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ABSTRACT OF THE DISSERTATION 

THE ORDER SELECTION AND LOT SIZING PROBLEM  

IN THE MAKE-TO-ORDER ENVIRONMENT 

by 

Zhongping Zhai 

Florida International University, 2011 

Miami, Florida 

Professor Chin-Sheng Chen, Major Professor 

This research is motivated by the need for considering lot sizing while accepting 

customer orders in a make-to-order (MTO) environment, in which each customer order 

must be delivered by its due date. Job shop is the typical operation model used in an 

MTO operation, where the production planner must make three concurrent decisions; 

they are order selection, lot size, and job schedule. These decisions are usually treated 

separately in the literature and are mostly led to heuristic solutions.  

The first phase of the study is focused on a formal definition of the problem. 

Mathematical programming techniques are applied to modeling this problem in terms of 

its objective, decision variables, and constraints. A commercial solver, CPLEX is applied 

to solve the resulting mixed-integer linear programming model with small instances to 

validate the mathematical formulation. The computational result shows it is not practical 

for solving problems of industrial size, using a commercial solver.  

The second phase of this study is focused on development of an effective solution 

approach to this problem of large scale. The proposed solution approach is an iterative 

process involving three sequential decision steps of order selection, lot sizing, and lot 
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scheduling. A range of simple sequencing rules are identified for each of the three sub-

problems. Using computer simulation as the tool, an experiment is designed to evaluate 

their performance against a set of system parameters.  

For order selection, the proposed weighted most profit rule performs the best. The 

shifting bottleneck and the earliest operation finish time both are the best scheduling 

rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-

Silver method performs the best, when the demand-to-capacity ratio at the bottleneck 

machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin 

algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The 

proposed heuristic is applied to an industrial case to further evaluate its performance. The 

result shows it can improve an average of total profit by 16.62%. This research 

contributes to the production planning research community with a complete mathematical 

definition of the problem and an effective solution approach to solving the problem of 

industry scale. 
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1 INTRODUCTION 

1.1 Background and Motivation 

The operation modes of manufacturing enterprises are classified into two main 

categories: make-to-stock (MTS) and make-to-order (MTO). The basic distinction 

between them is timing of production for customer orders. In the MTS mode, production 

plan is based on demand forecasts. In the MTO mode, production starts only after a 

customer order is received. In the market place of rapidly increasing global competition, 

MTO is gaining its popularity because it addresses individual needs by mass-customizing 

each product (Chen 2006). MTO orders may vary significantly on their routings, material 

requirements, and engineering tooling, etc. Due to the production nature of wide 

product/process variety and small quantity, job shop is the typical operation model used 

in an MTO operation.  

To promptly respond to customer demands, detailed production scheduling is 

important to MTO operations to meet rigid delivery commitment. (Drexl and Kimms 

1997) consider it as a concurrent sizing and scheduling problem, assuming accepting all 

orders. Therefore two questions to be answered are when and how many products to be 

produced over the planning horizon of multiple time periods. Typical lot sizing problems 

consider setup cost and holding cost (Jans and Degraeve 2005). Setup cost is associated 

with preparing the machine for processing. Holding cost is the expense spent on 

maintaining goods in stock. The total setup cost decreases as the lot size goes up and the 

number of setups goes down. However, the holding cost goes up along with the inventory 

level. It incurs no holding cost if the exact amount is produced that satisfies every 

delivery commitment (lot-for-lot); however, the total setup cost may increase as more 
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setups are needed. The primary objective for the lot sizing problem is thus to balance 

between the setup cost and the holding cost. Aside from cost-saving, lot sizing can also 

be used to improve order feasibility (Low et al. 2004). For example, lot sizing can be 

applied to splitting a large production order into smaller production lots, nesting them in 

a schedule such that the overall lead time is reduced.  

In the MTO environment, there is an increase demand for on-time delivery. On-

time delivery helps the customer reduce inventory and ensure an effective supply chain. 

Consequently on-time delivery of orders has become important to MTO customers 

(Charnsirisakskul et al. 2004). In an MTO operation, incoming orders are reviewed 

periodically (per day or week). When incoming orders exceed shop capacity, rejection of 

incoming has to come to play; or expected delivery commitment needs to be renegotiated. 

In the meantime, lot sizing and detailed scheduling need to be exercised to ensure 

schedule feasibility. As a result, the MTO production planner needs to make three 

decisions in concurrence: (1) which incoming customer orders to select, (2) how to split 

each order (if selected) into production lots, and (3) how to schedule each production lot 

in a job shop. 

1.2 Problem Description 

This study focuses on the problem of selecting a subset of incoming customer 

orders to maximize the total profit, while meeting the deadline of each selected order. 

Each customer order comes with one delivery (product) item only. The product routing is 

known and fixed. Each order may prescribe more than one delivery date for a fixed 

quantity. Each commitment is viewed as a delivery deadline; no late delivery is allowed. 

