oxidative mtDNA damage, as indicated 

by the low mtDNA∆Ct (formation of 8-OHdG), and increased mtDNA copy number. 

Overall, in our results, we interpret the increase in relative mtDNA copy number 

as a result of compensatory responses induced by mtDNA damage, in order to repress the 

actions of the oxidative damage.  The increase in mtDNA replication, as a response to 

oxidative damage, provides a propagation of mtDNA that has not been damaged by 

oxidative stress.  The resulting mtDNA copies do not contain the damage (DNA adducts), 

presenting an overall lower oxidative mtDNA damage.  Thus, the increase in undamaged 
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mtDNA dilutes the presence of damage mtDNA.  Understanding oxidative-stress induced 

alterations in mtDNA copy number is important for the development of novel drugs to 

prevent and treat intractable epilepsy. 

In addition, our study found that the mitochondrial SNP, G9952A, was found in 

the female epilepsy patients and not the control samples.  This mitochondrial variant 

codes for COIII.  It is believed that the majority of the ROS are generated by complexes I 

and III, likely due to the release of electrons by NADH and FADH into the ETC.  Hanna 

et al. (1998) identified the G9952A point mutation in a patient with encephalopathy and 

exercise intolerance.  This point mutation is located in 3’ end of the gene for the subunit 

of COIII and is thought to result in the loss of the last 13 amino acids of the C-terminal 

region of this subunit.  Epilepsy has been reported in only a few cases of LHON (Kudin 

et al., 2009; Niehusman et al, 2011).  Our results suggest that the presence of these 

mitochondrial mutations in COIII, in conjunction with environmental insults, may induce 

mitochondrial dysfunction in epilepsy.  Hence, the role and mechanisms dysfunction of 

COIII of the respiratory chain in epileptogenesis and MCD needs to be explored further.  

In addition, the Bayesian network shows a relationship between mitochondria, mtSNP 

G9952A, and epilepsy phenotype.  

In summary, our study shows increased relative mtDNA copy number in brain 

tissues from pediatric non-neoplastic epilepsy patients.  The use of a summary Bayesian 

network of the female samples demonstrated the statistically significant relationships 

between the oxidative mtDNA damage, relative mtDNA copy number, SNPs (T3197C, 

G3196A, A10398G, A10006G, G9952A, and A1555G), and epilepsy.  Additionally, the 

majority of epilepsy patients belonged to MCDs due to abnormal glial and neuronal 
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proliferation indicating that environmental insults during this process of brain 

development should be explored.  The strength of this study is the direct measurements of 

relative mtDNA copy number, oxidative mtDNA damage, and genotyping for mtSNPs 

from the lesioned brain tissues resected from the pediatric epilepsy patients.  The 

summary Bayesian networks for the female samples indicate statistically significant 

relationships between disease phenotype with several of the mtSNPs, oxidative mtDNA 

damage, and relative mtDNA copy number.  Qualitative changes in mitochondrial 

genome with specific mutations or deletions in mtDNA have been frequently reported in 

patients with mitochondrial diseases.  However, there are limited studies that have 

addressed the change in mtDNA copy number in mitochondrial diseases and epilepsy 

disorders.  Many studies have investigated acute consequences of status epilepticus on 

cellular constituents but less is known about the role of oxidative stress and 

mitochondrial dysfunction in chronic epilepsy.  To our knowledge, this is the first study 

to explore mtDNA copy number, oxidative mtDNA oxidative stress in MCD pediatric 

epilepsy patients.   

A major limitation of this study is the small sample size.  However, results from 

this study provide the foundation, for proper determination of sample size in pediatric 

intractable epileptics, such as the frequency of mtSNPs in pediatric epilepsy patients, and 

the mean and standard deviation for further research regarding measurement of oxidative 

mtDNA damage.   For example, utilizing the results from this study, in order to compare 

oxidative mtDNA damage between epilepsy (non-tumor) and control samples, and for the 

study to reach 80% power with an alpha level of 0.05 requires a sample size of 558 (279 

disease and 279 control samples).  In order to acquire these sample sizes, a multi-facility 
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(and institution) study is needed to explore the oxidative mtDNA damage, mtDNA copy 

number, and mtSNPs in children with intractable epilepsy.  Findings from this study raise 

the possibility that inhibition of mitochondrial dysfunction may play a role in successful 

treatment of epilepsy.  Overall, findings of this study indicate a role of mitochondria in 

epilepsy.  
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Table 1.1.   
Clinical profile of pediatric patients with intractable epilepsy 
 

Sample  Age (years) Gender Diagnosis MCD Status Pathology 
7 15 F intractable epilepsy MCD cortical dysplasia, type IA 

9 18 F intractable epilepsy MCD focal cortical dysplasia, Taylor type IIB 
10 6 M intractable epilepsy Non-MCD mild neuronal disorganization 
11 13 F intractable epilepsy Non-MCD cystic encephalomalacia 
18 3 F intractable epilepsy Non-MCD meningioangiomatosis 
20 2 M intractable epilepsy Non-MCD gliosis 
23 7 F intractable epilepsy MCD cortical dysplasia with Rasmussen's 

encephalitis 
24 4 M intractable epilepsy MCD cortical dysplasia, type IIA 
25 4 F intractable epilepsy MCD tuberous sclerosis 
27 16 F intractable epilepsy MCD cortical dysplasia,  type IIB 
30 5 M intractable epilepsy MCD glioneuronal neoplasm/possible ganglioglioma 

31  N/A N/A  intractable epilepsy Non-MCD Information not available 
33 N/A  N/A  intractable epilepsy Non-MCD Information not available 
34 3 M intractable epilepsy MCD cortical dysplasia 
37 2 F intractable epilepsy MCD cortical dysplasia with Rasmussen's 

encephalitis 
38 17 F intractable epilepsy Non-MCD Information not available 
40 10 F intractable epilepsy MCD cortical dysplasia, Palmini type IA 
42 3 F intractable epilepsy MCD cortical dysplasia, type 1A 
43 9 M intractable epilepsy MCD cortical dysplasia, type 1A 
45  N/A N/A  intractable epilepsy Non-MCD Information not available 
48 6 M intractable epilepsy MCD cortical dysplasia, Palmini type 1B 
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Table 1.2   
Profile of control samples obtained from NICHD Brain and Tissue Bank for 
Developmental Disorders at the University of Maryland 
 

Sample  Age (years) Gender History/ Cause of Death 

Control 1 15 F car accident, multiple injuries 

Control 2 18 F car accident, multiple injuries 

Control 3 13 F asphyxia by hanging 

Control 4 2 F drowning 

Control 5 2 F drowning 

Control 6 8 F  asphyxia and multiple injuries 

Control 7 4 F lymphocytic myocarditis  

Control 8 16 F car accident, multiple injuries 

Control 9 2 F car accident, multiple injuries 

Control 10 17 F car accident, multiple injuries 

Control 11 10 F Asthma 
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Table 1.3.   
Mitochondrial SNPs and haplogroups used in this study 
  

Variant Region Reported in Patients 

A1555G 12S rRNA Maternally inherited deafness or aminoglycoside-induced deafness 

G3196A 16S rRNA Alzheimer’s Disease and Parkinson’s Disease (ADPD) 

T3197C 16S rRNA Haplogroup (Hg)-U5 

G4309A tRNA Ile Chronic Progressive External Ophthalmoplegia (CPEO) 

A4317G tRNA Ile Fatal Infantile Cardiomyopathy (FICP) 

G9804A CO III Leber Hereditary Optic Neuropathy (LHON) 

G9952A CO III Mitochondrial Encephalopathy 

A10006G tRNA Gly Chronic intestinal pseudo-obstruction (CIPO) 

T10010C tRNA Gly Progressive encephalopathy (PEM) 

A10398G ND3 ↓PD, ↓AD;A-↑Breast Cancer  (BRCA) in AA, Hg-I, J, L, M 
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Figure 1.1.   

Correlation between the mtDNA copy number and degree of oxidative mtDNA 

damage.  The relative mtDNA copy numbers of the intractable epilepsy tissues and 

control tissues with their relationship to degree of oxidative mtDNA damage are plotted.  

The results show that the two parameters were not significantly correlated (Pearson 

correlation coefficient= -0.28, p= 0.19).
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Table 1.4.   
Comparison of demographic, mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric intractable epilepsy patients and non-epileptic control from NICHD Brain and Tissue Bank 
 

  
All Cases  

(n=29) 

Non-neoplastic 
epilepsy    
(n=18)  

Control          
(n=11) P-value 

          
Age (years) 8.13 + 5.89  6.96 + 5.37  9.73 + 6.44  0.24 
Sex (M/F) 7/19 7/8 0/11 0.01 
log Relative mtDNA copy number          
Median 1.67 1.92 1.37   
Mean + S.D. 1.87 + 0.79 2.26 + 0.84 1.33 + 0.21 <0.001 
> 1.67 (high) (%)   13 (87) 0 (0) <0.001 
< 1.67 (low) (%) 2 (13) 11 (100)   
          
log Degree of oxidative mtDNA 
damage (∆Ct)         
Median 0.66 0.74 0.63   
Mean + S.D. 0.51 + 0.49 0.43 + 0.66 0.59 + 0.27 0.47 
> 0.66 (high damage) (%)   6 (40) 5 (45) 0.69 
< 0.66 (low damage) (%) 9 (60) 6 (55)   
          
Degree of oxidative mtDNA damage/ 
log Relative mtDNA copy number          
Median 0.40 0.33 0.42   
Mean + S.D. 0.36 + 0.30 0.24 + 0.31 0.46 + 0.25 0.09 
> 0.40 (high damage) (%)   4 (27) 6 (55) 0.66 
< 0.40 (low damage) (%) 6 (60) 4 (36)   
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Table 1. 5.   
Comparison of demographic, mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric intractable epilepsy patients and non-epileptic control from NICHD Brain and Tissue Bank by gender 
 
 

  
All Cases 

(n=29) 

Epilepsy 
Male    
(n=7) 

Epilepsy  
Female        
(n=8) 

Control 
Female      
(n=11) aP-value bP-value cP-value 

Age (years) 8.13 + 5.89 4.33 + 2.91 9.25 + 6.13  9.73 + 6.44 0.70 0.03 0.87 
log Relative mtDNA copy number                

Median 1.67 2.05 1.88 1.37       
Mean + S.D. 1.87 + 0.79 2.45 + 1.02 2.10 + 0.67 1.33 + 0.21 0.44 0.03 0.01 

> 1.67 (high) (%)   7 (100) 2 (25) 0 (0) 0.007 <0.001 0.001 
< 1.67 (low) (%) 0 (0) 6 (75) 11 (100)       
log Degree of oxidative mtDNA 
damage (∆Ct)               
Median 0.66 0.90 0.36 0.63       

Mean + S.D. 0.51 + 0.49 0.77 + 0.40 0.20 + 0.72 0.59 + 0.27 0.20 0.35 0.24 
> 0.66 (high damage) (%)   3 (43) 3 (38) 5 (45) 0.57 0.56 1.00 

< 0.66 (low damage) (%) 1 (14) 3 (38) 6 (55)       
Degree of oxidative mtDNA 
damage/ log Relative mtDNA copy 
number                

Median 0.40 0.37 0.19 0.42       
Mean + S.D. 0.36 + 0.30 0.35 + 0.20 0.17 + 0.37 0.46 + 0.25 0.40 0.44 0.07 

> 0.40 (high damage) (%)   2 (29) 2 (25) 6 (55) 1.00 1.00 0.61 
< 0.40 (low damage) (%) 2 (29) 4 (50) 4 (36)     

 

aP-value for Epilepsy, Male vs. Epilepsy, Female 
bP-value for Epilepsy, Male vs. Control 
cP-value for Epilepsy, Female vs. Control 
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Table 1.6.  
Comparison of demographic and mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric intractable epilepsy patients with MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 
 

  
All Cases 

(n=23) 
MCD         
(n=12)  

Control   
(n=11) P-value 

          
Age (years) 8.10 + 5.83  6.61 + 5.02  9.73 + 6.44  0.21 
Sex (M/F) 5/18 5/7 0/11 0.04 
log Relative mtDNA copy number          
Median 1.53 2.03 1.37   
Mean + S.D. 1.86 + 0.85 2.34 + 0.93 1.33 + 0.21 0.002 
> 1.53 (high) (%)   10 (83) 1 (9) 0.002 
< 1.53 (low) (%) 2 (17) 9 (82)   
          
log Degree of oxidative mtDNA 
damage (∆Ct)         
Median 0.63 0.44 0.63   
Mean + S.D. 0.47 + 0.49 0.30 + 0.68 0.59 + 0.27 0.28 
> 0.63 (high damage) (%)   4 (33) 5 (45) 1.00 
< 0.63 (low damage) (%) 4 (33) 4 (36)   
          
Degree of oxidative mtDNA damage/ 
log Relative mtDNA copy number          
Median 0.36 0.20 0.42   
Mean + S.D. 0.34 + 0.31 0.18 + 0.32 0.46 + 0.25 0.05 
> 0.36 (high damage) (%)   2 (17) 7 (64) 0.15 
< 0.36 (low damage) (%) 5 (42) 3 (27)   
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Table 1.7. 
Comparison of demographic and mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric intractable epilepsy patients with non-MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 
 

  
All Cases 

(n=17) 
Non-MCD 

(n=6)  
Control          
(n=11) P-value 

          
Age (years) 8.33 + 7.77 6.96 + 5.37  9.72 + 6.44  0.24 
Sex (M/F) 2/12 2/1 0/11 0.03 
log Relative mtDNA copy number          
Median 1.49 2.43 1.37   
Mean + S.D. 1.78 + 0.82 2.60 + 0.88 1.33 + 0.21 0.02 
> 1.49 (high) (%)   6 (100) 8 (73) 0.01 
< 1.49 (low) (%) 0 (0) 2 (18)   
          
log Degree of oxidative mtDNA 
damage (∆Ct)         
Median 0.69 0.77 0.63   
Mean + S.D. 0.65 + 0.26 0.77 + 0.21 0.59 + 0.27 0.21 
> 0.69 (high damage) (%)   4 (67) 4 (36) 0.28 
< 0.69 (low damage) (%) 1 (17) 7 (64)   
          
Degree of oxidative mtDNA damage/ 
log Relative mtDNA copy number          
Median 0.41 0.28 0.42   
Mean + S.D. 0.42 + 0.23 0.24 + 0.31 0.46 + 0.25 0.31 
> 0.41 (high damage) (%)   1 (17) 6 (55) 0.57 
< 0.41 (low damage) (%) 3 (50) 5 (45)   
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Table 1.8.  
Comparison of demographic, mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric intractable epilepsy patients with MCD and non-MCD 
 

  
All Cases 

(n=18) 
MCD           
(n=12)  

Non-MCD      
(n= 6) P-value 

          
Age (years) 6.96 + 5.37 6.6 + 5. 01 8.33 + 7.78 0.63 
Sex (M/F) 2/12 2/1 5/12 0.57 
log Relative mtDNA copy number          
Median 2.09 2.03 2.43   
Mean + S.D. 2.43 + 0.89 2.34 + 0.93 2.60 + 0.89 0.58 
> 2.09 (high) (%)   6 (50) 3 (50) 1.00 
< 2.09 (low) (%) 6 (50) 3 (50)   
          
log Degree of oxidative mtDNA damage 
(∆Ct)       
Median 0.75  0.44 0.76   
Mean + S.D. 0.48 + 0.58 0.30 + 0.68 077. + 0.21 0.10 
> 0.75 (high damage) (%)   3 (25) 3 (50) 0.55 
< 0.75 (low damage) (%) 5 (42) 1 (17)   
          

Degree of oxidative mtDNA damage/ 
log Relative mtDNA copy number          
Median 0.29  0.20 0.29   
Mean + S.D. 0.24 + 0.27 0.18 + 0.32 0.33 + 0.17 0.36 
> 0.29 (high damage) (%)   3 (25) 2 (33) 1.00 
< 0.29 (low damage) (%) 4(12) 3 (50)   
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Table 1.9.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable epilepsy 
patients and non-epileptic control from NICHD Brain and Tissue Bank   
 

SNPs 
Epilepsy          
(n=18) 

       Controls            
         (n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/   
    SNP % 

Positive/   
   SNP % 

  

A1555G 15 83 11 100 0.27 0 0, NaN 0 0, NaN 
G3196A 7 39 11 100 <0.001 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
G4309A 15 83 11 100 0.27 0 0, NaN 0 0, NaN 
A4317G 15 83 11 100 0.27 0 0, NaN 0 0, NaN 
G9804A 2 11 0 0 0.51 1.11E9 0, NaN 1.27E9 0, NaN 
G9952A 3 17 0 0 0.27 1.19E9 0, NaN 1.48E9 0, NaN 
A10006G 1 5 11 100 <0.001 0 0, NaN 0 0, NaN 
T10010C 5 28 7 64 0.12 0.22 0.04, 1.09 0.29 0.05, 1.55 
A10398G 1 5 11 100 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.10.   
The results of the Fisher’s exact test for individual haplogroups for in Miami Children’s Hospital pediatric intractable 
epilepsy patients and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 
Epilepsy          
(n=18) 

       Controls          
         (n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 1 5 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-J 1 5 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-L 1 5 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-M 1 5 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-U5 0 0 9 82 0.002 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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 Table 1.11.  
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable epilepsy 
male patients and non-epileptic control from NICHD Brain and Tissue Bank   
 

SNPs 
Epilepsy Male     

(n=7) 
       Controls           
         (n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 6 86 11 100 0.39 0 0, NaN 0 0, NaN 
G3196A 3 43 11 100 0.01 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
G4309A 6 86 11 100 0.39 0 0, NaN 0 0, NaN 
A4317G 5 71 11 100 0.14 0 0, NaN 0 0, NaN 
G9804A  1 14 0 0 0.39 2.96E9 0, NaN 1.39E9 0, NaN 
G9952A 2 29 0 0 0.14 3.55E9 0, NaN 2.17E9 0, NaN 
A10006G 1 14 11 100 <0.001 0 0, NaN 0 0, NaN 
T10010C 3 43 7 64 0.63 0.43 0.06, 2.97 0.48 0.05, 4.29 
A10398G 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table1. 12. 
The results of the Fisher’s exact test for individual haplogroups for in Miami Children’s Hospital pediatric intractable 
epilepsy male patients and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 
Epilepsy Male     

(n=7) 
       Controls           
         (n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-J 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-L 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-M 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-U5 0 0 9 82 0.002 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.13.  
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable epilepsy 
female patients and non-epileptic control from NICHD Brain and Tissue Bank   
 

SNPs 

Epilepsy          
Female           
(n=8) 

       Controls           
         (n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 6 75 11 100 0.16 0 0, NaN 0 0, NaN 
G3196A 2 25 11 100 0.001 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.001 0 0, NaN 0 0, NaN 
G4309A 6 75 11 100 0.16 0 0, NaN 0 0, NaN 
A4317G 7 88 11 100 0.42 0 0, NaN 0 0, NaN 
G9804A 0 0 0 0 1.00 NaN NaN, NaN 1.01 0.87, 1.18 
G9952A 1 13 0 0 0.42 2.54E9 0, NaN 3.15E9 0, NaN 
A10006G 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
T10010C 2 25 7 64 0.17 0.14 0.02, 1.16 0.19 0.25, 1.45 
A10398G 1 13 11 100 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1. 14. 
The results of the Fisher’s exact test for individual haplogroups for in Miami Children’s Hospital pediatric intractable 
epilepsy female patients and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 

Epilepsy   
Female         
(n=8) 

       Controls           
         (n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 1 13 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-J 1 13 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-L 1 13 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-M 1 13 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-U5 0 0 9 82 0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.15.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable epilepsy 
patients with MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

SNPs 
MCD            
(n=12) 

Controls         
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 10 83 11 100 0.48 0 0, NaN 0 0, NaN 
G3196A 5 42 11 100 0.01 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
G4309A 9 75 11 100 0.22 0 0, NaN 0 0, NaN 
A4317G 9 75 11 0 0.22 0 0, NaN 0 0, NaN 
G9804A 1 8 0 0 1.00 1.62E9 0, NaN 1.01E9 0, NaN 
G9952A 1 8 0 0 1.00 1.62E9 0, NaN 4.27E9 0, NaN 
A10006G 0 0 11 100 <0.001 0 0, NaN --- --- 
T10010C 3 25 7 64 0.10 0.19 0.03, 1.14 0.22 0.04, 1.38 
A10398G 1 8 11 100 <0.001 0 0, NaN 0 0, NaN 

 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.16.   
The results of the Fisher’s exact test for individual haplogroups for in Miami Children’s Hospital pediatric intractable 
epilepsy patients with MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 
MCD            
(n=12) 

Controls          
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 1 8 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-J 1 8 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-L 1 8 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-M 1 8 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-U5 0 0 9 82 0.002 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.17.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable epilepsy 
patients with non-MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

SNPs 
Non-MCD        

(n=6) 
Controls         
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 5 83 11 100 0.35 0 0, NaN 0 0, NaN 
G3196A 2 33 11 100 0.01 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
G4309A 6 100 11 100 1.00 NaN 0, NaN NaN 0, NaN 
A4317G 6 100 11 100 1.00 NaN 0, NaN NaN 0, NaN 
G9804A 1 17 0 0 0.35 3.55E9 0, NaN NaN 0, NaN 
G9952A 2 33 0 0 0.11 4.44E9 0, NaN 1.78E10 0, NaN 
A10006G 1 17 11 100 <0.001 0 0, NaN 7.30E13 0, NaN 
T10010C 2 33 7 64 0.34 0.29 0.04, 2.32 1.07 0.07, 16.39 
A10398G 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.18.   
The results of the Fisher’s exact test for haplogroups for in Miami Children’s Hospital pediatric intractable epilepsy 
patients with non-MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 
Non-MCD        

