
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-29-2011

Abstractions to Support Dynamic Adaptation of
Communication Frameworks for User-Centric
Communication
Andrew A. Allen
Florida International University, aalle004@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Allen, Andrew A., "Abstractions to Support Dynamic Adaptation of Communication Frameworks for User-Centric Communication"
(2011). FIU Electronic Theses and Dissertations. Paper 409.
http://digitalcommons.fiu.edu/etd/409

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/409?utm_source=digitalcommons.fiu.edu%2Fetd%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ABSTRACTIONS TO SUPPORT DYNAMIC ADAPTATION OF

COMMUNICATION FRAMEWORKS FOR USER-CENTRIC

COMMUNICATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Andrew A. Allen

2011

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Andrew A. Allen, and entitled Abstractions to Support
Dynamic Adaptation of Communication Frameworks for User-Centric Communication,
having been approved in respect to style and intellectual content, is referred to you
for judgment.

We have read this dissertation and recommend that it be approved.

Kaushik Dutta

Ming Zhao

S. Masoud Sadjadi

Zhenyu Yang

Peter J. Clarke, Major Professor

Date of Defense: March 29, 2011

The dissertation of Andrew A. Allen is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Interim Dean Kevin O’Shea
University Graduate School

Florida International University, 2011

ii

c©Copyright 2011 by Andrew A. Allen

All rights reserved.

iii

DEDICATION

To Yvette Marie and Alyssa Ashley-Marie, thanks for your patience, your under-

standing and your unwavering support of my dream.

To Stan, Rohan, Vinnate, Eugenie, Marcia and Mrs. Nick, the encouragement

and support you provided during the years of my study, gave me the conviction to

carry on.

To my Mom, you have been a great source of inspiration and motivation to me.

Your prayers have taken me through this long but successful journey and I thank you

sincerely for that.

iv

ACKNOWLEDGMENTS

I would like to express my heart-felt appreciation to all who contributed in many

ways to the success of my PhD study and the completion of this thesis. I would espe-

cially like to thank the members of my committee, Drs. S. Masoud Sadjadi, Kaushik

Dutta, Ming Zhao and Zhenyu Yang, for their insightful comments, and thorough

questioning, which helped me focus more astutely on my research ideas in completing

my thesis. I am also grateful for the perspectives, personal and professional, provided

by Norman Pestaina, William Kraynek and Masoud Milani. To Professor Fábio Costa

of the Federal University of Goiânia in Brazil and Professor Jean-Marc Jézéquel of

the University of Rennes I in France, I am grateful for the opportunities to participate

in research at your universities in the summers of 2009 and 2010 respectively. Many

thanks also to the members of the CVM group and my colleagues in the lab, who

have been very supportive of my research, very patient during my presentations, and

always willing to offer suggestions for improvement.

Finally, I would like to express my deepest gratitude to my advisor, mentor and

friend, Dr. Peter J. Clarke, for his guidance and continuous support of my PhD.

study and research. I thank him for his patience, stimulating discussions, and en-

couragement during my preparation for, and writing of this thesis.

The work of this dissertation was supported in part by a FIU Graduate School Dissertation Year
Fellowship.

v

ABSTRACT OF THE DISSERTATION

ABSTRACTIONS TO SUPPORT DYNAMIC ADAPTATION OF

COMMUNICATION FRAMEWORKS FOR USER-CENTRIC

COMMUNICATION

by

Andrew A. Allen

Florida International University, 2011

Miami, Florida

Professor Peter J. Clarke, Major Professor

The convergence of data, audio and video on IP networks is changing the way

individuals, groups and organizations communicate. This diversity of communication

media presents opportunities for creating synergistic collaborative communications.

This form of collaborative communication is however not without its challenges. The

increasing number of communication service providers coupled with a combinatorial

mix of offered services, varying Quality-of-Service and oscillating pricing of services

increases the complexity for the user to manage and maintain ‘always best’ priced or

performance services. Consumers have to manually manage and adapt their commu-

nication in line with differences in services across devices, networks and media while

ensuring that the usage remain consistent with their intended goals.

This dissertation proposes a novel user-centric approach to address this prob-

lem. The proposed approach aims to reduce the aforementioned complexity to the

user by (1) providing high-level abstractions and a policy based methodology for au-

tomated selection of the communication services guided by high-level user policies

and (2) providing services through the seamless integration of multiple communica-

tion service providers and providing an extensible framework to support the integra-

tion of multiple communication service providers. The approach was implemented in

the Communication Virtual Machine (CVM), a model-driven technology for realizing

vi

communication applications. The CVM includes the Network Communication Bro-

ker, the layer responsible for providing a network-independent API to the upper layers

of CVM. The initial prototype for the NCB supported only a single communication

framework which limited the number, quality and types of services available.

Experimental evaluation of the approach show the additional overhead of the ap-

proach is minimal compared to the individual communication services frameworks.

Additionally the automated approach proposed out performed the individual com-

munication services frameworks for cross framework switching.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Overview of Research Problem . 5
1.2 Dissertation Roadmap . 6

2 LITERATURE REVIEW . 8
2.1 Background . 8
2.1.1 Middleware . 8
2.1.2 Autonomic Computing . 10
2.1.3 User-Centric Communication . 14
2.1.4 Communication Virtual Machine . 14
2.2 Related Work . 17
2.2.1 Policy Languages . 18
2.2.2 Network-centric Autonomic Services 20
2.2.3 Composition and Aggregation of Services 21
2.2.4 Dynamic Adaptation . 23
2.2.5 User-Centric Communication . 26
2.2.6 Service Mashups . 27
2.3 Summary . 29

3 RESEARCH PROBLEM . 30
3.1 Motivation . 30
3.2 Problem Statement . 36
3.3 Objectives and Evaluation Criteria . 37
3.3.1 Near Minimalization of Services API. 37
3.3.2 Intent Based Self-Configuration of Services. 38
3.3.3 Integrated Services through Multiple Communication Frameworks . . . 39
3.4 Summary . 40

4 UCC SELF-CONFIGURING APPROACH 41
4.1 Overview of Approach . 41
4.2 Feature Analysis for UCC Domain . 47
4.3 UCC Policy Definition . 50
4.4 UCC Policy Realization . 53
4.5 UCC Policy Application on the Illustrative Example 60
4.6 Summary . 62

5 UCC FRAMEWORK . 63
5.1 Operational Overview . 63
5.2 High Level Design . 70
5.3 Detailed Design . 73
5.4 Implementation Details . 76

viii

5.5 Summary . 78

6 EVALUATION . 79
6.1 Evaluation Goals . 79
6.2 Experimental Setup . 80
6.3 Experimental Set 1 - Two-way Video Conference: A Comparative Analysis 80
6.4 Experimental Set 2 - Analysis of Candidate Selection Algorithm 84
6.5 Experimental Set 3 - Audio to Audio-Video Conferencing Reconfiguration 86
6.6 Experimental Set 4 - N-way Audio Conference Configuration 87
6.7 Experimental Set 5 -Analysis of Autonomic Response Times 89
6.8 Discussion . 90
6.9 Summary . 91

7 CONCLUSION . 92
7.1 Research Summary . 92
7.2 Future Work . 93

BIBLIOGRAPHY . 97

VITA . 104

ix

LIST OF TABLES

TABLE PAGE

3.1 Sampling from Survey of frameworks [7]. 31

3.2 Sample of Per Minute International Calling Rate 32

3.3 Comparison of Per Minute Mobile Calling Rate in the UK 33

4.1 Example Policies for Interpretation. 55

5.1 Sampling from NCB JavaDocs. 77

5.2 Metrics for NCB and ACSTF. 78

x

LIST OF FIGURES

FIGURE PAGE

2.1 A Traditional View of Middleware . 9

2.2 (a)AC Architecture (b)Design of a Autonomic Manager 11

2.3 Layered architecture of the CVM. 15

4.1 Simplified View of the Architecture of Current Approaches 41

4.2 Proposed Architecture . 43

4.3 Self-Configuration steps for Frameworks 46

4.4 Survey of Communication Frameworks 48

4.5 Feature Diagram for Frameworks . 50

4.6 XML representation for user-centric communication policy. 52

4.7 (a) IETF/DMTF Policy Architecture (b) Runtime Policy Evaluation. . . 56

5.1 NCB Control Flow Diagram. 63

5.2 NCB Autonomic Architecture. 71

5.3 CSM State Machine. 73

5.4 Reusable Autonomic Design. 74

5.5 NCB Detailed Design Diagram. 75

6.1 Analysis of Memory Usage for Two-way Video Conference. 81

6.2 Analysis of Data Transmission for Two-way Video Conference. 82

6.3 Analysis of Processor Utilization for Two-way Video Conference. 83

6.4 Average Times to Select Candidate Communication Framework. 85

6.5 Audio to Video Conferencing Set-up Times. 87

6.6 Analysis of Audio Configuration Times. 88

6.7 Breakdown of Autonomic Components vs Frameworks. 89

6.8 Analysis of Detection and Adaptation Time. 90

xi

LIST OF ALGORITHMS

ALGORITHM PAGE

4.1 Algorithm to select applicable Policies. 58

4.2 Algorithm to produce candidate set of Communication Frameworks. . . . 59

5.1 Algorithm to Configure Communication Services. 66

5.2 Algorithm to Negotiate Communication Services. 68

5.3 WaitforReply Algorithm. 70

xii

LIST OF ACRONYMS

3G Third Generation

AAA Authorization, Authentication and Accounting

API Application Programming Interface

CORBA Common Object Request Broker Architecture

CVM Communication Virtual Machine

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

ITU-R International Telecommunication Union, Radiocommunication Sector

LAN Local Area Network

MDE Model Driven Engineering

MDSD Model Driven Software Development

NCB Network Communication Broker

OASIS Organization for the Advancement of Structured Information Standards

OS Operating System

P2P Peer-to-peer

QoS Quality of Service

RTP Real-time Transport Protocol

SE Synthesis Engine

SIP Session Initiation Protocol

TCP Transmission Control Protocol

UCI User-centric Interface

UCM User-centric Middleware

UDP User Datagram Protocol

VoIP Voice over IP

WLAN Wireless Local Area Network

xiii

WWW World Wide Web

XCML XML Communication Modeling Language

XMPP Extensible Messaging and Presence Protocol

xiv

CHAPTER 1

INTRODUCTION

The pervasiveness of electronic devices, especially mobile electronic devices, cou-

pled with the increasing resources available in these devices has aided the explosion

of available electronic communication services1. Some electronic communication ser-

vices, such as instant messaging (IM) and Voice over IP (VoIP), that were previously

seen as trivial and restricted in businesses are now viewed as required services in

the organization. Services previously limited to wired networks are transitioning to

wireless devices, while bandwidth intensive services such as video conferencing are

becoming more common place as the available bandwidth grows. This augmented set

of electronic communication services provides a myriad of communication methods

for the user.

In addition, the number of entities providing these communication services has

increased dramatically. This can best be seen in the VoIP market which started

offering services commercially in 1995 with the launch of Vocaltec’s InternetPhone

application. The range of communication services providers has since expanded, with

services offered from the more traditional providers (such as Vonage, Packet8 and

Lingo), non-facilities based providers (such as Skype and Google) and cable companies

(such as Comcast and Time Warner). Coupled with this are the new players who have

taken advantage of the mobile companies’ investments in 4G networks to begin the

push into the area of mobile VoIP.

While the electronic communication services have become more accessible and

cheaper, paradoxically this has led to increases in the complexity for the user with

each additional method of communication [41,45]. This complexity, of the number of

communication methods, can be viewed as the contributed effects of the combination

1For the purposes of this dissertation, electronic communication services are defined as services
which provide users with the ability to send or receive messages (text, audio, video, and other data).

1

of numerous communication services providers and communication services offered.

A user therefore is not only burdened with decisions on what services to use for

communication, but also with which provider to use for the service.

With the convergence of electronic communication services on IP networks, oppor-

tunities to create elaborate collaborative communication applications are presented.

Some communication service providers deliver a highly integrated product gener-

ally referred to as unified communication (e.g. IBM, Microsoft and Cisco), while

others [26, 34, 56, 73] provide a variety of communication tools and communication

services for creating synergistic collaborative communication applications. Unified

communication attempts to integrate electronic communication media while provid-

ing a consistent unified user interface and user experience across multiple devices and

media types. The provider-centric one-size-fits-all nature of this integration approach

can result in more tools than the organization or individual user needs to accomplish

their goals, potentially negating some of the complexity reduction.

In the case of the latter, products such as Skype [73], ooVoo [56] and GoogleTalk

[26], which provide commercial-off-the-shelf (COTS) communication APIs, have been

made available by their respective companies. Traditionally, development in complex

domains such as healthcare, disaster management and other specialized real-time dis-

tributed collaborative communication was primarily a ‘build, validate, and maintain

software systems from scratch’ approach [23]. These reusable communication compo-

nents, that handle the low-level communication concerns, remove many of the tedious

and error-prone aspects of creating and managing communication applications for the

application developer. These communication APIs support the development of more

sophisticated communication applications by third parties.

While both approaches provide converged communication services, users are how-

ever still burdened with decisions on what communication services and which commu-

nication service provider best serves their current communication needs. Differences

2

in which services are available [7] per communication services provider exist as well

as differences in the QoS of the available services. Furthermore, software functional-

ities and features are added or enhanced by communication services providers paced

by hardware evolution and user demands. The ease of accessibility has also resulted

in the commoditization of the communication services, resulting in aggressive pric-

ing models by communication services providers (this is discussed in more details

in Chapter 3.1). Price sensitivity and quality-of-service sensitivity therefore become

additional variables in the decision burden for the user.

The aforementioned concerns can be viewed in the context of the roles of the

users of these collaborative applications. Users of these services have to manage and

adapt their communication in line with differences in services across devices, networks

and media. Other users (administrators) tasked with managing and, where possible,

minimizing the costs associated with the use of the services as a resource have to

ensure that the usage remains consistent with the business goals and the potential

changes of the business model. The challenge is therefore how to reduce the effort

needed by the user to manage their communication needs while ensuring that resulting

service selection is near optimal with respect to the user’s intent.

One proposed approach to this challenge is user-centric communication which aims

to reduce the complexity and offer operating simplicity to users [41]. The Communi-

cation Virtual Machine (CVM) technology, proposed by Deng et al. [16], exemplifies

this concept with a model-driven and domain specific approach to realizing commu-

nication services. Experts and novice users in domains such as healthcare, disaster

management and scientific collaboration are presented with a simplified yet powerful

way to quickly create and realize communication intensive collaboration. The user’s

communication needs are specified as a model written in the Communication Model-

ing Language (CML) [80]. The CML model is then executed on the CVM platform.

The CVM is designed as a layered architecture and includes the Network Communica-

3

tion Broker (NCB) which is the layer responsible for providing a network-independent

API to the upper layers of CVM. The initial prototype for the NCB supported only

a single communication framework which limited the number, quality and types of

services available.

This dissertation proposes an approach for seamless integration and self-configuration

of multiple communication frameworks within the NCB. The approach includes a near

minimal communication services abstraction and an extensible integration framework

that is supported by a policy-driven approach for allocating and self-configuring com-

munication resources. The near minimal abstraction provides a simpler API than

that provided by the COTS communication frameworks. This is supported by the

extensible integration framework that includes interfacing multiple communication

frameworks and policy-based methodologies for selecting the most appropriate ser-

vices as requested by the user’s communication models. Models defined by users are

executed on the CVM platform and transformed to the high-level abstract API calls

to provide services that are guided by user-defined policies.

The contributions of this dissertation are:

1. Systematic development of high-level abstractions for the communication do-

main. This abstraction provides a near minimal API in comparison to other

communication services APIs such as Skype, Smack and ooVoo. This abstrac-

tion provides an API that more closely reflects the communication services that

a non-expert user may access.

2. A methodology for selection of services based on user intent to support auto-

mated reconfiguration of services and communication frameworks.

3. Development of an extensible integrated architecture for converging multiple

communication services and providers. This architecture exposes the API and

interfaces with existing communication frameworks as described in (1), and in-

4

corporates the mechanism to automatically reconfigure communication services

as stated in (2).

4. Experimental evaluations that show the additional overhead of the approach

is minimal compared to the individual communication frameworks, as well as

the automated approach proposed out preforms the individual communication

services frameworks for cross framework switching.

1.1 Overview of Research Problem

The research problem explores how to reduce the level of complexity when selecting

low-level services provided by a cross-section of communication framework, that is

transparent to the user. Specifically, this study seeks solutions to enable users of col-

laborative communication to easily access more attractive price/performance options

for certain services from amongst multiple service providers.

Previous work in the areas of collaborative communication tend to (1) be limited

in their ability to support reuse of their communication components [10,54,60,62]; (2)

lack the support for automated reconfiguration at runtime of these communication

components [20], (3) provide low-level interfaces defined for programmers [9, 28, 65,

67,75] and (4) be limited in support for end user interactions [5, 9, 43].

This work proposes an approach that is domain specific in nature while lever-

aging component based development, user-centric paradigm, autonomic computing

and Feature Oriented Domain Analysis (FODA) approach. The approach utilizes

an understanding of the domain to argue that the derived near minimal abstractions

are sufficient to represent the domain when used in conjunction with the proposed

automation. For the purpose of this dissertation, we define a minimal API as the

smallest set of ports of the API needed to provide basic services. FODA also informs

the support needed for automated integration and reconfiguration.

The proposed solution requires:

5

1. Systematically developing high-level abstractions for the services provided by a

cross-section of communication services frameworks.

2. Formulating a methodology:

(a) for selection of services based on user intent.

(b) to support automated reconfiguration of services and communication frame-

works.

3. Designing an extensible framework that supports seamless integration of com-

munication frameworks.

The motivation for the work, the research problem and evaluation criteria are

elaborated on in Chapter 3.

1.2 Dissertation Roadmap

The rest of the dissertation is organized as follows: Chapter 2 presents a review of

literature related to this work. Background concepts of key importance to this work

are summarized and presented. Previous and current research are categorized and

reviewed in relation to work proposed in this dissertation.

In Chapter 3, motivation for the work of this dissertation is further elaborated. A

concise identification of the associated problems is provided as well as an overview of

the proposed solution. The objectives and criteria for evaluating the success of the

solution with respect to the identified issues are also presented in this chapter.

Chapter 4 is a presentation of the user-centric communication approach proposed

in this dissertation. This includes a survey of existing communication services frame-

works and domain analysis used to define the domain of user-centric communications

via the FODA methodology. The definition of the user-centric communication policy

structure is presented as well as the mechanisms to evaluate the policies.

6

The user-centric communication self-configuring framework is presented in Chap-

ter 5. An overview of the framework is provided and key algorithms that support

the self-configuration are presented. A high level view of the architectural approach

along with some of the significant components are also highlighted with a detailed

design and a discussion of the implementation.

Experimental evaluations are presented in Chapter 6. A prototype of the auto-

nomic NCB was implemented to demonstrate the feasibility of the approach. The

goals of the evaluation with respect to the evaluation criteria are presented along

with an outline of the experimental setup. The results and a discussion of the results,

including threats to the validity of the experiments, are also presented.

The dissertation concludes in Chapter 7. Discussion of future directions for this

work is also discussed.

7

CHAPTER 2

LITERATURE REVIEW

In this chapter, background concepts of key importance to this work are summa-

rized and presented. The chapter concludes with a review of previous and current

research that relates to work proposed in this dissertation.

2.1 Background

In this section the concept of user-centric communication is presented, for the pur-

poses of this dissertation the definition of communication is restricted to that of elec-

tronic communication. An overview of middleware, autonomic computing and the

CVM technology which supports the model creation and realization of user-centric

communication services is also presented.

2.1.1 Middleware

The notion of a middleware was born out of a perceived need to enable communication

between entities in a heterogeneous distributed computing environment. Bernstein [6]

defines middleware as ‘a general-purpose service that sits between platforms and ap-

plications’. Middleware, however is expected to perform one or more of the following

functions:

• Hiding distribution, i.e. the fact that an application is usually made up of many

interconnected parts running in distributed locations;

• Hiding the heterogeneity of the various hardware components, operating sys-

tems and communication protocols;

8

• Providing uniform, standard, high-level interfaces to the application developers

and integrators, so that applications can be easily composed, reused, ported,

and made to interoperate;

• Supplying a set of common services to perform various general purpose func-

tions, in order to avoid duplicating efforts and to facilitate collaboration between

applications.