Job shop is used as the production mode. Each operation in the routing requires a setup in 
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addition to its processing time, which is proportional to the production lot size. Setup cost 

is usually defined by setup time and unit setup cost. In this problem, both setup cost and 

time are fixed for each machine type and order type.  Therefore, the time on machine 

required for a production lot consists of its setup time and processing time. A production 

lot may be scheduled over multiple time intervals in the planning horizon. Each 

production lot travels down its routing as a whole. It cannot be split. It can be one 

machine at a time, and one machine can process one lot at a time. This problem also 

considers inventory, whose cost is defined by inventory level and length of holding.  The 

WIP is not considered as inventory until it becomes finished goods when the last 

operation is completed.  

The objective of this problem is to maximize the total profit, which is defined as 

the initial profit of selected orders minus lot sizing cost, which consists of setup and 

holding costs. The initial gross profit for a customer order is defined as the price 

committed by the customer for the order minus the fixed manufacturing costs as defined 

in the routing, which does not include setup and holding costs.  

This problem assumes (1) the production system is stable and there is no machine 

breakdown; (2) the inventory cost for work in process (WIP) is negligible; (3) the buffer 

space between different stages is assumed to be infinite; (4) each production lot is 

processed as a batch, which moves in a lot; (5) preemption and re-circulation are not 

allowed; and (6) all processing and setup times are deterministic. 

This research is intended to study the integrated problem of order selection, lot 

sizing and job shop scheduling. Figure 1-1 demonstrates the nature of the decision 

problem, whose input is a set of incoming orders. Each order comes with a specific 
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delivery commitment (i.e., due dates and quantity for each due date), customer committed 

price, and production routing. The decisions are order selection, lot size and a detailed 

production schedule. The decision starts with order selection. The initially selected orders 

are fed to lot sizing decision, which are in turn fed for detailed scheduling. The decisions 

are looped back to improve feasibility and total profit. Adjusting lot size may change lot 

sizing cost and thus order selection decision.  

 

 Figure 1-1 The order selection, lot sizing and job shop scheduling process 

The following example illustrates the dynamics among order selection, lot sizing 

and job shop scheduling decisions. This problem considers three orders in a planning 

horizon of three time periods. Each time period is 10 hours. Other data for this problem 

are summarized in Table 1-1. The order quantity for order A is 10; the due date is in 20th 

hour. The routing is machine 1 first and then machine 2. The holding cost is $5 per unit 

(item) per period of time. The unit processing time for each product on each machine is 

fixed for one hour. Its setup times and costs for both machines 1 and 2 are 1 hour and $15. 

For order B, there are two deliveries. The first one is in 20th hour for 2 units and in 30th 

hour for another 5 units. 
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Table 1-1  Example data 

Delivery 1 Delivery 2 
Setup 
time 

Setup 
cost 

Order 
Initial 
Gross  
Profit QTY 

Due  
date 

QTY 
Due  
date 

Route 
Holding  

cost 
m1 m2 m1 m2 

A 500 10 20   m1m2 5 1 1 15 15 

B 500 2 20 5 30 m2m1 5 2 2 25 25 

C 200 6 20   m1 10 1 - 5 - 

 

If order A is processed as one lot (lot size=10), the processing time on each 

machine will be 11 hours including one hour of setup. Therefore, the flow time will be 22 

hours, which apparently exceeds its due date. Thus, it is infeasible to complete order A by 

its due date. Therefore, only the other two orders can be further considered. Figure 1-2 

shows a feasible schedule of orders B and C. Both meet their due dates. The notation B3, 

for example, denotes the production lot of order B to be completed in the third period. 

There are two production lots of order B and one lot of order C. There incurs no 

inventory and thus no holding cost in this production schedule. The total lot sizing cost in 

this example consists of only the setup cost which is $110. The optimal total profit is 

$590. 

 

Figure 1-2 An intuitive feasible solution to the example instance 

One way to improve the solution in Figure 1-2 is to combine the two demands for 

order B into one production lot (lot size of 7). When the production lot is to be completed 

at the second period, the total lot sizing cost will be reduced by $25. By applying the 
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critical ratio rule, B2 is scheduled before C2, for both are due in the second period and 

yet B2 needs longer processing time than C2. If so, the earliest finish time for order C is 

in the 25th hour as shown in Figure 1-3. The schedule is infeasible because order C is late 

for 5 hours. If order C is scheduled before order B, then a feasible schedule exists as 

shown in Figure 1-4. The total profit for this case is $615.  

 

Figure 1-3 An infeasible schedule of scheduling the most critical operation first 

 

 

Figure 1-4 An improved solution to the example instance 

Both feasible schedules do not include order A due to its long flow time. However, 

its flow time may be shortened if the order is divided into smaller production lots and 

scheduled in parallel (Lixiang and Giachetti 2008). Figure 1-5 shows order A is divided 

into two production lots of A1 and A2 with 1x  and 2x  as their lot size. A feasible 

schedule is shown in the figure with 1x = 3 and 2x = 7. A2 is scheduled to complete at 20th 

hour. In principle, 1x  should be as smaller as possible, to minimize its holding cost.  