(n=6) 
Controls         
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-J 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-L 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-M 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-U5 0 0 9 82 0.002 0 0, NaN 0 0, NaN 

 

 
 
aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.19.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable epilepsy 
patients with MCD and non-MCD 
 

SNPs 
MCD            
(n=12)           

Non-MCD         
(n=6) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
 Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 10 83 5 82 1.00 1.00 0.07, 13.87 0.37 0.02, 6.69 
G3196A 5 42 2 30 1.00 1.43 0.18, 11.09 0 0, NaN 
T3197C 0 0 0 0 1.00 NaN NaN, NaN 0.94 0.75, 1.19 
G4309A 9 75 6 100 0.52 0 0, NaN 0 0, NaN 
A4317G 9 75 6 100 0.52 0 0, NaN 0 0, NaN 
G9804A 1 8 1 17 1.00 0.45 0.02, 8.83 0 0, NaN 
G9952A 1 8 2 33 0.25 0.18 0.01,2.60 0.05 0.90, 548.77 
A10006G 0 0 1 17 0.33 0 0, NaN 0 0, NaN 
T10010C 3 25 2 33 1.00 0.67 0.08, 5.68 0.15 0.39, 111.37 
A10398G 1 8 0 0 1.00 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds ratio using non-MCD as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.20.   
The results of the Fisher’s exact test for haplogroups for in Miami Children’s Hospital pediatric intractable epilepsy 
patients with MCD and non-MCD 
 

Haplogroups 
MCD            
(n=12)           

Non-MCD         
(n=6) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 1 8 0 0 1.00 0 0, NaN 0 0, NaN 
Hg-J 1 8 0 0 1.00 0 0, NaN 0 0, NaN 
Hg-L 1 8 0 0 1.00 0 0, NaN 0 0, NaN 
Hg-M 1 8 0 0 1.00 0 0, NaN 0 0, NaN 
Hg-U5 0 0 0 0 1.00 NaN NaN, NaN 0.94 0.75, 1.19 

 

 

aOR, Crude Odds ratio using non-MCD as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 1.21.   
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age in Miami Children’s Hospital pediatric intractable epilepsy patients and non-epileptic control from NICHD Brain 
and Tissue Bank   
 
 

SNP/Hg 
SNP/Hg                

OR (95% CI) 

Level of relative 
mtDNA copy number 

OR (95% CI) 

Level of oxidative 
mtDNA damage         

OR (95% CI) 
Age  

  OR (95% CI) 
A1555G 0.32 (0, NaN) 2.35E17 (0, NaN) 2.34E8 (0, NaN) 1.15 (0.72, 1.84) 
G3196A --- --- --- --- 
T3197C 0 (0, NaN) 9.69E27 (0, NaN) 1.02E23 (0, NaN) 33.39 (0, NaN) 
G4309A 0.12 (0, NaN) 1.49E17 (0, NaN) 2.39E8 (0, NaN) 1.52 (0.72, 1.84) 
A4317G 1.00E8 (0, NaN) 4.40E17 (0, NaN) 2.66E8 (0, NaN) 1.15 (0.72, 1.84) 
G9804A 0 (0, NaN) 4.44E17 (0, NaN) 2.67E8 (0, NaN) 1.15 (0.72, 1.84) 
G9952A 0 (0, NaN) 4.40E17 (0, NaN) 2.66E8 (0, NaN) 1.15 (0.72, 1.84) 
A10006G --- --- --- --- 
T10010C 1.69E38 (0, NaN) 8.32E90 (0, NaN) 8.56E37 (0, NaN) 4.24E4 (0, NaN) 
A10398G --- --- --- --- 

Hg-I --- --- --- --- 
Hg-J --- --- --- --- 
Hg-L --- --- --- --- 
Hg-M --- --- --- --- 
Hg-U5 0 (0, NaN) 9.69E27 (0, NaN) 1.02E23 (0, NaN) 33.39 (0, NaN) 

 

OR, using control group as reference 
NaN = Not a number 
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Table 1.22.  
The results of the logistic regression for SNPs/Hg, level of index of level  relative mtDNA copy number by level of oxidative 
mtDNA damage, and age in Miami Children’s Hospital pediatric intractable epilepsy male patients and non-epileptic 
control from NICHD Brain and Tissue Bank   
 
 

SNP/Hg 
SNP/Hg                 

OR (95% CI) 
Level of Index 
 OR (95% CI) 

Age                         
OR (95% CI) 

A1555G 0 (0, NaN) 0.31 (0.02, 5.93) 1.23 (0.87, 1.74) 

G3196A 0 (0, NaN) 0 (0, NaN) 1.12 (0.74, 1.69) 

T3197C 0 (0, NaN) 0 (0, NaN) 1.18 (0.77, 1.81) 

G4309A --- 0.68 (0.05,8.64) 1.21 (0.91, 1.60) 

A4317G 0 (0, NaN) 1.52 (0.08, 29.20) 1.23 (0.88, 1.72) 

G9804A 4.85E9 (0, NaN) 0.366 (0.02, 6.15) 1.16 (0.88, 1.54) 

G9952A 8.89E9 (0, NaN) 0.31 (0.02, 5.93) 1.23 (0.87, 1.74) 

A10006G --- --- --- 

T10010C 0.89 (0.07, 11.83) 0.68 (0.05, 8.72) 1.20 (0.91, 1.60) 

A10398G --- --- --- 

Hg-I --- --- --- 

Hg-J --- --- --- 

Hg-L --- --- --- 

Hg-M --- --- --- 

Hg-U5 0 (0, NaN) 0 (0, NaN) 1.18 (0.77, 1.81) 
 
OR, using control group as reference 
Nan, not a number 
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Table 1.23.   
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age in Miami Children’s Hospital pediatric intractable epilepsy female patients and non-epileptic control from NICHD 
Brain and Tissue Bank   
 
 

SNP/Hg 
SNP/Hg             

OR (95% CI) 

Level of relative 
 mtDNA copy number  

OR (95% CI) 

Level of oxidative 
 mtDNA damage          

OR (95% CI) 
Age                   

OR (95% CI) 
A1555G 0.15 (0, NaN) 4.02E17 (0, NaN) 3.55E8 (0, NaN) 1.15 (0.72, 1.84) 
G3196A --- --- --- --- 
T3197C 0 (0, NaN) 4.84E28 (0, NaN) 2.59E23 (0, NaN) 35.33 (0, NaN) 
G4309A 0.13 (0, NaN) 2.35E17 (0, NaN) 3.57E8 (0, NaN) 1.15 (0.72, 1.84) 
A4317G --- 7.94E17 (0, NaN) 3.54E8 (0, NaN) 1.15 (0.72, 1.84) 
G9804A --- 7.94E17 (0, NaN) 3.54E8 (0, NaN) 1.15 (0.72, 1.84) 
G9952A --- 7.94E17 (0, NaN) 3.54E8 (0, NaN) 1.15 (0.72, 1.84) 
A10006G --- --- --- --- 
T10010C 2.47E39 (0, NaN) 6.47E93 (0, NaN) 1.14E39 (0, NaN) 6.0E4 (0, NaN) 
A10398G --- --- --- --- 

Hg-I --- --- --- --- 
Hg-J --- --- --- --- 
Hg-L --- --- --- --- 
Hg-M --- --- --- --- 
Hg-U5 0 (0, NaN) 4.84E28 (0, NaN) 2.59E23 (0, NaN) 35.33 (0, NaN) 

 

OR, using control group as reference 
NaN = Not a number 
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Table 1.24.   
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age  for in Miami Children’s Hospital pediatric intractable epilepsy patients with MCD and non-epileptic control from 
NICHD Brain and Tissue Bank 
 
 

SNP/Hg 
SNP/Hg           

OR (95% CI) 

Level of relative 
mtDNA copy number 

OR (95% CI) 

Level of oxidative 
mtDNA damage         

OR (95% CI) 
Age                     

  OR (95% CI) 

A1555G 0 (0, NaN) 35.55 (1.73, 732.75) 1.57 (0.06, 42.17) 1.10 (0.82, 1.50) 

G3196A 0 (0, NaN) 5.60E42 (0, NaN) 12.61 (0, NaN)      9.29E6 (0, NaN)

  T3197C 0 (0, NaN) 1.18E14 (1.40, 620.98) 0 (0, NaN) 38.68 (0, NaN) 

G4309A 0 (0, NaN) 24.39 (1.40, 620.98) 1.95 (0.07, 55.61) 1.10 (0.81, 1.48) 

A4317G 0 (0, NaN) 38.29 (1.89, 777.18) 0.99 (0.05, 21.77) 1.08 (0.81, 1.43) 

G9804A 1.99E8 (0, NaN) 39.24 (1.94, 792.85) 1.00 (0.45, 22.36) 1.07 (0.80, 1.42) 

G9952A --- 44.31 (2.22, 886.30) 1.15 (0.05, 24.90) 1.08 (0.81, 1.45) 

A10006G --- --- --- --- 

T10010C 0.42 (0.02, 9.62) 37.07 (1.78, 771.30) 1.22 (0.06, 26.23) 1.07 (0.80, 1.43) 

A10398G --- --- --- --- 

Hg-I --- --- --- --- 

Hg-J --- --- --- --- 

Hg-L --- --- --- --- 

Hg-M --- --- --- --- 

Hg-U5 0 (0, NaN) 1.18E14 (1.40, 620.98) 0 (0, NaN) 38.68 (0, NaN) 
 
OR, using control group as reference 
NaN = Not a number 
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Table 1.25.   
The results of the logistic regression for haplogroups, level of relative mtDNA copy number, level of oxidative mtDNA 
damage, and age  for in Miami Children’s Hospital pediatric intractable epilepsy patients with non-MCD and non-epileptic 
control from NICHD Brain and Tissue Bank 
 

SNP/Hg 
SNP/Hg            

OR (95% CI) 

Level of relative mtDNA 
copy number  
OR (95% CI) 

Level of oxidative 
mtDNA damage          

OR (95% CI) 
Age                   

OR (95% CI) 

A1555G 0 (0, NaN) 1.54E16 (0, NaN) 1140 (0, NaN) 0  (0, NaN) 

G3196A --- --- --- --- 

T3197C --- --- --- --- 

G4309A --- 1.20E9 (0, NaN) 5.00E8 (0, NaN)) 1.05 (0.62, 1.87) 

A4317G --- 1.28E9 (0, NaN) 5.00E8 (0, NaN)) 1.05 (0.62, 1.87) 

G9804A --- 1.20E9 (0, NaN) 5.00E8 (0, NaN)) 1.08 (0.62, 1.87) 

G9952A 7.86E42 (0, NaN) 1.54E16 (0, NaN) 1140 (0, NaN) 0  (0, NaN) 

A10006G --- --- --- --- 

T10010C 0.0 (0, NaN) 4.42E48 (0, NaN) 2.56E11 (0, NaN) 151.07 (0, NaN) 

A10398G --- --- --- --- 

Hg-I --- --- --- --- 

Hg-J --- --- --- --- 

Hg-L --- --- --- --- 

Hg-M --- --- --- --- 

Hg-U5 0 (0, NaN) 1.18E14 (1.40, 620.98) 0 (0, NaN) 38.68 (0, NaN) 
 
OR, using control group as reference 
NaN = Not a number 
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Table 1.26.   
The results of the logistic regression for haplogroups, level of relative mtDNA copy number, level of oxidative mtDNA 
damage, and age for in Miami Children’s Hospital pediatric intractable epilepsy patients with MCD and non-MCD 
 

SNP/Hg 
SNP/Hg            

OR (95% CI) 

Level of relative mtDNA 
copy number  
OR (95% CI) 

Level of oxidative 
mtDNA damage          

OR (95% CI) 
Age                   

OR (95% CI) 

A1555G --- --- --- --- 
G3196A 0.46 (0, NaN) 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 
T3197C --- 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 
G4309A 0.30 (0, NaN) 0 (0, NaN) 5.61E9 (0, NaN) 0.76 (0.32, 1.84) 
A4317G 10.07 (0, NaN) 0 (0, NaN) 4.17E9 (0, NaN) 0.76 (0.32, 1.84) 
G9804A 0.49 (0, NaN) 0 (0, NaN) 4.03E9 (0, NaN) 0.76 (0.32, 1.84) 
G9952A --- --- --- --- 
A10006G --- 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 
T10010C 0 (0,NaN) 0 (0, NaN) 1.31E117 (0, NaN) 2.50E14 (0, NaN) 
A10398G --- 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 

Hg-I --- 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 
Hg-J --- 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 
Hg-L --- 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 
Hg-M --- 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 
Hg-U5 --- 0 (0, NaN) 3.99E9 (0, NaN) 0.76 (0.32, 1.84) 

 

OR, using Non-MCD as reference 
NaN = Not a number 
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Figure 1.2.   

Summary Beyesian network based on the top three Bayesian networks for female 
samples.  Absolute value on influence score higher than 0.1 are shown. 
 
 

Table 1.27. 
Influence scores between selected variables for female samples 
 

Variables Influence Score 

(Epilepsy) ->   (T3197C) 0.7826 

(Epilepsy) ->   (G3196A)    0.6288 

(Epilepsy) ->   (A10398G)    0.5383 

(A10006G) ->  (Epilepsy)    0.4858 

(G9952A) ->  (Epilepsy)    -0.4475 

(Epilepsy) ->   (A1555G) 0.1251 
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Table 1.28.   
Pearson correlation between selected variables based on the influence scores for female samples 
 

    
T3197C G3196A A10006G A10398G G9952A mcd status 

Epilepsy   -.832** -.832** -.832** -.913** .471* -.896**

Sig. 0 0 0 0 0.027 0

mcd status   .746** .817** .556** .853** -.573** 1

Sig. 0 0 0.007 0 0.005   
mtOXDamageDbyA10398G   0.179 0.009 0.383 0.235 0.141 0.088

Sig. 0.426 0.97 0.079 0.292 0.531 0.696

mtOXDamageDbyCopyNum   -.535* -0.383 -.467* -.705** 0.3 -.542**

Sig. 0.01 0.078 0.028 0 0.175 0.009

mtOXDamageD   -0.203 -0.354 0.017 -0.267 0.28 -0.339

Sig. 0.366 0.106 0.941 0.23 0.207 0.123

mtOXDamage   -0.189 -0.373 0.213 -0.246 .575** -0.349

Sig. 0.399 0.087 0.342 0.27 0.005 0.112

CopyNum   -.477* -0.189 -.523* -.628** 0.154 -0.409

Sig. 0.025 0.399 0.013 0.002 0.492 0.059

copyno   -0.221 0.15 -0.317 -0.293 -0.106 -0.145

Sig. 0.323 0.505 0.15 0.186 0.639 0.52

 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 1.28. (cont.)  
Pearson correlation between selected variables based on the influence scores for female samples 
 

    mtOXDamage
DbyA10398G 

mtOXDamage
DbyCopyNum 

mtOXDamage
D mtOXDamage CopyNum copyno 

Epilepsy   -0.276 .616** 0.183 0.137 .573** 0.268

Sig.  0.213 0.002 0.416 0.543 0.005 0.228

mcd status   0.088 -.542** -0.339 -0.349 -0.409 -0.145

Sig.  0.696 0.009 0.123 0.112 0.059 0.52

mtOXDamageDby
A10398G 

  1 0.106 .874** .648** -0.347 -0.367

Sig.    0.639 0 0.001 0.114 0.093

mtOXDamageDby
CopyNum 

  0.106 1 .457* 0.351 .865** .432*

Sig.  0.639   0.032 0.11 0 0.045

mtOXDamageD   .874** .457* 1 .765** -0.03 -0.217

Sig.  0 0.032   0 0.895 0.331

mtOXDamage   .648** 0.351 .765** 1 -0.036 -0.253

Sig.  0.001 0.11 0   0.872 0.257

CopyNum   -0.347 .865** -0.03 -0.036 1 .715**

Sig.  0.114 0 0.895 0.872   0

copyno   -0.367 .432* -0.217 -0.253 .715** 1

Sig.  0.093 0.045 0.331 0.257 0   
 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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CHAPTER IV 

 

MANUSCRIPT 2 

MITOCHONDRIAL DNA BACKGROUND AND OXIDATIVE DAMAGE IN 

INTRACTABLE EPILEPSY  

PEDIATRIC PATIENTS WITH BRAIN TUMORS  

Abstract 

Objectives:  Research mitochondrial background and mitochondrial DNA 
(mtDNA) damage in neoplastic pediatric intractable epilepsy patients.  mtDNA 
oxidative damage and copy number are indices of mitochondrial damage. 
Mitochondrial damage may play a role in the pathology of intractable epilepsy.  
The purpose of this study is to determine and compare mtDNA variants (SNPs) 
and mtDNA oxidative damage in neoplastic pediatric intractable epilepsy 
patients with malformations of cortical development (MCD) and non-MCD with 
non-epileptic controls. 
 
Methods:  Brain tissue specimens were collected from 27 neoplastic pediatric 
intractable epilepsy patients from Miami Children’s Hospital and 11 controls 
(non-epileptic) from UMB.  Oxidative mtDNA damage as indicated by 
mtDNA∆Ct (formation of 8-OHdG) and relative mtDNA copy number were 
determined for each tissue by quantitative real-time PCR (QPCR).  A total of 10 
SNPs associated with mitochondrial myopathies were genotyped by allele-
specific oligonucleotide dot (ASO) blot analysis. In female samples, a summary 
Bayesian network was created to investigate the relationship of these variables.  
 
Results:  Relative mtDNA copy number were higher in female neoplastic 
intractable epilepsy patients compared to non-epileptic control samples (p=0.34).  
Oxidative mtDNA damage was higher in female neoplastic epileptic compared to 
control samples (p=0.72).  mtSNP G9952A was found in higher frequencies in 
female neoplastic epilepsy samples. Female neoplastic epilepsy phenotypes were 
predicted by G9952A, level of relative mtDNA copy number, and level of 
oxidative mtDNA damage. Bayesian network showed relationships (p < 0.05) 
between brain tumor with G9952A, A1555G, T3197C, A10006G, A10398G, 
oxidative mtDNA damage with relative mtDNA copy number, and brain tumor 
with relative mtDNA copy number in female samples. 
 
Conclusion:  These data suggest that the mtSNPs explored are associated with 
neoplastic intractable epilepsy phenotypes.  mtDNA copy number and mtDNA∆Ct  
were higher in neoplastic epilepsy samples but did not reach statistical 
significance.  Studies exploring mitochondrial compensation in response to 
oxidative damage in neoplastic epilepsy are needed.  
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Epilepsy is a chronic neurological disorder characterized by spontaneous 

recurring seizures.  The incidence of epilepsy is highest for children and the elderly.  A 

proportion of patients have seizures that are resistant to traditional anti-epilepsy 

medicines (intractable or refractory epilepsy) (Alexander and Godwin, 2006).  Brain 

tumors are a common cause of epilepsy (Govori et al., 2010).  The occurrence of epilepsy 

is highly associated with malformations of cortical development (MCD), which are 

developmental brain lesions that consist of dysplastic neuronal lesions (malformations) 

(Schwartzkroin and Walsh, 2000; Hua and Crino, 2003; Hader et al., 2004; Rickert, 2006; 

Wong, 2007).  MCD are increasingly being recognized as the cause of intractable 

epilepsy.  MCD presents a broad spectrum of structural changes which appear to result 

from changes in precursor neuronal or neuronal cells during cortical development at 

various stages such as: proliferation, migration, differentiation, and apoptosis (Becker et 

al., 2004).  MCDs include gangliomas and dysembryoplastic neuroepithelial tumors 

(DNETs) (Majores et al., 2007).  Gangliogliomas are composed of neoplastic, highly 

differentiated glial cells, and dysplastic neurons (Schick et al., 2007).  DNETs are benign 

lesions of the cerebral cortex that are composed of glial and oligodendrocyte-like cells 

(neuronal elements) which resemble gliomas (Spalice et al., 2010). 

Treatment with anti-epileptic drugs (AEDs) is usually ineffective, and children 

with MCD may require surgical removal of the affected area of the brain (Yasin et al., 

2010).  In surgical series, focal cortical malformations and low-grade tumors were the 

most common in infants with intractable epilepsy.  Gangliogliomas account for 5% of 

childhood tumors (Schick et al., 2007a).  According to Saneto and Wyllie (2000), low-

grade tumors included gangliomas, gangliocytomas, DNETs, and astrocytomas.  DNETs 
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are often present with epilepsy during childhood (Chang et al., 2010).  Gangliogliomas 

are the most frequent tumors found in patients with focal epilepsy (Schick et al., 2007).  

The molecular mechanisms underlying the formation of MCD are still largely unknown 

and the treatments for epilepsy due to MCD are often ineffective or limited (Wong, 

2009).   

Through the mutation and dysregulation of critical genes, oxidative DNA damage 

has been implicated in the development of several human cancers (Kim et al., 2004). 