Middleware

Distributed
Application

Distributed
Application

Distributed
Application

Middleware

Distributed
Application

Distributed
Application

Distributed
Application

Homogeneous

Layer

Kernel

Network OS Services

Kernel

Network OS Services

Heterogeneous

Layers

Host A Host B

Figure 2.1: A Traditional View of Middleware

Tradionally, middleware is an additional layer between the operating system and

the distributed application on every host that deals with communication issues (see

Figure 2.1) and attempts to provide a homogeneous view of the world to the dis-

tributed application. Since then, a taxonomy [22] of middleware have been proposed

that have expanded the scope beyond that of the traditional middleware. However,

the primary role of middleware remains the same, that is to make application de-

velopment easier. This is achieved by providing common programming abstractions,

hiding low-level programming details and masking the heterogeneity and the distri-

9

bution of the underlying hardware operating systems. There still remain challenges

for middleware designs, such as:

• the performance penalties due to the inherent indirection and interception tech-

niques of middleware;

• the increased complexity of administration of the middleware as the intercon-

nection and interdependence of applications increases [14];

• and the need for dynamic reconfigurability and adaptation to support the grow-

ing trend towards more ubiquitous computing utilizing user context, user mo-

bility and user intent [71].

As the evolutions in software and hardware continue, designs for middleware will need

to evolve to meet the needs of the latest technologies while providing vital links to

legacy systems.

2.1.2 Autonomic Computing

The every increasing complexity of managing information technology systems and the

every evolving nature of software prompted initiatives [37,49,81] towards automated

solutions to these problems. IBM’s proposal [37], named Autonomic computing (AC),

portrayed a vision of computing systems that manage themselves according to high-

level objectives. The paradigm seeks to alleviate the current burden for human opera-

tors tasked with integrating and managing highly complex systems through increased

automation and goal specification.

The concept borrowed from the human autonomic nervous system (ANS), which

regulates vital bodily functions without the need for conscious human involvement.

Similar to the ANS, autonomic systems are expected to respond to changes in their

environment according to goals previously set by an administrator. Self-management

components are then responsible for maintaining the system in a state that complies

10

to set goals. Administrators specify system behavior as high-level policies which are

transformed to low-level rules and tasks that can be automated. The self-management

properties, often referred to as self-* properties, include:

• Self-Configuration: provides the means whereby a system can dynamically

adapt to its changing environment.

• Self-optimization: monitors and fine tunes system to achieve optimal perfor-

mance.

• Self-protection: detects and protects system from various attacks.

• Self-healing: identifies problems or potential problems then introduce solutions

to ensure the system remains available.

Monitor

Analyze

Plan

Execute

Managed Resource

Knowledge

Sensor Effector

Sensor Effector

Symptom

Change
Request

Change
Plan

Autonomic
Manager

Kn
ow

le
dg

e
So

ur
ce

s

Manual Manager

Orchestrating AMs

Touchpoint AMs

Touchpoints

Managed Resources

(a) (b)

Policies

Figure 2.2: (a)AC Architecture (b)Design of a Autonomic Manager

AC’s architectural blueprint [31] defines a common layered approach for devel-

oping self-managing systems. Figure 2.2(a) presents a view of the AC architecture.

The horizontal layers include: managed resources, touchpoints, touchpoint autonomic

managers, orchestrating autonomic managers, and a manual manager. A vertical

11

layer of knowledge sources, shown at the top-left of Figure 2.2(a), interacts with the

top three horizontal layers. This facilitate the exchange and archival of management

information.

The managed resource layer consists of the entities for which self-management ser-

vices are being provided. The layer above the managed resources are manageability

interfaces called touchpoints. Touchpoints implement the sensor and effector behav-

iors necessary to automate low-level management tasks [31, 37]. Sensors observe the

state of managed resources, while effectors facilitate the implementation of runtime

changes. A higher level of management is provided by autonomic managers (AMs).

There are two categories of AMs - Touchpoint AMs, and Orchestrating AMs [31].

Touchpoint AMs work directly with managed resources through their touchpoints.

Orchestrating AMs manage pools of resources or optimize the Touchpoint AMs for

individual resources. The topmost layer is an implementation of a management con-

sole, called the manual manager, which facilitates the interaction and intervention of

a human administrator. While the vertical layer of knowledge sources implements

registries or repositories that may be used to extend the capabilities of AMs, and are

directly accessible by the human administrator via the manual manager layer.

Autonomic software systems are characterized by closed loops of control. Figure

2.2(b) presents a conceptual view of the AM’s control loop. Sensed changes to man-

aged resources result in the invocation of a set of actions designed to maintain some

desired state. Autonomic control loops are implemented as monitor, analyze, plan,

and execute (MAPE) functions in AMs.

The MAPE functions of AMs collaborate to manage state changes to the resource

as follows:

• Monitor: continuously polls the managed resource for this state information,

and correlates it into symptoms for analysis.

12

• Analyze: determines if the current state is undesirable, and generates a change

request to be passed to the plan function.

• Plan: specifies the set of actions needed to remedy the state condition of the

managed resource, and formalizes them into a plan for execution.

• Execute: implements change plans on the managed resource through its effec-

tors, for the purpose of acquiring some desired state.

• Knowledge: coordinates access to data shared among the MAPE functions.

High-level coordination of the MAPE functions is achieved through a hierarchical

stacking of AMs. As shown at the top of Figure 2.2(b), the state of the MAPE func-

tions and internal knowledge may also be observed and manipulated through sensors

and effectors. Orchestrating AMs can therefore detect the generation of MAPE arti-

facts, and determine alternative courses of action. In addition, the self-management

policies that guide the behavior of AMs may be dynamically updated through these

top sensors and effectors.

The work in this dissertation is primarily focused on the self-configuration proper-

ties of autonomic computing. Self-configuration refers to the ability of a system to ob-

tain its configuration parameters and initialize itself in order to provide the expected

services. Self-configuration techniques can be viewed as either initial configuration,

methods for specifying initial configuration requirements or dynamic configuration,

methods for specifying reconfiguration based on given states [12]. For autonomic sys-

tems, self-configuration encompasses the initial configuration of a system as well as

dynamic, reactive changes throughout its operational life. Policies are often used to

guide these configuration transitions. A policy is a set of considerations designed to

guide decisions on courses of action, as such policies are rules that define the choices

in the behavior of a system [47].

13

2.1.3 User-Centric Communication

The convergence of various multimedia communications that includes voice, video and

data presents many opportunities for enhancing communication between users. There

are however challenges presented by this model of communication which can result in

the user being less effective in their interaction with the communication. Interaction

can be viewed as any mutual, reciprocal exchange between people, technologies and

processes [41]. One such challenge is that with each new communication channel

and application a new way of contacting others is introduced. This increases the

complexity for the user of the multifaceted communication who is responsible for

managing and adapting the communication to her immediate needs. Complexity

can hinder rather than enhance communication [41] and research is under way in

academia and industry [17,41,59] to find solutions to such challenges in multifaceted

communication.

The user-centric approach [41, 77] is one such research direction. This solution

aims to reduce the complexity and offer operating simplicity [41] to users of these

communication services. To be user-centric requires knowledge of the actual ’context’

of a user. A context defines a certain relationship of a human being to a particu-

lar number of objects of its communication space at a fixed moment of time [77].

The user-centric communications (UCC) approach is therefore about matching the

communication resources with the individual’s needs at a particular point in time in

the context of the specific domain and adapting accordingly, thereby reducing the

complexity to the user.

2.1.4 Communication Virtual Machine

Model-Driven Software Development (MDSD) is a software development methodology

in which abstract models are created and systematically transformed to concrete

implementations. France et al [24] points to the wide conceptual gap between the

14

User / Application (local)

User Comm. Interface
(UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker
(NCB)

Communication Networks

CVM

User
Communication

Media/Data Delivery
Management

Realization of
Comm. Services

Communication
Management

Legend
Control and Data Flow Virtual Communication

User / Application (remote)

User Comm. Interface
(UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker
(NCB)

Communication Networks

CVM

Figure 2.3: Layered architecture of the CVM.

problem and implementation domains as one challenge faced in the development of

complex software. MDSD proposes to reduce this gap through the use of technology

for systematic transformations of abstract models that consistently represents the

problem down to the implementation. The models used would describe the complex

system at multiple levels of abstractions with the models becoming a primary artifacts

for development instead of just documentation as in traditional methodologies.

Deng et al. [16] developed the notion of the Communication Virtual Machine

(CVM), a model-driven paradigm for specifying and realizing user-centric collabo-

rative communication. Models are defined using a Communication Modeling Lan-

guage1 (CML). CML is a domain-specific modeling language used to create models

for user-centric communication applications. Unlike many domain-specific languages

that generate code before the application is executed, CML models are directly inter-

preted by CVM. CVM has a layered architecture and lies between the communication

1http://www.cis.fiu.edu/cml/

15

network and the user (or application). Figure 2.3 shows the layered architecture of

the CVM. The key components of the CVM are:

User Communication Interface (UCI), provides a modeling environment for users to

specify their communication requirements using CML. CML can be used to describe a

user communication schema or schema instance, analogous to an object-oriented class

and object. In order to realize a communication application two types of communica-

tion models are required: a control schema (or instance) that defines the configuration

of the connections in a communication, and a data schema (or instance) that defines

the media being transferred across a connection. The term media is used to refer

to both streaming media e.g., video and data e.g., files. During a communication,

schemas are shared with the parties in the connection.

Synthesis Engine (SE), implements a set of algorithms responsible for (1) automat-

ically synthesizing schema instances into executable communication control scripts,

(2) negotiating the schema instances with other participants in the communication,

and (3) realizing media transfer between participants in the communication. The se-

mantics to support the interpretation of CML models are based on changes to models

(schemas) at runtime and defined using state machines [80]. As the state machines for

schema negotiation and media transfer are executed the appropriate control scripts

are generated for processing in the UCM.

User-centric Communication Middleware (UCM), executes the communication con-

trol script and manages the delivery of media to participants in the communication,

independent of the underlying network configuration. Based on the control script

received by the UCM, macros are loaded and executed either synchronously or asyn-

chronously. Managing the delivery of media requires the UCM to store data in tempo-

rary locations, retrieve data from remote UCMs on-demand, enforce security policies

16

associated with media, among other tasks. Currently, only a skeletal UCM has been

implemented in the CVM prototype.

Network Communication Broker (NCB), provides a network independent API to the

UCM that masks the heterogeneity and complexities of the underlying network to

support the realization of the communication services. The NCB interacts with the

underlying communication frameworks to ensure that the request from the UCM are

realized, including request negotiation between participants, delivery of media and

the enforcement of low-level policies.

2.2 Related Work

The diversity of media capacity, service provider and user preference and the in-

creasing demand for collaborative work requires multimedia middleware to provide

seamless integration of various system components. Proposals such as the Next Gen-

eration Network (NGN) as proposed by the International Telecommunication Union

Standardization Sector (ITU-T) [32] aims to provide the infrastructure necessary

for meeting these challenges. The challenges of such middleware include: the inde-

pendence of specific communication systems, the interoperability between different

devices and media, the support for QoS-aware adaptation during run-time, and the

common and easy interface to configure, navigate and monitor the environment.

Researchers have attempted to address some of these challenges by applying such

concepts as autonomic computing, service composition, reflective middleware and

user-centered paradigms. Previous work done in this area was surveyed and a sum-

mary of some of the more significant contributions is presented. Based on the review

of the available literature in this area three key categories were identified, and each

work was associated with the category that best represented their strengths. A review

of work in the related areas of this dissertation is presented in this section.

17

2.2.1 Policy Languages

Policy-Based Management (PBM) separates the rules governing the behavior of a

system from its functionality. The aim is to reduce the maintenance costs of informa-

tion and communication systems while improving flexibility and runtime adaptability.

Boutaba et al. [8] provide a historical perspective on policy-based management’s evo-

lution from the early applications as security models to today’s elaborate frameworks,

languages and tools. Boutaba et al. also notes the significant role PBM plays in var-

ious paradigms including SLA-driven, Business-driven, autonomous, adaptive, and

self-* management.

Policy languages offer a common means of specifying rules for the behavior that

can be mapped to some implemented control mechanisms. There is much diversity

and very little agreement as to the structure and elements that defines a policy lan-

guage but most approaches in this area either propose general purpose or specialized

policy languages. There are general purpose policy languages such as Ponder [15], a

declarative, object-oriented language for specifying security and management policy

for distributed object systems. Ponder is described as a expressive, extensible and

flexible policy language aimed at supporting the specification of the wide range of

requirements needed for security and management of distributed systems. Another

general purpose policy language is the eXtensible Access Control Markup Language

(XACML) [58]. XACML is an OASIS standard for a policy language written in XML.

XACML is used to describe general access control requirements, and additional has

standard extension points for such things as defining new functions and data types.

Queries can be formed to ask whether or not a given action should be allowed, with

an interpretable response value of either Permit, Deny, Indeterminate or Not Appli-

cable. Policy Management for Autonomic Computing (PMAC) [1], is another policy

language for the management of aspects (quality of service (QoS), configuration)

of large-scale distributed system. PMAC additionally includes integratable software

18

components to ease the development of software applications that use the policy man-

agement. The benefits ascribed to the use of these general purpose policy languages

are:

• standard, easier interoperability with other systems that are using the same

standard language.

• generic, can easily be used in many different domains and environments since

it is not specific to anyone domain.

• and powerful, high numbers of extensions, hooks and functions that support

many different ways to use the language.

This is however, countered by some [78] who argue that specialization results

in semantically richer policy languages. Specialized policy languages such as WS-

Policy4MASC [79], that specifies management policies for Web services and their

compositions, are deeply based on their domain (in this case Web Services Description

Language (WSDL) [50]). Others such as Web Services Policy Language (WSPL) [4],

used for specifying web services policies, including application-specific service options,

are specialized refinements of more general policy languages (WSPL is a subset of

XACML).

The approach to policies in this dissertation is in the vein of domain specific

specialization, focused more on providing a semantic rich language for specifying

domain specific policies. The systematic approach to understand and define policies

detailed later in this dissertation can be applied to other domains of interest. The

author notes that while an explicit policy specification is described in this dissertation,

other policy languages could be used to specify the artifacts of systematic domain

analysis.

19

2.2.2 Network-centric Autonomic Services

There is a plethora of research in the area of autonomic communications. Dobson

et al. [19] provide a comprehensive survey of the current state of autonomic commu-

nications research and identify significant emerging trends and techniques. Most of

the research in the autonomic communications area focuses on applying autonomic

capabilities to the network infrastructure including self-management of the topology,

load, task, physical and logical characteristics of the networks. For example, Gu et

al. describes the Architecture of Network Autonomy (ANA) system [28], where high-

level abstractions are achieved through the interface of a policy-based management to

provide autonomic multimedia communication with minimum human administration.

Sousa et al. [75] described a task-aware system where users explicitly specified goals

and quality attributes through a set of user interfaces. Based on that, the underly-

ing self-managing system dynamically queried the task to trigger reconfiguration if

needed. In Boutaba et al [9], they proposed SELFCON as an architecture for self-

configuration of networks, in which configuration policies are defined for easing the

management of network elements and maintenance of relationships among network

components during network operation.

These works focus on the interacts of the network infrastructure and not on the end

user communication applications or the communication middleware layers above the

infrastructure. These techniques tend to be network-centric as opposed to user-centric

communication, which deals with associating and adapting available communication

resources with a user’s communication needs in the context of a specific domain.

To support the transition from network-centric to a user-centric level, further ab-

stractions will be needed. The approach described in this dissertation leverages the

user-centric paradigm to support greater involvement of the non-technical users and

context in the decisions of reconfiguration.

20

2.2.3 Composition and Aggregation of Services

Academia and industry have investigated ways to systematically build and reuse ser-

vices. In this subsection we discuss some of the representative efforts in this area.

Composable communication software (CCS) utilizes component oriented concepts in

the design and implementation decisions. Aggregated communication software (ACS)

can be defined as collaborative communication applications that support protocols

of multiple communication providers simultaneously but independently. For the pur-

poses of this discussion, we narrow the scope of ACS to the support of reusable third

party component-based designed application to present a differentiation to CCS.

Aggregated communication software (ACS) include integration of reusable frame-

works (or clients) such as Skype, GoogleTalk and MSN messenger protocols. The

main purpose of the ACS is to provide its user with a single user interface that can

display and access the basic services (instant messaging, file sharing, audio conferenc-

ing) of these protocols. There are products such as Trillian [10], Qnext [62], Pidgin [60]

and Eclipse Communication Framework (ECF) [20] that provide platforms to support

multiple communication providers, while aggregating the accounts of the providers

into one interface. ECF provides a set of high-level abstractions,which facilitates the

reuse of high-level communication components and provides a cross-protocol API [20]

that utilizes plug-ins from various communication providers.

Products like Trillian and Qnext while offering ways of adding new providers

to their platforms, are proprietary and closed source with no way to reuse their

communication components for building more extensive communication applications.

Pidgin is open source but suffers the same limitations as Trillian and QNext. While

ECF allows the reuse of high-level communications components in various application

contexts, it however does not provide the self-configuration of the plug-ins from the

various communication providers therefore lacking the flexibility for choosing the most

cost effective communication framework on-the-fly.

21

Nicols et al. [54] uses a Commercial-off-the-shelf (COTS) approach to build an

early internet application for collaborative multimedia communication. Nicol et al.’s

prototype distributed multimedia application used ready-made component technol-

ogy. Nicol approach supports the reuse of these COTS style communication com-

ponents. However it does not address two issues, (1) the aggregation of multiple

communication providers; and (2) a methodology for component selection or replace-

ment.

On the other hand, Stiller et al. [76] uses a custom-built but dynamically reusable

approach. Stiller et al presents Da CaPo++, a framework embracing both low-level

communication subsystems and high-level APIs to support distributed multimedia

applications based on a formal description of protocol graphs to configure, validate

and execute different media flows at each participating peer system. Da CaPo++

configures end system protocols based on the requirements of the application using the

middleware, local resources and the network prerequisites stated as QoS values. While

DaCaPo++ packages the protocols as modules, the reliance on the core ‘lift system’

requires modules that are custom built. DaCaPo++ therefore does not facilitate

reuse of COTS style communication frameworks.

Similar to most of the work in this subsection, the approach described in this

dissertation utilizes a component-based software design approach. Unlike [76], the

NCB support COTS as well as custom-built components. This work also differs

from [10,54,60,62] as the NCB is viewed as a composite component and hence provides

converged reusable services. While [20] provides reuse of it’s services, the use of each

service and provider pair needs to be explicitly stated. The NCB needs only the

service to be specified for service reuse.

22

2.2.4 Dynamic Adaptation

As stated earlier, one of the expected functionalities of middleware is to provide

uniform, high-level interfaces to the application developers and integrators so that

applications can be easily composed, reused, ported and made to interoperate. For this

functionality to support the continuously evolving nature of software, several issues

will need to be addressed:

• How to provide middleware with the ability to integrate diverse underlying high-

level services, both existing and new ones. This issue defines the extensibility of

the middleware. The second part of this issue is how to support the integration

under a common infrastructure. This sub issue defines how to abstract away the

details of the underlying service implementations while focusing on the services

attributes.

• How to provide middleware with the ability to adapt service provision accord-

ing to user/organization requirements and context. As applications becoming

more personalized, middleware must evolve to support a more user/organiza-

tion centered paradigm. To support this middleware need the ability to adapt

autonomously to reduce the management complexity to the user. Middleware

need to understand context and requirements so it can infer needed behavior

and adapt accordingly.

• How to provide middleware with the ability to support the earlier discussed

issues in dynamic and uncertain environments.

There have been extensive research conducted in the area of self-adaptive systems [39,

43,61,66] with adaptive middleware solutions proposed to address one or more of the

issues outlined earlier. However many challenges still exist in this area [13,30,48,70].

Two such challenges are support in dynamic and uncertain environments (runtime

variability) and dynamic decision making. Generally, runtime variability supports

23

postponing the binding decisions on certain components or code until runtime. This

contrast with traditional variability management techniques where the binding occurs

at design, implementation or deployment phases.

Transparent shaping [65, 67, 68, 74] was proposed as a way to introduce adaptive

behavior into legacy systems, with the potential benefits of extending the life of the

application beyond its original design. Transparent shaping supports the design and

development of new software artifacts from existing applications without the need to

modify the existing application’s source code. Aspect oriented programming is used

to introduce new functionality at development time with reflective techniques used

to support reconfiguration at runtime. The Adaptive CORBA Template, proposed

by Sadjadi et al. [65], is a transparent shaping approach to runtime adaptation of

CORBA applications. ACT’s generic interceptor is registered at the ORB of the

CORBA application at startup time. Request/reply is then redirected through the

generic interceptor to the ACT Core which supports the runtime registration/unreg-

istration of dynamic interceptors. The TRAP family [68, 74] provide language-based

approaches for transparent shaping. A set of classes are targeted at compile time

and adapt-ready programs generated with hooks to support reflective use. While

transparent shaping supports runtime adaption, a priori knowledge and targeting of

explicit low-level objects and classes is required to support the runtime adaption.