Oxidative insults may cause molecular damage that can drive the progression of normal 

tissue to cancer.  Oxidative DNA damage has been detected in cancer and 

neurodegenerative diseases (Tsutsui et al., 2001).   Alterations of mitochondria have been 

found in the human cancers including breast, esophageal, gastric, non-small-cell-lung 

cancer, and thyroid cancers (Kim et al., 2004).  Mitochondria contain their own genome, 

mtDNA, which consists of a 16.5-kb circular double-stranded DNA (dsDNA) molecule 

containing 37 genes (Bai et al., 2008).  Mitochondria functions in oxidative 

phosphorylation, heme, lipid, amino acid biosynthesis, and fatty acid oxidation among 

other functions (Sugimoto, 2008).  The major source of ATP in cortical neurons is 

provided by mitochondrial oxidative phosphorylation (Chuang, 2010; Waldbaum and 

Patel, 2010a).  Mammalian cells contain several hundreds to more than a thousand 

mitochondria.  The size, shape and abundance of mitochondria vary drastically in 

different cell types and may change under differing energy demands and physiological or 

environmental conditions.  In a cell, the abundance of mitochondria is determined by 

biogenesis and division of the organelles.  The quantity of mitochondria per cell is tighly 
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regulated by activation of specific transcription factors and signaling pathways (Lee and 

Wei, 2005).   

Mitochondrial metabolism also generates the majority of the reactive oxygen 

species (ROS) production in cells (St-Pierre et al., 2006).  ROS results when unpaired 

electrons escape the electron transport chain.  The most commonly produced base lesion 

by ROS, and the most often measured as an index of oxidative DNA damage is 8-

hydroxyguanosine (8-OHdG) (Wiseman and Halliwell, 1995).  The brain is believed to 

be particularly susceptible to the damaging effects of reactive oxygen species (ROS) 

damage due to its high metabolic rate and reduced capability for cellular regeneration 

compared to other organs (Anderson, 2004).  ROS has been implicated in the initial 

phases of seizure-induced pathology and several studies have reported oxidative stress in 

different regions of the brain following experimental seizures (Devi et al., 2008). 

Mitochondrial oxidative stress and dysfunction are contributing factors to several 

neurological disorders (Shokolenko et al., 2009; Waldbaum and Patel, 2010b).  

Encephalomyopathies have been found in children in association with defects in 

mitochondrial structure and function.  Some of these disorders are acute leukemia, 

Alzheimer’s disease (AD), cardiomyopathy (CM), chronic progressive external 

ophthalmoplegia, colorectal cancer, deafness, fatal infantile cardiomyopathy (FICP), 

gastroesopageal reflux (GER), mitochondrial encephalomyopathy, lactic acidosis and 

stroke-like episodes (MELAS), myoclonic epilepsy with ragged red fibers (MERRF), 

Leber Hereditary Optic Neuropathy (LHON),  Parkinson’s disease (PD), maternally 

inherited hypertropic cardiomyopathy (MHCM), multiple sclerosis (MS), non-insulin 

dependent diabetes mellitus (NIDDM), non-syndromic hearing loss, progressive 
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encephalopathy (PEM), sensorineural hearing loss (SNHL), strokes, and sudden infant 

death syndrome (SIDS) (Filiano et al., 2002; Bai et al., 2007; Tzen et al., 2007).  In this 

study, we investigate the presence of oxidative mtDNA damage, constitutional mtDNA 

copy number, mtDNA SNPs, haplogroups as sources of genetic diversity that may 

contribute to the development of neoplastic intractable epilepsy. 

Methods 

Collection of brain tissue from pediatric intractable epilepsy patients 

Brain tissue samples from 25 pediatric neoplastic intractable epilepsy patients 

who have undergone brain resection surgery at the Miami Children’s Hospital, Miami, 

FL, during 2008-2009 were collected.  Tissues obtained during surgical resection were 

immediately snap-frozen in liquid nitrogen and stored at -80°C.  As references, eleven 

normal, non-epileptic, pediatric brain tissues were obtained from the NICHD Brain and 

Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore, MD 

and stored at -80°C.  This study was approved by the Florida International University’s 

Institutional Review Board. 

DNA extraction  

Freshly excised human neuronal (brain) tissue was stored in liquid nitrogen and 

frozen in -80°C until ready for processing.  The frozen neuronal tissue was homogenized, 

while on ice, using a Janke and Kunkle TP-18-10 blade type homogenizer in which 1 ml 

of Trizol® was added.  The homogenate was transferred to a 2.0-ml microcentrifuge 

tube. DNA was then isolated and purified via Phenol-Chloroform extraction.  The 

precipitated DNA was pelleted and resuspended in1X TE buffer.  The integrity of the 

DNA was verified following electrophoresis through 2% agarose gels.  
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Determination of and mtDNA copy number and mitochondrial DNA oxidative damage 

by quantitative real time PCR 

 Quantitative real-time PCR (QPCR) assays were performed using Applied 

Biosystems 7300 System with a final volume of 25uL reaction mixture containing 50ng 

DNA template, 12.5uL SYBR Green PCR Master Mix (Qiagen), and 10mM of each 

primer.  The sequences for the primers used for the amplification of the mitochondrial 

gene NADH Dehydrogenase 1 (ND1) were: mtF3212, 5’-

CACCCAAGAACAGGGTTTGT-3’ and mtR3319, 5’-TGGCCATGGGATTGTTAA-3’.  

The sequences of the primer for the nuclear housekeeping gene 18s rRNA, used for the 

normalization in the QPCR analysis, were: 18s1546F, 5’-

TAGAGGGACAAGTGGCGTTC-3’and 18s650R, 5’-CGCTGAGCCAGTCAGTGT-3’ 

(Bai et al., 2004; Lin et al, 2008).  The QPCR conditions were set up as follows: hot start 

at 95° C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 

minute.  The fluorescence intensity was measured at the end of the extension phase at 

60°C.  All samples were performed in duplicated and a non-template negative control 

was included in each reaction.   

A total of 50ng of DNA was used in QPCR for the determination of the threshold 

cycle number (Ct) of the 18s rRNA and ND1 genes.  Ct values can be used as a measure 

of input copy number and the Ct value differences were used to quantify the mtDNA 

copy number relative to the 18s rRNA gene with the following equation:                         

Relative copy number= 2∆Ct, where ∆Ct is the Ct 18s rRNA – Ct ND1 (Szuhai et al., 

2001; Bai et al., 2004; Lewis et al., 2007; Edwards, 2009; Lee et al, 2010). 
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Since degree of oxidative mtDNA damage is reflected by an abundance of 8-

OHdG formation in mtDNA, the content of 8-OHdG in mtDNA, an index for cellular 

oxidative damage, was determined by QPCR and presented as ∆Ct (Ayala-Torres et al., 

2000).  As indicated by Lin et al (2008), the amplification efficiency would decrease after 

treatment of the DNA sample with hOGG1 to remove the 8-OHdG residue to form an 

abasic site.  The content of 8-OHdG in the samples’ mtDNA was determined by treating 

the 200ng sample with 2 units of hOGG1 at 37° C for 1 hour and 5 minutes to remove the 

8-OHdG residue to form an basic site.  The digested mtDNA were amplified by QPCR 

using the primers for ND1 gene.  PCR amplification efficiencies of DNA templates 

containing a single 8-OHdG or two 8-OHdGs at least 13 base pairs apart are not 

significantly disturbed (Ct1), however, the presence of an abasic site in DNA after 

treatment of hOGG1 would dramatically reduce the PCR efficiency, thus, increasing the 

Ct value (Ct2) (Lin et al., 2008).  The degree of oxidative mtDNA damage, mtDNA∆Ct, 

was defined as ∆Ct= Ct2 (hOGG1 treatment) – Ct1 (no hOGG1 treatment) (Lin et al., 

2008; Su et al., 2010).  Each analysis was performed in duplicate, and the mean value of 

∆Ct was calculated for each sample. Hence, the larger the ∆Ct, the more abundant the 8-

OHdG and more oxidative damage present in the sample.   

mtDNA genotyping 

A total of 50ng of DNA was used in Quantitative PCR (QPCR) to amplify the 

mitochondrial genome with 19 primer sets (Table A.8) designed by Bai et al (2007) to 

include the mtDNA regions containing 10 reported mtDNA variations (SNPs).  The 

mtDNA variations are distributed along the rRNA, tRNA, COIII and ND3 regions of the 

mitochondrial genome.  The mtDNA variations studied have been reported in patients 
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with varying diseases such as:  Alzheimer’s disease, Parkinson’s disease, Leber’s 

hereditary optic neuropathy (LHON), deafness, chronic progressive external 

ophthalmoplegia (CPEO), chronic intestinal pseudo-obstruction (CIPO) and other 

diseases (Table 2.3). 

QPCR assays to amplify 19 regions of the mitochondrial genome (Table A.8) 

were performed using Applied Biosystems 7300 System with a final volume of 25uL 

reaction mixture containing 50ng DNA template, 12.5uL SYBR Green PCR Master Mix 

(Qiagen), and 10mM of each primer.  The QPCR conditions were set up as follows: hot 

start at 95° C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 

1 minute.  Two microliters of QPCR products were spotted on Hybond N+ membrane 

(GE).  Dot blot preparation and hybridization conditions are available in the Appendix.  

The allele-specific oligonucleotide (ASO) probes for the mtDNA variants are listed in 

Table A.9 (Bai et al, 2007).  These probes were labeled with Dioxigenin (DIG) (Roche, 

DIG Oligonucleotide 3'-End Labeling Kit).  Both the variant and wild type controls for 

each ASO blot were included as controls.  mtDNA haplogroups I, J, L, M and U5 were 

classified according to Table A.7. 

Bayesian network 

 In female samples, Bayesian Network Inference with Java Objects (Banjo) © 

software was used to determine influence scores and to create a directed acyclic graph 

(DAG) to represent the Bayesian network showing  the probablilistic relationships 

between epilepsy status, MCD status, relative mtDNA copy number, oxidative mtDNA 

damage, and the mtSNPs with influence scores (absolute value) higher than 0.1.  The top 

three scoring networks were used to generate a consensus network. 
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Statistical Analysis 

Continuous variables were studentized to identify and remove outliers. 

Logarithmic transformation of data was used since the original values of the relative 

mtDNA copy number and mtDNA oxidative damage showed non normal distributions.  

The continuous variables between groups were compared using the Student’s t-test.  

Pearson’s correlation test was used to test the relationship between mtDNA copy number 

and mtDNA oxidative damage.  Analysis was carried out using Fisher’s exact test for 

each individual SNP and haplogroup.   

Logistic regression was used to determine the odds ratios.  Neoplastic epilepsy 

patients were sub-divided as those being malformations of cortical development (MCD) 

and non-MCD as per Barkovich MCD classification system (Barkovich et al., 2005).  

Logistic regression was also used to explore if neoplastic epilepsy, MCD, or non-MCD 

phenotypes were dependent on mtSNPs, haplogroups, level of mtDNA oxidative damage, 

and level of relative mtDNA copy number, model adjusted by age.  In female samples, 

Banjo © software was used to was used to determine influence scores and to create a  

directed acyclic graph (DAG) to represent the Bayesian network showing the 

probablilistic relationships between brain tumor status, MCD status relative mtDNA copy 

number, oxidative mtDNA damage, and the mtSNPs.  In addition, Pearson correlations 

were determined for these relationships.  Statistical analyses were performed using SPSS 

version 18.0 for Microsoft Windows.  Statistical significance was set at P < 0.05. 
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Results 

Demographics and clinical information 

The demographic and pathology information of the 27 pediatric neoplastic 

intractable epilepsy patients (MCD = 6, non-MCD = 21) are shown in Table 2.1, and for 

the 11 control samples in Table 2.2.  MCD cases accounted for 22% of the neoplastic 

intractable epilepsy cases.  All of the epilepsy patients with MCD are classified as 

malformations due to abnormal glial and neuronal proliferation.  The groups did not 

significantly differ in ages.  Using correlation methods, we demonstrate that mtDNA 

copy number and the degree of oxidative DNA damage were not significantly correlated 

(Pearson correlation=0.14, p=0.45) (Fig. 2.1).  However, in female samples the mtDNA 

copy number and the degree of oxidative DNA damage were significantly correlated 

(Pearson correlation=-0.61, p=0.001) (Table 2.28).   

Relative mtDNA copy number 

The measurement of DNA in individual amplifiable DNA segments is measured 

by quantitative real-time PCR (QPCR).  The use of SYBR green in QPCR assays allows 

for the detection of small difference in the starting template using nanograms of DNA.  

The higher threshold cycle (Ct), or shift of the amplification curve to the right, indicates a 

low amount of starting DNA template, thus, decreased DNA content.  Ratios of 

mtDNA/nuclear DNA were used to obtain the relative mtDNA copy number, where a 

lower ratio is representative of a lower initial DNA template, demonstrating a decrease in 

the amount of mtDNA.  We selected the nuclear 18s rRNA gene and mtDNA coding 

region of ND1 gene.  We used QPCR to analyze the relative mtDNA copy number of the 

neoplastic pediatric intractable epilepsy brain tissues and non-epileptic control brain 
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tissues.  Tables 2.4 -2.8 show the average relative mtDNA copy number for each group.  

The relative mtDNA copy number (p=0.82) did not significantly differ between male and 

female neoplastic epilepsy patients (Table 2.5).  A 21% increase in mtDNA copy number 

for neoplastic epilepsy samples was observed compared to controls (p=0.26).  Both MCD 

(2.03, p=0.14) and non-MCD (1.48, p=0.59) samples demonstrated a trend of higher 

mtDNA copy numbers compared to controls (1.33).  MCD patients had a higher relative 

mtDNA copy number compared to non-MCD patients, however, statistical significance 

was not reached (p=0.33).  In addition, female neoplastic epilepsy samples presented a 

trend of higher mtDNA copy number than controls (p=0.34). 

Oxidative mtDNA damage  

The degree of oxidative mtDNA damage is reflected by an abundance of 8-OHdG 

formation in mtDNA, the content of 8-OHdG in mtDNA, an index for cellular oxidative 

damage, was determined by QPCR and presented as ∆Ct.  The degree of oxidative 

mtDNA damage, mtDNA∆Ct, was determined as ∆Ct= Ct2 (hOGG1 treatment) – Ct1 (no 

hOGG1 treatment), thus, the larger the ∆Ct, the more abundant the 8-OHdG and more 

oxidative damage present in the sample.  Tables 2.4 -2.8 show the oxidative mtDNA 

damage for each group.  The degree of oxidative mtDNA damage (p=0.59) did not 

significantly differ between male and female neoplastic epilepsy patients (Table 5).  

Controls had lower oxidative mtDNA damage (0.59) compared to neoplastic epilepsy 

patients (0.63, p=0.72), MCD (0.63, p=0.84), and non-MCD (0.63, p=0.71) groups, 

however, statistical significance was not reached.   Yet, the degree oxidative mtDNA 

damage in MCD and non-MCD groups did not differ (both means=0.63, p=0.99).  
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Interestingly, female neoplastic epilepsy patients presented a slightly higher degree of 

mtDNA oxidative damage compared to controls (p=0.99) (Table 2.5).   

mtDNA genotyping 

 In this study we analyzed the association between ten mitochondrial SNPs and 

neoplastic intractable epilepsy (MCD and non-MCD).  Neither, neoplastic epilepsy 

patients (MCD and non-MCD) or controls contained the mtSNP of G9804A.  Allele 

G9952A (p<0.001; Adjusted OR=1.19E9, 95% CI [0, NaN]) was found at higher 

frequencies in epilepsy samples compared to controls.  Controls had higher frequencies 

for the mitochondrial SNPs A1555G, G3196A, T3197C, A4317G, A10006G, T10010C, 

and A10398G, and the haplogroups I, J, L, M, and U5 compared to all neoplastic epilepsy 

samples (Tables 2. 9 and 2.10), including MCD  (Tables 2.11 and 2.12) and non-MCD 

(Tables 2.13 and 2.14) sub-groups.   

The neoplastic epilepsy (MCD and non-MCD) samples did not contain any 

T3197C mtSNP, or belong to the European haplogroup (U-5).  The European (I and J), 

African (L and M) and Asian (M) haplogroups were observed in both neoplastic epilepsy 

and control samples.  No difference in the frequencies of SNPs and haplogroups were 

observed when comparing MCD and Non-MCD neoplastic epilepsy patient sub-groups 

(Tables 2.16 and 2.17).  Neoplastic males and females presented similar trends in the 

frequency of SNPs, however, males presented with allele G9804A (Table 2.11), while, 

females did not (Table 2.13).  Interestingly, female neoplastic samples presented higher 

frequencies of G9952A compared to controls (p=0.02) (Table 2.13).   

Logistic regression revealed that neoplastic epilepsy, MCD or non-MCD 

phenotypes did not significantly depend on level of relative mtDNA copy number, level 
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of oxidative mtDNA damage, SNP or haplogroup status (Tables 2.16-2.19).  A trend that 

the levels of relative mtDNA copy number and oxidative mtDNA damage and for the 

SNPs G9952A (OR= 2.94E9, 95% CI [0, NaN]) and T10010C (OR= 1.76, 95% CI [0.28, 

11.28]) predicted neoplastic epilepsy phenotype was observed, yet, there were large 

confidence intervals due large standard error (Table 2.21).  Female neoplastic epilepsy 

phenotypes were predicted by G9952A (OR= 9.91E9, 95% CI [0, NaN]), level of relative 

mtDNA copy number (4.10, 95% CI [0.28, 60.18]), and level of oxidative mtDNA 

damage (OR= 2.34, 95% CI [0.20, 27.21]) (Table 2.23). 

Bayesian network 

 In the female samples we used Banjo© software to learn a Bayesian network to 

study the relationships among epilepsy status, MCD status, relative mtDNA copy 

number, oxidative mtDNA damage, and the mtSNPs. A summary Bayesian network 

based on the top three Bayesian networks for the female samples was created (Figure 

2.2).  In this network brain tumor status is connected to relative mtDNA copy number to 

oxidative mtDNA damage, and 3 mtDNA SNPs (A10006G, T10010C, and A1555G), as 

well as, brain tumor with 6 mtDNA SNPs (G9952A, A10398G, A10006G, T3197C, 

G3196A, and A1555G).  The paths of relative mtDNA copy number- oxidative mtDNA 

copy number- A10006G, G9952A- brain tumor, A10398G-brain tumor, and brain tumor-

A1006G, T3197C, G3196A, and A1555G) are shown in the summary Bayesian network.  

The influence scores between several of these variables are depicted on Table 2.27.  The 

Pearson correlation of between selected variables based on the influence scores are found 

in Table 2.28.  Significant correlations (p < 0.05) were found between brain tumor and 

MCD status; brain tumor with G9952A, T3197C, A10006G, A1555G, and A10398G; 
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oxidative mtDNA damage with relative mtDNA copy number; brain tumor with relative 

mtDNA copy number, to name a few.  Thus, the summary Bayesian network summarizes 

the relationship between mtDNA oxidative damage and copy number, and SNPs (genes) 

and disease (phenotype).   

Discussion 

One of the major risk factors for cancer is oxidative stress (Bai et al., 2007).  

Mitochondria play a crucial role in the production of ROS.  Mitochondrial dysfunction 

may contribute to epileptogenesis (Walbaum and Patel, 2010).  Oxidative stress has been 

suggested to be a significant cause and consequence of excitotoxicity, which plays a 

critical role in epileptic brain damage.  mtDNA variations can cause inefficient oxidative 

phosphorylation which leads to the accumulation of ROS and DNA damage leading to an 

increased risk in cancer (Bai et al., 2007).  In this study we observed a trend of an 

increased relative mtDNA copy number and oxidative mtDNA damage in neoplastic 

epilepsy patients (both MCD and non-MCD).  Female neoplastic samples presented 

higher relative mtDNA copy number and degree of oxidative mtDNA damage compared 

to controls.  No significant differences by gender, regarding relative mtDNA copy 

number and degree of oxidative mtDNA damage, as well as mtDNA SNP and haplogroup 

background, were observed among neoplastic pediatric epilepsy patients.   

The mtDNA variant, G9952A, which codes for COIII and associated with 

mitochondrial encephalopathy, was found in higher frequencies in the neoplastic 

intractable epilepsy (MCD and non-MCD) patients, and most interestingly in female 

neoplastic epilepsy patients.  We also found a trend in which G9952A, along with level 

of mtDNA copy number and level of oxidative mtDNA damage to predicted neoplastic 
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MCD and non-MCD epilepsy phenotypes, as well as, female neoplastic epilepsy samples.  

In female samples, a summary Bayesian  network revealed brain tumor status is 

connected to relative mtDNA copy number to oxidative mtDNA damage, and 3 mtDNA 

SNPs (A10006G, T10010C, and A1555G), as well as, brain tumor with 6 mtDNA SNPs 

(G9952A, A10398G, A10006G, T3197C, G3196A, and A1555G).   Additionally, all of 

the neoplastic MCDs were gangliomas and DNETs which are malformations due to 

abnormal glial and neuronal proliferation.  A key event in brain development is 

proliferation which begins around the 20th week of gestation (Lenroot and Giedd, 2006).   

Oxidative stress can lead to mutations or the formation of damaged proteins and 

may be an important risk factor for the initiation and progression of disease (Migliore and 

Coppede, 2002).  Involvement of the mitochondrion in cancer metabolism and functions 

has been documented (Mayevsky, 2009; Reuter et al., 2010).  Increased ROS production 

contributes to tumorigenicity and cell progression by promoting genomic instability and 

increased DNA damage.  Disturbed redox status may lead to the activation of key 

signaling components that are important in cell proliferation and survival (Myatt et al., 

2011).  Changes in glucose metabolism in cancer cells demonstrate a shift away from 

mitochondrial respiration towards glycolysis for ATP production (Bhrahimi-Horn et al., 

2011). 

Amplification of the mitochondrial genome in response to oxidative stress has 

been noted.  In a cell, the abundance of mitochondria is determined by biogenesis and 

division of the organelles.  The quantity of mitochondria per cell is tightly regulated by 

activation of specific transcription factors and signaling pathways (Lee and Wei, 2005).  

The assembly and functioning of the respiratory enzyme complexes in cells require 
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coordinated expression the interaction of gene products between the mitochondrial and 

nuclear genomes.  Gene expressions of the mitochondria and nucleus respond in a 

complex manner to various physiological and developmental signals such as growth 

activation, neoplastic transformation, muscle contraction, cell differentiation and 

hormone action (Lee and Wei, 2005).  Control of biogenesis in mitochondria is a 

complex process.  Alterations in intracellular level of ROS are associated with changes in 

mitochondrial abundance, mtDNA copy number, and the expression of respiratory genes.  

In aging, increased oxidative stress plays a crucial role in the increase of mitochondrial 

abundance, as well as, mtDNA content in tissue cells during the aging process.  Persistent 

oxidative stress in mitochondria not only contributes to the somatic mtDNA mutations 

but also alter mtDNA replication rate, leading to an overall decline in the mitochondrial 

respiratory function.   

Replication of mtDNA occurs primarily during the S and G2 phases of the cell 

cycle, but most importantly can occur at any point of the cell cycle.  In addition, mtDNA 

replication does not occur concurrently with the growth and division of organelles, hence, 

mtDNA replication can occur without mitochondrial proliferation.  The copy number of 

mtDNA varies with cell type and is maintained within a range.  mtDNA copy number 

may be modulated according to the energy needs of the cell.  Changes in mtDNA copy 

number in response to exercise and hormone treatment have been observed (Lee and Wei, 

2005).  Currently, it is unclear how copy number of mtDNA and the abundance of 

mitochondria are regulated under different physiological and developmental conditions.   

According to Liang and Hays (1996), primary oncocytic tumors have shown 

moderate amounts of increased copy number in mitochondria sequences, treatment of 
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adenocarcenoma cell line with trihelose or rats with diethylnitrosamine revealed increases 

in copy number of mtDNA sequences, and primary and cultured gliomas showed 

substantial alternations in the copy number of mtDNA genome.  In Liang and Hays’ 

(1996) study, as well as our study, the mitochondrial genome shows high degrees of 

amplification, suggesting these increases may be an early event in tumor genesis.  The 

reasons for increases in mtDNA copy number in neoplastic brain cells are unclear.  Liang 

and Hays (1996) suggest this may be due to the general mechanisms of genomic 

instability throughout the entire tumor cell or because a miscommunication between the 

nuclear and mitochondrial genomes.   

Jiang et al. (2005) found an increase mtDNA content in the saliva of patients with 

head and neck squamous cell carcinoma (HNSC).  An increase in mtDNA copy number 

has also been observed in  chronic lymphocytic leukemia (CLL), non-Hodgkin 

lymphoma (NHL), thyroid cancer, renal oncocytome, colorectal cancer, endometrial 

cancer, breast cancer (Mambo et al., 2005; Wang et al., 2005; Lan et al., 2008; Radpour 

et al., 2009; Hosgood III et al., 2010; Shen et al., 2010; Chen et al., 2011).   In contrast, 

decrease in mtDNA content has been reported to be associated with increased risk of 

renal cancer.  Additionally, a decrease in mtDNA copy number in cancer tissue has been 

found in lung cancer, gastric cancer, hepatocellular carcinoma, type 2 diabetes, 

cardiomyopathy, and breast cancer (Yin et al., 2004; Lin et al., 2008; Montier et al., 

2009).  Thus, it seems that changes in mtDNA content is cancer-type specific (Chen et 

al., 2011).   

Oxidative stress stimulates mitochondrial proliferation to meet the energy needs 

for cell survival including repair of damage and synthesis of new proteins.  Yet, oxidative 
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stress causes excess ROS production resulting in further oxidative damage.  The increase 

of mtDNA copy number is dependent of the level of oxidative stress, the capacity of 

intracellular antioxidant system, the quality of mitochondria and mtDNA.  The increase 

of ROS production from a defective respiratory chain is thought to play a role in the 

increase of mitochondrial content.  ROS act as a second messenger to trigger the 

expression of nuclear respiratory factors and mitochondrial transcription factor to induce 

mitochondrial biogenesis and mitochondrial proliferation (Jiang et al., 2005).  

Understanding oxidative-stress induced alterations in mtDNA copy number is important 

for the development of novel drugs to prevent and treat intractable epilepsy. 

mtDNA copy numbers can be modulated when physiological conditions are 

changed.  Environmental exposures can generate ROS and may induce the accumulation 

of mtDNA mutations in human tissue. mtDNA is more susceptible to oxidative damage 

due to its lack of histones and limited capacity to repair DNA damage, thus, consequently 

acquires mutations at greater rates than nuclear DNA.  Mitochondrial function is 

compromised as a result of oxidative damage and damage to mtDNA.  Oxidative stress 

stimulates mitochondrial proliferation to meet the energy needs for cell survival including 

repair of damage and synthesis of new proteins.  Oxidative stress causes excess ROS 

production resulting in further oxidative damage.  The increase of mtDNA copy number 

is dependent of the level of oxidative stress, the capacity of intracellular antioxidant 

system, the quality of mitochondria and mtDNA.  The increase of ROS production from a 

defective respiratory chain is thought to play a role in the increase of mitochondrial 

content.  ROS act as a second messenger to trigger the expression of nuclear respiratory 

factors and mitochondrial transcription factor to induce mitochondrial biogenesis and 
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mitochondrial proliferation (Jiang et al., 2005).  Oxidative damage induces an increase in 

mitochondria and mtDNA to compensate for the decline in the function of mitochondrial 

respiration (Shen et al., 2008).  In other words, ROS resulting from oxidative stress 

interact with genetic signaling systems that upregulate gene expression to counteract 

stressor challenges and to re-establish hemeostatis.   

Overall, we interpret the increase in relative mtDNA copy number as a result of 

compensatory responses induced by mtDNA damage, in order to repress the actions of 

the oxidative damage.  The increase in mtDNA replication, as a response to oxidative 

damage, provides a propagation of mtDNA that has not been damaged by oxidative 

stress.  The resulting mtDNA copies do not contain the damage (DNA adducts), 

presenting an overall lower oxidative mtDNA damage.  Thus, the increase in undamaged 

mtDNA dilutes the presence of damage mtDNA.  Understanding oxidative-stress induced 

alterations in mtDNA copy number is important for the development of novel drugs to 

prevent and treat intractable neoplastic epilepsy. 

Our study found that the mitochondrial SNP G9952A was found in the female 

neoplastic epilepsy patients and not the control samples.  This mitochondrial variant 

codes for COIII.  It is believed that the majority of the ROS are generated by complexes I 

and III, likely due to the release of electrons by NADH and FADH into the ETC.  Hanna 

et al. (1998) identified the G9952A point mutation in a patient with encephalopathy and 

exercise intolerance.  This point mutation is located in 3’ end of the gene for the subunit 

of COIII and is thought to result in the loss of the last 13 amino acids of the C-terminal 

region of this subunit.  Decreased expression of cytochrome c oxidase III has been 

reported in colon tumors compared to non-malignant colonoica mucosa (Penta et al., 
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2001).  Our results suggest that the presence of these mitochondrial mutations in COIII, 

in conjunction with environmental insults, may induce mitochondrial dysfunction in 

neoplastic epilepsy.  Hence, the role and mechanisms dysfunction of COIII of the 

respiratory chain in epileptogenesis and neoplastic MCD needs to be explored further. 

In summary, our study shows a trend of increased relative mtDNA copy number 

in brain tissues from pediatric neoplastic epilepsy patients.  The quantitative changes of 

mtDNA may have implications in neoplastic epilepsy development.  Since all of the 

neoplastic MCDs were gangliomas and DNETs, which are malformations due to 

abnormal glial and neuronal proliferation, our results suggest key events, such as 

environmental insults, occurring during this gestational stage and the occurrence of 

intractable epilepsy warrants further research.  In addition, the use of a summary 

Bayesian network of the female samples demonstrated the statistically significant 

relationships, the network revealed brain tumor status is connected to relative mtDNA 

copy number to oxidative mtDNA damage, and 3 mtDNA SNPs (A10006G, T10010C, 

and A1555G), as well as, brain tumor with 6 mtDNA SNPs (G9952A, A10398G, 

A10006G, T3197C, G3196A, and A1555G).   The summary Bayesian network for the 

female epilepsy samples revealed the following paths:  oxidative mtDNA damage-

epilepsy-relative mtDNA copy number, A10398G, T3197C, G3196A, and A1555G; 

oxidative mtDNA damage-A10006G-epilepsy; oxidative mtDNA damage-relative 

mtDNA copy number; and G9952A-epilepsy. 

To our knowledge, this is the first study to explore mtDNA copy number, 

oxidative mtDNA oxidative stress in MCD neoplastic epilepsy patients.  The main 

limitation of our study is that the number of pediatric neoplastic intractable epilepsy 
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patients and non-epilepsy samples is relatively small.  However, results from this study 

provide the foundation, for proper determination of sample size in pediatric intractable 

epileptics, such as the frequency of mtSNPs in pediatric neoplastic epilepsy patients, and 

the mean and standard deviation for further research regarding measurement of oxidative 

mtDNA damage.   For example, utilizing the results from this study, in order to compare 

oxidative mtDNA damage between brain tumor and control samples, and for the study to 

reach 80% power with an alpha level of 0.05 a sample size of 1766 (883 disease and 883 

control samples) is required.  Hence, in order to acquire these sample sizes, a multi-

facility (and institution) study is needed to explore the oxidative mtDNA damage, 

mtDNA copy number, and mtSNPs in children with neoplastic intractable epilepsy.  In 

addition to its role in apoptosis, the mitochondrion serves as an important element in the 

tumorigenic phenotype, and clinical approaches targeting this organelle have potential for 

the development of effective treatment regimens for patients with neoplastic epilepsy. 

Overall, this study indicates mitochondria may play a role in neoplastic pediatric 

epilepsy.
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Table 2.1.   
Clinical profile of pediatric patients with intractable epilepsy with brain tumors 
 

Sample Age (years) Gender Diagnosis MCD Status Pathology 
1 3 M tumor Non-MCD new tumor dense gliosis 

2 9 F tumor Non-MCD pilocytic astrocytoma 

3 14 M tumor MCD ganglioglioma 

4 8 ms F tumor MCD ganglioglioma 

5 8 M tumor Non-MCD oligodendroglioma 

6 12 F tumor Non-MCD pilocytic astrocytoma 

8 11 F tumor Non-MCD pilocytic astrocytoma 

12 18 M tumor MCD Dysembryoplastic 
Neuroepithelial Tumor 

(DNET) 
13 12 F tumor Non-MCD glioblastoma multiforme 

14 10 F tumor Non-MCD medulloblastoma 

15 10 M tumor Non-MCD pilocytic astrocytoma 

16 8 mos M tumor Non-MCD astrocytoma 

17 6 F tumor Non-MCD choroid plexus papilloma 

19 5 M tumor Non-MCD pilocytic astrocytoma 

21 10 F tumor MCD ganglioglioma 

22 6 M tumor Non-MCD pilocytic astrocytoma, 
glioblastoma, 

hypothalamic tumor 
26 19 F tumor Non-MCD oligodendroglioma 

28 2 M tumor Non-MCD medulloblastoma 

29 4 F tumor Non-MCD pilocytic astrocytoma, 
hypothalamic tumor 

30 5 M tumor MCD glioneuronal 
neoplasm/possible 

ganglioglioma 
32 9 F tumor Non-MCD pilocytic astrocytoma 

35 13 M tumor Non-MCD medulloblastoma 

36 16 F tumor Non-MCD ependymoma 

39 12 F tumor Non-MCD medulloblastoma 

41 7 M tumor Non-MCD anaplastic ependymoma 

44 6 F tumor Non-MCD high grade malignant 
undifferentiated neoplasm 

46 4 F tumor MCD DNET 
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Table 2.2   
Profile of control samples obtained from NICHD Brain and Tissue Bank for 
Developmental Disorders at the University of Maryland 
 

Sample  Age (years) Gender History/ Cause of Death 

Control 1 15 F car accident, multiple injuries 

Control 2 18 F car accident, multiple injuries 

Control 3 13 F asphyxia by hanging 

Control 4 2 F drowning 

Control 5 2 F drowning 

Control 6 8 F  asphyxia and multiple injuries 

Control 7 4 F lymphocytic myocarditis  

Control 8 16 F car accident, multiple injuries 

Control 9 2 F car accident, multiple injuries 

Control 10 17 F car accident, multiple injuries 

Control 11 10 F Asthma 
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Table 2.3.  
Mitochondrial SNPs and haplogroups used in this study 
 

Variant Region Reported in Patients 

A1555G 12S rRNA Maternally inherited deafness or aminoglycoside-induced deafness 

G3196A 16S rRNA Alzheimer’s Disease and Parkinson’s Disease (ADPD) 

T3197C 16S rRNA Haplogroup (Hg)-U5 

G4309A tRNA Ile Chronic Progressive External Ophthalmoplegia (CPEO) 

A4317G tRNA Ile Fatal Infantile Cardiomyopathy (FICP) 

G9804A CO III Leber Hereditary Optic Neuropathy (LHON) 

G9952A CO III Mitochondrial Encephalopathy 

A10006G tRNA Gly Chronic intestinal pseudo-obstruction (CIPO) 

T10010C tRNA Gly Progressive encephalopathy (PEM) 

A10398G ND3 ↓PD, ↓AD;A-↑Breast Cancer  (BRCA) in AA, Hg-I, J, L, M 
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Figure 2.1.   

Correlation between the mtDNA copy number and degree of oxidative mtDNA 

damage.  The relative mtDNA copy numbers of the intractable epilepsy neoplastic 

tissues and control tissues with their relationship to degree of oxidative mtDNA damage 

are plotted.  The results show that the two parameters were not significantly correlated 

(Pearson correlation coefficient= 0.14, p= 0.45).
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Table 2.4.   
Comparison of demographic, mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric neoplastic intractable epilepsy patients and non-epileptic control from NICHD Brain and Tissue Bank 
 

  
All Cases  

(n=38) 

Neoplastic 
epilepsy 
 (n=27) 

Control          
(n=11) P-value 

          
Age (years) 8.93 + 5.36 6.96 + 5.37  9.73 + 6.44  0.24 
Sex (M/F) 12/26 12/15 0/11 <0.001 
log Relative mtDNA copy number          
Median 1.45 1.45 1.37   
Mean + S.D. 1.53 + 1.00 1.61 + 1.18 1.33 + 0.21 0.26 
> 1.45 (high) (%)   14 (52) 5 (45) 1.00 
< 1.45 (low) (%) 13 (48) 6 (55)   
          
log Degree of oxidative mtDNA 
damage (∆Ct)         
Median 0.66 0.68 0.63   
Mean + S.D. 0.62 + 0.29 0.63 + 0.30 0.59 + 0.27 0.72 
> 0.66 (high damage) (%)   12 (44) 5 (45) 0.72 
< 0.66 (low damage) (%) 10 (37) 6 (55)   
          
Degree of oxidative mtDNA damage/ 
log Relative mtDNA copy number          
Median 0.46 0.48 0.42   
Mean + S.D. 0.60 + 0.73 0.67 + 0.87 0.46 + 0.25 0.44 
> 0.46 (high damage) (%)   11 (41) 6 (55) 1.00 
< 0.46 (low damage) (%) 11 (41) 4 (36)   
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Table 2.5.   
Comparison of demographic, mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric neoplastic intractable epilepsy patients and non-epileptic control from NICHD Brain and Tissue Bank by gender 
 

  
All Cases 

(n=38) 

Epilepsy 
Male   

(n=12) 

Epilepsy  
Female        
(n=15) 

Control 
Female      
(n=11) aP-value bP-value cP-value 

Age (years) 8.93 + 5.36 7.64 + 5.23 9.38 + 4.76  9.73 + 6.44 0.38 0.40 0.87 
log Relative mtDNA copy number  12/26             
Median   1.44 1.48 1.37       
Mean + S.D. 1.45 1.47 + 0.68 1.55 + 1.14 1.33 + 0.21 0.82 0.52 0.34 
> 1.45 (high) (%) 1.53 + 1.00 4 (33) 9 (60) 0 (0) 0.48 1.00 0.69 
< 1.45 (low) (%)   7 (58) 6 (40) 11 (100)       
log Degree of oxidative mtDNA 
damage (∆Ct)             
Median 0.66 0.69 0.65 0.63       
Mean + S.D. 0.62 + 0.29 0.66 + 0.31 0.60 + 0.28 0.59 + 0.27 0.59 0.61 0.72 
> 0.66 (high damage) (%) 4 (33) 6 (40) 5 (45) 0.67 1.00 0.67 
< 0.66 (low damage) (%) 6 (50) 5 (33) 6 (55)       
Degree of oxidative mtDNA 
damage/ log Relative mtDNA copy 
number                
Median 0.46 0.59 0.44 0.42       
Mean + S.D. 0.60 + 0.73 0.57 + 0.31 0.78 + 1.21 0.46 + 0.25 0.84 0.41 0.41 
> 0.46 (high damage) (%)   7 (58) 4 (27) 4 (36) 1.00 0.40 1.00 
< 0.46 (low damage) (%) 4 (33) 7 (47) 6 (55)     

 

aP-value for Neoplastic Epilepsy, Male vs. Neoplastic Epilepsy, Female 
bP-value for Neoplastic Epilepsy, Neoplastic Male vs. Control 
cP-value for Neoplastic Epilepsy, Female vs. Control 
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Table 2.6.  
Comparison of demographic, mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric neoplastic intractable epilepsy patients with MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

  
All Cases 

(n=17) 
MCD          
(n=6)  

Control         
(n=11) P-value 

          
Age (years) 9.33 + 6.3 6.96 + 5.37  9.73 + 6.44  0.24 
Sex (M/F) 3/14 3/3 0/11 0.03 
log Relative mtDNA copy number          
Median 1.44 1.85 1.37   
Mean + S.D. 1.58 + 0.66 2.03 + 0.97 1.33 + 0.21 0.14 
> 1.44 (high) (%)   4 (67) 5 (45) 0.62 
< 1.44 (low) (%) 2 (33) 6 (55)   
          
log Degree of oxidative mtDNA 
damage (∆Ct)         
Median 0.65 0.69 0.63   
Mean + S.D. 0.61 + 0.32 0.63 + 0.44 0.59 + 0.27 0.84 
> 0.65 (high damage) (%)   3 (50) 5 (45) 1.00 
< 0.65 (low damage) (%) 2 (33) 6 (55)   
          
Degree of oxidative mtDNA damage/ 
log Relative mtDNA copy number          
Median 0.41 0.3 0.42   
Mean + S.D. 0.45 + 0.29 0.40 + 0.37 0.46 + 0.25 0.71 
> 0.40 (high damage) (%)   3 (50) 6 (55) 1.00 
< 0.40 (low damage) (%) 2 (33) 4 (36)   
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Table 2.7.  
Comparison of demographic, mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric intractable epilepsy patients with non-MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

  
All Cases 

(n=32) 
Non-MCD 

(n=21)  
Control          
(n=11) P-value 

          
Age (years) 8.99 + 5.22 8.60 + 4.59  9.73 + 6.44  0.51 
Sex (M/F) 9/23 9/12 0/11 0.01 
log Relative mtDNA copy number          
Median 1.45 1.45 1.37   
Mean + S.D. 1.43 + 1.00 1.48 + 1.23 1.33 + 0.21 0.59 
> 1.45 (high) (%)   11 (52) 0 (0) 1.00 
< 1.45 (low) (%) 10 (48) 11 (100)   
          
log Degree of oxidative mtDNA 
damage (∆Ct)         
Median 0.65 0.66 0.63   
Mean + S.D. 0.61 + 0.26 0.63 + 0.26 0.59 + 0.27 0.71 
> 0.65 (high damage) (%)   9 (43) 5 (45) 1.00 
< 0.65 (low damage) (%) 8 (38) 6 (55)   
          
Degree of oxidative mtDNA damage/ 
log Relative mtDNA copy number          
Median 0.45 0.5 0.42   
Mean + S.D. 0.64 + 0.77 0.75 + 0.96 0.46 + 0.25 0.34 
> 0.45 (high damage) (%)   9 (43) 6 (55) 0.70 
< 0.45 (low damage) (%) 7 (33) 4 (36)   
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Table 2.8.  
Comparison of demographic, mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital 
pediatric neoplastic intractable epilepsy patients with MCD and non-MCD 
 

  
All Cases        

(n=27) 
MCD  
(n=6)  