This requires the developer to have an understanding of the low-level objects (in the

case where transparent shaping is supported in the middleware) or classes (in the

case of transparent shaping of an application).

More recently, the explicit use of models to support runtime adaptation have been

proposed. Morin et al. [51] seek to address the challenge of runtime variability with

the use of an explicit base model at runtime and the use of aspect oriented model-

ing techniques to weave new aspects into the existing base model. Configurations

are generated and used at runtime to support reconfiguration. The aforementioned

24

approach provides strong support for validation of configuration, however it does not

address issues of runtime element changes that are outside of the explicit model used

at runtime. While runtime element changes can be detected, use of new elements and

functionalities can only be done after new specific associated aspects are woven in.

Component based approaches are one way of providing dynamic integration beyond

design and deployment time.

Bencomo et al. [5] proposes a component based approach that utilizes reflection

to address the challenges of runtime variability. Reflective mechanisms are used to

inspect the system and event-action policies to reconfigure the system. However, the

action element of the policy state a specific architectural configuration. This work

requires the design time creation of a model as well as valid variants described in the

policies to support the runtime adaptation. Additionally, this work requires custom

components to support aspect weaving.

Another approach for dynamic reconfiguration of distributed multimedia middle-

ware and applications was proposed by Provensi et al. in [61], where models are used

at runtime as a means to structure the reflection mechanisms used for adaptation.

The authors propose the use of an autonomic loop and policies for the monitoring

of applications and their environment and for directing the reflection mechanisms.

This work however, takes a more generic middleware approach with no focus on the

user-centric aspects in supporting the dynamic adaptations. Additionally, this work

lacks a comprehensive solution for policy definition and interpretation.

Dynamic adaption approaches described in the preceding works are aimed at spe-

cialists with strong background in data communication and middleware application

programming. An a priori understanding of the set of possible valid configuration

(exhaustive or bounded) can be useful for such specialist but will possibly be useless

for non-technical users as they they may not comprehend or care since it is outside

their domain of expertise. Runtime generation of configurations, on the other hand,

25

can be useful to both technical and non-technical users as it provides better support

for high variability and unknown environments. The work in this dissertation aims

to provide similar support for the non-technical users of communication services.

2.2.5 User-Centric Communication

There has been an upsurge in research in the area of user-centric communication

service creation and use. In 2005 Lasserre and Kan [41] reported on the fragmented

customer and employee experience when people try to contact each other using the

myriad of available technologies. As a result of the study Alcatel developed an en-

terprise communication architecture with the following key principles: user-centric

- focusing on the benefits to the user and offering operating simplicity to mask the

complexity of the underlying technology; openness - is the basis for choice, which

extends from the users choice of device, to product components, to the deployment

model; and unified - unifying voice and data, fixed and wireless, and applications,

enables services to be delivered seamlessly across different media.

Location-awareness is also leveraged to support user-centric communication. Lewis

et al. in [42] present an approach for the management of user centric adaptive services

for adaptive service composition and policy based management of adaptive system

behavior. Through context-awareness, a centralized system is used to compose the

services needed based on the user location and policies specified. The managed ser-

vices are however limited to resource allocation services, such as printer assignments.

Rasche et al. [63] presents a framework for dynamic component configuration and

reconfiguration based on Microsoft.NET. The approach utilizes an XML-based con-

figuration description language (CDL) which is a specialized architecture description

language (ADL). A CDL instance is designed and used to instantiate the component,

or generate reconfiguration actions such as the addition, removal or modification of a

26

component, if necessary. However, their reconfiguration algorithm is inflexible, once

chosen, it remains fixed at runtime.

In the realm of user-centric communication policies, some initial work has been

proposed. Gorton [27] shows how users could set up their personal preferences and

policies for controlling their communication services. For instance, a personal policy

could define key controls of service delivery including the service access control, post-

paid spending limits, device or network access impact on services. While their policies

allow control over the who, what, where, when and how much of service delivery, it

does not provide guidance on the configuration of resources to best support users’

services. This work also lacks a formal representation of the policy.

The initial NCB was developed by Zhang et al. [83] and the focus was to provide

a higher level of abstraction that encapsulated the complexity of the underlying net-

work. The NCB also provided some self-management capabilities such as dynamic

adaptation in response to changes in the network conditions. Sadjadi et al. [69] pro-

vided more details on the design and implementation for the initial version of the

NCB focusing on how the internal network addresses were mapped to the globally

accessible network addresses. Sadjadi et al. [69] described how the Network Address

Translation (NAT) method and Simple Traversal of User Datagram Protocol through

NATs (STUN) were used during self-configuration to realize end-to-end communi-

cation. As previously stated, the new implementation of the NCB uses the initial

version of the NCB referred to as NCBNative.

2.2.6 Service Mashups

More recently there has been a major initiative to mix traditional telecommunication

services and web capabilities to provide so called web + telco mash-ups. Sienel et

al. [72] describes the OPUCE service architecture that supports the interoperation

of telecommunications (telco) and information technology (IT) applications. The

27

OPUCE platform integrates the following: a service creation environment, a service

lifecycle manager and a service execution environment (SEE). The SEE seamlessly

integrates the orchestration of services running on top of several technologies, in-

cluding Java 2 Enterprise Edition (J2EE), Java API for integrated networks service

logic execution environment (JAIN SLEE), SIP servlets [64], .NET or client-side wid-

gets. The OSA/Parlay by Open API Solutions [57] is a suite of open, standard, APIs

designed to facilitate easier access to core network capabilities from outside of the

network. The OSA/Paraly APIs support the creation of telecommunications services

by developers. while these approaches provide easy-of-use benefits, they tend to be

more heavyweight solutions, requiring server side as well as client side development.

Additionally the level of abstraction would not be ideal for domain experts and end

users with little programming background. Composition of these services are man-

ually done through some service creation environment, requiring the users of these

tools to have a high level of expertise in the area of telecommunication.

As ubiquitous computer trends upwards, O’Droma et al. [55] put forward a vision

for a Consumer Based Model (CBM) to replace the Subscriber Based Model (SBM)

in 4th Generation wireless telephony. This vision is seen as one of the grand goals for

research in such areas as vertical handover technologies from mobile wireless networks

to unlicensed spectrum access points such as WiFi hotspots. The concept proposes an

‘always best connected’ (ABC) approach where handover is not only based on a user’s

location but on other factors such as price and performance. Some work has begun

towards realizing the vision through the network-independent infrastructure proposal

included in Next Generation Network (NGN) [32] and an Always-Best-Served Music

Distribution [25] prototype.

The work proposed in this dissertation has similar goals but applied at higher level.

The full vision of ABC is currently limited by the lack of a network-independent in-

28

frastructure, this work however does not have that limitation as the services described

in this dissertation are provided on the neutral virtual infrastructure of the Internet.

2.3 Summary

Extensive research has been done with respect to automating reconfiguration efforts.

While many attempted to provide a general solution to the problem, some have seen

the benefits of bounding the problem within a specific domain. Much of this work

has been applied at the network layer with significant success, however efforts aimed

at middleware and application layers tend to be general purpose. Previous work,

described in this chapter, in the area of collaborative communication tend to (1) be

limited in their ability to support reuse of their communication components; (2) lack

the support for automated reconfiguration at runtime of these communication com-

ponents, (3) provide low-level interfaces defined for programmers and (4) be limited

in support for end user interactions.

In this chapter, the AC concept and it’s grand challenge for reducing complexity

to users of IT through self-managed automation was presented. The CVM technol-

ogy, a user-centric model-driven paradigm aimed at reducing complexity to user in

the collaborative communication domain, was also presented. Related works were

reviewed and several deficiencies found which would limit the use of these works as

solutions to the problems outlined in this dissertation. These include limitations in

their ability to support reuse of their communication components for building more

extensive communication applications, lack of automated reconfiguration at runtime

of these communication components and limited support for end user interactions.

While the initial NCB provided a higher level of abstraction, it however lacked a

framework for systematically integrating additional low-level communication services

and mechanisms to support the dynamic selection and reconfiguration of services by

users.

29

CHAPTER 3

RESEARCH PROBLEM

In this chapter we present motivation for the work in this dissertation. We identify

concisely the associated problems in the problem statement and provide an overview

of the proposed solution. The objectives and criteria for evaluating the success of the

solution with respect to the identified issues are also presented in this chapter.

3.1 Motivation

The use of traditional approaches for the design and implementation of communication-

intensive software is expensive and error-prone. Development in more complex do-

mains such as healthcare, disaster management and other specialized real-time dis-

tributed collaborative communication was primarily a ‘build, validate, and maintain

software systems from scratch’ approach [23]. The popularity of IP based commu-

nication applications has led to the creation of ‘commercial-off-the-shelf’ (COTS)

reusable communication components that handle the low-level communication con-

cerns, removing many of the tedious and error-prone aspects of creating and managing

communication applications for the application developer.

However, not all COTS reusable communication frameworks provide the same

services or same quality-of-service. Table 3.1 shows a sampling from a survey (done

as part of a feature-oriented domain analysis) of such communication frameworks [7]

where a 1 indicates this feature is present while a 0 indicates an absence. The term

‘conference’ is used in the table to indicate multi-party support involving three or more

users. As can be seen from the table, NCBNative 1(a framework developed in the

CVM project) is the only framework that supports video conferencing involving more

than two users. NCBNative is however an experimental framework which currently

1The initial version of the NCB is referred to as NCBNative

30

Features NCBNative Skype JML Gtalk Android Blackberry
OS

Core Features
Chat (one-to-one) 1 1 1 1 1 1
Chat (Conference) 1 1 1 1 1 1
Audio (one-to-one) 1 1 0 1 1 1
Audio (Conference) 1 1* 0 0 0 1
Video (one-to-one) 1 1 0 0 1 1
Video (Conference) 1 0 0 0 0 0
File Transfer 1 1 1 1 1 1
Contact List 1 1 1 1 1 1
API Java Java Java C++ Java (HTTP)

Java
Additional Features
Emoticon 1 1 1 1 0 1
Online Status 1 1 1 1 1 1
Avatar Images 0 1 1 1 1 1
PC to Phone 0 $ 0 $ $ $
Phone to PC 0 $ 0 0 $ $
Voicemail 0 1 0 1 1 1

Table 3.1: Sampling from Survey of frameworks [7].

lacks the robustness and efficiencies of the other commercially developed frameworks.

Coupled with this is the pace at which new software features are being added and

functionalities enhanced as the hardware support improves. Since the time the survey

that produced Table 3.1 was done, Andriod variants now include audio conferencing

capabilities and more recently a simple video chat application was built using Flex 42

and deployed on AIR for Android3 that allows multiple users in a video chat room.

For application designers and developers who reuse the COTS communication services

in products for more complex domain, the ability to easily switch communication

components as well as integrate new services and service providers becomes a key

concern to keep the product current. For feature-sensitive and quality-sensitive user

of these products, keeping abreast of the latest technological development by all the

available providers of services may not be a feasible option. Additionally this would

take the focus away from their domain of expertise as they would instead need to

focus on maintaining the tool.

2http://www.adobe.com/products/flex/flex framework/
3http://www.adobe.com/products/air/

31

Country
LandLine Mobile LandLine Mobile LandLine Mobile LandLine Mobile

USA $0.023 $0.023 $0.020 $0.020 free free $0.019 $0.019
Canada $0.023 $0.023 $0.020 $0.020 free free $0.019 $0.019
Germany $0.023 $0.253 $0.024 $0.290 $0.020 $0.230 $0.019 $0.317
Italy $0.023 $0.308 $0.028 $0.390 $0.020 $0.300 $0.019 $0.450
UK $0.023 $0.259 $0.024 $0.330 $0.020 $0.180 $0.019 $0.430
Isreal $0.023 $0.265 $0.024 $0.156 $0.020 $0.230 $0.019 $0.207
France $0.023 $0.209 $0.030 $0.230 $0.020 $0.150 $0.019 $0.129
Saudia Arabia $0.250 $0.268 $0.270 $0.270 $0.110 $0.190 $0.108 $0.146
Egypt $0.188 $0.159 $0.200 $0.200 $0.130 $0.110 $0.119 $0.119
Iraq $0.390 $0.390 $0.370 $0.370 $0.090 $0.160 $0.056 $0.139
Lebanon $0.126 $0.250 $0.140 $0.250 $0.100 $0.190 $0.115 $0.187
UAE $0.275 $0.275 $0.280 $0.280 $0.190 $0.190 $0.152 $0.156
Morroco $0.259 $0.355 $0.270 $0.350 $0.090 $0.290 $0.046 $0.345
Kuwait $0.132 $0.132 $0.160 $0.160 $0.090 $0.120 $0.071 $0.121
Russia $0.052 $0.089 $0.060 $0.060 $0.040 $0.080 $0.048 $0.062
China $0.023 $0.023 $0.020 $0.030 $0.020 $0.020 $0.019 $0.019
Brazil $0.058 $0.221 $0.050 $0.250 $0.040 $0.150 $0.040 $0.156
India $0.092 $0.092 $0.100 $0.100 $0.060 $0.060 $0.019 $0.024

Skype ooVoo Gvoice VoIPVoIP

Table 3.2: Sample of Per Minute International Calling Rate

A further consideration is the economic cost or potential savings from the diversity

of electronic communication service providers. As each service matures, competitive

premiums are applied to the communication service by competing providers as is

the case with Voice-over-IP (VoIP) telephone services. Businesses and individuals

who wish to take full advantage of these prices will have to manually monitor the

oscillating pricing of competing vendors. A simple example would be per minute

cost for VoIP service between two countries or cities. Table 3.2 contains a small

sampling of per minute international rates4 for several countries. The lowest per

minute rate for calling a landline or mobile service in each country is underlined

in the table. Calling parties in the USA and Canada are free using GoogleVoice5.

Calling a landline in Israel is cheapest using VoIPVoIP6 while calls to mobiles in

Israel are cheapest using ooVoo7. The use of GoogleVoice for calls to landline parties

in Lebanon is cheapest while VoIPVoIP is lowest for mobile parties in Lebanon. Even

4Pricing information retrieved on February 15th 2011.
5https://www.google.com/voice/b/0/rates
6http://rates.voipvoip.com/
7http://www.oovoo.com/

32

Country Country Area Code Rate/Min

United Kingdom - Mobile - H3G
447400, 447401, 447402, 447403, 447411, 447412, 447413,
447414, 447575, 447576, 447577, 447578 $0.17

United Kingdom - Mobile - O2 44754, 44756 $0.12
United Kingdom - Mobile - O2 447404, 447405 $0.44

United Kingdom - Mobile - Orange

447409, 447410, 447529, 447556, 447579, 447580, 447581,
447582, 447583, 4475320, 4475321, 4475322, 4475323,
4475324 $0.12

United Kingdom - Mobile - T - Mobile
447538, 447539, 447550, 447572, 447573, 447574, 447942,
447943, 447945, 447948 $0.11

United Kingdom - Mobile - T - Mobile 4478921 $0.12

United Kingdom - Mobile - Vodafone
447407, 447551, 447553, 447554, 447555, 447557, 447570,
447584, 447585, 447586, 447587, 4475374 $0.12

United Kingdom - Mobile - Vodafone 447552 $0.15
… … …
… … …
… … …

Table 3.3: Comparison of Per Minute Mobile Calling Rate in the UK

within a single provider, the diversity in pricing can be an issue as well. In Table

3.3 a sampling of the comparative mobile rates for the United Kingdom is presented.

The mobile service provider O2 has been highlighted in the table to show the possible

disparity in rates as provided by VoIPVoIP where an almost four fold difference exist

depending on the area code of the called party. A decision on a specific service

provider made today based on price and QoS may not be the best fit tomorrow or

next month. This is further complicated by the complexity and size of the APIs for

the communication services frameworks. As an example, the skype API has close to

two hundred commands while smack API has over one hundred commands. A static

selection or manual monitoring and changing of service provider may not be a feasible

option, especially with the large combinatorial set of possible terminating locations,

pricing and QoS demands.

To further highlight the potential issues involved in such collaborations, one sce-

nario from the collaborators at Miami Children’s Hospital is presented. For illustra-

tive purposes the selected scenario has been condensed. It however, still highlights

the applicable nontrivial concerns for collaborative communication in domains such

as healthcare.

33

In the scenario, Dr. Burke has a weekly conference with Drs. Sanchez and Mon-

teiro to discuss patients’ status. All three doctors are in their respective offices dur-

ing these meetings and have had their technical staff configure appropriate video and

audio conferencing tools to support the meetings. However during this particular

meeting they need to get additional information from an incoming patient’s primary

care physician who is at another clinic, Dr. Clarke, via a land-line connection. Based

on the hospital’s directive to ensure cost containment at all levels, they hope to use

the lowest cost services for the four party conference. The technical department has

the following:

• Specialized IP based Audio-Video conferencing tools with no associated per

minute cost but no support for landline or mobile telephones.

• IP based Peer-to-Peer Audio-Video conferencing tools with variable per minute

cost to landline or mobile phones and limitations on party size.

• VoIP SIP Server with bundled minutes that serve the entire hospital (no asso-

ciated per minute cost for local calls, variable per minute cost otherwise) and

no limitation on party size.

While there are many requirements that could be extracted from the scenario,

based on the focus of this dissertation only the explicit requirements highlighted in

the scenario will be selected. Three requirements that need to be satisfied have been

identified in the scenario:

• Requirement 1. Initial provisioning of a three way audio-video conference

• Requirement 2. Transitioning from a three way audio-video conference to a four

way audio conference

• Requirement 3. Complying with the hospital’s directive for minimizing cost

34

Technology currently exist that can support such scenarios, however such support

usually comes at the cost of over provisioning of services, customized software and the

need for specialized support staff. The scenario would be further complicated by the

need to share the patient’s record, which would require decisions on how much of the

record to share, what media types constitute this record and what are the suitable

delivery methods for all or part of the record. Coordination of these meetings would

therefore involve not only the doctors, but also the technical staff who would need

to know beforehand all the possible media and members that could be involved in

the conference. Additionally, compliance with requirement 3 would require a priori

knowledge of Dr. Clarke’s area code and current per minute rates for calling his area

code for the options that support landline and mobile calling. Any solution in this

scenario would therefore need to address the following questions:

• How can the most appropriate provisioning of service be guaranteed?

• How can transitions of service and service providers be appropriately supported?

• How can compliance with the hospital’s directive be ensured?

The previous questions themselves raise further questions:

1. What defines ‘most appropriate’ for a specific user in a specific context in a

non-complex fashion?

2. Can all service transitions be handled the same?

3. How can ‘compliance directives’ be stated in a non-complex fashion?

4. How can these directives be interpreted and enforced?

For the purposes of this dissertation, we will define appropriate services as either

best performance or best price services. The fundamental problem highlighted by

this scenario is therefore, how can a user dynamically access more attractive

price/performance options for certain services from service providers.

35

3.2 Problem Statement

The research problem being explored crosscuts the areas of software engineering, col-

laborative communication and adaptive middleware. This dissertation investigates

the problem of how to reduce the level of complexity when selecting low-level services

provided by a cross-section of communication framework, that is transparent to the

user. Specifically, this study seeks solutions to enable users of collaborative communi-

cation to easily access more attractive price/performance options for certain services

from amongst multiple service providers. The study, framed in a broader scope, fo-

cuses on the investigation of an approach to address the following issues within the

context of the communication services domain: 1) how to provide middleware with

the ability to integrate diverse underlying high-level services, both existing and new

ones under a common infrastructure while abstracting away the details of the un-

derlying service implementations; 2) how to provide middleware with the ability to

adapt service provision according to user/organization requirements and context; and

3) how to provide middleware with the ability to support the earlier discussed issues

in dynamic and uncertain environments.

Work in the area of user-centric collaborative communication tend to be limited

in their ability to support reuse of their communication components for building

more extensive communication applications. Automated reconfiguration at runtime

of these communication components are also lacking in these class of applications.

Middleware that support dynamic adaptation in some form are generally focused

on low-level infrastructure with interfaces defined for programmers and provide few

avenues for end user interactions. The initial NCB [83] provided a higher level of

abstraction that encapsulated the complexity of the underlying network. The initial

version of NCB however lacks a framework for systematically integrating additional

low-level communication services and mechanisms to support the dynamic selection

and reconfiguration of services by users.

36

The research problem is divided into three sub-problems:

1. Methodology to ensure the completeness or near completeness of the current

simplified NCB high-level API to support it’s reuse on other communication

services frameworks.

2. Formulate a methodology:

(a) for selection of services based on user intent.

(b) to support automated reconfiguration of services and communication frame-

works.

3. Design an extensible framework that supports seamless integration of commu-

nication frameworks.

3.3 Objectives and Evaluation Criteria

This section describes the specific, measurable objectives of this research and the

criteria for the evaluation of the objectives. The research problem as described in

Section 3.2 was divided into three distinct sub-problems. Objective 1, focuses on

sub-problem 1 of Section 3.2, Objective 2 focuses on the second sub-problem and

Objective 3 focuses on the third sub-problem.

3.3.1 Near Minimalization of Services API.

To support the goals of the user-centric paradigm discussed in Section 2.1.3, another

level of abstraction, above the currently available set of APIs for communication

services will be needed by non-technical users in the domain. Skype, with a near two

hundred command API, and Smack, with over one hundred commands in it’s API, will

become too burdensome for non-technical users. An analysis of the domain is needed

to identify the minimum elements and relationships need to describe communication

37

within this domain. This identification process must also be viewed from the users’

perspective. It is hypothesized that the near minimal API will be equivalent to the

initial NCB API.

Objective 1: Perform a domain analysis of the domain of communication services

frameworks aimed at identifying a minimal API to support service requests. The

results

Evaluation Criteria: the analysis shall:

1. characterize the domain of user-centric communication

2. formalize the abstraction that represents a minimal set of elements and associ-

ations.

3. validate the completeness of the NCB API with respect to near minimal API

for communication services.

3.3.2 Intent Based Self-Configuration of Services.

An outcome of understanding the domain lies in identifying attributes of features

that contain malleable states and those that do not. Through observation or modi-

fication of the variables of these attributes, system behavior can be manipulated to

ensure that the system achieves or maintains predefined levels based on cost or ser-

vices. A structured representation for policies would be needed as well as an efficient

methodology for evaluation and enforcement of these policies.

Objective 2(a): Develop a methodology for selection of services based on user

preferences; Develop a policy-based methodology for evaluating best cost and/or best

performance services that satisfies the user’s intent. The user’s intent will be specified

as abstract high-level goals.

Evaluation Criteria: the methodology shall:

38

1. characterize the domain of user-centric communication

2. formalize the description of the user intent with respect to the domain of user-

centric communication to support automated evaluation techniques

3. support efficient evaluation of the formalized description of user intent

Objective 2(b): Develop a methodology for automating the configuration of com-

munication services and communication service providers. Policies previously defined

will guide the automated re-configuration of communication services. The real-time

nature of the domain requires efficient evaluation of policies at runtime.

Evaluation Criteria: the methodology shall:

1. provide support for selection algorithms based on selection metrics identified in

Objective 1(a).

2. provide algorithms that can be leveraged to evaluate such policies at runtime.

3. provide evaluation results that can can be leveraged to support decisions and

enforcement mechanisms.

3.3.3 Integrated Services through Multiple Communication Frameworks

With an understanding of the domain of interest that facilitates identification and

characterization of it constituent features, abstraction can be developed that sup-

ports extensibility of services. An architecture and appropriate algorithms can them

be developed to support the analysis of the abstractions of the services, indepen-

dent of the communication application frameworks. A set of general communication

services can be derived that is representative of the class of communication applica-

tion frameworks. This ensures that any considerations for abstraction represents a

through examination of the user-centric communication domain.

39

Objective 3: Design an extensible architecture for integrating communication ser-

vices provided by multiple communication application frameworks. These services

include audio, video, file transfer and chat with a communication application frame-

work providing one or more of these services.

Evaluation Criteria: the design shall:

1. be extensible to support integration of additional communication frameworks

and services.

2. provide the independent mapping of communication services abstractions.

3. support adaptability and self-configuration of services at run-time.

3.4 Summary

In this chapter, this focus of the study was defined as ‘the investigation of an approach

that includes the provision of a high-level abstraction and automation techniques that

support an adaptive runtime reuse of communication services’. The work was moti-

vated through a discussion and a scenario derived from collaborators of the project.

The sub-problems highlighted as:

1. Formulate a methodology:

(a) for selection of services based on user intent.

(b) to support automated reconfiguration of services and communication frame-

works.

2. Design an extensible framework that supports seamless integration of commu-

nication frameworks.

Criteria for evaluating success of meeting the objectives are also presented in this

chapter. The next chapter presents the details of the approach.

40

CHAPTER 4

UCC SELF-CONFIGURING APPROACH

In this chapter is a presentation of the survey of existing communication frame-

works. The results of the survey are used to define the domain of user-centric com-

munications via the FODA methodology. The definition of the user-centric com-

munication policy structure is presented as well as the mechanisms to evaluate the

policies.

4.1 Overview of Approach

TCP/IP Stack

Skype Smack SIP GTalk

Applications ApplicationsApplications Applications

Figure 4.1: Simplified View of the Architecture of Current Approaches

This dissertation proposes a user-centric approach to address the problems out-

lined in Chapter 3. The proposed approach aims to reduce the complexity to the user

by providing services through the seamless integration of multiple communication ser-

vice providers. This goal will be supported by sub-goals that (1) provide an extensible

framework to support the integration of multiple communication service providers,

and (2) provide a methodology for automated selection of the communication services

guided by high-level user preferences.

Figure 4.1 presents a simplified view of the architecture used in the current designs

that support reuse of communication applications. The lighter colored layers in the

architecture represent the existing state-of-the-practice, which is a vertical approach

41

to building communication applications. Essentially a user application is layered

directly on top of one of the communication services framework utilizing the TCP/IP

stack. The creation of multiple variants of the application would be needed to support

the application’s use on multiple communication frameworks. A user’s conceptual

intent can be viewed as a model that is defined as a user connection in the application.

In this regard the association between user connection and the realization as a low-

level session is immutable across communication services frameworks. The user’s

intent which conceptually can seamlessly transition based on needs and preferences,

would in this architecture require the manual destruction of the user connection on

one communication services framework and the recreation on another communication

services framework. Fundamental changes are needed to support the goals stated in

the earlier paragraph.

The abstract architecture for the proposed solution is shown in Figure 4.2. The

proposed runtime adaptable middleware is composed of the following functional layers

from top to bottom: user Applications that reuse the collaborative communication

services; Middleware API layer that provides a high-level abstraction to applications

and users; Mapping Layer that associates a high-level to low-level communication

session; Selection Layer that selects the communication services framework that best

serves a user’s needs; and Convergence Layer that aggregates the communication ser-

vices and the communication services frameworks that provide the services. At the

bottom of the architecture is the TCP/IP stack that is utilized by all the communi-

cation services frameworks and to the center left is a horizontal layer, the Knowledge

Repository, that handles repository and registry services for the connecting layers.

The black layers in Figure 4.2 are the proposed extensions for a collaborative

communication middleware architecture. The purpose of these layers are now further

elaborated.

42

Applications

Middleware API

Mapping Layer

Selection Layer

Convergence Layer

Skype Smack SIP ooVoo GVoice

Knowledge
Repository

TCP/IP Stack

Figure 4.2: Proposed Architecture

Middleware API layer: - provides a high-level abstraction to applications and users.

The API signatures need to be sufficient to support the mix of possible underlying

communication services frameworks. API calls are translated to or modify an in-

tent model representing a desired set of communication services for the user. This

layer includes ports for injecting high-level user defined preferences that will aid in

constraining the transitions of the intent model.

Mapping Layer - provides the logic for managing association between two distinct

communication models. In this case, the mapping is from a model of intent expressed

at the API layer to a runtime model executing on a communication framework. This

should facilitate a decoupling of user intent from the actual communication execution

thereby allowing dynamic adaptation of services.

Selection Layer - provides algorithmic reasoning for selecting best served communica-

tion framework and services. The algorithms will need to simple and fast as they will

be bounded by the real time nature of the domain. The algorithms will also need to

be flexible to support the goal of dynamic adaptability in the architecture. Key inputs

43

for the decision algorithms will be the user preferences as well as representations of

the available services and communication services frameworks.

Convergence Layer - provides an aggregated set of communication frameworks and

their available services. Distinct communication services frameworks are integrated

at this layer. A common abstracted view for accessing communication services offered

by these communication services frameworks will therefore need to also be provided.

Knowledge Repository - provides a repository for all data shared by the previously

described layers. As can be seen at center left in Figure 4.2, knowledge repository in-

terfaces with the API layer (high-level user defined preferences and the intent model),

the mapping layer (model associations), the selection layer (input and output for selec-

tion logic) and the convergence layer (set representing aggregation of communication

services).

The proposed architecture is the foundation for the proposed approach. The

approach simplifies the experience for the users of the middleware but moves the

complexity from the user into the middleware. Complexities introduced relate to:

Switching metrics - In more traditional areas that utilize handover, such as cellular

networks, the switching decision is generally based on Relative Signal Strength and on

call drop rate. The complexity is elevated in this situation. In addition to QoS type

metrics, other criteria such as cost which will be based on the network, location and

time of day of the called party become factors that affect the decision as well. This will

need to be balanced against user preferences which may dictate priorities and weights

for some set of metrics. Moreover, for a switch to occur the communicating users must

have some common subset of communication services providers as well. The switching

metrics in this situation should include user preference, available services frameworks,

peers available services frameworks, application types, cost, network conditions and

other QoS metrics.

44

Switching decision algorithm - Based on the switching metrics mentioned

above, the decision about when and how to switch the intent model to which commu-

nication services framework will be made. How individual metrics are weighted and

the relationship of weights for all metric are as important as the metric themselves

for the reasoning algorithms. The level of interaction that the user has in the weight-

ing process and the need to ensure that the process does not become burdensome

for the user must also be balanced. How to switch will need to tackle complexities

such as ordering (destroy old session first or create new session first?) and impacting

constraints (limited resources to support old session and new session at the same

instance). Trade offs may need to be made in such cases. The algorithms will need

to resolve these and other conflicts that may arise, potentially even at runtime.

Mobility management - When a remapping for an intent model is required, a trans-

fer from one communication framework to another may occur. All peer users involved

in the communication need to correctly switch communication services framework and

do so in a timely, ordered way. Peer notification is therefore critical in ensuring all

peers are provided the correct ‘next’ framework. The state of the session may also

need to be preserved and recreated to ensure substantive continuation of the com-

munication. While outside the scope of this dissertation, mobility management must

also investigate the challenges of enabling on-the-fly loading and unloading of com-

munication services frameworks.

To assure the feasibility of the approach, the introduced complexities need to be

ameliorated. To ensure a clear understanding of the potential elements that can aid in

the reduction of the complexities as well as eventual solutions, a clear understanding

of the domain is necessary. In Figure 4.3 the inputs and output for a self-configuration

request is shown.

• Step 1: An initial configuration, a user’s request for a new connection or a new

service would be evaluated.

45

• Step 2: A set of configuration commands is generated for the configuration of

the communication services framework.

• Step 3: A dynamic configuration, a user’s request to reconfigure an existing

connection or service, would be evaluated.

• Step 4: A set of configuration commands are generated to reconfigure a frame-

work or (as in this example) replace a framework. To ensure that the required

goals of the initial and dynamic configuration were met, relevant states would

be included in the monitored set of states to provide feedback.

• Step 5: A reactive configuration, monitored states of the framework that are

out-of-band , would be evaluated.

• Step 6: A set of configuration commands are generated to reconfigure or replace

a framework.

User-centric communication policies would have to be developed for the classes of

configuration discussed previously. Policy definition is presented in the next section.

�������	
���
	�

���
�
�����
�
��	

����
������	
���
	�

���������
������
��
����

�
������
������

���������
������
��
����

�
������
������

 ���������	
���
!���������
�"��
����
�#

�
��"�����
����	
����
!���������
�"��
����
�#

�����������	
���
!����������
�"��
����
�#

�
�"��
����
��
�
������

�
�"��
����
��
�
������

��
����	
���
	�

$

%

&

'
(

�
�"��
����
��
�
������

)

Figure 4.3: Self-Configuration steps for Frameworks

46

The architecture and approach were further refined and the refinements are pre-

sented next. The approach was implemented in the Communication Virtual Machine

(CVM), a model-driven technology for realizing communication applications. The

CVM includes the Network Communication Broker, the layer responsible for provid-

ing a network-independent API to the upper layers of CVM.

4.2 Feature Analysis for UCC Domain

To define policies for guiding user-centric communication, a detailed domain analysis

needs to be performed to extract the essential ‘characteristics’ of the communica-

tion domain. Feature Oriented Domain Analysis (FODA) [36] provides a systematic

approach to address this problem. As a method for discovering and representing

commonalities among related software systems, the primary focus of FODA is the

identification of prominent or distinctive features of software systems in a domain.

It leads to the creation of a set of products that define the domain in terms of its

mandatory, optional and alternative characteristics of related systems. In this sub-

section the application of FODA method to the user-centric communication domain

is presented. The focus is on domain modeling for the purpose of this study, which is

an important phase of FODA that defines the problems within the domain addressed

by software.

Successful FODA practices builds on understandings of both the common aspects,

as well as differences of related systems in a targeted domain. This requires a detailed

survey of existing systems to capture the commonalities and variabilities as compre-

hensively as possible. An initial survey of three communication frameworks [3] was

performed to provide a view of the domain with respect to each one’s supporting

features. Based on the increased interest in the domain by new service providers, a

wider and more representative set of communication frameworks that are currently

popularly used in industry was used to extend the original survey. Moreover, more

47

distinguishing features of these frameworks was incorporated, such as message archiv-

ing and importing contact list. Figure 4.4 shows the result of the extended survey.

In this table, a 1 indicates this feature is present while a 0 indicates an absence.

Entries with a 1* show that the feature comes with costs, R shows the feature has

restrictions. Besides the basic features of communication services such as contact list

and chat, which all frameworks support, additional features were incorporated that

are of potential interest to the user. The additional features provide a rich set of

fine grained properties that complement basic features in various aspects. Although

they are not essential in delivering basic communication services, they bring more

variabilities of the systems that could affect their potential usage.

Core Features NCB
Native

Skype JML Gtalk Android Yahoo!
Windows Live

Messenger
Blackberry

OS
AOL

Palm
OS

Chat (one-to-one) 1 1 1 1 1 1 1 1 1 1

Chat (Conference) 1 1 1 1 1 1 1 1 1 1

Audio (one-to-one) 1 1 0 1 1 1 1 1 1 1

Audio (Conference) 1 1 0 0 0 1 1 1 0 R(<= 3)

Video (one-to-one) 1 1 0 0 1 1 1 1 1 0

Video (Conference) 1 0 0 0 0 1 1 0 0 0

File Transfer 1 1 1 1 1 1 1 1 1 1

Contact List 1 1 1 1 1 1 1 1 1 1

API Java Java Java C++ Java
JavaScript

/C++
JavaScript

(HTTP) Java
Java

C/C++ HTML

Additional Features

Emoticon 1 1 1 1 0 1 1 1 1 1

Online Status 1 1 1 1 1 1 1 1 1 1

Avatar Images 0 1 1 1 1 1 1 1 1 1

Voicemail 1 1 0 0 0 1 1 1 0 1

PC to Phone 1 1* 1* 1 0 1* 1* 0 1 1

Phone to PC 1* 1* 0 0 0 1* 0 1* 1 0

Message Archive 0 0 0 1 1 1 1 1 0 1

Plug-Ins 0 1 1 1 1 1 1 1 1 1

Importing Contact List 0 1 0 1 1 1 1 1 1 1

IM forwarding to cell phone 0 1 0 0 0 1 1 1 1 1

Radio 0 1 0 0 0 1 0 1 1 1

Importing Contact List 0 1 0 0 0 1 1 1 1 1

Figure 4.4: Survey of Communication Frameworks

The domain models describe elements of systems in a given domain from the point

of view of the ‘problem space’ [36]. An important artifact of domain modeling is the

feature model. Features are the attributes of the system that directly affects the end-

users. The feature model of the framework gives us a logical grouping of the features

48

of systems in the domain that are of interest. Figure 4.5 shows the feature diagram

resulting from feature modeling. The focus is on user centric communication appli-

cations as the interested family of systems. It includes several mandatory features

graphically denoted by solid circles above or beside the feature name, as in contact

list (top right feature in Figure 4.5), and optional features denoted by empty circles,

as in file transfer(second left feature in Figure 4.5).

Alternative features are connected by an empty arc, showing one and only one

of the sub features must be present, while a filled arch connecting features denote

or-features, meaning you can have one or several of such features. For instance, user-

centric communications could have chat, or audio, or video, or any combination of

them, but a PC2Phone is either free or at a cost. Each top feature of user-centric

communications, which is call the main feature, have their own sub features, either

optional or mandatory, representing properties of the main features. The hierarchical

structure goes down until there are no further properties to be captured. The feature

diagram is extensible, as the FODA process can be refined through iterations in the

future.

Feature analysis helps to capture the domain model in terms of the various char-

acteristics or considerations of the domain. The results of the feature analysis will be

used as the basis for designing policies that will guide how such ”considerations” are

satisfied by means of self-configuration. Details of the user-centric communication

policies will be explained in the next subsection.

Figure 4.4 shows a diverse set of features that characterize the user-centric com-

munication domain, however there exist users who have no interest in a manually

evaluating fine grained configuration of their communication. This work on the fea-

ture analysis of the domain suggests the potential for automation that can reduce the

complexity to the user. A user’s request for communication services can be guided

by a combination of goal and action policies, which is referred to in this disserta-

49

Figure 4.5: Feature Diagram for Frameworks

tion as User-Centric Communication Policies. User-centric communication policies

are policies that aid the simplification of communication while enhancing the user

experience.

4.3 UCC Policy Definition

Policies are rules that define the choices in the behavior of a system [47]. Agrawal

et. al [2] define a system’s behavior to be ‘a continuous ordered set of states where

the order is imposed by time’. Each state can be viewed as a mapping of some values

V t
i . . . V

t
n to the set of system attributes At

S where t is some ordered time slice.

Let B(S) be the set of all possible behaviors that the system S can exhibit.

B(S) = {{V 0
i, ..., V

0
n} �→ A0

S , {V 1
i, ..., V

1
n} �→ A1

S , ..., {V t
i, ..., V

t
n} �→ At

S}

There should exist some set of constraints C such that when C is applied to B(S),

it maps to a subset of desired behaviors Bdesired(S) ⊂ B(S).

Then

g : (C,B(S)) → Bdesired(S)

50

Policy P is defined as the function g:

P (C,B(S)) → Bdesired(S)

Therefore

P (C,B(S)) ⊂ B(S)

Where policy P characterizes a subset of the possible behaviors B(S) of a target

system S that satisfies a set of constraints C; that is, it defines a subset of B(S) of

acceptable behaviors for S [2]. Policies can be defined using only a small number of

attributes of system state and do not require the determination of the complete state

a priori [2]. Constraint C is defined as a 4-tuple 〈CO, CN , CV , CD〉 where:

• CO: narrows the scope of the constraint to identify subcomponents of S to which

the constraint is applied;

• CN : represents the condition(s) under which the constraint is triggered;

• CV : facilitates the ranking of multiple applicable constraints based on some

expected business value or utility; and

• CD: associates a condition CN with an action that achieves some desired be-

havior.

The aforementioned elements are extended based on the results of domain analysis

of the collaborative communication domain [3,7]. Figure 4.6 is an example of the XML

version of a user-defined policy that guides the establishment of video conferences.

The elements are interpreted as:

• Scope (CO) identifies the applicable communication component (the subject of

the communication) using the service attribute. A second attribute indicates

the status of the policy as being active or not. e.g Communication Object.

51

<csmPolicy policyName="selectComm_Video_01">
<scope>

<service>Communication Object</service>
<active>true</active>

</scope>
<condition>

<feature>Video</feature>
<operation>request</operation>
<literal></literal>

</condition>
<businessValue>

<businessGroup>general</businessGroup>
<value>96</value>

</businessValue>
<decision>

<param>Enabled</param>
<operation>equalTo</operation>
<value>conID.enabled</value>

</decision>
</csmPolicy>

Figure 4.6: XML representation for user-centric communication policy.

• Condition (CN) represents the trigger for the application of the policy in terms

of: (1) feature - the carrier of the intended information to be communicated; (2)

operation - the action to be performed on the proposed medium; and optionally,

(3) some value provided for comparison. e.g. when a request for video is received

(feature:video, operation:request).

• Business value (CV) facilitates a ranking of triggered polices. It is represented

by (1) the business group attribute which provides a way to associate related

policies; and (2) a numeric value that represents the policy’s priority in the

group. e.g. general group with priority 96.