Non-MCD       
(n=21) P-value 

          
Age (years) 8.60 + 4.96 8.61 + 6.58  8.60 + 4.59 1.00 
Sex (M/F) 12/15 12/9 3/3 1.00 
log Relative mtDNA copy number          
Median 1.45 1.85 1.45   
Mean + S.D. 1.61 + 1.18 2.03 + 0.97 1.48 + 1.23 0.33 
> 1.45 (high) (%)   3 (50) 10 (48) 1.00 
< 1.45 (low) (%) 3 (50) 10 (48)   
        
log Degree of oxidative mtDNA 
damage (∆Ct)         
Median 0.68  0.69 0.67   
Mean + S.D. 0.63 + 0.30 0.63 + 0.44 0.63 + 0.27 0.99 
> 0.68 (high damage) (%)   2 (33) 8 (38) 1.00 
< 0.68 (low damage) (%) 2 (33) 9 (43)   
          
Degree of oxidative mtDNA damage/ 
log Relative mtDNA copy number          
Median 0.48 0.31 0.50   
Mean + S.D. 0.67 + 0.87 0.40 + 0.37 0.75 + 0.96 0.45 
> 0.48 (high damage) (%)   2 (33) 9 (43) 1.00 
< 0.48(low damage) (%) 3 (50) 8 (38)   

 



 

 
 

145

Table 2.9.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable 
neoplastic epilepsy patients and non-epileptic control from NICHD Brain and Tissue Bank   
 

SNPs 

Neoplastic 
epilepsy 
(n=27) 

Controls         
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 13 48 11 100 0.002 0 0, NaN 0 0, NaN 
G3196A 3 11 11 100 <0.001 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
G4309A 26 96 11 100 1.00 0 0, NaN 0 0, NaN 
A4317G 19 70 11 100 0.08 0 0, NaN 0 0, NaN 
G9804A 0 0 0 0 1.00 NaN 0, NaN NaN 0, NaN 
G9952A 6 22 0 0 <0.001 1.19E9 0, NaN 1.17E9 0, NaN 
A10006G 6 22 11 100 <0.001 0 0, NaN 0 0, NaN 
T10010C 16 59 7 64 1.00 0.83 0.20, 3.54 0.83 0.19, 3.55 
A10398G 7 26 11 100 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.10.   
The results of the Fisher’s exact test for individual haplogroups for in Miami Children’s Hospital pediatric intractable 
neoplastic epilepsy patients and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 

Neoplastic 
epilepsy 
 (n=27) 

Controls          
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
 Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 7 26 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-J 7 26 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-L 7 26 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-M 7 26 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-U5 0 0 9 82 0.002 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
 
 

 

 

 



 

 
 

147

Table 2.11.  
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable epilepsy 
male neoplastic patients and non-epileptic control from NICHD Brain and Tissue Bank   
 

SNPs 

Neoplastic 
Epilepsy Male      

(n=12) 
       Controls             
         (n=11) 

Fisher's     
exact test    
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/   
    SNP % 

Positive/   
   SNP % 

  

A1555G 8 67 11 100 0.09 0 0, NaN 0 0, NaN 
G3196A 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 <0.001 0 0, NaN 0 0, NaN 
G4309A 11 92 11 100 1.0 0 0, NaN 0 0, NaN 
A4317G 9 75 11 100 0.22 0 0, NaN 0 0, NaN 
G9804A  0 0 0 0 1.00 Infinity 0, NaN Infinity 0, NaN 
G9952A 6 50 0 0 0.01 Infinity 0, NaN Infinity 0, NaN 
A10006G 4 33 11 100 0.001 0 0, NaN 0 0, NaN 
T10010C 8 67 7 64 1.00 1.14 0.21, 6.37 1.23 0.21, 7.14 
A10398G 3 25 11 100 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
 
 



 

 
 

148

Table 2.12. 
The results of the Fisher’s exact test for individual haplogroups for in Miami Children’s Hospital pediatric intractable 
epilepsy male neoplastic patients and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 

Neoplastic 
Epilepsy Male      

(n=12) 
       Controls             
         (n=11) 

Fisher's     
exact test    
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/   
   Hg % 

Positive/   
  Hg % 

  

Hg-I 3 25 11 100 <0.001 0 0, NaN 0 0, NaN 

Hg-J 3 25 11 100 <0.001 0 0, NaN 0 0, NaN 

Hg-L 3 25 11 100 <0.001 0 0, NaN 0 0, NaN 

Hg-M 3 25 11 100 <0.001 0 0, NaN 0 0, NaN 

Hg-U5 0 0 9 82 <0.001 0 0, NaN 0 0, NaN 
 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.13.  
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric intractable epilepsy 
female neoplastic patients and non-epileptic control from NICHD Brain and Tissue Bank   
 

SNPs 

Neoplastic 
Epilepsy          
Female            
(n=15) 

       Controls             
         (n=11) 

Fisher's     
exact test    
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/   
    SNP % 

Positive/   
   SNP % 

  

A1555G 5 33 11 100 0.001 0 0, NaN 0 0, NaN 
G3196A 3 20 11 100 <0.001 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 <0.001 0 0, NaN 0 0, NaN 
G4309A 15 100 11 100 1.00 NaN NaN, NaN NaN NaN, NaN 
A4317G 10 67 11 100 0.05 0 0, NaN 0 0, NaN 
G9804A 0 0 0 0 1.00 NaN NaN, NaN NaN NaN, NaN 
G9952A 6 40 0 0 0.02 1.97E9 0, NaN 2.04E9 0, NaN 
A10006G 2 13 11 100 <0.001 0 0, NaN 0 0, NaN 
T10010C 8 53 7 64 0.70 0.63 0.13, 3.21 0.60 0.13, 3.20 
A10398G 4 27 11 100 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.14. 
The results of the Fisher’s exact test for individual haplogroups for in Miami Children’s Hospital pediatric intractable 
epilepsy female neoplastic patients and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 

Neoplastic 
Epilepsy   
Female         
(n=15) 

       Controls           
         (n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 4 27 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-J 4 27 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-L 4 27 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-M 4 27 11 100 <0.001 0 0, NaN 0 0, NaN 
Hg-U5 0 0 9 82 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds Ratio using control group as reference 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.15.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric neoplastic 
intractable epilepsy patients with MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

SNPs 
MCD            
(n=6) 

Controls          
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 2 33 11 100 0.01 0 0, NaN 0 0, NaN 
G3196A 1 14 11 100 <0.001 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
G4309A 6 100 11 100 1.00 NaN NaN, NaN NaN NaN, NaN 
A4317G 3 50 11 100 0.03 0 0, NaN 0 0, NaN 
G9804A 0 0 0 0 1.00 NaN NaN, NaN NaN NaN, NaN 
G9952A 3 50 0 0 0.03 5.92E9 0, NaN 1.02E10 0, NaN 
A10006G 2 33 11 100 0.01 0 0, NaN 0 0, NaN 
T10010C 4 67 7 64 1.00 1.14 0.14, 9.30 1.25 0.15, 10.81 
A10398G 2 33 11 100 0.01 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds ratio using control group as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.16.   
The results of the Fisher’s exact test for individual haplogroups for in Miami Children’s Hospital pediatric neoplastic 
intractable epilepsy patients with MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 
MCD            
(n=6) 

Controls          
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 
95% Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 2 33 11 100 0.01 0 0, NaN 0 0, NaN 
Hg-J 2 33 11 100 0.01 0 0, NaN 0 0, NaN 
Hg-L 2 33 11 100 0.01 0 0, NaN 0 0, NaN 
Hg-M 2 33 11 100 0.01 0 0, NaN 0 0, NaN 
Hg-U5 0 0 9 82 0.002 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds ratio using control group as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.17.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric neoplastic 
intractable epilepsy patients with non-MCD and non-epileptic control from NICHD Brain and Tissue Bank 
  

SNPs 
non-MCD  

(n=21) 
Controls         
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 11 52 11 100 0.01 0 0, NaN 0 0, NaN 
G3196A 2 10 11 100 <0.001 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
G4309A 20 95 11 100 1.00 0 0, NaN 0 0, NaN 
A4317G 16 76 11 100 0.14 0 0, NaN 0 0, NaN 
G9804A 0 0 0 0 1.00 NaN NaN, NaN NaN 0, NaN 
G9952A 9 43 0 0 0.01 1.48E9 0, NaN 1.44E9 0, NaN 
A10006G 4 19 11 100 <0.001 0 0, NaN 0 0, NaN 
T10010C 12 57 7 64 1.00 0.76 0.17, 3.42 0.72 0.16, 3.31 
A10398G 5 24 11 100 <0.001 0 0, NaN 1.05 0.91, 1.21 

 

aOR, using control group as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.18.   
The results of the Fisher’s exact test for haplogroups for in Miami Children’s Hospital pediatric intractable neoplastic 
epilepsy patients with non-MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 
non-MCD  

(n=21) 
Controls         
(n=11) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
 Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 5 24 11 100 <0.001 0 0, NaN 0.95 0.91, 1.21 
Hg-J 5 24 11 100 <0.001 0 0, NaN 1.05 0.91, 1.21 
Hg-L 5 24 11 100 <0.001 0 0, NaN 1.05 0.91, 1.21 
Hg-M 5 24 11 100 <0.001 0 0, NaN 0.95 0.91, 1.21 
Hg-U5 0 0 9 82 0.002 0 0, NaN 0 0, NaN 

 

 
aOR, using control group as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.19.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric neoplastic 
intractable epilepsy patients with MCD and non-MCD 
 

SNPs 
MCD            
(n=6)            

Non-MCD         
(n=21) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95%  
Confidence 

Interval 

Positive/  
    SNP % 

Positive/  
   SNP % 

  

A1555G 2 33 11 52 0.65 0.45 0.07, 3.04 0.42 0.32, 17.58 
G3196A 1 17 2 10 0.55 1.90 0.14, 25.45 0.52 0.04, 7.19 
T3197C 0 0 0 0 1.00 NaN NaN, NaN 1.00 0.83, 1.21 
G4309A 6 100 20 95 1.00 0 0, NaN 0 0, NaN 
A4317G 3 50 16 76 0.32 0.31 0.05, 2.07 0.31 0.48, 22.13 
G9804A 0 0 0 0 1.00 NaN NaN, NaN NaN NaN, NaN 
G9952A 3 50 9 43 1.00 1.33 0.22, 8.22 0.75 0.12, 4.62 
A10006G 2 33 4 19 0.59 2.13 0.28, 15.97 0.46 0.06, 3.57 
T10010C 4 67 12 57 1.00 1.50 0.22, 10.08 0.67 0.10, 4.48 
A10398G 2 33 5 24 0.63 1.60 0.22,11.50 0.62 0.09, 4.50 

 

aOR, Crude Odds ratio using non-MCD as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.20.   
The results of the Fisher’s exact test for haplogroups for in Miami Children’s Hospital pediatric intractable epilepsy 
patients with MCD and non-MCD 
 

Haplogroups 
MCD            
(n=6)            

Non-MCD         
(n=21) 

Fisher's    
exact test   
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
 Confidence 

Interval 

Positive/  
   Hg % 

Positive/  
  Hg % 

  

Hg-I 2 33 5 24 0.63 1.60 0.22,11.50 0.62 0.09, 4.50 
Hg-J 2 33 5 24 0.63 1.60 0.22,11.50 0.62 0.09, 4.50 
Hg-L 2 33 5 24 0.63 1.60 0.22,11.50 0.62 0.09, 4.50 
Hg-M 2 33 5 24 0.63 1.60 0.22,11.50 0.62 0.09, 4.50 
Hg-U5 0 0 0 0 1.00 NaN NaN, NaN 1.00 0.04, 7.19 

 

aOR, Crude Odds ratio using non-MCD as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table 2.21.   
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age in Miami Children’s Hospital pediatric neoplastic intractable epilepsy patients and non-epileptic control from 
NICHD Brain and Tissue Bank   
 

SNP/Haplogroup 
SNP/Hg          

OR (95% CI) 

Level of relative 
mtDNA copy number 

OR (95% CI) 

Level of oxidative 
mtDNA damage        

OR (95% CI) 
Age                            

OR (95% CI) 
A1555G 0 (0, NaN) 2.21 (0.34, 20.90) 2.59 (0.37, 18.28) 1.06 (0.89, 1.27) 
G3196A --- --- --- 0.92 (0.60, 1.39) 
T3197C --- 2.02E8 (0, NaN) 0.89 (0.03, 25.33) 1.06 (0.78, 1.42) 
G4309A --- 1.00 (0.19, 5.43) 1.93 (0.40, 9.37) 1.02 (0.88, 1.19) 
A4317G --- 1.15 (0.19, 6.80) 1.51 (0.29, 7.87) 1.01 (0.87, 1.18) 
G9804A --- 1.00 (0.19, 5.43) 1.93 (0.40, 9.37) 1.02 (0.88, 1.19) 
G9952A 2.94E9 (0, NaN) 3.67 (0.43, 31.22) 1.93 (0.29, 13.03) 1.04 (0.87, 1.25) 
A10006G 0 (0, NaN) 0 (0, NaN) 0.25 ( 0.01, 6.04) 0.95 (0.75, 1.21) 
T10010C 1.76 (0.28, 11.18) 1.33 (0.19, 9.41) 1.88 (0.39, 9.16) 1.03 (0.88, 1.20) 
A10398G --- 0.87 (0.9, 8.67) 3.67 (0.36, 37.07) 1.06 (0.85, 1.31) 

Hg-I --- 0.87 (0.9, 8.67) 3.67 (0.36, 37.07) 1.06 (0.85, 1.31) 
Hg-J --- 0.87 (0.9, 8.67) 3.67 (0.36, 37.07) 1.06 (0.85, 1.31) 
Hg-L --- 0.87 (0.9, 8.67) 3.67 (0.36, 37.07) 1.06 (0.85, 1.31) 
Hg-M --- 0.87 (0.9, 8.67) 3.67 (0.36, 37.07) 1.06 (0.85, 1.31) 
Hg-U5 --- 2.02E8 (0, NaN) 0.89 (0.03, 25.33) 1.06 (0.78, 1.42) 

 
 
OR, using control group as reference 
NaN = Not a number 
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Table 2.22.  
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age in Miami Children’s Hospital pediatric intractable epilepsy male neoplastic patients and non-epileptic control 
from NICHD Brain and Tissue Bank   
 

SNP/Hg 
SNP/Hg            

OR (95% CI) 

Level of relative mtDNA 
copy number OR (95% 

CI) 

Level of oxidative 
mtDNA damage          

OR (95% CI) 
Age                   

OR (95% CI) 

A1555G 0 (0, NaN) 0.41 (0.03, 6.73) 0.74 (0.07, 8.51) 1.10 (0.89, 1.37) 

G3196A --- --- --- --- 

T3197C 0 (0, NaN) 1.53E8 (0, NaN) 1.63 (0.05, 53.48) 1.05 (0.78, 1.40) 

G4309A --- 0.36 (0.04, 3.10) 0.98 (0.13, 7.33) 1.02 (0.87, 1.20) 

A4317G 0 (0, NaN) 0.54 (0.06, 5.18) 1.03 (0.12, 8.91) 1.04 (0.89, 1.23) 

G9804A --- 0.36 (0.04, 3.10) 0.98 (0.13, 7.33) 1.02 (0.87, 1.20) 

G9952A 9.79E9 (0, NaN) 1.58 (0.10, 24.97) 0.66 (0.04, 11.80) 1.13 (0.89, 1.43) 

A10006G 0 (0, NaN) 0.50 (0.03, 8.85) 0.59 (0.03, 12.06) 0.95 (0.76, 1.20) 

T10010C 1.44 (0.14, 14.52) 0.42 (0.04, 4.62) 1.04 (0.14, 7.87) 1.03 (0.87, 1.21) 

A10398G 0 (0, NaN) 0 (0, NaN) 0.75 (0.02, 23.25) 0.92 (0.68, 1.25) 

Hg-I 0 (0, NaN) 0 (0, NaN) 0.75 (0.02, 23.25) 0.92 (0.68, 1.25) 

Hg-J 0 (0, NaN) 0 (0, NaN) 0.75 (0.02, 23.25) 0.92 (0.68, 1.25) 

Hg-L 0 (0, NaN) 0 (0, NaN) 0.75 (0.02, 23.25) 0.92 (0.68, 1.25) 

Hg-M 0 (0, NaN) 0 (0, NaN) 0.75 (0.02, 23.25) 0.92 (0.68, 1.25) 

Hg-U5 0 (0, NaN) 1.53E8 (0, NaN) 1.63 (0.05, 53.48) 1.05 (0.78, 1.40) 
 

OR, using control group as reference 
NaN = Not a number 
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Table 2.23.   
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age in Miami Children’s Hospital pediatric intractable epilepsy female neoplastic patients and non-epileptic control 
from NICHD Brain and Tissue Bank   
 

SNP/Hg 
SNP/Hg            

OR (95% CI) 

Level of relative mtDNA 
copy number OR (95% 

CI) 

Level of oxidative 
mtDNA damage          

OR (95% CI) 
Age                   

OR (95% CI) 

A1555G 0 (0, NaN) 1.49E19 (0, NaN) 5.01E23 (0, NaN) 0 (0, NaN) 

G3196A 0 (0, NaN) 0 (0, NaN) 0 (0, NaN) 0.92 (0.60, 1.39) 

T3197C 0 (0, NaN) 6.91E8 (0, NaN) 0.30 (0.02, 37.41) 1.03 (0.65, 1.61) 

G4309A --- 1.33 (0.20, 8.68) 2.07 (0.34, 12.79) 1.01 (0.84, 1.21) 

A4317G 0 (0, NaN) 1.23 (0.16, 9.99) 1.04 (0.13, 8.30) 0.94 (0.77, 1.15) 

G9804A --- 1.31 (0.20, 8.68) 2.07 (0.34, 12.79) 1.01 (0.84, 1.21) 

G9952A 9.91E9 (0, NaN) 4.10 (0.28, 60.18) 2.34 (0.20, 27.21) 0.94 (0.74, 1.20) 

A10006G 0 (0, NaN) 0 (0, NaN) 0 (0, NaN) 1.20 (0.73, 1.97) 

T10010C 1.71 (0.24, 12.04) 1.53 (0.22, 10.88) 1.97 (031, 12.42) 1.01 (0.84, 1.21) 

A10398G 0 (0, NaN) 2.45 (0.15, 40.13) 10.58 (0.41, 271.59) 1.17 (0.85, 1.62) 

Hg-I 0 (0, NaN) 2.45 (0.15, 40.13) 10.58 (0.41, 271.59) 1.17 (0.85, 1.62) 

Hg-J 0 (0, NaN) 2.45 (0.15, 40.13) 10.58 (0.41, 271.59) 1.17 (0.85, 1.62) 

Hg-L 0 (0, NaN) 2.45 (0.15, 40.13) 10.58 (0.41, 271.59) 1.17 (0.85, 1.62) 

Hg-M 0 (0, NaN) 2.45 (0.15, 40.13) 10.58 (0.41, 271.59) 1.17 (0.85, 1.62) 

Hg-U5 0 (0, NaN) 6.91E8 (0, NaN) 0.30 (0.02, 37.41) 1.03 (0.65, 1.61) 
 

OR, using control group as reference 
NaN = Not a number 
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Table 2.24.  
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age  for in Miami Children’s Hospital pediatric neoplastic intractable epilepsy patients with MCD and non-epileptic 
control from NICHD Brain and Tissue Bank 
 

SNP/Haplogroup 
SNP/Hg          

OR (95% CI) 

Level of relative 
mtDNA copy number 

OR (95% CI) 

Level of oxidative 
mtDNA damage        

OR (95% CI) 
Age                           

    OR (95% CI) 
A1555G 0 (0, NaN) 2.12E29 (0, NaN) 4.90E29 (0, NaN) 5.47E4 (0, NaN) 
G3196A --- --- --- --- 
T3197C 0 (0, NaN) 7.64E9(0, NaN) 2768 (0, 1.13E27) 1.63 (0.06, 46.68) 
G4309A --- 1.89 (0.21, 17.01) 1.91 (0.21, 17.45) 1.02 (0.85, 1.23) 
A4317G 0 (0, NaN) 3.07 (0.17, 54.19) 3.00 (0.17, 51.86) 0.96 (0.75, 1.22) 
G9804A --- 1.89 (0.21, 17.01) 1.91 (0.21, 17.45) 1.02 (0.85, 1.23) 
G9952A 2.85E18 (0, NaN) 7.72E8 (0, NaN) 1.19 (0.04, 38.39) 1.16 (0.81, 1.65) 
A10006G 0 (0, NaN) 0 (0, NaN) 0.88 (0.03, 31.17) 0.98 (0.76, 1.26) 
T10010C 3.76 (0.21, 65.95) 3.00 (0.26, 35.00) 1.72 (0.16, 18.42) 1.05 (0.85, 1.29) 
A10398G 0 (0, NaN) 1.73 (0.06, 49.31) 1.50 (0.06, 37.91) 1.09 (0.81, 1.47) 

Hg-I 0 (0, NaN) 1.73 (0.06, 49.31) 1.50 (0.06, 37.91) 1.09 (0.81, 1.47) 
Hg-J 0 (0, NaN) 1.73 (0.06, 49.31) 1.50 (0.06, 37.91) 1.09 (0.81, 1.47) 
Hg-L 0 (0, NaN) 1.73 (0.06, 49.31) 1.50 (0.06, 37.91) 1.09 (0.81, 1.47) 
Hg-M 0 (0, NaN) 1.73 (0.06, 49.31) 1.50 (0.06, 37.91) 1.09 (0.81, 1.47) 
Hg-U5 0 (0, NaN) 7.64E9(0, NaN) 2768 (0, 1.13E27) 1.63 (0.06, 46.68) 

 
 