• Decision (CD) indicates the policy’s desired outcome or expected behavior of

the communication. It is expressed as a triple (consisting of parameter, opera-

tion and value) that specifies the criteria that the communication must satisfy.

e.g. select communication framework whose medium supports at least the con-

nection’s users count.

Details on the evaluation of this example are provided in the following Subsection.

52

4.4 UCC Policy Realization

Recall from Section 4.3 that a user-centric policy is characterized as:

P (C,B(S)) ⊂ B(S)

where constraint C is a 4-tuple 〈CO, CN , CV , CD〉 and
CO = 〈sc, b〉 where subcomponent sc exists in System S and boolean b is an indicates

if a policy is available;

CN = 〈f, oper1, l〉 where feature f is in the set of features of subcomponent sc, oper1 is

an applicable operation of feature f and literal l is a discrete value that may optionally

be applied to oper1;

CV = 〈g, r〉 where g is an associable business group and r a discrete rank within the

business group;

CD = 〈param, oper2, val〉 where param is a valid port in the subcomponent sc of S,

oper2 is comparison operator and val is a value or range of values for param;

Given a runtime system S and a set of events T that occurs in S where

{S.fs} is a set of features active for the a given connection;

{sc.fs} = is a set of features supported by sc

T = {e| monitored event in S}.
A single policy P1 of form 〈CO, CN , CV , CD〉 on (S, T) is interpreted as follows:

CO ∧ CN =⇒ apply(CD)

which can be further refined as:

CO := (CO.sc ∈ S ∧ {S.fs} ⊆ {CO.sc.fs} ∧ CO.b = ACTIV E)

53

that is: CO implies subcomponent sc exists in System S at runtime, the set of active

features in {S.fs} are a subset of {CO.sc.fs} and b indicates that Policy P1 is active.

Note that the absence of support for an active feature in the specific connection on

the running system will remove the subcomponent from consideration. It will be

assumed that the user will explicitly remove unwanted features; and

CN := {∃e ∈ T : CN .f = e.f ∧ CN .op1 = e.op}

that is: CN implies Event e is of the monitored type T and the feature e.f of Event

e and the operation e.op match the feature CN .f and operation CN .oper1 of CN .

apply(CD) := enforce(CO.param,CO.oper2, CO.val)

where CD.param is a port on CO.sc, is a desired state of CD.param and CD.oper2

defines the relationship of val to the param. It is noted that CD describes goal states

for some set of variables in subcomponents of CO.

Interpretation of multiple policies build on the previously described interpretation

of single policies. Given policies P1 . . . Pn each of the form 〈CO, CN , CV , CD〉 on (S, T),

interpretation is as follows:

∀Pi : COi ∧ CNi =⇒ PS ∪ Pi

where Pi is a policy in P1 . . . Pn and PS is a set of applicable policies. The set PS is

further refined by

CFPS = resolveConflict(PS)

RankedPS = rank(Cv.v, rank(CV .g, CFPS))

where CFPS is a set of conflict free policies, and RankedPS is a ordered set of

policies based on CV .g is an ordering on business group which is further ordered by

54

sc b f op1 lit g v param op2 val
1 CommObject ACTIVE VIDEO START xAzv34 A 10 enableMedium EQUALTO ENABLED
2 CommObject ACTIVE VIDEO STOP xAzv35 A 12 disableMedium NOTEQUALTO ENABLED
3 CommObject ACTIVE VIDEO STOP xAzv36 A 12 disableMedium NOTEQUALTO DISABLED
4 CommObject ACTIVE VIDEO REQUEST B 13 getFrameworkSet MINIMIZE PRICE
5 CommObject ACTIVE VIDEO REQUEST B 14 getFrameworkSet MAXIMIZE PROFORMANCE
6 CommObject ACTIVE VIDEO REQUEST B 15 getFrameworkSet MAXIMIZE PRICE
7 System ACTIVE MEMORY LOW C 16 getFrameworkSet MINIMIZE PROFORMANCE

CO CN CV CDLine
Number

Table 4.1: Example Policies for Interpretation.

CV .v, the value within the group. The methodology for conflict resolution will be

discussed later in this section.

∀Pi ∈ RankedPS apply(CDi)

where for all Pi, policies in RankedPS the policy set, apply the decision CDi.

In Table 4.1 is a potential set of policies. A row in Figure 4.1 represents one policy.

Column 2 of the table list the subcomponent targeted by the policy, CO.sc and column

3 shows the active status of the policy, CO.b. The feature of the subcomponent of

interest (CN .f), the operation on the feature (CN .op1) and the associated literal

(CN .l) are listed in columns 4,5 and 6. Similarly, CV .b, the business group for the

policy, and CV .v, the rank within the group is listed in colunms 7 and 8. Columns

9, 10 and 11 list the goal parameters ((CD.param) - port, (CD.op2) - operator and

(CD.val) - range).

We assume that the subcomponents described as ‘CommunicationObject’ and

‘System’ exist in S and an event e (start video for conID:dffdf) is in T . Based on

the previous discussion, policy 1 in Table 4.1 would be interpreted as CO.sc and CO.b

is satisfied. For policy 1, CN .f is ‘VIDEO’ and CN .op1 is ‘START’ which matches

the event e. An additional parameter is provided by the event, that is the specific

connection identifier ‘’. This value is substituted in CN .l placeholder ‘conID’. CO

and CN are satisfied for policy 1 and CD must now be applied. The state derived

55

Policy
Repository

Environment

Supported
Policies

Relavant
Policies

Request
Event

Monitored
State

Events

Manage /
Enforce

State

Componets
@

Runtime

Policy
Management

Tool
Policy

Repository

Policy
Designer

(a) (b)

(i) Scope
Analysis

(ii) Condition
Analysis

(iii) Decision
Analysis

Policy
Decision

Point

Policy
Enforcement

Point

Figure 4.7: (a) IETF/DMTF Policy Architecture (b) Runtime Policy Evaluation.

from the port defined in CD.param (enableMedium) must satisfy (CD.op2 that is,

‘EQUALTO’) as defined in CD.val (‘ENABLED’).

In the case of multiple policies to be interpreted, (S, T) must be such that the

subcomponents and conditions are satisfied by more than one policy. Each policy

would be evaluated based on the current state of the system to test if it satisfies

the targeted subcomponent and necessary conditions to be a fdf policy. Policies

that evaluate to true in this respect are add to the policy set. For the purposes of

this example, we assume that to be the case for policies 4 - 6 in Figure 4.1. Note the

conflicting decisions of Policies 4 and 5. Conflict resolution will be needed to select one

of the two opposing choices, this would be addressed in the ReseolveConflict(PS)

function mentioned earlier (in this case we defer to minimization for prices in this

scenario). A ranking of the remaining policies follows and the policies would be

applied in the following order .

Refinement of this conceptual view of policy interpretation is the basis for the

policy evaluation mechanism used in the NCB.

56

While policy definition describes the ‘what’, policy interpretation represents the

‘how’ that ensures stated goals of the policies are met. The IETF/DMTF policy

architecture identifies four core elements to support a policy framework (see Figure

4.7 (a)). These four elements are 1) the policy management tool, used to create and

define the policies for the system; 2) the policy repository, which provides storage

and retrieval mechanisms for policies; 3) the policy decision point (PDP), which has

logical entities that decide applicability of policies and what is needed to comply with

the policies; and 4) the policy enforcement point (PEP), which consists of logical

entities charged with enforcing the policy decisions. This architecture represents the

fundamental model supporting much of the standards work in this area [2, 52, 53].

As such the approach for supporting policies in the NCB was influenced by this

architecture.

Figure 4.7 (b) presents an overview of the lightweight policy evaluation mechanism

used in satisfying the users communication needs. User policies are created with the

Policy Designer [7], a simplified policy management tool that supports the policy

definition presented in Section 4.3, and stored in the policy repository. At runtime

policies are retrieved from the policy repository as a first step in selecting applicable

policies. The policy decision point, as identified in Figure 4.7 (a), is logically divided

into the three analysis processes described in Figure 4.7 (b) and identified as (i,ii,iii).

The policies and the available components at runtime are input for scope analysis

(Figure 4.7 (b)(i)), where the policy scopes matching active components are selected,

resulting in a subset of supported policies. In the context of NCB the components are

the frameworks and the state of their services.

Events such as user requests or monitored state (reactive events) trigger further re-

finement of the supported policies via condition analysis (Figure 4.7 (b)(ii)). Policies

with matching conditions to the event or environment state are selected to create the

set of relevant policies. The decisions of the set of relevant policies (Figure 4.7 (b)(iii))

57

Algorithm 4.1 Algorithm to select applicable Policies.
1: createPolicySet(evt, commFWSet, polRepos)

/*Input: evt - events from reactive requests or user requests
polRepos -available policies in the policy repository
commFWSet - set of available communication frameworks

Output: policySet- set of policies ordered by Business Value */
2: policySet ← {}
3: for all pol ∈ polRepos do
4: if pol.scope(commFWSet) = true then
5: if pol.condition(evt) = true then
6: policySet ← policySet ∪ {pol}
7: end if
8: end if
9: end for

10: return policySet

are the goals or range of states that the system should support. Policy enforcement is

provided by the Orchestration Autonomic Manager (OAM) which is included in the

representation of the environment shown in Figure 4.7 (b). The details of the OAM

are discussed in Chapter 5.

In Algorithm 4.1, the algorithm for policy selection is outlined. This can be viewed

as the algorithmic equivalent of Figure 4.7(b) (i) and (ii). Each round of policy

selection begins with an empty policy set, step 2 of Algorithm 4.1, to which relevant

policies are added. Policies are deemed relevant if the request attributes (encapsulated

in an event as described in Algorithm 4.1’s input) match the policy values for service,

feature or operation (step 4 - 5 of Algorithm 4.1). When relevant policies are looked

up and retrieved from the repository, an equivalent object representation is built with

all the tags and values extracted and stored as object attributes. Policies are stored

as XML in the policy repository (recall from Figure 4.7(b)).

For a set of relevant policies, the policies are processed in the order of their business

values. Since UCC policies define how a user’s request is mapped to an underlying

communication framework, it would be straightforward to go through all the currently

available frameworks and use the policy to decide which one satisfies the request. In

its simplest form this set reduction technique is equivalent to the naive set theory

58

Algorithm 4.2 Algorithm to produce candidate set of Communication Frameworks.
1: setReduction CommFW (evt, commFWSet, policySet)

/*Input: evt - events from reactive requests or user requests
policySet -policies relevant to the event
commFWSet - set of available communication frameworks

Output: commFWSet- candidate set of frameworks */
2: if policySet.hasNext �= false then
3: if commFWSet �= empty then
4: pol ← policySet.next - get and removes the element from the set
5: for all frmwk ∈ commFWSet do
6: if eval(pol, frmwk) �= true then
7: commFWSet ← commFWSet \ {frmwk}
8: end if
9: end for
10: commFWSet ← SetReduction CommFW(evt, commFWSet, policySet)
11: end if
12: end if

13: return commFWSet

for intersection [18]: start with a full set, and gradually reduce it until all policies

are processed. Our algorithm for set reduction is shown in Algorithm 4.2. The input

for the algorithm includes the policy set resulting from the policy selection described

earlier, a set of available communication frameworks and the request encapsulated in

an event. Each policy in the policy set is extracted (line 4) and compared against

the communication frameworks with support for the stated feature, lines 5 - 10.

Communication frameworks that do not support the stated feature or cannot satisfy

the decision component of the policy are removed from the set of communication

frameworks (lines 10 - 11 and 14). The next policy from the policy set is applied

against the resulting communication framework set until all policies are evaluated

(line 17). The evaluator produces a set of candidate frameworks as its output for

each request.

As with almost all non-trivial policy-based approaches there exists the possibility

of policy conflicts. Approaches for the static detection and resolution of policy con-

flicts have been proposed [35, 46]. The area of dynamic detection and resolution of

policy conflicts at runtime is still fertile ground for research, although recent work [11]

has suggested renewed interest in this area. We reuse some of the techniques pro-

59

posed in [11, 35] to address the policy conflicts concern in the evaluation mechanism

to adequately support correct interpretation.

4.5 UCC Policy Application on the Illustrative Example

In Section 3.1 we presented an illustrative scenario and indicated three requirements

that needed to be satisfied for the scenario. We restate the three requirements here

for ease of reference. They are:

• Requirement 1. Provisioning of a three-way audio-video conference

• Requirement 2. Provisioning of a four-way audio conference

• Requirement 3. Complying with the hospital’s directive for minimizing cost

These requirements can be expressed as constraints to be applied to the system.

We further express these requirements in two forms. The first is a goal-oriented or

declarative view, a highly abstract and implementation-independent expression. The

second is a less abstract imperative view, which is bounded to the specifics of the

interpretation approach. We present both views to underscore the subtle differences

in how a policy is defined as against how it is evaluated at runtime and also to

highlight the independence of the definition process.

Requirements 1 and 2 are conceptually similar. We therefore provide a discussion

on Requirement 1 only, however noting the applicability to Requirement 2. In the

case of Requirement 1, an equivalent declarative expression would be:

{∀f ∈ CSetcid|AudioV ideo ∈ f.services}

This can be read as: a candidate set instance CSetcid is a set of communication

frameworks where each member f includes AudioV ideo in the set of available services

f.services at runtime.

60

The interpretation of a policy to support Requirement 1 would be expressed dif-

ferently when viewed within the context of the set reduction methodology used in the

implementation. An equivalent imperative expression would be:

{∀f ∈ CSetcid|if(AudioV ideo /∈ f.services)then(CSetcid − {f})}

This is interpreted as: for each member f of the candidate set instance CSetcid an

evaluation is done; the non inclusion of AudioV ideo in the set of available services of

f.services at runtime requires the removal of that communication framework f from

the candidate set instance CSetcid.

While the class of policies exemplified by Requirements 1 and 2 produce sets that

satisfy a desired goal, polices of the class that reflects Requirement 3 will produce at

most a single candidate. The single candidate produced by this class of policies results

from some maximum or minimum operation on a set of possible candidates. Require-

ment 3 describes a minimization objective, below we note an equivalent declarative

expression of this requirement:

{∃g∀f ∈ CSetcid|g.Audio.cost ≤ f.Audio.cost}

This is interpreted as: there exists a member g of the candidate set instance CSetcid

such that some property value, g.Audio.cost, is less than or equal to the property

value, f.Audio.cost, of every other member of the set. The interpretation of Require-

ment 3 expressed in an equivalent imperative form would be:

fcandidate ← ARGMIN
0≤t≤z

(
n∑

i=0

ft.services(Audio).cost(uloc, uremi)

)
1

1ARG MIN f(x) gives a position xmin at which f is minimized

61

Which is: fcandidate is the result of a minimization function, ARGMIN , over the set

of candidates indexed from 0 to z. This minimization function uses the summation of

the per minute cost for n many connection pairs of local user, uloc, to remote users,

urem, as the comparative value for each candidate.

4.6 Summary

This chapter presented a FODA based domain analysis of the user-centric domain.

This domain analysis informed the structural design of a policy language to support

high-level specifications by users. The mechanisms for correctly interpreting the user-

centric policies were discussed and algorithms used in the process were outlined. The

next Chapter focuses on the framework that utilizes the user-centric policies.

62

CHAPTER 5

UCC FRAMEWORK

This Chapter presents the self-configuring user-centric communication framework.

An overview of the framework is provided followed by a more detailed but high level

view of the architectural approach. Some of the significant components are also

highlighted with a detailed design and a discussion of the implementation.

5.1 Operational Overview

NCB Manager Queue Evaluation Communication
FrameworksShared Knowledge

Communication
Manager

Touchpoint AC
Manager

Prioitized
request

2 3 Evaluate against
policies

4 Issue AC
re-configuration

5 Prepare framework for
use

6 Update
knowledge

7 Issue connection
command

8 Get connection to
framework
mapping

9 Enable
communication

10 Communication
Events and Exception

1 11
Response

User
request

Reactive Events

UCM

SE

UCI

OAM

12

Smack

Skype

SIP

Figure 5.1: NCB Control Flow Diagram.

Figure 5.1 shows the flow of control for the proposed approach introduced in the

NCB. The numbered steps in Figure 5.1 highlight a typical sequence of operations to

initiate a collaborative communication.

Step:

1. A user’s intent model for initiating a communication with a remote peer would

be accepted by the upper layers of the CVM (see top left). The high-level intent

63

model is transformed to different level communication models as it descends

the CVM stack. The interested reader can find details on the processing of the

user’s communication models in the UCI, SE and UCM layers in [80,82]. At the

NCB Manager, the user’ communication model becomes a series of API calls or

requests (example:createConnection, addParty) for the NCB.

2. The requests are inserted into a priority Queue. A priority queue is used to

ensure that high valued request (reactive events such as failed services) are

handled before less valued request (proactive events such as send text file).

3. The highest priority request is evaluated against policies and the current oper-

ating environment state retrieved from the shared knowledge. The result of the

evaluation is an identified communication framework that satisfies the user’s

request and does not violate the active policies.

4. If the evaluation process returns a new framework for the connection (that is,

one that is different from the current one in use), the TouchPoint AC Manager

(TPM) is issued commands to setup a new session on the proposed replacement

communication services framework.

5. The TPM uses the services of the Communication Framework Manager to access

and direct the appropriate communication services framework in preparing the

required services.

6. On the successful completion of the session setup, the TPM updates the user

connection-to-session mapping table in the shared knowledge.

7. The evaluation is one sub-component of the Orchestration Autonomic Manager

(OAM), which is also responsible for usage synchronization of the communica-

tion frameworks. OAM blocks the Communication Services Manager (CSM)

64

while these reconfiguration steps are in progress, then issues the connection

commands to the CSM.

8. The CSM looks up the session and associated communication services frame-

work for the connection in the user session-to-connection mapping table in the

shared knowledge.

9. The the communication commands are then executed on the specific commu-

nication services framework accessed through the communication framework

manager.

10. Any notification events or communication based exceptions generated through

the communication manager are passed to the NCB Manager.

11. These events and exceptions are expected to be resolved, actioned or viewed

interactively by the user.

12. Any out-of-band or reactive events that cannot be handled by the TPM are en-

capsulated and forwarded to the OAM. The OAM processes these events guided

by policies from the shared knowledge and directs the TPM appropriately. This

effectively provides a stacked approach for the autonomic design with the OAM

performing the role of manager for the TPM.

A systematic representation of the processing that occurs in the OAM is presented

in Algorithm 5.1. The evaluate function describes the coordination methodology for

the OAM. Two important objectives guided the design decisions of the algorithm.

The first was the need to maintain the existing CSM interface and operations. This

facilitates easy reuse and more importantly backward compatibility of previous ver-

sions of the CSM. Secondly, As highlighted in Section 3.1, the distributed nature

and user-centric focus present complexities which have to be addressed for a feasible

implementation. With each peer supporting independently defined and enabled user

65

Algorithm 5.1 Algorithm to Configure Communication Services.
1: evaluate(PQ, KS, TPM, CSM)

/*Input: PQ - PriorityQueue of events from reactive requests or user requests
KS -Knowledge Source containing repositories such as policy and Frameworks
TPM -Touchpoint AC Manager
CSM -Communication Services Manager
commFWSet - set of available communication frameworks

*/
2: loop
3: if PQ not empty then
4: evt ← PQ.next
5: polRepos ← KS.getPolices()
6: commFWSet ← KS.getCommFWs()
7: policySet ← createPolicySet(evt, commFWSet, polRepos) {Algorithm 4.1}
8: policySet ← createPolicySet() {Algorithm 4.1}
9: candidateSet ← commFWSet {create temporary copy of commFWSet }
10: candidateSet ← setReduction CommFW (evt, candidateSet, policySet) {Algorithm 4.2}
11: candidateSet ← setReduction CommFW () {Algorithm 4.2}
12: candidateFW ← negPrimaryFW (candidateSet)
13: if TPM.configure(conID, candidateFW) == DIFF then
14: reConFigCommands(CSM, getConnection(conID)) {re-generate & execute previous calls}
15: end if
16: CSM.execute(evt.cmd) {execute current call for CSM}
17: end if
18: end loop

19: reConFigCommands(CSM, ConObject) {ConObject - current abstract state of connection}
20: for all party such that party ∈ ConObject.partyList do
21: commands ∪ {addParticipant(party)}
22: end for
23: for all medium such that medium ∈ ConObject.mediaList do
24: commands ∪ {enableMedium(medium)}
25: end for
26: for all cmd such that cmd ∈ commands do
27: CSM.execute(cmd)
28: end for

policies in the middleware, selection of a framework amongst peers become a global

decision. We reduce this complexity to that of the problem of consensus in distributed

systems, we present the details next.

The evaluate algorithm uses the priory queue, PQ, shared knowledge, SK, touch-

point AC manager, TPM and the communication services manager, CSM, to effect

reconfiguration. Previously queued events, evt, are dequeued from the PQ (step 4)

and the policies and set of available communication services frameworks retrieved

from the SK (step 5 and 6). The items retrieved in steps 4 - 6 are used as input for

66

the createPolicySet Algorithm (Algorithm 4.1) producing the set of currently applica-

ble policies, policySet, shown in step 7. The setReduction CommFW (Algorithm 4.2)

is then applied to reduce the available set of framework to the subset that satisfies

the user’s current requirements, step 9.

This candidate set produced in step 9 contains all the available frameworks that

can support the features and users defined in the specific connection. Step 10 , neg-

PrimaryFW, identifies the selected communication services framework that resulted

from the negotiation amongst the peers. The negPrimaryFW describes the proto-

col used for consensus, we present details on the protocol later in this section. The

selected communication framework identified in step 10 is passed to the TPM to pre-

prepare the framework (ensure framework availability, create connection to session

mappings and potentially this could include testing of services) in step 11.

Two results are possible with the TPM configure, the first is a change of frame-

work associated with the specified connection identifier and the second is a reuse of

a framework that is already associated with the connection identifier. In the case of

the former, a remapping of connection identifier to framework identifier is needed.

The previously associated framework identifier is denoted as ‘old’ and will be used to

destruct the previous low-level session as needed. For the latter the ‘new’ and ‘old’

frameworks are the same, hence no change of framework is required. The function

returns a DIFF enumeration when frameworks need to change and a SAME enumer-

ation is no change is necessary. A return of SAME, step 14, will execute the event

specific command.

If a DIFF is returned, then the OAM must generate the required actions or calls

to re-establish the services on the newly selected communication framework. Creation

and execution of the re-establishment actions will be the responsibility of the reCon-

FigCommands function in the OAM, see step 11. The steps of reConFigCommands

are listed from step 18 - 27. A connection object (ConObject), which represents the

67

Algorithm 5.2 Algorithm to Negotiate Communication Services.
1: negPrimaryFW (candidateSet, partyList)
2: if LEADER == TRUE then {leader possesses negotiation token}
3: for all party such that party ∈ partyList do
4: sendMsg(preferredOrderFW(candidateSet), party) {ranked version of candidateSet}
5: end for
6: NEGOTIATION ← INTERMEDIATE
7: return waitForReplies(candidateSet, partyList)
8: else {Does not possess negotiation token}
9: if NEGOTIATION == INITIAL then
10: for party such that party ∈ partyList ∧ party == LEADER do
11: sendMsg(preferredOrderFW(candidateSet), leader)
12: end for
13: NEGOTIATION ← INTERMEDIATE
14: else if NEGOTIATION == INTERMEDIATE then
15: if membership(candidateSet) == DIFF then
16: for party such that party ∈ partyList and party == LEADER do
17: sendMsg(preferredOrderFW(candidateSet), leader)
18: end for
19: else
20: for party such that party ∈ partyList and party == LEADER do
21: sendMsg(acceptedOrderFW(candidateSet), party)
22: end for
23: NEGOTIATION ← FINAL
24: end if
25: else {NEGOTIATION == FINAL}
26: NEGOTIATION ← INITIAL
27: return candidateSet
28: end if

29: end if

current state of the specific connection, is input for the function. In this dissertation,

a connection is a high-level model of the user’s communication intent comprising a

set of users and a set of features(example media). Reconfiguration will generate re-

invitations to the set of users in the connection and re-enabled the set of media in

the connection.

Algorithm 5.2 presents the peer negotiation algorithm, negPrimaryFW. The algo-

rithm leverages a three phase protocol and a majority function to support agreement

amongst peers on a communication services framework. Possession of the negotiation

token is required to initiate a request for consensus with the initiator in the role of

leader. There are three states for negotiation defined by the enumerations INITIAL,

INTERMEDIATE and FINAL with INITIAL being the default starting state for

68

a communication. Steps 2 - 7 are actioned by the initiator while steps 8 - 23 are

actioned by the other peers in the communication.

Phase 1: INITIAL The leader sends to each peer in the communication a ranked

version of the candidateSet (step 3 - 4) with the preferred ranking based on the

user’s policies in the policy repository. The leader will then wait for the replies

(waitForReplies at step 7) from all peers. Each peer on receiving the condidateSet,

will also reorder the candidateSet from the perspective of the specific peer’s set of

user policies. Each peer returns a preferred ranked candidateSet to the leader, step

9 - 11.

Phase 2: INTERMEDIATE The INTERMEDIATE stage for the leader is elabo-

rated in the waitForReplies algorithm (see Algorithm 5.3). After receiving all the peer

replies, steps 2 - 4 of Algorithm 5.3, the candidateSets are compared. If the candi-

dateSets are the same, step 6, the set is sent to all peers to all peers and the state

of negotiation moves to FINAL. If differences exist between the peer candidateSets,

a majority function is used to produce a new proposed candidateSet (step 13 - 15).

The new proposed candidateSet is sent again to the peers.

For a peer, receipt of a candidateSet in this phase will only be checked for con-

sistency of membership against the previous version of the candidateSet, step 13 of

Algorithm 5.2. This is done in case the set of communication services frameworks

changes, in which case the user preferences will need to be re-evaluated against the

new candidateSet, step 14 of Algorithm 5.2. If the membership is consistent, then

an annotated candidateSet is returned to the leader to denote acceptance (step 16 of

Algorithm 5.2).

Phase 3: FINAL A final confirmation of the agreed ranking of the candidateSet is

sent to all peers, see Algorithm 5.3. The algorithm ends by returning the candidateSet

to the calling algorithm, Algorithm 4.1.

69

Algorithm 5.3 WaitforReply Algorithm.
1: waitForReplies(candidateSet, partyList)
2: while numOfReplies < sizeOf(partyList) do
3: wait()
4: end while
5: if NEGOTIATION == INTERMEDIATE then
6: if diffAllReplies == SAME then
7: for all party such that party ∈ partyList do
8: sendMsg(candidateSet, party)
9: end for
10: NEGOTIATION ← FINAL
11: waitForReplies(partyList)
12: else
13: for all party such that party ∈ partyList do
14: sendMsg(majorityFunct(candidateSet), party)
15: end for
16: end if
17: else
18: for all party such that party ∈ partyList do
19: sendMsg(candidateSet, party)
20: end for
21: NEGOTIATION ← INITIAL
22: return candidateSet

23: end if

The algorithms discussed have been realized in the logic of the AOM. The designs

and implementations are presented in the next subsection.

5.2 High Level Design

The list of self-management properties continues to expand as researchers identify

new behavior [39] for systems that will either directly or indirectly support the auto-

nomic concepts. The expanding and evolving nature of self-* behaviors reinforced the

need for an extensible design vertically (to add other self-* behavior) and horizon-

tally (to extend self-management to the upper layers of CVM). The approach used

for supporting vertical extensibility in this work is by laterally stacking components

that share a managed resource. Liu et. al [44] specifies an autonomic component’s

interface as three ports: functional - traditional program inputs and outputs; con-

trol - sensors and effectors; and operational - rule injection and rule management.

This concept is utilized in the design of the NCB autonomic architecture shown in

70

�
������
��
��
��	�������
�
��	

*	�+���	
��
��
���
�
�����
�
��	

����
����

�����,�

����� ��
�� ���	
��
����

�
������
��
��
�	
���
	�

�
�
�����������	�
��

�
������

�������-��.�����
��

�
��������	�
��

/
��+�
����
���
�
�����
�
��	

0�
������
�

���

�����
�
��	

�
���1����

�,���
���

��
�������
���

2�����
��
��

�
��
���

���
�
��
���

,
�����
���+
	���

�
������
��
��
��������

Figure 5.2: NCB Autonomic Architecture.

Figure 5.2. At the top right of Figure 5.2 is the Communication Services Manager

(CSM) which utilizes the functional port of the communication frameworks (bottom

of Figure 5.2) to provide communication services such as creating a connection or

enabling a particular medium. The communication frameworks also include a control

port, indicated as management interface shown above the frameworks in Figure 5.2,

which is used by the touchpoint autonomic manager (TPM). TPM directly interacts

with the sensors and actuators of the communication frameworks providing low-level

management to the resource.

It is acknowledged that conflicts can occur between standard application execution

and adaptive behavior [44]. For highly multi-threaded and asynchronous systems

such as communication, coordination becomes even more challenging. The approach

presented in this dissertation reduces the potential for such conflicts through the use

of a high level coordinator which is refer to as the orchestration autonomic manager

(OAM). The OAM (left in Figure 5.2) provides safe access to the shared managed

resources by monitoring the states of the CSM and TPM components. The OAM can

71

delay sending commands to a component as well as cause the component to suspend

pending actions while the other completes a non-concurrent task.

The OAM also has responsibility for evaluating requests, retrieved from the call

queue (top left of Figure 5.2), with respect to stated policies. The OAM is the main

policy decision point in the NCB (recall Figure 4.7 (b) (i) and (ii)) with requests

triggering the evaluation process. A request is one of two forms. The first is a

user’s explicit desire for service such as ‘video conference with Bob, Mary and me’.

The second form can be out-of-band events that fall outside the scope of the TPM.

An example of such an event would be ‘Failure in Skype framework’. The TPM

detects the failure but it would be the responsibility of the OAM to identify all

the connections that were using this framework, select an alternative and restore

the state on the new framework. Session creation and addition of parties lie in the

functional port, so OAM will need to regenerate the required commands (based on

the connection’s previous state) for CSM to restore the service for the connection.

With the TPM escalating these events to the OAM, the OAM therefore serves as a

high level autonomic manager.

Figure 5.3 shows the state machine representing the dynamic behavior for the

CSM. Execution starts with the invocation of the loginAll method that puts the

CSM in the READY state. This causes initial transitions to UPDATED KNOWLEDGE state,

as policies are loaded via UPDATED POLICIES and the knowledge is updated with the

inventoried communication frameworks. The knowledge will continue to be updated

as policies are added and modified and changes occur within the communication

frameworks. The getCapablities method uses this knowledge to return a list of

available services with elements derived from any of the supporting communication

frameworks. This supplied list of services defines the user’s communication space by

listing all the available forms of communication at that instance of time.

72

�����

����	��
���
�
��

����	��
���������

����
��	�
�����

������
����
����	��

����
��	�
�����	��

���
�����
����������

���������
����� ����

!"#�"$ ��%�&'"(�

$"�"(
()�*�*) "�+����(�"$�$) �$,�"*-�

(!") "
.�)��+�,��"/�(�%��&'"(�!"#��!"*-�

"0"(� "
.�)��

()�*�*) "
1)�*"*
�,,�

�.*) "
.���(2�
�.*) "
.���(2
(�%.�" "*�

�.*) "
(�%%$
,!)%"/�!3�

3��/�"*�"
�.*) "
(�%.�" "*�

Figure 5.3: CSM State Machine.

The getCommunicationObject generates a requestComObject and transitions to

AVAILABLE FRAMEWORKS after getting the list of inventoried communication frameworks.

A candidate is then selected from the list that does not violate the active policies of

the CSM and transitions to the state CANDIDATE SELECTED, see Figure 5.3. A change

plan is generated and the state transitioned to CHANGE PLAN CREATED, if the candidate

communication framework is already being used then the plan is empty. The plan is

executed to effect the directives of the change plan moving to the CANDIDATE READY

state and the NCB uses the returned communication framework to realize the com-

munication model that was invoked by CVM.

5.3 Detailed Design

Figure 5.4 depicts the revision to King et al. [40] Reusable Autonomic Manager design.

As with the original design, the MAPE functionalities (Monitor, Analyzer, Planner

and Executer) are encapsulated in individual classes with each class threaded for inde-

73

���������	
���
����������
�����

�������������

��	����������	
�

��������
��!�"������
�#���
����
�����������!�%������

���
&����	

'���	�

������
(�)����!�(�)���
������
�������!�������

�
���
�������
�*�+������
����:;�

�
���
�������
�<�����
������

��������
(�)������!�(�)���

=>�
�	�

���
���������
���?
���@���������

�&
����JJ��[������\\

����
�������!�����
�)���������!�����
�������������������!�%������

'��=�
���

����������

���
���?
������������

�&
����
����JJ��[������\\

�����<��������!�����
�����
����!�����
�����������!�����
��������!�����

����
�
'�����

���
&����	

]

]

]]

]]

]

]

]

]

3����	�
��4
��
����������	�
��

Figure 5.4: Reusable Autonomic Design.

pendence of operation. Each thread can be individually started, stopped, suspended

or resumed giving fine grained control of the loop. The revised design includes a

thread group, MAPEGroup in the edu.fiu.strg.ACSTF.manager.mape package in Fig-

ure 5.4, which provides the mechanisms to safely suspend and resume the MAPE

threads as a single unit for coarse grained control (recall the discussion in Section

5.2 where the OAM may need to suspend MAPE activities). The controller class

GenericManager, see top right of Figure 5.4, coordinates the operations and services

as well as maintain the knowledge source (KnowledgeInterface, bottom right of Figure

5.4) used by the MAPE functions. GenericManager, MAPEGroup and the MAPE

classes (through inheritance from AbstractFunction, bottom left of Figure 5.4) are

parameterized with the template class, Touchpoint. Self-management will be carried

out by classes representing the Touchpoint template class.

Figure 5.5 shows the core components of the new NCB Design, a refinement of

Figure 5.4. At the bottom left of Figure 5.5 is the package edu.fiu.cvm.ncb.tpm

which contains CommTPManager, the new specialization of the GenericManager.

CommTPManger is parametrized with a communication specific touchpoint, Comm-

FWTouch, which includes monitor methods such as checkFW - which iterates through

the set of frameworks, polling each for error state; and execute methods such as

74

���������	
������

���������	
�������

���������	
���������

���������	�
����

���������	�
����

�������������

�������������

�����

^����
����_
�����������

�����������

�	�����	�����	��

�����

^����
����_
��������
���

�����������

��������
��������

��������		

��������
��������

��

�� �
�����

��

!"�������
�
���5�

�

#�������������
�

� !
���

��

��!���%

] `

�&'��������� �������	��
��&�������

���������

��
(�)������

�
�������

"����'*	���������

(��%�
��������������]`

] `

]

{��`

��	���������������

������	���

��������������

�����

^����
����_
��
(�)���

Figure 5.5: NCB Detailed Design Diagram.

resetFramework - which reinstantiates a specific framework. Out-of-band events

that cannot be handled by the CommTPManager are encapsulated and sent out

asynchronously via ACSignal, to be handled by the OrchestrationManager.

Shown at the top right of Figure 5.5 is the package edu.fiu.cvm.ncb.cs which has

the components responsible for managing the communication services (CSM). The

ComObject interface defines the operations for the communication framework such

as createConnection, which creates a new communication framework session for a

specific connection identifier, and addParty, which adds a new member to a commu-

nication session. The ComObjectMgr maintains the set of available communication

frameworks, while the csManager handles the high level coordination to effect the

communication.

Package edu.fiu.cvm.ncb.adpt at the bottom right in Figure 5.5 includes the adapter

classes for the communication frameworks. For black-box communication frameworks,

such as Skype, the adapter classes function as managed resource wrappers. Smack-

Adapter is the managed resource wrapper that reuses the open source Smack libraries,

and NCBNative is the original NCB as proposed by Zhang et al. Each adapter class

implements the common sensor, effector and communication methods of the NCB-

Bridge interface. The NCBBridge is an amalgamation of the functional and control

75

ports defined by the ComObject interface of the edu.fiu.cvm.ncb.cs package and the

ACManagement interface of the edu.cvm.ncb.tpm package.

The OrchestrationManager, shown at top center of Figure 5.5, coordinates the use

of the shared resources by autonomic (TPM) and non-autonomic (CSM) components.

Additionally, the use of the knowledge source by the two components (specifically the

limits on the access to the MappingTable as a reader-writer lock pattern) adds to the

safeness. CSM uses the MappingTable (getMapTable method of the KSInterface, at

the top left of Figure 5.5) as read-only via indirection through the OAM, allowing

the OAM to monitor and queue when necessary the access to the shared resource.

Tthe TPM is responsible for updating the table using locks when writing to the table.

The PolicyEvalManager, below the OrchestrationManager in Figure 5.5, is the high

level policy decision point. Implementations of the algorithms described in Chap-

ter 4 are utilized in the PolicyEvalManager to produce a candidate communication

framework.

5.4 Implementation Details

The architecture and designs for the autonomic NCB described in the previous sec-

tions have been implemented as a prototype. A subset of the API1 for the autonomic

NCB is presented in Table 5.1 representing the interface available to the upper layers

of the CVM. The login method returns an object (UserObject) containing profile

information such as user roles, saved schemas, and contact lists. The profile informa-

tion is reused by the upper layers of CVM including the population of the displayed

user interface. The createSession method creates a connection-to-session object,

providing a mapping to the high level concept of a connection to one or more com-

munication framework sessions. The addParty method adds persons from the user’s

contact list to a previously created session. Streaming media or non-streaming data

1The full API is available as JAVADocs at http://www.cis.fiu.edu/cml/

76

Method Summary
void addParty(String sessionID, String participantID)

This function adds the participants specified to the specific session.
void removeParty(String sID, String participant)

This method removes the list of participants from the given session.
void createSession(String sessionID)

This function creates a session with the specific session ID
void destroySession(String sessionID)

This function destroys the specified session ID
void disableMedium(String connectionID, String mediumName)

Stop sending the specified medium to all the participants in the connection
void enableMedium(String connectionID, String mediumName)

Start sending the specified medium to all the participants in the connection
UserObject login(String userName, String password)

This method will attempt login of the given user
void logout(String userName)

Logs the user out.
void resetNCB()

Resets the ncb instance.
void applyPolicy(String policy)

Add and apply specified policy to the NCB.

Table 5.1: Sampling from NCB JavaDocs.

is sent to members of a session by the enableMedium method, while policies are intro-

duced by the applyPolicy method. Each method invocation is added internally to a

priority call queue and applied to a specific connection object during the evaluation

process to produce a best fit selection of communication framework.

Table 5.2 shows some of the static metrics from the implementation which was

collected using the Eclipse Metrics 1.3.8 plugin. As discussed in Section 5.3 the

autonomic NCB exploits the reusable autonomic manager of King et al. [40] (re-

ferred to as ACSTF in Table 5.2). The reusing of ACSTF meant NCB needed only

4 additional classes to support self-configuration, the collection of communication

frameworks (CommFWResource) that extends AbstractResource; the touchpoint that

uses the resource and extends CommFWTouch; and the entity responsible for the man-

agement of the touchpoint, the CommTPManager which extends the GenericManager

class. Additionally, the OrchManager also extends the GenericManager class as it

manages the CommTPManager and the CSManager as discussed in the previous section.

Subsequent self-* behavior can easily be included with the addition of another ex-

77

NCB ACSTF Total
Total Lines of Code 9461 1091 10552
Number of Packages 27 5 32
Number of Interfaces 6 1 7
Number of Classes 156 17 173

Table 5.2: Metrics for NCB and ACSTF.

tension of the GenericManager class. Of the 156 classes in NCB, 47 are within the

adapter package and an additional 28 relates to events and event handling. Total

lines of code for the full autonomic NCB inclusive of the ACSTF was 10552.

5.5 Summary

In this chapter we presented the self-configuring user-centric communication frame-

work. The integration of autonomic computing support coupled with the user-centric

focus through user defined policies was presented. The extensibility of the design in

terms of ease of addition of new communication frameworks and expansion of self-*

behavior was also highlighted in this chapter.

78

CHAPTER 6

EVALUATION

I have implemented a prototype of the autonomic NCB that demonstrates the

feasibility of the approach and incorporates the designs discussed in the previous

chapters. In this chapter, I present the evaluation of the approach with respect to

objectives 2 and 3 as presented in Section 3.3. For completeness, the author notes that

objective 1 was evaluated through the results of the feature oriented domain analysis

in Section 4.2. The policy shown in Figure 4.6 was used in all experiments. In this

chapter I outline our experimental setup and present the results of the experiments.

A discussion of the results including threats to the validity of the experiments is also

presented.

6.1 Evaluation Goals

The goals of the evaluation are reflective of the objectives and criteria defined in

Chapter 3. The criteria guided the design of the set of experiments discussed in this

chapter. The evaluation of the implementation was based on the following hypotheses

• the autonomic NCB has minimal overhead over baseline communication frame-

works;

• the automated reconfiguration time is less than the manual reconfiguration time

for cross communication services framework switching.

The prototype was evaluated with respect to its efficiency (compared to previous

versions of CVM) and the scalability of the selection mechanism.