OR, using control group as reference 
NaN = Not a number 
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Table 2.25.  
The results of the logistic regression for SNP/ haplogroups, level of relative mtDNA copy number, level of oxidative 
mtDNA damage, and age for in Miami Children’s Hospital pediatric neoplastic intractable epilepsy patients with non-
MCD and non-epileptic control from NICHD Brain and Tissue Bank 
 

SNP/Haplogroup 
SNP/Hg          

OR (95% CI) 

Level of relative 
mtDNA copy number 

OR (95% CI) 

Level of oxidative 
mtDNA damage        

OR (95% CI) 
Age                      

 OR (95% CI) 
A1555G 0 (0, NaN) 1.58(0.20, 12.28) 1.30  (0.20, 8.38) 1.05 (0.89, 1.24) 
G3196A 0 (0, NaN) 0 (0, NaN) 0 (0, NaN) 0.92 (0.60, 1.39) 
T3197C 0 (0, NaN) 4.69E8 (0, NaN) 0.55 (0.21, 14.51) 1.13 (0.81, 1.59) 
G4309A --- 1.14 (0.22, 6.12) 1.36 (0.28, 6.55) 1.04 (0.89, 1.21) 
A4317G 0 (0, NaN) 0.89 (0.14, 5.76) 1.24(0.23, 6.70) 1.02 (0.87, 1.19) 
G9804A --- 1.15 (0.22, 6.12) 1.36 (0.28, 6.55) 1.04 (0.89, 1.21) 
G9952A 2.86E9 (0, NaN) 1.93 (0.25, 15.03) 1.85 (0.28, 12.28) 1.01 (0.85, 1.20) 
A10006G 0 (0, NaN) 1.47 (0.12, 17.63) 0.41 (0.03, 5.92) 1.14 (0.90,1.44) 
T10010C 1.34 (0.24, 7.54) 1.25 (0.22, 7.18) 1.31 (0.27, 6.37) 1.03 (0.89, 1.21) 
A10398G 0 (0, NaN) 2.06 (0.22, 19.30) 2.10 (0.22, 20.34) 1.07 (0.86, 1.33) 

Hg-I 0 (0, NaN) 2.06 (0.22, 19.30) 2.10 (0.22, 20.34) 1.07 (0.86, 1.33) 
Hg-J 0 (0, NaN) 2.06 (0.22, 19.30) 2.10 (0.22, 20.34) 1.07 (0.86, 1.33) 
Hg-L 0 (0, NaN) 2.06 (0.22, 19.30) 2.10 (0.22, 20.34) 1.07 (0.86, 1.33) 
Hg-M 0 (0, NaN) 2.06 (0.22, 19.30) 2.10 (0.22, 20.34) 1.07 (0.86, 1.33) 
Hg-U5 0 (0, NaN) 4.69E8 (0, NaN) 0.55 (0.21, 14.51) 1.13 (0.81, 1.59) 

 

OR, using control group as reference 
NaN = Not a number 
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Table 2.26.  
The results of the logistic regression for SNP/haplogroups, level of relative mtDNA copy number, level of oxidative mtDNA 
damage, and age for in Miami Children’s Hospital pediatric neoplastic intractable epilepsy patients with MCD and using 
non-MCD as control group 
 

      
SNP/Haplogroup 

Haplogroup     
OR (95% CI) 

Level of relative 
mtDNA copy number 

OR (95% CI) 

Level of oxidative 
mtDNA damage        

OR (95% CI) 
Age                            

OR (95% CI) 
A1555G 6.36E8 (0, NaN) 2.43 (0.16, 37.63) 1.08 (0.04, 30.30) 1.10 (0.73, 1.63) 
G3196A 9.21E8 (0, NaN) 4.31 (0.28, 67.47) 1.56 (0.11, 21.76) 1.14 (0.86, 1.50) 
T3197C --- 3.65 (0.24, 56.02) 1.19 (0.09, 15.19) 1.12 (0.85, 1.47) 
G4309A --- 3.65 (0.24, 56.02) 1.19 (0.09, 15.19) 1.12 (0.85, 1.47) 
A4317G 4.43 (0.25, 78.98) 3.17 (0.20, 49.63) 2.41 (0.08, 75.88) 1.19 (0.82, 1.71) 
G9804A --- 3.65 (0.24, 56.02) 1.19 (0.09, 15.19) 1.12 (0.85, 1.47) 
G9952A 0.41 (0.02, 8.47) 2.11 (0.08, 53.18) 1.44 (0.09, 22.05) 1.11 (0.84, 1.48) 
A10006G 0.21 (0.01, 3.36) 2.45 (0.15, 40.19) 0.77 (0.04, 15.25) 1.10 (0.84, 1.45) 
T10010C 0 (0, NaN) 1.92 (0.13, 28.45) 1.57 (0.08, 31.52) 1.19 (0.83, 1.70) 
A10398G 0.23 (0.01, 4.03) 3.17 (0.20, 49.63) 2.41 (0.8, 75.88) 1.19 (0.82, 1.71) 

Hg-I 0.23 (0.01, 4.03) 3.17 (0.20, 49.63) 2.41 (0.8, 75.88) 1.19 (0.82, 1.71) 
Hg-J 0.23 (0.01, 4.03) 3.17 (0.20, 49.63) 2.41 (0.8, 75.88) 1.19 (0.82, 1.71) 
Hg-L 0.23 (0.01, 4.03) 3.17 (0.20, 49.63) 2.41 (0.8, 75.88) 1.19 (0.82, 1.71) 
Hg-M 0.23 (0.01, 4.03) 3.17 (0.20, 49.63) 2.41 (0.8, 75.88) 1.19 (0.82, 1.71) 
Hg-U5 --- 3.65 (0.24, 56.02) 1.19 (0.09, 15.19) 1.12 (0.85, 1.47) 

 

NaN = Not a number 
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Figure 2.2.   

Summary Beyesian network based on the top three Bayesian networks for female 
samples.  Absolute value on influence score higher than 0.1 are shown. 
 

 
Table 2.27. 
Influence scores between selected variables for female samples. 
 

Variables Influence Score 

(BrainTumor) ->   (T3197C) 0.7882 

(BrainTumor) ->   (A10006G) 0.7407 

(BrainTumor) ->   (A1555G) 0.6156 
(A10398G) ->  (BrainTumor) 0.4746 

(G9952A) ->  (BrainTumor) -0.4587 
(BrainTumor) ->   (G3196A) 0.2076 
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Table 2.28.   
Pearson correlation between selected variables based on the influence scores for female samples. 
 
    

T3197C A10006G A1555G A10398G G9952A mcd status 
BrainTumor   -.850** -.856** -.677** -.733** .469* -.946**

Sig.  0 0 0 0 0.016 0

mtOXDamageDbyA10006G   .490* .520** 0.29 .623** -0.07 .583**

Sig.  0.011 0.007 0.15 0.001 0.736 0.002

CopyNumbyG3196A   0.03 -0.123 0.304 -0.284 -.463* 0.129

Sig.  0.885 0.55 0.131 0.16 0.017 0.53

mtOXDamageDbyCopyNum   -0.277 -.467* 0.043 -.418* -0.27 -0.201

Sig.  0.171 0.016 0.834 0.034 0.182 0.325

mtOXDamageD   0.19 0.081 0.089 0.359 0.015 0.228

Sig. 0.354 0.695 0.664 0.072 0.943 0.262

mtOXDamage   0.166 0.231 -0.055 0.385 0.132 0.198

Sig.  0.417 0.256 0.79 0.052 0.521 0.331

CopyNum   -0.336 -.462* 0.009 -.539** -0.253 -0.288

Sig.  0.093 0.018 0.965 0.004 0.212 0.153

 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 2.28.  (cont.) 
Pearson correlation between selected variables based on the influence scores for female samples. 
 
    

mtOX 
DamageDby

A10006G 
CopyNumby

G3196A 

mtOX 
DamageDby
CopyNum 

mtOX 
DamageD 

mtOX 
Damage CopyNum copyno 

BrainTumor   -.639** -0.035 0.291 -0.296 -0.286 .396* 0.195

Sig.  0 0.865 0.149 0.142 0.157 0.045 0.34

mtOXDamageD 
by A10006G 

  1 -0.228 -0.113 .894** .786** -.544** -0.369

Sig.    0.262 0.582 0 0 0.004 0.064

CopyNumby            
G3196A 

  -0.228 1 .835** -0.202 -.468* .879** .493*

Sig.  0.262   0 0.323 0.016 0 0.011

mtOXDamageD 
byCopyNum 

  -0.113 .835** 1 0.113 -0.216 .863** .426*

Sig.  0.582 0   0.582 0.29 0 0.03

mtOXDamageD   .894** -0.202 0.113 1 .796** -.392* -0.311

Sig. 0 0.323 0.582   0 0.048 0.123

mtOXDamage   .786** -.468* -0.216 .796** 1 -.610** -0.344

Sig.  0 0.016 0.29 0   0.001 0.085

CopyNum   -.544** .879** .863** -.392* -.610** 1 .577**

Sig.  0.004 0 0 0.048 0.001   0.002

 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Chapter V 

 

CONCLUSIONS 

This study revealed the following major findings:  
 
1. Relative mtDNA copy number were higher in female intractable epilepsy 

patients compared to non-epileptic control samples (p=0.01).   

2. Oxidative mtDNA damage was lower in female epileptics compared to non-

epileptic control samples (p=0.24), and lower in MCD compared to non-MCD 

(p=0.58). 

3. The frequency of mtDNA SNP G9952A was higher in female epilepsy 

samples compared to controls.  

4. Bayesian network showed significant relationships (p < 0.05) between 

epilepsy, mcd, oxidative mtDNA damage, mtDNA copy number, and 

G9952A. 

5. Relative mtDNA copy number were higher in female neoplastic intractable 

epilepsy patients compared to non-epileptic control samples (p=0.34).  

6. Oxidative mtDNA damage was higher in female neoplastic epileptic 

compared to control samples (p=0.74), and no differences in MCD epilepsy 

patients compared to non-MCD (p=0.99).   

7. The frequency of mtDNA G9952A was found in higher frequencies in 

neoplastic epilepsy samples compared to controls.   
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8. Female neoplastic epilepsy phenotypes were predicted by G9952A (OR= 

9.91E9, 95% CI [0, NaN]), level of relative mtDNA copy number (4.10, 95% 

CI [0.28, 60.18]), and level of oxidative mtDNA damage (OR= 2.34, 95% CI 

[0.20, 27.21]) 

9. Bayesian network showed relationships (p < 0.05) between brain tumor with 

G9952A, A1555G, T3197C, A10006G, A10398G, oxidative mtDNA damage 

with relative mtDNA copy number, and brain tumor with relative mtDNA 

copy number in female samples. 

10.  These data suggest that mitochondria play a critical role in the development 

of both epilepsy and brain tumor. 

 

Directions for future research 

The results of the present study are intended to inspire research regarding the 

possible roles of mitochondrial dysfunction in MCD intractable epilepsy.  The data show 

that changes in mtDNA copy number, oxidative mtDNA damage, and function of COIII 

in the mitochondria as areas of interest for research in MCD intractable epilepsy.  Our 

results suggest that changes in mtDNA copy number may depend on the levels of the 

environmental insult that result in changes in metabolic activity and production of ROS 

in the mitochondria.  Thus, more studies exploring and elucidating the role of 

mitochondrial proliferation as a compensatory response to oxidative stress are needed.  

Hence, a study which measures, in addition to the mtSNPs, oxidative mtDNA damage 

and relative mtDNA copy number,  the expression of both nuclear and mitochondrial 

genes and proteins involved in mitochondrial biogenesis, replication, mitochondrial base 
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excision repair and antioxidant response elements in response to oxidative damage is 

needed. 

Since a trend that both MCD and non-MCD samples, as well as, female epilepsy 

samples were predicted by levels of mtDNA copy number and the mtSNP: G9952A, our 

results indicate that research regarding mitochondrial dysfunction mediated by COIII 

activities and increase in mtDNA content in epileptogenesis in MCD is greatly needed.  

Lastly, since the majority of the MCD patients are classified as malformations due to 

abnormal glial and neuronal proliferation in the epilepsy patients, research regarding the 

environmental exposures in this stage of brain development and epileptogenesis is 

warranted.  Since mitochondrial gene expression and regulation are becoming 

increasingly relevant to human diseases determination of the potential signaling pathways 

involved in mtDNA copy number replication and regulation will help us to develop new 

approaches to maintaining healthy mitochondria and preventing epileptogenesis. 
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Table A.1.   
Clinical characteristics of the intractable epilepsy patients and controls 
 

Sample 
Age 

(years) Gender Initial Diagnosis MCD Status Pathology Location in brain 
1 3 M intractable epilepsy Non-MCD new tumor dense gliosis right frontal region 

2 9 F tumor Non-MCD pilocytic astrocytoma post fossa, right cerebellar 

3 14 M intractable epilepsy MCD ganglioglioma left temporal 

4 8 ms F tumor MCD ganglioglioma right frontal temporal 

5 8 M tumor Non-MCD oligodendroglioma left parietal 

6 12 F tumor Non-MCD pilocytic astrocytoma right posterior fossa 

7 15 F intractable epilepsy MCD cortical dysplasia, type Ia right frontal temporal  
region 

8 11 F tumor Non-MCD pilocytic astrocytoma right tectal 

9 18 F intractable epilepsy MCD focal cortical dysplasia, Taylor type 
IIB 

right prefrontal cortex 

10 6 M intractable epilepsy Non-MCD mild neuronal disorganization frontocentral cortex 

11 13 F intractable epilepsy Non-MCD cystic encephalomalacia right parietal lobe 

12 18 M tumor MCD Dysembryoplastic Neuroepithelial 
Tumor (DNET) 

right frontal 

13 12 F tumor Non-MCD glioblastoma multiforme left temporal region 

14 10 F tumor Non-MCD medulloblastoma posterior fossa 

15 10 M tumor Non-MCD pilocytic astrocytoma left cerebellum 

16 8 mos M tumor Non-MCD astrocytoma right frontal temporal 
region 

17 6 F tumor Non-MCD choroid plexus papilloma IV ventricle 

18 3 F intractable epilepsy Non-MCD meningioangiomatosis right parietal tumor 

19 5 M tumor Non-MCD pilocytic astrocytoma hypothalamic tumor 

20 2 M intractable epilepsy Non-MCD gliosis right temporal lobe 

21 10 F tumor MCD ganglioglioma right frontal region 
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Table A.1 (cont).  Clinical characteristics of the intractable epilepsy patients and controls 

Sample 
Age 

(years) Gender Initial Diagnosis MCD Status Pathology Location in brain
22 6 M tumor Non-MCD pilocytic astrocytoma, glioblastoma, 

hypothalamic tumor 
hypothalamus 

23 7 F intractable epilepsy MCD cortical dysplasia with Rasmussen's 
encephalitis 

left anterior temporal lobe, left 
uncal region, left hippocampus 

24 4 M intractable epilepsy MCD cortical dysplasia, type IIA left frontal temporal lobe 

25 4 F intractable epilepsy MCD tuberous sclerosis left temporal lobe 

26 19 F tumor Non-MCD oligodendroglioma left temporoparietal region 

27 16 F intractable epilepsy MCD cortical dysplasia,  type IIB left parietal area 

28 2 M tumor Non-MCD medulloblastoma right cerebellum 

29 4 F tumor Non-MCD pilocytic astrocytoma, hypothalamic 
tumor 

hypothalamus 

30 5 M intractable epilepsy MCD glioneuronal neoplasm/possible 
ganglioglioma 

right frontal lobe 

31 N/A  N/A  intractable epilepsy Non-MCD Information not available Information not available 

32 9 F tumor Non-MCD pilocytic astrocytoma posterior fossa 

33 N/A   N/A intractable epilepsy Non-MCD Information not available Information not available 

34 3 M intractable epilepsy MCD cortical dysplasia parieto-occipital lobe 

35 13 M tumor Non-MCD medulloblastoma posterior fossa 

36 16 F tumor Non-MCD ependymoma left cerebellar medullary 

37 2 F intractable epilepsy MCD cortical dysplasia with Rasmussen's 
encephalitis 

right frontotemporal parietal 
region 

38 17 F intractable epilepsy Non-MCD Information not available left temporal lobe 

39 12 F tumor Non-MCD medulloblastoma IV ventricle 
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Table A.1 (cont).  Clinical characteristics of the intractable epilepsy patients and controls 

Sample 
Age 

(years) Gender Initial Diagnosis MCD Status Pathology Location in brain 
40 10 F intractable epilepsy MCD cortical dysplasia, Palmini type IA right temporal lobe 

41 7 M tumor Non-MCD anaplastic ependymoma IV ventricle 

42 3 F intractable epilepsy MCD cortical dysplasia, type 1A left frontal lobe,  hippocampus 

43 9 M intractable epilepsy MCD neuronal disorganization, Type 1a 
cortical dysplasia 

fronto-parietal 

44 6 F tumor Non-MCD high grade malignant 
undifferentiated neoplasm 

Information not available 

45  N/A N/A  intractable epilepsy Non-MCD Information not available Information not available 

46 4 F tumor MCD DNET right temporal region 

47 4 mos M tumor MCD cortical dysplasia, type 2B left temporoparietal cortex 

48 6 M intractable epilepsy MCD cortical dysplasia, Palmini type 1B parietal cortex 

Control 1 15 F Control Sample Diseased car accident, multiple injuries frontal temporal region 

Control 2 18 F Control Sample Diseased car accident, multiple injuries prefrontal cortex 

Control 3 13 F Control Sample Diseased asphyxia by hanging parietal lobe 

Control 4 2 F Control Sample Diseased drowning frontal lobe 

Control 5 2 F Control Sample Diseased drowning parietal lobe 

Control 6 8 F Control Sample Diseased asphyxia and multiple injuries temporal lobe 

Control 7 4 F Control Sample Diseased lymphocytic myocarditis temporal lobe 

Control 8 16 F Control Sample Diseased car accident, multiple injuries parietal lobe 

Control 9 2 F Control Sample Diseased car accident, multiple injuries temporal lobe 

Control 10 17 F Control Sample Diseased car accident, multiple injuries temporal lobe 

Control 11 10 F Control Sample Diseased asthma temporal lobe 



 

193 

Table A.2.   
Mitochondrial copy number relative to 18s rRNA gene content as determined from 
the Ct differences 
 

Sample 18s rRNA Ct mtDNA Ct ∆Cta Rc
b logRc 

1 21.43 16.60 4.83 28.44 1.45 
2 22.51 20.20 2.31 4.96 0.70 
3 24.40 19.60 4.80 27.76 1.44 
4 27.83 23.63 4.20 18.32 1.26 
5 17.25 15.04 2.21 4.63 0.67 
6 21.92 16.62 5.30 39.26 1.59 
7 16.77 12.00 4.78 27.38 1.44 
8 23.47 17.34 6.13 70.03 1.85 
9 23.75 17.07 6.68 102.18 2.01 

10 25.26 18.97 6.29 77.98 1.89 
11 24.76 18.50 6.27 76.90 1.89 
12 24.94 20.99 3.95 15.45 1.19 
13 24.37 18.82 5.55 46.85 1.67 
14 22.76 22.27 0.49 1.40 0.15 
15 26.42 24.49 1.93 3.80 0.58 
16 20.53 15.74 4.79 27.67 1.44 
17 21.70 17.25 4.45 21.86 1.34 
18 23.96 22.18 1.78 3.42 0.53 
19 24.49 17.37 7.13 139.58 2.14 
20 31.35 24.52 6.83 113.38 2.05 
21 25.84 18.16 7.68 204.36 2.31 
22 19.63 16.84 2.80 6.94 0.84 
23 17.23 12.30 4.93 30.38 1.48 
24 21.12 15.13 5.99 63.34 1.80 
25 33.30 25.60 7.70 207.94 2.32 
26 19.37 13.99 5.39 41.79 1.62 
27 22.37 15.98 6.39 83.58 1.92 
28 22.69 19.15 3.54 11.59 1.06 
29 19.74 24.44 -4.70 0.04 -1.41 
30 25.21 17.73 7.48 178.53 2.25 
31 23.14 13.81 9.33 643.59 2.81 
32 17.67 15.21 2.46 5.48 0.74 

a∆Ct= Ct18s rRNA - Ct mtDNA (ND1) 
bRc , Relative mtDNA copy number 
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Table A.2. (cont.) 
Mitochondrial copy number relative to 18s rRNA gene content as determined from 
the Ct differences 
 

Sample 18s rRNA Ct mtDNA Ct ∆Cta Rc
b logRc 

33 25.89 16.46 9.44 692.18 2.84 
34 25.14 18.07 7.07 134.36 2.13 
35 20.08 14.35 5.73 53.08 1.72 
36 24.15 17.26 6.90 119.02 2.08 
37 32.08 24.01 8.08 269.66 2.43 
38 24.63 18.52 6.11 69.07 1.84 
39 36.57 25.49 11.08 2157.28 3.33 
40 30.34 24.22 6.13 69.79 1.84 
41 32.39 23.03 9.36 654.84 2.82 
42 34.69 23.04 11.65 3202.54 3.51 
43 37.00 21.88 15.13 35733.76 4.55 
44 32.69 16.88 15.81 57250.47 4.76 
45 36.57 22.73 13.84 14613.36 4.16 
46 35.92 23.48 12.44 5537.43 3.74 
47 25.20 19.58 5.62 49.18 1.69 
48 29.13 19.19 9.94 978.89 2.99 