79

6.2 Experimental Setup

I used three versions of the NCB prototype during the experimental runs, where

each run was composed of twenty iterations of the specific scenario. The highest

and lowest reading were thrown out and the remaining eighteen averaged. The first

two versions were based on a single-framework developed prototype NCB without

self-configuring behavior: one version was configured to only use the Skype version

4.2 communication framework API, and the other was configured to only use the

Smack version 3.0.4 communication framework API. The third version was the new

prototype of the autonomic NCB with Skype 4.2 API and Smack 3.0.4 API as the

supporting communication frameworks. A common driver application was used to

simulate CVM type requests for all experimental sets.

Environment: All computers used during the experiments met the following speci-

fications: Pentium 4 3.00GHz, 1 GB RAM, web camera and microphone with 100 Mb

Ethernet Adapters. Windows XP SP3, Java 1.6.0 18 and Eclipse Version 3.5.2 were

installed on all computers. TPTP version 4.6 [21], a Java profiling tool, and win-

dows’ perfmon, the windows performance monitoring tool, were the data gathering

tool used during the evaluation process.

6.3 Experimental Set 1 - Two-way Video Conference: A Comparative Analysis

Purpose: This experimental set assess the overhead of the autonomic NCB with re-

spect to the reused communication frameworks. The evaluations are based on a two

way video communication. The evaluation is applied to the autonomic NCB, Skype

native windows client and a Smack native implementation. The metrics used in this

evaluation are memory utilization, processor utilization and data transmissions. Data

transmission was included since the autonomic NCB has to negotiate for consensus

amongst the parties involved in the communication, indication of the impact of this

80

25

26

27

28

29

30

31

32

0 10 20 30 40 50

M
em

or
y

in
 U

se
 (%

)

Time (seconds)

NCB using Skype Skype only NCB using Smack Smack only

Figure 6.1: Analysis of Memory Usage for Two-way Video Conference.

negotiation is therefore valued. The data used in the analysis was gathered using

perfmon. The specification for the computer used for the performance monitoring

was a Dual Core 2.33 Ghz processor with 3 GB of RAM and a 100 Mb Ethernet

adapter. Additionally, an analysis of the prototype’s autonomic detection and recon-

figuration times is presented. It is expected that some reconfiguration activities will

be dynamically driven by changes in the underlaying layers, such as failure and faults.

A initial look and analysis of the cost of the autonomic aspects is presented as well.

With the additional indirection, it was expected that additional memory, pro-

cessor and network bandwidth resources would be needed to support the additional

processes. The expected overhead for memory should be within five percent of the

base communication services frameworks based on the specifics of the design and the

implementation. While the processor utilization and additional data transmission

overhead should be within twenty percent of the base communication services frame-

work with the autonomic polling responsible for most of this overhead. We calculate

the percentage difference as %DIFF = | x1−x2
(x1+x2)/2

| ∗ 100.

81

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60

To
ta

l T
ra

ns
m

is
si

on
 (b

yt
es

)

Time (seconds)

NCB using Skype Skype only NCB using Smack Smack only

Figure 6.2: Analysis of Data Transmission for Two-way Video Conference.

Results: Figure 6.1 shows the average processor utilization for the two way video sce-

nario. The y-axis shows the percentage of the processor utilized while the x-axis shows

the time within the scenario run for completing each scenario in the experiment. The

lines represents the performance of the reused communication services frameworks

(Skype only and Smack only) clients and the NCB prototype either reusing Skype

or Smack. A comparative look at the Smack versus NCB with Smack shows that

on average, there is a 1.37% increase in memory utilization by NCB over that of the

Smack native client. NCB using Skype, however shows a 4.31% increase in memory

utilization over the Skype native client.

While the difference is less than our expected maximum memory utilization, we

conducted a trace to identify reasons for the differences in comparative percentages.

Our investigation shows additional intermediary objects used for the NCB to Skype

communication. Skype is a C++ library, thus requiring the use of JNI wrappers to

facilitate the communication which results in the additional memory usage. Smack

on the other hand, is native Java.

82

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Pr
oc

es
so

r U
til

iz
at

io
n

(%
)

Time (seconds)

NCB using Skype Skype only NCB using Smack Smack only

Figure 6.3: Analysis of Processor Utilization for Two-way Video Conference.

average bytes transmitted at discrete points in the experiments are shown in Fig-

ure 6.2. The y-axis shows the transmission in bytes with the x-axis showing the time

within the scenario run for completing each scenario in the experiment. Again, as

in the previous experiment, the lines represents the performance of the reused com-

munication services frameworks (Skype only and Smack only) clients and the NCB

prototype either reusing Skype or Smack. Calculation of the worst case difference

in the graph for the Smack versus NCB with Smack shows a 18.18% additional data

transmission with an on average value of 9.7%. NCB using Skype showed a smaller

difference than the Smack comparisons in this experiment. The comparitive differ-

ence between the native Skype client and the NCB with Skype was 12.17% for the

worst case and 7% on average.

Figure 6.3 shows the graph of processor utilization at intervals during the exper-

iments. the percentage of cup utilized is marked on the y-axis and the x-axis shows

the time within the scenario run for completing each scenario in the experiment. The

largest percentage difference between the Skype and the NCB using Skype was cal-

culate to be 73%. This is quite significant and out traces reveals two heavily used

83

loops in the Java interfacing implemtation for Skype. The first loops for attaching

to the WIN32 library for Skype and the second loops when it awaits confirmation on

commands sent to the Skype library. The Smack and NCB with Smack peaked at

28.57% for processor utilization differences with an average of 15.38%.

We have found that the autonomic monitoring influences the relatively high CPU

utilization. The trace and analysis of the autonomic components will be discussed

later in this chapter. An interesting result of the experiments in this section is the

clearly visible measured delay introduced by the indirection of NCB. In Figure 6.1 and

even more so in Figure 6.3 is an offset of approximately two seconds for the graph

of the NCB compared to the graphs for Smack and Skype. This delay represents

the time for NCB to process the user request, evaluate the potential communication

services frameworks and then prepare the framework for use. Optimization of the

implementation should potentially reduce this delay.

6.4 Experimental Set 2 - Analysis of Candidate Selection Algorithm

Purpose: I evaluated the technique for selecting the candidate communication frame-

work using the new NCB prototype. I measured the elapsed time from receiving a

user’s request to the returning of a candidate communication framework. Varying

numbers of communication frameworks were included in the pool for selection during

the experimental runs and each run was composed of ten iterations of a specific pool

size. The experimental runs for each pool size was then averaged and tabulated. The

initial hypothesis with respect to the current algorithm is that at a worst, the selec-

tion algorithm employed scales polynomially. While the current algorithm employed

is not an optimized algorithm, the expectation is that it performs at worst in poly-

nomial time. The reader is reminded that the design easily supports the replacement

of the selection algorithms.

84

0 3

0.4

0.5

0.6

di
da

te
 F

ra
m

ew
or

k
on

ds
)

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
to

 S
el

ec
t C

an
di

da
te

 F
ra

m
ew

or
k

(s
ec

on
ds

)

Number of Communication Frameworks

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
to

 S
el

ec
t C

an
di

da
te

 F
ra

m
ew

or
k

(s
ec

on
ds

)

Number of Communication Frameworks

Figure 6.4: Average Times to Select Candidate Communication Framework.

Results: The pool sizes range from 2 to 16 and the averages for the runs are shown

in Figure 6.4. The graph represents the average time for the selection process with

respect to the number of communication frameworks available. The x-axis shows the

number of communication frameworks available at the start of the selection process

while the y-axis shows the time taken to complete the policy evaluation and return a

candidate communication framework. The graph shows a non linear increase in the

selection times with respect to the increase in the communication framework pool.

The predicted increase was a typical linear increase based on the time complexity

analysis of 2n− 1 for the recursive algorithm. However, a detailed review of the data

shows a maximum combination of the feature attributes used in the experiments of

six. Therefore, multiple communication frameworks are guaranteed to be removed

at this threshold. On average a reduction in the set of communication frameworks

occurs with each feature attribute evaluated. Note however, that a request that can

be satisfied by all communication frameworks in the set may not exhibit this behavior.

85

6.5 Experimental Set 3 - Audio to Audio-Video Conferencing Reconfiguration

Purpose: In the event a decision on function, price or performance warrants a

change of framework, it is expected that the proposed automated approach will be

comparatively faster than a manual switching process. The three scenarios (2-way, 3-

way, 4-way) measured the time to setup the configuration to serve a user’s request for

an initial audio conference and then switch the configuration to video conferencing.

Results: Figure 6.5 shows the average time for completing each scenario in the

experiment. The cluster of bars represents the performance of the non-autonomic

(Skype only and Smack only) variants and the autonomic variant of the NCB. The y-

axis is the measured time in seconds for the experiment. The bar representing the non-

autonomic variant includes the times for starting the Skype version of NCB initially,

stopping and starting the Smack version of NCB if necessary. The x-axis shows the

three scenarios (2-way, 3-way and 4-way), while the y-axis shows the time to complete

the switch and setup of a video conference. The non-autonomic implementations of

NCB performed better than the autonomic variant for two way audio conferencing

to video conferencing. From our analysis, this was due to Skype’s support for two

way video conferencing. Therefore there was never a need to switch frameworks.

The autonomic version of NCB, however, had the additional overhead of the AC

framework threads.

It is shown in Figure 6.5 that as the number of participants increase the autonomic

NCB scales better than the non-autonomic NCB. Skype video conferencing support

is limited to two way. As such, the Skype implementation of NCB required a switch

to the Smack implementation of NCB. For the single framework implementation, this

requires conference disconnection, shutdown and a restart with the new framework

implementation. The time taken to manually stop and start an implementation was

averaged with the highest and lowest values discarded to compensate for differences

in the speed of users in the experiments. The author also noted from the data that

86

0

20

40

60

80

100

120

140

2 way 3 way 4 way

Audio to Video Conference

S
et

-u
p

 T
im

e
(s

ec
o

n
d

s)

without AC Framework
with AC Framework

Figure 6.5: Audio to Video Conferencing Set-up Times.

the AC Framework accounted for noticeably less of the overall execution time as the

conference’s participant count increased.

6.6 Experimental Set 4 - N-way Audio Conference Configuration

Purpose: The scenarios (n-way and n+1-way audio up to 5-way) measured setting

up the configuration to serve a user’ request for an initial audio conference and to

switch to N+1 way for the experimental implementations. A fourth implementation

(Asterisk-only) was added to the initially described three implementations (Skype-

only, Smack-only and AC NCB).

Results: The averages for each scenario in the experiment are displayed in Figure

6.6. The graph shows the average time inclusive of startup, negotiation and estab-

lishment of the streams. The implementation with the best responsive time was

Asterisk-only. Our investigations revealed that this was a result of the client-server

nature of the implementation compared to the peer-to-peer architecture of the other

implementations. Negotiation time was minimal, as the initiator simply created a

‘room’ on the asterisk server and then sent invitations with the room number to the

87

0

5

10

15

20

25

30

35

40

2 way 3 way 4 way 5 way

Se
co

nd
s

N Way Audio Conference

(a)

AC NCB Asterisk Smack Skype

0

20

40

60

80

100

120

140

2 ->3 way 3 -> 4 way 4 -> 5 way

Se
co

nd
s

N to N + 1 Way Audio Conference

(b)

AC NCB Asterisk Smack Skype

Figure 6.6: Analysis of Audio Configuration Times.

other parties. The AC NCB times included the initialization times for all commu-

nication frameworks, which is responsible for the significant difference compared to

the lighter Asterisk-only implementation times shown in Figure 6.6(a). Figure 6.6(b)

shows the results for starting a conference and then the subsequent addition of one

other party to the conference. A ‘steady-state’ period of 40 seconds was included

to simulate a conversation before requesting the additional user. As with the N-way

conferences, the AC NCB implementation mirrored the Asterisk-only implementation

in the N+1-way conferences. Asterisk-only was the framework candidate selected to

be used by the AC NCB based on the policies used in these scenarios. The Smack-

only and Skype-only were linear with respect to the number of parties involved in the

conversation as these implementations incrementally added the parties.

The results were further analyzed to see what was the impact of the autonomic

components in the time analysis. Figure 6.7 indicates the proportion of time dedicated

to the autonomic processes as compared to the communication framework processes.

This is on average 26% of the processing time consumed by autonomic processes.

A detailed inspection of the results showed the monitor threads responsible for a

significant portion of the consumed time. The current implementation of the mon-

itor threads poll at specified intervals. Optimized alternatives to the naive polling

implementation can further reduce the time consumed by the autonomic components.

88

2 way 3 way 4 way 5 way Average %

AC Components 3.723 4.657 5.511 5.446 26.463

Frameworks 11.138 12.894 13.700 16.748 73.537

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
tiv

e
Ti

m
e

(s
ec

)

Figure 6.7: Breakdown of Autonomic Components vs Frameworks.

6.7 Experimental Set 5 -Analysis of Autonomic Response Times

Purpose: The purpose of this experiment was to evaluate the responsiveness of the

fault detection and adaptation triggering components of the implementation. Each

run is an injected fault for an active communication framework for some random but

bounded time interval. The difference between the fault injection and fault detection

times are recorded, as well as the time difference until reconfiguration occurs.

Results: The performance results for the fault detection and adaptation times are

shown in Figure 6.8. The x-axis shows the runs while the y-axis shows the time scale

in milliseconds for each of the runs. Using the autonomic framework, faults were able

to be discovered at most 110 ms after detection and as early as 16 ms after fault

injection. The mean for fault detection was 51 ms. The experiments used a polling

interval of 250 ms for the monitoring thread of the MAPE functions for the autonomic

framework with a predicted mean of 125 ms.

The ITU-T [33] proposed a one-way delay of less than 400 ms as one of its perfor-

mance targets for voice and video applications. The significance of the mean detection

89

1 2 3 4 5 6 7 8 9 10
Fault Detected 110 62 31 94 63 62 16 17 16 47
Reconf igured 55312 39907 47891 65860 53485 62594 42671 63061 41219 49125

1

10

100

1000

10000

100000

Av
er

ag
e

Ti
m

e
(m

s)

Figure 6.8: Analysis of Detection and Adaptation Time.

time of 51 ms compared to the ITU-T’s performance target of 400 ms suggests that

the proposed framework can be beneficial to self-healing audio and video applica-

tions as repairs could begin before a human can recognize that a fault happened. A

comparison of the detection against reconfiguration times is presented in Figure 6.8.

It must be noted that there was a substantial difference in times for detection and

reconfiguration. Reconfiguration involves stopping and restarting some services, as

resources such as cameras and microphones may not support shared access by differ-

ing communication frameworks. To the best of our knowledge, there are no generally

accepted performance targets for startup or establishing audio and video application.

6.8 Discussion

The prototype of the NCB is an initial proof of concept for the introduction of extensi-

ble services to the CVM. The prototype NCB currently includes four communication

frameworks, Skype, Smack, Asterisk and NCBNative. For Subsection 6.4 experi-

ments, additional communication frameworks were created as stubs to support the

simulation. This however does not reflect a limitation of the prototype as additional

communication frameworks can be interfaced in the future. The number of active

90

communication frameworks will be dependent on the limitation of the specific com-

munication device. While it may seem unrealistic to support that many frameworks

on a device, This exercise can be viewed as a proof of concept where different elements

of concern that may impact the final configuration maybe selected from such a large

pool of options.

The experimental set for Subsection 6.7 used a polling interval of 250 ms for the

monitoring thread of the MAPE functions for the autonomic framework. This value

was derived from earlier experiments aimed at finding a balance between minimizing

the effects of the MAPE polling and adequately evaluating system changes. Work

on more resource friendly methods such as event driven signaling may provide an

alternative to the current implementation’s use of polling.

Tools for performance evaluation generally do not introduce significant overhead to

the monitored environment. For real-time systems this tends not to be the case as the

sampling period can influence the application performance. In our evaluation process,

Eclipse Test and Performance Tools Platform was used for monitoring and profiling

the prototype. This introduced additional memory and computation overhead, which

in turn introduced delays in the participants negotiation process. I compensated

for this overhead by reducing the sampling period and focused the profiling and

monitoring based on the criteria of the specific experiment.

6.9 Summary

Results of experiments conducted on the prototype was presented in this chapter. The

results of the experiments were discussed and threats to the validity of the experiments

were highlighted.

91

CHAPTER 7

CONCLUSION

In this chapter I present a summary of the research conducted in this dissertation.

The contributions of the work are revisited as well as the evaluation of the work.

A discussion of some future directions of this work is presented in the future work

section.

7.1 Research Summary

In this dissertation I investigated the problem of how to provide an always-best-

served solution for users of collaborative communication services. The combinatorial

mix of large numbers of communication service providers, communication services

and platforms coupled with expanding metrics for valuing ‘best fit’ services presents

challenges for user of theses communication services. In my research, I proposed a

user-centric solution that alleviates the burden of users having to monitor and manage

these communication services by interfacing multiple communication frameworks and

policy-driven selection of communication services. The approach included defining

user-centric policies for users to describe high-level intent for communication needs.

These high-level policies guide the automated selection algorithms for reconfiguration

of services to support the user’s intent.

I defined user-centric communication policies and outlined the technique for their

interpretation. I elaborated on the algorithms to support the automated reconfigura-

tion and runtime selection of candidate communication frameworks. The architecture

of the self-configuring framework was presented and the flow of the approach was ex-

plained in the context of the design. Details of the design of the self-configuring

framework were presented and the extensibility of the architecture to support other

autonomic behavior was also discussed.

92

The evaluation of the self-configuring framework was presented. The evaluation

was done with respect to the evaluation criteria discussed in Chapter 3. Objective 2 is

primarily addressed in the evaluations, showing the extensibility and adaptability at

runtime with the framework. Objective 1 is achieved with the defined policy structure,

interpretation mechanism and algorithms and supported by the Analysis of Candidate

Selection Algorithm evaluation. Based on the QoS performance recommendations

discussed in the paper, we believe however that this approach is also feasible for

other collaboration intensive multimedia applications.

7.2 Future Work

The autonomic NCB is positioned to be a useful tool for researchers in collaborative

communication and self-managed systems. The design of the autonomic NCB presents

a real world application that is extensible, therefore providing a testbed for researchers

in many areas. Already there is some preliminary work on integrating self-testing

support in the prototype. In the future, the NCB can be extended to include other

autonomic behavior, such as self-healing properties to provide recovery options for a

collaborative communication session.

Efficient strategies for session recovery on failed communication frameworks or

services will aid the resilience of research in this area. The challenge will be providing

support for proprietary communication frameworks in the designs for session recovery.

The reduction of handover latency will also be an additional issue that needs to be

addressed in moving the always-best-served paradigm forward.

The approach proposed includes a layered design, where one of the layer is the con-

vergence layers. Works such as [20] which already provide some form of convergence

can also benefit from the application of the concepts in the upper layers to move

to an dynamically configurable implementation. In fact, potentially some of these

93

convergence products could be investigated as possibly alternate implementation of

the convergence layer of NCB.

Additionally, we will be investigating the use of models to further improve the

performance of the evaluation and generation of new configurations at runtime. The

real-time nature of the domain requires minimization of all possible latency points.

The use of abstract models to evaluate and potentially enforce through casual con-

nections will be an interesting direction that could add value to other research areas

in computer science.

Next Generation Networks (NGN) promises to revolutionize the wireless network.

O’Droma et al. [55] outlines a vision that replaces the current Subscriber Based Model

(SBM) with a Consumer Based Model (CBM) in 4th Generation wireless telephony.

This vision is seen as one of the grand goals for research in such areas as vertical

handover technologies from mobile wireless networks to unlicensed spectrum access

points such as WiFi hotspots. O’Doma et al. proposes an ‘always best connected’

(ABC) approach where handover is not only based on a user’s location but on other

factors such as price and performance. As articulated by O’Droma et al. [29] there

are six key aspects for realizing the vision:

1. Access discovery

2. Access selection

3. Authentication, Authorization and Accounting (AAA) support

4. Mobility management

5. Profile handling

6. Content adaptation

The approach presented in this dissertation can provide the ground work for items

2 and 5 in the previous list. Item 2, Access selection, is the process of deciding over

94

which access network to connect at any point in time. Item 5, refers to solution for

supporting application adaptation based on context, resources and metrics in real-

time. This is an area that has a lot of promise for potential innovations and will be

investigated in the future.

Cloud computing, which is the practice of provisioning computational and stor-

age resources on demand over the Internet, has seen significant adoption and still

continues to evolve. Cloud computing provides cheaper computing but is expected

to provide even more benefits, with faster, more flexible and mode effective compu-

tation [38]. Currently, most cloud computing service providers have some pricing

structure that is based on a predefined set of resources. As more options in terms

of granularity of service compositions are provided, users of these services will want

the flexibility to dynamically compose services not just within a single cloud service

provider, but also across providers. Intuitively, this could produce additional cost

savings, but would have to address issues of weighting communication latencies be-

tween providers, per packet cost for inbound and outbound traffic, cost of resource

and cost of migration.

The work described in this dissertation can become a first step in providing such

an approach to support the additional dynamism in cloud computing. This work can

complement approaches that define an abstraction for cloud computing resource pro-

vision and use [38]. Since most pricing is available on the Internet, mining techniques

can be employed to gather pricing information. Simple load tests can be used to as-

certain bandwidth constrains and utility / cost functions designed to algorithmically

inform appropriate service composition.

The Communication Virtual Machine Research Group at Florida International

University has already begun to investigate the use of the adaptive approach describes

in the dissertation to support energy management. A microgrid is a self contained

unit that includes energy loads and sources within a larger smart grid. Specifically,

95

the group is investigation an approach for managing energy microgrids using models.

A modeling language and a modeling environment will be developed for graphically

expressing a desired energy architecture. Also a virtual machine will be developed

to analysis the modeling artifacts and provide software management of the microgrid

hardware. An investigation of how and what will be needed to transfer the concep-

tual ideas of the NCB from the domain of communication services to that of energy

management is currently underway.

96

BIBLIOGRAPHY

[1] D. Agrawal, Kang-Won Lee, and J. Lobo. Policy-based management of
networked computing systems. Communications Magazine, IEEE, 43(10):69 –
75, 2005.

[2] Dakshi Agrawal, Seraphin Calo, Kang-won Lee, Jorge Lobo, and Dinesh
Verma. Policy technologies for self-managing systems. IBM Press, 2008.

[3] Andrew A. Allen, Sean Leslie, Yali Wu, Peter J. Clarke, and Ricardo Tirado.
Self-configuring user-centric communication services. In (ICONS 2008), pages
253–259. IEEE, April 2008.

[4] Anne H. Anderson. An introduction to the web services policy language (wspl).
Policies for Distributed Systems and Networks, IEEE International Workshop
on, 0:189, 2004.

[5] Nelly Bencomo, Gordon S. Blair, Carlos A. Flores-Corts, and Peter Sawyer.
Reflective component-based technologies to support dynamic variability. In
VaMoS’08, pages 141–150, 2008.

[6] Philip A. Bernstein. Middleware: a model for distributed system services.
Commun. ACM, 39:86–98, February 1996.

[7] Paola Boettner, Mansi Gupta, Yali Wu, and Andrew A. Allen. Towards
Policy-Driven Self-Configuration of User-Centric Communication. In (ACM
Southeast Conference 2009). ACM, April 2009.

[8] Raouf Boutaba and Issam Aib. Policy-based management: A historical
perspective. Journal of Network and Systems Management, 15:447–480, 2007.
10.1007/s10922-007-9083-8.

[9] Raouf Boutaba, Salima Omari, Ajay Pal, and Singh Virk. Selfcon-an
architecture for selfconfiguration of networks. Journal of Communications and
Networks, 3:317–323, 2001.

[10] Cerulean Studios. Trillian software, Sept. 2009.
http://www.ceruleanstudios.com.

[11] M. Charalambides, P. Flegkas, G. Pavlou, J. Rubio-Loyola, A.K. Bandara, E.C.
Lupu, A. Russo, M. Sloman, and N. Dulay. Dynamic Policy Analysis and
Conflict Resolution for DiffServ Quality of Service Management. In Network
Operations and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP,
volume , pages 294 –304, april 2006.

[12] Huoping Chen, Salim Hariri, and Fahd Rasul. An innovative self-configuration
approach for networked systems and applications. In (CTS 2006), pages
537–544. IEEE, 2006.

97

[13] Betty Cheng, Rogrio de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee.
Software engineering for self-adaptive systems: A research roadmap. 5525:1–26,
2009.

[14] Adrian Colyer, Gordon Blair, and Awais Rashid. Managing complexity in
middleware. In In The Second AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (ACP4IS), In AOSD 2003, 2003.

[15] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The
ponder policy specification language. In POLICY ’01: Proceedings of the
International Workshop on Policies for Distributed Systems and Networks,
pages 18–38, London, UK, 2001. Springer-Verlag.

[16] Yi Deng, S. Masoud Sadjadi, Peter J. Clarke, Vagelis Hristidis, Raju
Rangaswami, and Yingbo Wang. CVM - A Communication Virtual Machine.
J. Syst. Softw., 81(10):1640–1662, 2008.

[17] Yi Deng, S. Masoud Sadjadi, Peter J. Clarke, Chi Zhang, Vagelis Hristidis,
Raju Rangaswami, and Nagarajan Prabakar. A communication virtual
machine. In COMPSAC 06, pages 521–531. IEEE Computer Society, 2006.

[18] Keith Devlin. The Joy of Sets: Fundamentals of Contemporary Set Theory.
1993.

[19] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol
Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and
Franco Zambonelli. A Survey of Autonomic Communications. ACM Trans.
Auton. Adapt. Syst., 1:223–259, December 2006.

[20] ECF. Eclipse communication framework project, September 2007.
http://www.eclipse.org/ecf/.

[21] Eclipse Test & Performance Tools Platform Project. Eclipse Test &
Performance Tools Platform, September 2010.
http://www.eclipse.org/tptp/.

[22] Wolfgang Emmerich. Software engineering and middleware: a roadmap. In
Proceedings of the Conference on The Future of Software Engineering, ICSE
’00, pages 117–129, New York, NY, USA, 2000. ACM.

[23] Mohamed Fayad and Douglas C. Schmidt. Object-Oriented Application
Frameworks. Commun. ACM, 40(10):32–38, October 1997.

[24] Robert France and Bernhard Rumpe. Model-driven development of complex
software: A research roadmap. In 2007 Future of Software Engineering, FOSE
’07, pages 37–54, Washington, DC, USA, 2007. IEEE Computer Society.

98

[25] V. Ghini, P. Salomoni, and G. Pau. Always-best-served music distribution for
nomadic users over heterogeneous networks. Communications Magazine, IEEE,
43(5):69 – 74, May 2005.

[26] Google. GoogleTalk, Nov. 2010. http://www.google.com/talk/.

[27] David Gorton. Transforming the customer experience with user centric
networking. 2008.

[28] X Gu, J. Strassner, J Xie, L.C. Wolf, and T. Suda. Autonomic Multimedia
Communications: Where Are We Now? Proceedings of the IEEE, 96(1):143
–154, jan. 2008.

[29] E. Gustafsson and A. Jonsson. Always best connected. Wireless
Communications, IEEE, 10(1):49 – 55, feb. 2003.

[30] S. Hallsteinsen, M. Hinchey, Sooyong Park, and K. Schmid. Dynamic software
product lines. Computer, 41(4):93 –95, 2008.

[31] IBM Autonomic Computing Architecture Team. An architectural blueprint for
autonomic computing. Technical report, IBM, Hawthorne, NY, June 2006.

[32] ITU-T. Y.2001 General Overview of NGN. International Telecommunication
Union, Dec. 2004.

[33] ITU-T SG 12. G.1010 - Multimedia QoS/Performance requirements .
International Telecommunication Union, Nov. 2001.

[34] Jive Software. Smack API, Nov. 2008.
http://www.igniterealtime.org/projects/smack/.

[35] Hiroaki Kamoda and Krysia Broda. Policy Conflict Analysis Using Free
Variable Tableaux for Access Control in Web Services Environments. In In
Policy Management for the Web Workshop, pages 5–12, 2005.

[36] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering Institute, November 1990.

[37] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–52, Jan. 2003.

[38] Y. Khalidi. Building a cloud computing platform for new possibilities.
Computer, 44(3):29 –34, march 2011.

[39] Tariq M. King, Djuradj Babich, Jonatan Alava, Ronald Stevens, and Peter J.
Clarke. Towards self-testing in autonomic computing systems. In 8th
International Symposium on Autonomous Decentralized Systems(ISADS ’07),
2007.

99

[40] Tariq M. King, Alain E. Ramirez, Peter J. Clarke, and Barbara
Quinones-Morales. A reusable object-oriented design to support self-testable
autonomic software. In SAC, pages 1664–1669, 2008.

[41] Philippe Lasserre and Dennis Kan. User-centric interactions beyond
communications. Alcatel Telecommunications Review, 2005. http:
//alcaesd-f.nl.francenet.fr/docs/1/S0503-UCBB_interactions-EN.pdf

(March 2007).

[42] D. Lewis, T. O’Donnell, K. Feeney, A. Brady, and V. Wade. Managing
user-centric adaptive services for pervasive computing. pages 248–255. IEEE
Computer Society, 2004.

[43] Hua Liu and S. HARIRI. A component-based programming model for
autonomic applications. In Proceedings of the First International Conference
on Autonomic Computing, pages 10–17, Washington, DC, USA, 2004. IEEE
Computer Society.

[44] Hua Liu and Manish Parashar. A programming system for autonomic
self-managing applications. In Manish Parashar; Salim Hariri, editor,
Autonomic Computing: Concepts, Infrastructure, and Applications, pages
211–235. CRC Press, 2006.

[45] C. Low. Integrating Communication Services. Communications Magazine,
IEEE, 35(6):164 –169, June 1997.

[46] E. Lupu and M. Sloman. Conflict Analysis for Management Policies. In
Proceedings of the fifth IFIP/IEEE international symposium on Integrated
network management V : integrated management in a virtual world, pages
430–443, London, UK, UK, 1997. Chapman & Hall, Ltd.

[47] M. J. Masullo and S. B. Calo. Policy management: An architecture and
approach. In IEEE First International Workshop on Systems Management,
pages 13–26, April 1993.

[48] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B.H.C. Cheng. Composing
adaptive software. Computer, 37(7):56 – 64, 2004.

[49] Microsoft. Microsoft dynamic systems initiative overview, Feb. 2004.
http://www.microsoft.com/hk/windowsserversystem/mn20581/wp_dsi.

mspx(February2011).

[50] Jean J. Moreau, Roberto Chinnici, Arthur Ryman, and Sanjiva Weerawarana.
Web services description language (WSDL) version 2.0 part 1: Core language.
Candidate recommendation, W3C, March 2006.

[51] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jezequel. Taming
dynamically adaptive systems using models and aspects. In Proceedings of the

100

31st International Conference on Software Engineering, ICSE ’09, pages
122–132, Washington, DC, USA, 2009. IEEE Computer Society.

[52] Network Working Group. The COPS (Common Open Policy Service) Protocol:
Request for Comments: 2748 Category: Standards Track, Jan 2000.

[53] Network Working Group. Policy Core Information Model (PCIM) Extensions:
Request for Comments: 3460 IBM Updates: 3060 Category: Standards Track,
Jan 2003.

[54] John R. Nicol, Yechezkal S. Gutfreund, Jim Paschetto, Kimberly S. Rush, and
Christopher Martin. How the internet helps build collaborative multimedia
applications. In Communications of the ACM, pages Vol. 42, No.1,79–85, Jan.
1999.

[55] M. O’Droma and I. Ganchev. Toward a ubiquitous consumer wireless world.
Wireless Communications, IEEE, 14(1):52 –63, 2007.

[56] ooVoo LLC. ooVoo Developers, Oct. 2010.
http://www.oovoo.com/Developers.aspx?pname=DevelopersMain.

[57] Open API Solutions. OSA/Parlay, Nov. 2010.
http://www.openapisolutions.com/brochures/OSAParlayOverview.pdf.

[58] Organization for the Advancement of Structured Information Standards
(OASIS). eXtensible Access Control Markup Language (XACML) Version 2.0.
Technical report, OASIS Access Control TC, February 2005.

[59] Marty Parker and Don Van Doren. Achieving cost and resource savings with
unified communications. Technical report, Microsoft, March 2009.

[60] Pidgin. Pidgin development project, February 2011.
http://developer.pidgin.im/.

[61] Lucas L. Provensi, Fabio M. Costa, and Vagner Sacramento. Management of
Runtime Models and Meta-Models in Meta-ORB Reflective Middleware
Architecture. In Proceedings of the 4th International Workshop
Models@Run.time, volume 509 of CEUR Workshop Proceedings, pages 81–88,
Denver, 2009. CEUR-WS.org.

[62] Qnext Corporation. Qnext, Sept. 2007. http://www.qnext.com/.

[63] Andreas Rasche and Andreas Polze. Configuration and dynamic
reconfiguration of component-based applications with microsoft .net. In Sixth
International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’03), page 164. IEEE Computer Society, 2003.

[64] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
Technical report, Network Working Group, June 2002. RFC 3261.

101

[65] S. M. Sadjadi and P. K. McKinley. ACT: An adaptive CORBA template to
support unanticipated adaptation. In Proceedings of the 24th IEEE
International Conference on Distributed Computing Systems (ICDCS’04),
pages 74–83, Tokyo, Japan, March 2004. (acceptance rate 17.7

[66] S. M. Sadjadi, Philip K. McKinley, Eric P. Kasten, and Zhinan Zhou.
Metasockets: Design and operation of run-time reconfigurable communication
services. Software: Practice and Experience (SP&E). Special Issue: Experiences
with Auto-adaptive and Reconfigurable Systems., 36:1157–1178, 2006.

[67] S. Masoud Sadjadi, Philip K. McKinley, and Betty H. C. Cheng. Transparent
shaping of existing software to support pervasive and autonomic computing.
SIGSOFT Softw. Eng. Notes, 30:1–7, May 2005.

[68] S. Masoud Sadjadi and Fernando Trigoso. TRAP.NET: A realization of
transparent shaping in .NET. International Journal of Software Engineering
and Knowledge Engineering, 19(4):507–528, 2009.

[69] S.M. Sadjadi, S. Kalayci, and Yi Deng. A Self-Configuring Communication
Virtual Machine. In IEEE International Conference on Networking, Sensing
and Control, 2008. ICNSC 2008. , volume , pages 739 –744, April 2008.

[70] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Trans. Auton. Adapt. Syst., 4:14:1–14:42, May 2009.

[71] M. Satyanarayanan. Pervasive computing: vision and challenges. Personal
Communications, IEEE, 8(4):10–17, August 2002.

[72] Jürgen Sienel, Alberto León Mart́ın, Carlos Baladrón Zorita, Laurent-Walter
Goix, Álvaro Mart́ınez Reol, and Belén Carro Mart́ınez. OPUCE: A
Telco-driven Service Mash-up Approach. Bell Lab. Tech. J., 14:203–218, May
2009.

[73] Skype Limited. Skype, Nov. 2010. http://www.skype.com/intl/en-us/home.

[74] S. Masoud Sadjadi, Philip K. McKinley, Betty H.C. Cheng, and R.E. Kurt
Stirewalt. TRAP/J: Transparent generation of adaptable Java programs. In
Proceedings of the International Symposium on Distributed Objects and
Applications (DOA’04), volume 3291, pages 1243–1261, Agia Napa, Cyprus,
October 2004.

[75] J.P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw. Task-based
Adaptation for Ubiquitous Computing. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, 36(3):328 –340, may 2006.

[76] Burkhard Stiller, Christina Class, Marcel Waldvogel, Germano Caronni, Daniel
Bauer, and Bernhard Plattner. A flexible middleware for multimedia
communication: Design, implementation and experience. IEEE Journal of
Selected Areas in Communications, 17:1614–1631, 1999.

102

[77] Stefan Arbanowski Sven van der Meer, Stephan Steglich. User-centric
communications. In IEEE International Conference on Telecommunications,
pages 425–444. Special Sessions, 2001.

[78] Gianluca Tonti, Jeffrey Bradshaw, Renia Jeffers, Rebecca Montanari, Niranjan
Suri, and Andrzej Uszok. Semantic web languages for policy representation and
reasoning: A comparison of kaos, rei, and ponder. In Dieter Fensel, Katia
Sycara, and John Mylopoulos, editors, The Semantic Web - ISWC 2003,
volume 2870 of Lecture Notes in Computer Science, pages 419–437. Springer
Berlin / Heidelberg, 2003.

[79] Vladimir Tosic, Abdelkarim Erradi, and Piyush Maheshwari. Ws-policy4masc -
a ws-policy extension used in the masc middleware. Services Computing, IEEE
International Conference on, 0:458–465, 2007.

[80] Yingbo Wang, Yali Wu, Andrew Allen, Barbara Espinoza, Peter J. Clarke, and
Yi Deng. Towards the Operational Semantics of User-Centric Communication
Models. In Proceedings of the 33th Annual International Computer Software
and Applications Conference (COMPSAC 09), pages 254–262. IEEE Computer
Society, July 2009.

[81] M. Wilkinson. Designing an adaptive enterprise architecture. BT Technology
Journal, 24:81–92, 2006.

[82] Yali Wu, Andrew A. Allen, Frank Hernandez, Yingbo Wang, and Peter J.
Clarke. A user-centric communication middleware for cvm. In The 12th
IASTED International Conference on Software Engineering and Applications
(SEA 2008), pages 210–215. ACTA, Nov. 2008.

[83] C. Zhang, M. Sadjadi, W. Sun, R. Rangaswami, and Y. Deng. A user-centric
network communication broker for multimedia collaborative computing. In 2nd
IEEE/ACM CollaborateCom, Nov. 2007.

103

VITA

ANDREW A. ALLEN

2005 B.Sc. Computer Science
Florida International University
Miami, Florida

2009 M.Sc. Computer Science
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Yingbo Wang, Peter J. Clarke, Yali Wu, Andrew A. Allen and Yi Deng: Realiz-
ing Communication Services Using Model Driven Development. Proceedings of the
IASTED International Conference on Software Engineering and Applications (SEA
2007)

Andrew A. Allen, Sean Leslie, Ricardo Tirado, Yali Wu and Peter J. Clarke: Self-
Configuring User-Centric Communication Services. The Third International Confer-
ence on Systems (ICONS 2008)

Yali Wu, Andrew A. Allen, Frank Hernadez, Yingbo Wang and Peter J. Clarke: A
User-Centric Middleware for CVM. Proceedings of the IASTED International Con-
ference on Software Engineering and Applications (SEA 2008)

Yingbo Wang, Peter J. Clarke, Yali Wu, Andrew A. Allen and Yi Deng: Runtime
Models to Support User-Centric Communication. Proceedings of the 3rd Interna-
tional Workshop on Models@runtime(Sept 2008)

Paola Boettner, Mansi Gupta, Yali Wu and Andrew A. Allen: Towards Policy Driven
Self-Configuration of User-Centric Communication. Proceedings of the 47th ACM
Southeast Conference (ACMSE 09)

Yingbo Wang, Yali Wu, Andrew A. Allen, Barbara Espinoza, Peter J. Clarke and Yi
Deng: Towards the Operational Semantics of User-Centric Communication Models.
Proceedings of the 33rd Annual IEEE International Computer Software and Appli-
cations Conference (COMPSAC 09)

Peter J. Clarke, Yali Wu, Andrew A. Allen and Tariq M. King: Experiences of Teach-
ing Model-Driven Engineering in a Software Design Course. Proceedings of the Mod-
els 2009 Educators’ Symposium (Oct 2009)

104

Andrew A. Allen, Yali Wu, Peter J. Clarke, Tariq M. King and Yi Deng: An Au-
tonomic Framework for User-Centric Communication Services. Proceedings of the
2009 Conference of the Center for Advanced Studies on Collaborative research (CAS-
CON 09)

Peter J. Clarke, Andrew A. Allen, Tariq M. King and Edward L. Jones and P. Natesan:
A Web-Based Repository of Software Testing Tools to Support Pedagogy. SPLASH
2010 Educators’ and Trainers’ Symposium(Oct 2010)

Tariq M. King, Andrew A. Allen, Yali Wu, Peter J. Clarke, and Alain E. Ramirez:
A Comparative Case Study on the Engineering of Self-Testable Autonomic Software.
Accepted to the 8th IEEE International Conference on the Engineering of Autonomic
and Autonomous Systems(Apr 2011)

Yali Wu, Andrew A. Allen, Frank Hernandez, Robert France and Peter J. Clarke. A
Model-Driven Approach to Realizing User-Centric Communication Services. SOFT-
WARE PRACTICE AND EXPERIENCE (journal accepted for publication 2011)

105

	Florida International University
	FIU Digital Commons
	3-29-2011

	Abstractions to Support Dynamic Adaptation of Communication Frameworks for User-Centric Communication
	Andrew A. Allen
	Recommended Citation

	Abstractions to Support Dynamic Adaptation of Communication Frameworks for User-Centric Communication