Control 1 20.12 15.17 4.95 30.91 1.49 
Control 2 19.4 14.52 4.88 29.45 1.47 
Control 3 21.75 16.66 5.09 33.94 1.53 
Control 4 19.13 15.5 3.63 12.34 1.09 
Control 5 20.16 15.24 4.92 30.27 1.48 
Control 6 18.91 13.41 5.5 45.25 1.66 
Control 7 16.96 13.18 3.78 13.74 1.14 
Control 8 19.35 15.02 4.33 20.04 1.30 
Control 9 19.61 15.07 4.54 23.26 1.37 

Control 10 19.86 16.48 3.38 10.45 1.02 
Control 11 21.2 17.53 3.67 12.77 1.11 

a∆Ct= Ct18s rRNA - Ct mtDNA (ND1) 
bRc , Relative mtDNA copy number 
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Table A.3.   
Mitochondrial DNA oxidative damage determined from Ct differences 
 

Sample 
ND1 Ct            

(hOGG1 treated) 
ND1 Ct                 

(no hOGG1 treatment) ∆Cta log∆Ct 

1 17.80 16.60 1.20 0.08 
2 25.38 20.20 5.19 0.71 
3 25.57 19.60 5.97 0.78 
4 24.51 23.63 0.88 -0.06 
5 17.53 15.04 2.50 0.40 
6 21.98 16.62 5.36 0.73 
7 11.54 12.00 -0.46 ---  
8 23.70 17.34 6.37 0.80 
9 32.95 17.07 15.88 1.20 

10 30.85 18.97 11.88 1.07 
11 32.82 18.50 14.32 1.16 
12 34.97 20.99 13.98 1.15 
13 28.31 18.82 9.50 0.98 
14 26.60 22.27 4.33 0.64 
15 28.24 24.49 3.75 0.57 
16 27.13 15.74 11.40 1.06 
17 19.97 17.25 2.72 0.43 
18 36.29 22.18 14.11 1.15 
19 22.02 17.37 4.66 0.67 
20 24.32 24.52 -0.20 ---  
21 22.15 18.16 3.99 0.60 
22 19.99 16.84 3.16 0.50 
23 21.97 12.30 9.67 0.99 
24 16.65 15.13 1.52 0.18 
25 23.72 25.60 -1.88 ---  
26 20.51 13.99 6.53 0.81 
27 21.08 15.98 5.10 0.71 
28 28.01 19.15 8.86 0.95 
29 18.17 24.44 -6.28 ---  
30 22.60 17.73 4.87 0.69 
31 20.12 13.81 6.32 0.80 
32 16.92 15.21 1.71 0.23 

a∆Ct= Ct mtDNA (ND1; hOGG1 treated) - Ct mtDNA (ND1, not treated with hOGG1) 
a∆Ct, mtDNA oxidative damage 
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Table A.3. (cont.)  
Mitochondrial DNA oxidative damage determined from Ct differences 
 

Sample 
ND1 Ct            

(hOGG1 treated) 
ND1 Ct                 

(no hOGG1 treatment) ∆Cta log∆Ct 

33 22.13 16.46 5.68 0.75 
34 26.83 18.07 8.76 0.94 
35 16.98 14.35 2.63 0.42 
36 23.28 17.26 6.03 0.78 
37 24.27 24.01 0.27 -0.58 
38 24.34 18.52 5.82 0.76 
39 19.90 25.49 -5.60 ---  
40 25.24 24.22 1.02 0.01 
41 16.83 23.03 -6.21 ---  
42 23.25 23.04 0.20 -0.69 
43 17.16 21.88 -4.72 --- 
44 14.19 16.88 -2.69 ---  
45 25.74 22.73 3.01 0.48 
46 17.94 23.48 -5.55 --- 
47 18.06 19.58 -1.53 --- 
48 26.57 19.19 7.38 0.87 

Control 1 19.46 15.17 4.29 0.63 
Control 2 17.77 14.52 3.25 0.51 
Control 3 22.83 16.66 6.17 0.79 
Control 4 20.78 15.5 5.28 0.72 
Control 5 18.70 15.24 3.46 0.54 
Control 6 18.01 13.41 4.6 0.66 
Control 7 15.55 13.18 2.38 0.38 
Control 8 15.85 15.02 0.83 -0.08 
Control 9 19.35 15.07 4.28 0.63 

Control 10 25.11 16.48 8.63 0.94 
Control 11 24.10 17.53 6.57 0.82 

 
a∆Ct= Ct mtDNA (ND1; hOGG1 treated) - Ct mtDNA (ND1, not treated with hOGG1) 
a∆Ct, mtDNA oxidative damage 
 
 
 

 
 
 



 

197 

Table A.4.    
Comparison of Malformation of Cortical Development (MCD) intractable epilepsy 
patients and control group 
 

  
    MCD 

(n=18) 
Control 
(n=11) P-value 

Age (years) 7.28 + 5.47 9.73 + 6.44 0.28 
Sex (M/F) 8/10 0/11 0.01 
log Relative mtDNA copy number  
Median 2.03 1.37 
Mean + S.D. 2.24 + 0.92 1.33 + 0.21 0.001 
> 1.53 (high) (%) 13 (72) 1 (9) 0.004 
< 1.53 (low) (%) 5 (28) 9 (82) 

log Degree of oxidative mtDNA damage (∆Ct) 
Median 0.69 0.63 
Mean + S.D. 0.43 + 0.60 0.59 + 0.27 0.39 
> 0.65 (high damage) (%) 7 (39) 5 (45) 1.00 
< 0.65 (low damage) (%) 6 (33) 6 (55) 

log Degree of oxidative mtDNA damage/ log 
Relative mtDNA copy number  
Median 0.29 0.42 
Mean + S.D. 0.27 + 0.34 0.46 + 0.25 0.13 
> 0.37 (high damage) (%) 4 (22) 7 (64) 0.22 
< 0.37 (low damage) (%) 9 (50) 4 (36) 
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Table A.5.   
Comparison of Non Malformation of Cortical Development intractable epilepsy 
patients and control group 
 

  
Non-MCD 

(n=27) 
Control 
(n=11) P-value 

Age (years) 8.57 + 4.86 9.73 + 6.44 0.56 
Sex (M/F) 11/13 0/11 0.02 
log Relative mtDNA copy number  
Median 1.67 1.37 
Mean + S.D. 1.73 + 1.24 1.33 + 0.21 0.12 
> 1.49 (high) (%) 16 (59) 2 (18) 0.06 
< 1.49 (low) (%) 11 (41) 8 (73) 

log Degree of oxidative mtDNA damage (∆Ct) 
Median 0.72 0.63 
Mean + S.D. 0.67 + 0.26 0.59 + 0.27 0.47 
> 0.67 (high damage) (%) 12 (44) 4 (36) 0.47 
< 0.67 (low damage) (%) 10 (37) 7 (64) 

log Degree of oxidative mtDNA damage/ log 
Relative mtDNA copy number  
Median 0.45 0.42 
Mean + S.D. 0.66 + 0.86 0.46 + 0.25 0.48 
> 0.44 (high damage) (%) 11 (41) 5 (45) 1.00 
< 0.44 (low damage) (%) 11 (41) 6 (55) 
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Table A.6.   
Comparison of Malformation of Cortical Development intractable epilepsy patients 
and Non-MCD epilepsy patients 
 

  
MCD 
(n=18) 

Non-MCD 
(n=27) P-value 

Age (years) 7.28 + 5.47 8.57 + 4.86 0.42 
Sex (M/F) 8/10 11/13 1.00 
log Relative mtDNA copy number  
Median 2.03 1.67 
Mean + S.D. 2.24 + 0.92 1.73 + 1.24 0.15 
> 1.84 (high) (%) 10 (56) 10 (37) 0.23 
< 1.84 (low) (%) 7 (39) 16 (59) 

log Degree of oxidative mtDNA damage (∆Ct) 
Median 0.69 0.72 
Mean + S.D. 0.43 + 0.60 0.67 + 0.26 0.20 
> 0.71 (high damage) (%) 8 (44) 12 (44) 0.49 
< 0.71 (low damage) (%) 5 (28) 10 (37) 

log Degree of oxidative mtDNA damage/ log 
Relative mtDNA copy number  
Median 0.29 0.45 
Mean + S.D. 0.27 + 0.34 0.66 + 0.86 0.13 
> 0.38 (high damage) (%) 4 (22) 13 (48) 0.16 
< 0.38 (low damage) (%) 9 (50) 9 (33) 
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Table A.7.   
Mitochondrial SNPs and haplogroups  
 

Region Variant Reported in Patients 

12S rRNA G709A Non-syndromic hearing loss 

12S rRNA T710C Colorectal tumor, mtDNA haplogroup (Hg)-L1b 

12S rRNA A1555G Maternally inherited deafness  or aminoglycoside-induced deafness 

16S rRNA G1719A Hg-I, X 

16S rRNA T1738C colorectal tumor 

16S rRNA G3196A Alzheimer’s Disease and Parkinson’s Disease (ADPD) 

16S rRNA T3197C Hg-U5 
ND1 T3308C Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like 

episodes (MELAS); colorectal tumor 
ND1 T3394C Leber Hereditary Optic Neuropathy (LHON);  Non-insulin dependent 

diabetes mellitus (NIDDM); acute leukemia 

ND1 C3594T Hg-L (L1 or L2) 

ND1 A3397G ADPD 

ND1 A4136G LHON 

tRNA Ile A4295G Maternally inherited hypertropic cardiomyopathy (MHCM) 

tRNA Ile G4298A 
Chronic Progressive External Ophthalmoplegia (CPEO) / Multiple 

Sclerosis (MS) 

tRNA Ile G4309A CPEO 

tRNA Ile A4317G Fatal Infantile Cardiomyopathy (FICP) 

tRNA Gln T4336C ADPD 

ND2 A4917G LHON, Hg-T 

COX II G8251A Sensorineural Hearing Loss (SNHL); Hg-I,W 

ATP6 G8994A SNHL; Hg-W 

ATP6 G9055A Hg-K, longevity, ↓PD 

CO III G9438A LHON 

CO III G9738T LHON 

CO III G9804A LHON 

CO III G9952A Mitochondrial Encephalopathy 

CO III T9957C Progressive encephalopathy (PEM); MELAS 
tRNA Gly T9997C MHCM 

tRNA Gly A10006G Chronic intestinal pseudo-obstruction (CIPO) 

tRNA Gly T10010C PEM 

tRNA Gly T10034C Hg-I 

tRNA Gly A10044G Gastroesophageal reflux (GER) /Sudden infant death syndrome (SIDS) 

ND3 A10398G ↓PD, ↓AD;A-↑Breast Cancer  (BRCA)  in AA, Hg-I, J, L, M 

ND3 C10400T Hg-M 

tRNA LeuCUN A12308G Hg-U&K; CPEO / Stroke / Cardiomyopathy (CM) 

ND5 G13368A Hg-T 
ND5 G13708A Hg-J; LHON 
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Table A.8.   
mtDNA haplogroups J, L, M, T, U, and X 
 

Haplogroups SNPs 

L 10398G 

J 4216C, 10398G, 13708A, 16069T 

L0, L1, L2 3594T

L3 3594C

M 10398G 

T 4216C, 7028T, 10398A, 12308G, 13368A, 15607G 

U 9055G, 10398A, 12308G 

X 1719X, 7028T, 10398A, 14470C 
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Table A.9.    
Sequences for amplifying mitochondrial genome 
 

Name Forward Primers, Sequence (5' - 3') Name Reverse Primers, Sequence (5' - 3') 
Amplicon 
Size (bp) 

MtF537 CATACCCCGAACCAACCA MtR828 GTTAATCACTGCTGTTTCC 292 
MtF1351 GCAAGAAATGGGCTACAT MtR1762 TATCTATTGCGCCAGGTT 412 
F1672 CTAAACCTAGCCCCAAACC R1895 GCTTTGGCTCTCCTTGCAA 224 
MtF3116 CCTCCCTGTACGAAAGGAC MtG3460na GAGTTTTATGGCGTCAGCGAA 356 
F3212 CACCCAAGAACAGGGTTTGT R3758 AGTAGAATGATGGCTAGGGTGAC 546 
MtF4013 CCCTCACCACTACAATCTT MtR4490 GATGGTAGAGTAGATGACG 478 
F4103 CCCTCACCACTACAATCTT 4917na GCTTACGTTTAGTGAGGGA 825 
MtF4881 CCCATCTCAATCATATACC MtR5501 TAGTATAAAAGGGGAGATAGG 621 
MtF5460 GCC CTTACCACGCTA CTCC MtR5843 TTAGGCCTCTTTTTACCAGC 384 
F6872 ACTCGCCACACTCCACGG R7282 GAATGA GCCTACAGATGA T 409 
F8209 CATCGTCCTAGAATTAATTCC R9169 TGAAAA CGTAGGCTTGGA T 961 
MtF9402 ACATACCAAGGCCACCACAC MtR10108 AGTAGTAAGGCTAGGAGGG 707 
G9952ns GATGTGGTT TGACTATTTC TG R10629 GCA CAA TAT TGG CTA AGA G 688 
F12093 TCCTCCTATCCCTCAACCCC R12360 GGTTATAGTAGTGTGCATG 268 
F14437 AGGATACTCCTCAATAGC C R15185 GGCGGATAGTAAGTTTGT 766 
MtF15539 CCTCCCCACATCAAGCCC MtR15964 TTTCTCTGATTTGTCCTTGG 426 
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Table A.10.   
Sequences for the mtDNA SNPs and haplogroups 
 
Oligonucleotide 

Name Oligo sequence (5' to 3') 
Oligonucleotide 

Name Oligo sequence (5' to 3') 
709-10-ns GCATCCCCGTTCCAGTGA T4274C-ms TAAGAAATATGTCCGATAAAAG 
G709A-ms CATCCCCATTCCAGTGAG T4285-ns GATAAAAGAGTTACTTTGATAG 
T710C-ms CATCCCCGCTCCAGTGA T4285C-ms GATAAAAGAGCTACTTTGATAG 
A1555-ns TACGACTTGTCTCCTCTAT A4295-na CTATTATTTACTCTATCAAAGTA 
A1555G-ms TACGACTTGCCTCCTCTAT A4295G-ma CTATTATTTACTCCATCAAAGTA 
G1719-ns ACAACCTTAGCCAAACCAT G4298A-ma CTATTATTTATTCTATCAAAGTA 
G1719A-ms ACAACCTTAACCAAACCAT A4300G-ma CTATTATTCACTCTATCAAAGTA 
A1738-ns TTTACCCAAATAAAGTATAGG G4309-na TAAGGGGGTTTAAGCTCCTAT 
T1738C-ms TTACCCAAACAAAGTATAGG G4309A-ma TAAGGGGGTTTAAGCTTCTAT 
G3196-ns CTCAACTTAGTATTATACC A4317G-ma TAAGGGGGCTTAAGCTCCTA 
G3196A-ms CTCAACTTAATATTATACC C4320T-ma TAAGGAGGTTTAAGCTCCTAT 
T3197C-ms CTCAACTTAGCATTATACCC T4336-ns TTCTAGGACTATGAGAATC 
T3308-ns TTAACAACATACCCATGGC T4336C-ms TTCTAGGACCATGAGAATC 
T3308C-ms TAACAACACACCCATGGC T4409-ns CTAAAGTAAGGTCAGCTAAATA 
T3394--ns TAGGCTATATACAACTAACG T4409C-ms CTAAAGTAAGGCCAGCTAAAT 
T3394C-ms ATTCTAGGCCATATACAACT G4450-ns GAAAATGTTGGTTATACCCTT 
C3594-ns ACCCCCTGGTCAACCTCA G4450A-ms GAAAATGTTGATTATACCCTT 
C3594T-ms ACCCCCTGGTTAACCTCA A4529-ns CTCATCACAGCGCTAAGC 
A3397-na GTAGTTGTATATAGCCTAG A4529T-ms CTCATCACTGCGCTAAGC 
A3397G-ma GTAGTTGTACATAGCCTAG G4580-na TAAAAGCTAGCATGTTTATTTC 
A4136-na ATCGGGGGTATGCTGTTC G4580A-ma TAAAAGCTAGTATGTTTATTTC 
A4136G-ma ATCGGGGGCATGCTGTTC A4917-na GCTTACGTTTAGTGAGGGA 
T4160-ns ACGACCAACTCATACACCT A4917G-ma GCTTACGTCTAGTGAGGGA 
T4160C-ms ACGACCAACCCATACACCT G5460-ns ACACTCATCGCCCTTACCA 
T4216-ns TACTTATATGATATGTCTCCAT G5460A-ms CACTCATCACCCTTACCAC 
T4216C-ms TACTTATATGACATGTCTCCAT G5460T-ms CACTCATCTCCCTTACCAC 
A4269-ns TAAGAAATATGTCTGATAAAAG G5521-ns ATAGAAATTTAGGTTAAATACAG 
A4269G-ms TAAGAAATGTGTCTGATAAAAG G5521A-ms ATAGAAATTTAAGTTAAATACAG 
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Table A.10. (cont.)   
Sequences for the mtDNA SNPs and haplogroups 

 
Oligonucleotide 

Name Oligo sequence (5' to 3') 
Oligonucleotide 

Name Oligo sequence (5' to 3') 

A5537-ns ATACAGACCAAGAGCCTTCA G9952-ns GATGTGGTTTGACTATTTCTG 

A5537insT-ms ATACAGACCATAGAGCCTTC G9952A-ms GATGTGGTTTAACTATTTCTG 

G5549-ns AGCCTTCAAAGCCCTCAG T9957C-ms ATGTGGTTTGACTACTTCTG 

G5549A-ms AGCCTTCAAAACCCTCAG T9997-ns GTCTTACTCTTTTAGTATAAATA 

T5692-ns CAAACACTTAGTTAACAGCT T9997C-ms GTCTTACTCTTCTAGTATAAAT 

T5692C-ms CAAACACTTAGCTAACAGCT A10006-na AGTTAACGGTACTATTTATACT 

T5814-ns TATGAAAATCACCTCGGAG A10006G-ma GTTAACGGTACTACTTATACT 

T5814C-ms TATGAAAACCACCTCGGAG T10010C-ma GTTAACGGTGCTATTTATACT 

C7028-ns CGTTGTAGCCCACTTCCA T10034-ns TTCCAATTAACTAGTTTTGAC 

C7028T-ms CGTTGTAGCTCACTTCCA T10034C-ms TTCCAATTAACTAGCTTTGAC 

G8251-na AAATACGGGCCCTATTTCAA A10044-na CTCTTTTTTGAATGTTGTCAAA 

G8251A-ma AAATACGGGTCCTATTTCAA A10044G-ma CTCTTTTTTGAACGTTGTCAA 

G8994-na CGTACGGCCAGGGCTATT A10398-na TACCAATTCGGTTCAGTCT 

G8994A-ma CGTACGGCTAGGGCTATT A10398G-ma TACCAATTCGGCTCAGTCT 

G9055-na CTAGGGTGGCGCTTCCA C10400T-ma TACCAATTCAGTTCAGTCT 

G9055A-ma CTAGGGTGGTGCTTCCA A12308-na CCAAAATTTTTGGGGCCTA 

G9438-ns GTCCAAAAAGGCCTTCGATA A12308G-ma CCAAAATTCTTGGGGCCTA 

G9438A-ms GTCCAAAAAAGCCTTCGATA G13368-na ATGATGGACCCGGAGCAC 

G9738-ns CTCCTACAAGCCTCAGAGT G13368A-ma ATGATGGATCCGGAGCAC 

G9738T-ms CTCCTACAATCCTCAGAGT G13708-na TTCCGGCTGCCAGGCGTT 

G9804-ns TTTTGTAGCCACAGGCTTC G13708A-ma TTCCGGCTGTCAGGCGTT 

G9804A-ms TTTTTGTAACCACAGGCTTC     
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Table A.11. 
Hybridization temperatures for ASO Dot Blots 
 
Probe Tm (C°) Probe Tm (C°) Probe Tm (C°) 
709-10-ns 47 T4336-ns 52 G9952-ns 58 
G709A-ms 47 T4336C-ms 54 G9952A-ms 52 
T710C-ms 47 T4409-ns 54 T9957C-ms 56 
A1555-ns 46 T4409C-ms 58 T9997-ns 56 
A1555G-ms 46 G4450-ns 56 T9997C-ms 56 
G1719-ns 47 G4450A-ms 54 A10006-na 56 
G1719A-ms 47 A4529-ns 56 A10006G-ma 56 
A1738-ns 47 A4529T-ms 56 T10010C-ma 56 
T1738C-ms 47 G4580-na 56 T10034-ns 54 
G3196-ns 46 G4580A-ma 54 T10034C-ms 56 
G3196A-ms 47 A4917-na 56 A10044-na 56 
T3197C-ms 46 A4917G-ma 50 A10044G-ma 56 
T3308-ns 47 G5460-ns 58 A10398-na 54 
T3308C-ms 47 G5460A-ms 58 A10398G-ma 54 
T3394--ns 47 G5460T-ms 58 C10400T-ma 52 
T3394C-ms 47 G5521-ns 56 A12308-na 56 
C3594-ns 47 G5521A-ms 54 A12308G-ma 56 
C3594T-ms 47 A5537-ns 58 G13368-na 58 
A3397-na 47 A5537insT-ms 58 G13368A-ma 56 
A3397G-ma 47 G5549-ns 56 G13708-na 60 
A4136-na 56 G5549A-ms 54 G13708A-ma 58 
A4136G-ma 58 T5692-ns 40 
T4160-ns 56 T5692C-ms 54 
T4160C-ms 58 T5814-ns 54 
T4216-ns 56 T5814C-ms 56 
T4216C-ms 58 C7028-ns 56 
A4269-ns 52 C7028T-ms 52 
A4269G-ms 54 G8251-na 56 
T4274C-ms 64 G8251A-ma 54 
T4285-ns 56 G8994-na 58 
T4285C-ms 58 G8994A-ma 56 
A4295-na 56 G9055-na 67 
A4295G-ma 58 G9055A-ma 54 
G4298A-ma 54 G9438-ns 64 
A4300G-ma 58 G9438A-ms 56 
G4309-na 60 G9738-ns 54 
G4309A-ma 58 G9738T-ms 56 
A4317G-ma 60 G9804-ns 56 
C4320T-ma 58 G9804A-ms 56 
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Table A.12.   
The results of the Fisher exact test for individual SNP for Malformations of Cortical Development (MCD) and Non-MCD 
pediatric intractable epilepsy patients 
 

SNPs MCD (n=19) Non-MCD (n=29) 
Crude 

OR 95% CI 
Fisher's exact test       

P value                     

Positive % Positive %   Lower Upper 
G709A 18 95 29 100 0 0 NaN 0.40 
T710C 19 100 29 100 0 0 NaN 1.00 
A1555G 12 63 17 59 1.21 0.37 3.98 0.77 
G1719A 1 5 1 3 1.56 0.09 26.47 1.00 
T1738C 3 16 3 10 1.63 0.29 9.05 0.67 
G3196A 6 32 4 14 2.88 0.69 12.07 0.16 
T3197C 0 0 0 0 NaN NaN NaN 1.00 
T3308C 1 5 0 0 0 0 NaN 0.40 
T3394C 29 100 19 100 NaN NaN NaN 1.00 
C3594T 1 5 0 0 0 0 NaN 0.40 
A3397G 1 5 0 0 0 0 NaN 0.40 
A4136G 19 100 29 100 NaN NaN NaN 1.00 
A4317G 13 68 24 82 0.45 0.12 1.77 0.30 
A4295G 0 0 1 3 0 0 NaN 1.00 
G4309A 16 84 28 97 0.19 0.02 1.99 0.29 
T4336C 0 0 0 0 NaN NaN NaN 1.00 
A4917G 18 95 27 93 1.33 0.11 15.82 1.00 
G8251A 0 0 1 3 0 0 NaN 1.00 
G8994A 0 0 2 7 0 0 NaN 1.00 

NaN = Not a number 
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Table A.12. (cont.).   
The results of the Fisher exact test for individual SNP for Malformations of Cortical Development (MCD) and Non-MCD 
pediatric intractable epilepsy patients 
 

SNPs   MCD (n=19) Non-MCD (n=29) OR 95% CI 
Fisher's exact test     

P value              
Positive/ 
haplogroup % 

Positive/ 
haplogroup %   Lower Upper 

G9438A 1 5 1 3 1.56 0.09 26.47 1.00 
G9738T 0 0 2 7 0 0 NaN 0.51 
G9804A 1 5 1 3 1.47 0.09 25.03 1.00 
G9952A 5 26 13 45 0.32 0.13 1.54 0.24 
T9957C 10 53 19 66 0.58 0.18 1.91 0.55 
T9997C 11 58 19 66 0.72 0.22 2.38 0.76 
A10006G 2 11 7 24 0.37 0.07 2.01 0.29 
T10010C 8 42 16 55 0.59 0.18 1.90 0.56 
T10034C 16 84 26 90 0.62 0.11 3.43 0.67 
A10044G 8 42 14 48 0.78 0.24 2.50 0.77 
A10398G 3 16 5 17 0.90 0.19 4.30 1.00 
C10400T 5 26 7 24 1.12 0.30 4.24 0.56 
A12308G 18 95 27 93 1.33 0.11 15.82 1.00 
G13368A 19 100 29 100 NaN NaN NaN 1.00 
G13708A 14 74 22 76 0.89 0.24 3.37 1.00 

      
 

NaN = Not a number 
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Table A.13.  
The results of the Fisher exact test for individual haplogroups for Malformations of Cortical Development (MCD) and 
Non-MCD pediatric intractable epilepsy patients 
 

Haplogroups MCD (n=19) Non-MCD (n=29) OR 95% CI 

Fisher's exact 
test            

P value          
Positive/ 
haplogroup % 

Positive/ 
haplogroup %   Lower Upper 

      
I  14 74 22 76 0.93 0.24 3.37 1.00 
J  14 74 22 76 0.93 0.24 3.37 1.00 
L  1 5 0 0 NaN NaN NaN 0.40 
M  5 26 7 24 1.12 0.30 4.24 1.00 
X  1 5 1 3 1.56 0.09 26.47 1.00 
T 18 95 27 93 1.33 0.11 15.82 1.00 
U 18 95 27 93 1.33 0.11 15.82 1.00 

 

 

NaN = Not a number
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Table A.14.  
Characteristics of Miami Children’s Hospital neoplastic intractable epilepsy 
patients 
 

Sample Pathology 
WHO 

Classification 
Tumor 

Classification Tumor Grade 
1 new tumor dense gliosis I N/A Low 

2 pilocytic astrocytoma I astrocytoma Low 

3 ganglioglioma I/II astrocytoma Low 

4 ganglioglioma I/II astrocytoma Low 

5 oligodendroglioma II oligodendroglioma Low 

6 pilocytic astrocytoma I astrocytoma Low 

8 pilocytic astrocytoma I astrocytoma Low 

12 Dysembryoplastic 
Neuroepithelial Tumor 
(DNET)  

I DNET Low 

13 glioblastoma multiforme IV astrocytoma High 

14 medulloblastoma IV medulloblastoma High 

15 pilocytic astrocytoma I astrocytoma Low 

16 astrocytoma I astrocytoma Low 

17 choroid plexus papilloma I glioma Low 

19 pilocytic astrocytoma I astrocytoma Low 

21 ganglioglioma I/II astrocytoma Low 

22 pilocytic astrocytoma, 
glioblastoma, hypothalamic 
tumor 

IV astrocytoma High 

26 oligodendroglioma II oligodendroglioma Low 

28 medulloblastoma IV medulloblastoma High 

29 pilocytic astrocytoma, 
hypothalamic tumor 

I astrocytoma Low 

30 glioneuronal 
neoplasm/possible 
ganglioglioma 

I/II astrocytoma Low 

32 pilocytic astrocytoma I astrocytoma Low 

35 medulloblastoma IV medulloblastoma High 

36 ependymoma II ependymoma Low 

39 medulloblastoma IV medulloblastoma High 

41 anaplastic ependymoma III ependymoma Low 

44 high grade malignant 
undifferentiated neoplasm 

IV N/A High 

46 DNET I DNET Low 
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Table A.15.   
Comparison of demographic, and mitochondrial DNA copy number and oxidative damage in Miami Children’s Hospital pediatric 
neoplastic intractable epilepsy patients by tumor grade and non-epileptic control from NICHD Brain and Tissue Bank 
 

  
All Cases 

(n=38) 

Tumor  
Low Grade 

(n=20) 

   Tumor 
High Grade 

(n=7) 
Control     
(n=11) aP-value bP-value cP-value 

Age (years) 8.93 + 5.36 8.57 + 5.31 8.71 + 4.11  9.73 + 6.44 0.95 0.59 0.72 

Sex (M/F) 12/26 9/11 3/4 0/11 1.0 0.01 0.04 

log Relative mtDNA copy number                

Median 1.45 1.45 1.67 1.37       

Mean + S.D. 1.53 + 1.00 1.49 + 1.03 1.93 + 1.59 1.33 + 0.21 0.40 0.62 0.23 

> 1.45 (high) (%)   9 (45) 4 (57) 5 (45) 1.00 1.00 1.00 

< 1.45 (low) (%) 10 (20) 3 (43) 6 (55)       
log Degree of oxidative mtDNA 
damage (∆Ct)               

Median 0.66 0.69 0.64 0.63       

Mean + S.D. 0.62 + 0.29 0.61 + 0.32 0.69 + 0.26 0.59 + 0.27 0.60 0.87 0.49 

> 0.66 (high damage) (%)   9 (45) 2 (29) 5 (45) 0.64 0.69 0.71 

< 0.66 (low damage) (%) 7 (35) 3 (43) 6 (55)       
Degree of oxidative mtDNA 
damage/ log Relative mtDNA copy 
number                

Median 0.46 0.44 0.59 0.42       

Mean + S.D. 0.60 + 0.73 0.48 + 0.31 1.33 + 1.70 0.46 + 0.25 0.05 0.89 0.32 

> 0.46 (high damage) (%)   9 (45) 2 (29) 6 (55) 0.64 0.69 0.28 

< 0.46 (low damage) (%) 7 (35) 3 (43) 4 (36)     
 

aP-value for Brain Tumor Low Grade (WHO Tumor Grading < 2) vs. High Grade (WHO Tumor Grading > 2)  
bP-value for Brain Tumor Low Grade vs. Control 
cP-value for Brain Tumor High Grade vs. Control 
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Table A.16.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric neoplastic 
intractable epilepsy patients with high tumor grade and non-epileptic control from NICHD Brain and Tissue Bank 
 

SNPs 

High Tumor 
Grade            
(n=7)             

Control 
(n=11) 

Fisher's     
exact test    
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/   
    SNP % 

Positive/   
   SNP % 

  

A1555G 3 43 11 100 0.04 0 0, NaN 0 0, NaN 
G3196A 2 29 11 100 0.002 0 0, NaN 0 0, NaN 
T3197C 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
G4309A 7 100 11 100 1.00 1.62E9 0, NaN 1.46E9 0, NaN 
A4317G 7 100 11 100 1.00 1.62E9 0, NaN 1.46E9 0, NaN 
G9804A 0 0 0 0 1.00 NaN 0, NaN NaN NaN, NaN 
G9952A 1 14 0 0 0.39 0 0, NaN 0 0, NaN 
A10006G 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 
T10010C 3 43 7 64 0.63 0.42 0.06, 2.97 0.44 0.32, 15.93 
A10398G 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 

 

aOR, Crude Odds ratio using control as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table A.17.   
The results of the Fisher’s exact test for haplogroups for in Miami Children’s Hospital pediatric intractable epilepsy 
patients by high tumor grade and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 

High Tumor 
Grade            
(n=7)             

Control 
(n=11) 

Fisher's     
exact test    
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/   
   Hg % 

Positive/   
  Hg % 

  

Hg-I 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 

Hg-J 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 

Hg-L 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 

Hg-M 0 0 11 100 <0.001 0 0, NaN 0 0, NaN 

Hg-U5 0 0 9 82 0.002 0 0, NaN 0 0, NaN 
 

aOR, Crude Odds ratio using control as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table A.18.   
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age in Miami Children’s Hospital pediatric neoplastic intractable epilepsy patients by high tumor grade and non-
epileptic control from NICHD Brain and Tissue Bank 
 

SNP/Haplogroup 
SNP/Hg               

OR (95% CI) 

Level of relative 
mtDNA copy number 

OR  (95% CI) 

Level of oxidative  
mtDNA damage           
 OR (95% CI) 

Age                
OR (95% CI) 

A1555G 7.12E9 (0, NaN) 0.99 (0.04, 23.15) 1.42 (0.08, 25.70) 0.92 (0.73, 1.17) 

G3196A 74.91E25 (0, NaN) 3.16E8 (0, NaN) 2.60E8 (0, NaN) 1.01 (0.72, 1.66) 

T3197C 3.61E17 (0, NaN) 0 (0, NaN) 1.42 (0.03, 77.68) 0.90 (0.63, 1.28) 

G4309A --- 0.81 (0.07, 9.09) 0.99 (0.11, 9.07) 0.96 (0.78, 1.17) 

A4317G --- 0.81 (0.07, 9.09) 0.99 (0.11, 9.07) 0.96 (0.78, 1.17) 

G9804A --- 0.81 (0.07, 9.09) 0.99 (0.11, 9.07) 0.96 (0.78, 1.17) 

G9952A 0 (0, NaN) 0.40 (0.03, 6.30) 0.57 (0.05, 6.51) 0.92 (0.73, 1.16) 

A10006G --- --- --- --- 

T10010C 0.80 (0.06, 10.77) 0.72 (0.04, 11.79) 0.99 (0.11, 9.12) 0.95 (0.76, 1.18) 

A10398G --- --- --- --- 

Hg-I --- --- --- --- 

Hg-J --- --- --- --- 

Hg-L --- --- --- --- 

Hg-M --- --- --- --- 

Hg-U5 3.61E17 (0, NaN) 0 (0, NaN) 1.42 (0.03, 77.68) 0.90 (0.63, 1.28) 
 

OR, using control group as reference 
NaN = Not a number 
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Table A.19.   
The results of the Fisher’s exact test for individual SNP loci for in Miami Children’s Hospital pediatric neoplastic 
intractable epilepsy patients with low tumor grade and non-epileptic control from NICHD Brain and Tissue Bank  
 

SNPs 

Low Tumor 
Grade            
(n=20)            

Control 
(n=11) 

Fisher's     
exact test    
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/   
    SNP % 

Positive/   
   SNP % 

  

A1555G 9 45 11 100 0.004 0 0, NaN 2.16E9 0, NaN 

G3196A 1 5 11 100 <0.001 0 0, NaN 5.25E10 0, NaN 

T3197C 0 0 9 82 0.002 0 0, NaN 1.62E10 0, NaN 

G4309A 19 95 11 100 1.00 0 0, NaN 8.69E8 0, NaN 

A4317G 12 60 11 100 0.03 0 0, NaN 1.44E9 0, NaN 

G9804A 0 0 0 0 1.00 NaN 0, NaN 0.96 0.84, 1.11 

G9952A 11 55 0 0 0.002 0 0, NaN 0 0, NaN 

A10006G 6 30 11 100 <0.001 0 0, NaN 3.29E9 0, NaN 

T10010C 13 65 7 64 1.00 1.06 0.23, 4.92 0.94 0.20, 4.37 

A10398G 7 35 11 100 <0.001 0 0, NaN 2.23E9 0, NaN 
 

aOR, Crude Odds ratio using control as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table A.20.   
The results of the Fisher’s exact test for haplogroups for in Miami Children’s Hospital pediatric intractable epilepsy 
patients by low tumor grade and non-epileptic control from NICHD Brain and Tissue Bank 
 

Haplogroups 

Low Tumor 
Grade            
(n=7)             

Control 
(n=11) 

Fisher's     
exact test    
P value     

(2-sided) ORa 

95% 
Confidence 

Interval 
Adjusted 

ORb 

95% 
Confidence 

Interval 

Positive/   
   Hg % 

Positive/   
  Hg % 

  

Hg-I 7 35 11 100 <0.001 0 0, NaN 2.23E9 0, NaN 

Hg-J 7 35 11 100 <0.001 0 0, NaN 0, NaN 0, NaN 

Hg-L 7 35 11 100 <0.001 0 0, NaN 2.23E9 0, NaN 

Hg-M 7 35 11 100 <0.001 0 0, NaN 2.23E9 0, NaN 

Hg-U5 0 0 9 82 0.002 0 0, NaN 1.62E10 0, NaN 
 

aOR, Crude Odds ratio using control as reference category 
bORs adjusted for age using logistic regression 
NaN = Not a number 
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Table A.21.   
The results of the logistic regression for SNPs/Hg, level of relative mtDNA copy number, level of oxidative mtDNA damage, 
and age in Miami Children’s Hospital pediatric neoplastic intractable epilepsy patients by low tumor grade using non-
epileptic control from NICHD Brain and Tissue Bank as reference 
 

SNP/Haplogroup 
SNP/Hg               

OR (95% CI) 

Level of relative 
mtDNA copy number   

OR (95% CI) 

Level of oxidative  
mtDNA damage           

OR (95% CI) 
Age               

OR (95% CI) 

A1555G 7.00E9 (0, NaN) 0.34 (0.02, 4.77) 0.16 (0.01, 2.14) 0.95 (0.78, 1.16) 

G3196A --- --- --- --- 

T3197C 5.72E17 (0, NaN) 0 (0, NaN) 1.03 (0.03, 39.97) 0.97 (0.71, 1.33) 

G4309A --- 1.05 (0.18, 6.13) 0.42 (0.08, 2.29) 0.98 (0.84, 1.15) 

A4317G 1.69E9 (0, NaN) 0.86 (0.13, 5.92) 0.54 (0.09, 3.42) 1.00 (0.86, 1.17) 

G9804A --- 1.05 (0.18, 6.13) 0.42 (0.08, 2.29) 0.98 (0.84, 1.15) 

G9952A 0 (0, NaN) 0.17 (0.01, 2.43) 0.45 (0.04, 4.94) 1.00 (0.82, 1.23) 

A10006G 1.08E18 (0, NaN) 5.89E8 (0, NaN) 4.06 (0.17, 99.64) 1.05 (0.83, 1.34) 

T10010C 0.47 (0.06, 3.70) 0.71 (0.09, 5.84) 0.44 (0.08, 2.43) 0.98 (0.84, 1.14) 

A10398G 3.19E9 (0, NaN) 1.15 (0.12, 11.40) 0.27 (0.03, 2.76) 0.95 (0.76, 1.17) 

Hg-I 5.72E17 (0, NaN) 0 (0, NaN) 1.03 (0.03, 39.97) 0.97 (0.71, 1.33) 

Hg-J 5.72E17 (0, NaN) 0 (0, NaN) 1.03 (0.03, 39.97) 0.97 (0.71, 1.33) 

Hg-L 5.72E17 (0, NaN) 0 (0, NaN) 1.03 (0.03, 39.97) 0.97 (0.71, 1.33) 

Hg-M 5.72E17 (0, NaN) 0 (0, NaN) 1.03 (0.03, 39.97) 0.97 (0.71, 1.33) 

Hg-U5 5.72E17 (0, NaN) 0 (0, NaN) 1.03 (0.03, 39.97) 0.97 (0.71, 1.33) 
 

OR, using control group as reference 
NaN = Not a number 
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DNA ISOLATION PROTOCOL 

1. Tissue 
a. Homogenize cells in 1mL TRizol Reagent (under Fume Hood). 
b. Pipette into epi tube (Lyse cells by repetitive pipetting). 

2. Phase Separation 
a. Incubate cells/TRizol at 15-30 C for 5 min. 
b. Add 200uL of chloroform (per 1mL TRizol used- under the Fume Hood). 
c. Cap tubes and vortex for 15 seconds. 
d. Incubate at 15-30 C (room temp) for 15 minutes. 
e. Centrifuge samples @ 12K rpm @4 C for 15 min. 

*After centrifugation : aqueous = RNA 
                                  interphase = protein/DNA 
                                  organic = DNA 

3. DNA Precipitation 
a. Remove aqueous phase (RNA) into new epi. Tube.  
b. Add 300uL 100% Ethanol (200 proof EtOH) per 1mL TRizol used to 

interphase/organic phase. 
c. Vortex gently. 
d. Incubate samples at 15-30 C for 2-3 min. 
e. Centrifuge at 12K rpm @ room T for 5 min. 

4. DNA Wash 
a. Remove phenol/ethanol sup (contains protein) to waste. 
b. Wash DNA pellet 2 times with 0.1M sodium citrate (Add 1mL Na Citrate 

for every 1mL TRizol used). 
c. Gently vortex. 
d. Incubate samples at 15-30 C for 15 min. 
e. Spin at 12K rpm at room 4C for 5 min. 
f. Resuspend DNA in 1mL 75% Ethanol (per 1mL TRizol used). 
g. Incubate at room T for 10-20 min. 
h. Centrifuge at 12K rpm @ room T for 5 min. 
i. Remover supernatant with p200 pipettor. 
j. Briefly dry pellet for 2-5 min under vacuum (can leave on bench). 

5. Redissolving of DNA 
a. Dissolve pellet in 60uL of 1X TE Buffer with a pipette. 
b. Aliquot DNA into three 10uL samples. 
c. Store -80 C. 
d. Run 2% agarose gel (quality) 
e. Check DNA conc. by spec. (quantity) 
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DOT BLOT PROTOCOL 
 

1. Cut membrane to appropriate size, make a grid with pencil. 
2. Denature PCR products by heating at  95°C for 10 minutes, then place on ice. 
3. Place 2uL of PCR product on membrane. 
4. Let air membrane air dry (~1 hour). 
5. UV crosslink membrane for 4 minutes. 
6. Dip membrane in ddH2O. 
7. Place membrane in pre-heated hybridization solution for 15 minutes. 
8. Add DIG-labeled Oligonucleotide (30uL of Miracle Hyb. And 3uL of probe). 
9. Hybridize at proper temperature, over night. 
10. Place membrane in 2X SSC + 0.1% SDS for 15 minutes, 2 times. 
11. Place membrane in 0.1X SSC + 0.1% SDS at hybridization temperature for 30 

minutes. 
12. Place membrane in washing buffer for 5 minutes. 
13. Place membrane in blocking buffer for 30 minutes. 
14. Place membrane in anti-DIG solution for 30 minutes. 
15. Place membrane in washing buffer for 15 minutes, 2 times. 
16. Place membrane in detection solution for 3 minutes. 
17. Add 250uL of CSPD to membrane. 
18. Place in clear wrap. 
19. Place in 37°C for 10 minutes. 
20. Visualize in X-Ray developer or VersaDoc® Imager. 
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