Figure 1-6 considers adding orders B and C to the schedule, after order A has 

been scheduled as two production lots. Under this situation, only order C can be 
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scheduled. Though order B is more profitable, it is not feasible, assuming lot-for-lot 

scheduling is practiced.  The figure shows the completion for B3 at 34th hour, a delay of 

4 hours. 

 

Figure 1-5 A feasible schedule for single order with two production lots 

 

 

Figure 1-6 An infeasible schedule for both order A and B 

 
The infeasibility problem can be solved by moving 2 units from B3 to B2 and 

concurrently swapping the schedule for B2 and A1. Figure 1-7 shows a feasible for 

orders A and B. The total profit is $750, which is the best solution so far.  

 

 Figure 1-7 A feasible schedule for both order A and B 
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The example demonstrates that each decision among order selection, lot sizing 

and scheduling can affect other decisions and the objective of optimal profit. Any 

individual decision on order selection, lot sizing and scheduling may not lead to the 

optimum. With in mind that the trial-and-error approach is inefficient especially when 

dealing with large size problems, this research aims at a thorough study of this concurrent 

order selection, lot sizing and scheduling problem.  

1.3 Research Objective and Methodology 

The primary objective of this research is to formally define this problem and 

develop an effective solution technique for solving this problem of large size. The first 

phase of this study focuses on an analytical definition of this job shop problem in 

concurrence with lot sizing and order selection consideration. The problem is modeled as 

a mixed integer linear program (MILP) with its objective, decision variables, and 

constraints. The proposed model is solved with a commercial solver, CPLEX. The model 

is solved to optimum for small problems to evaluate its behavior and performance.  

 The lot sizing part of the problem is considered an NP hard problem by (Chen and 

Thizy 1990). The job shop scheduling component is identified as a NP hard problem by  

(Blazewicz et al. 1996). Therefore, the problem that integrates order selection, lot sizing 

and job shop scheduling is also an NP-hard problem. It is infeasible to solve this problem 

analytically when the problem size is large. The second phase of this study thus is 

focused on development of an effective solution technique for this problem of large size.  

Heuristics are commonly applied to solve complex problems. They generally lead 

to good solutions within limited computational time, though they may not be optimal. 

This study proposes an iterative process for this decision problem of concurrent order 
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selection, lot sizing and lot scheduling. As part of this study, an experiment is desired to 

examine the characteristics (including solution quality and run time) of each decision 

under various simple heuristics and rules.  

The results are compared to optimal solutions and/or upper bounds, generated from 

the commercial solver CPLEX. They are used as benchmarks to evaluate the quality of 

the proposed solution method. In addition, an industrial case is used to further validate 

the proposed method and its applicability of solving industrial problems.  

1.4 Significance and Contributions 

Even though there is voluminous research literature in the production planning 

area, this particular problem of interest integrating order selection, lot sizing, and job 

shop scheduling has not been studied. Related studies consider at most two of the three 

decision problems. This research is the first attempt to address this concurrent decision 

problem. The proposed mathematical model formally defines order selection, lot sizing, 

and job shop scheduling decisions in concurrence. The mathematical formulation is 

innovative in modeling its disjunctive constraints as linear constraints, such that the 

model can be solved with a commercial solver. In addition, the constraint for ensuring a 

production lot to be completed in a designated time interval is unique, as it relates lot 

sizing to job shop scheduling decisions.  

The proposed heuristic solution method is efficient for solving large-scale 

problems. It is built on an experiment designed to evaluate performance of simple 

heuristic rules that are commonly used for these three decisions. The solution approach 

makes use of these heuristics and rules to improve the decision process. This research 

also leads to discovery of new rules for solving this problem. Among them, the proposed 
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weighted most profit rule is the best for order selection and the earliest operation finish 

time and shifting bottleneck rules are best for job shop scheduling, while the proposed 

minimum cost-increase rule performs better for lot sizing in a heavily loaded shop. These 

heuristics alone could help MTO managers to make better order selection, lot sizing and 

scheduling decisions. In summary, the two major contributions by this research are: (1) 

the formal definition of the order selection and lot sizing problem in the job shop 

environment, and (2) an effective solution technique for solving large scale problems.  

1.5 Dissertation Outline 

The rest of this dissertation is organized as follows. Chapter 2 is a literature 

review of related research in the public domain. Chapter 3 presents the MILP model with 

experiments conducted to validate the proposed model. Chapter 4 presents the framework 

design for the iterative solution approach. It also summarizes a study of various heuristics 

(both existing and proposed ones) applicable to each of the three decision problems. 

Chapter 5 is an experiment design and analysis for performance evaluation of the above 

heuristics under the proposed solution framework. Chapter 6 presents a real-life case used 

to assess the applicability of this proposed solution approach. Finally, conclusions and 

future research are summarized in Chapter 7.  
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2 LITERATURE REVIEW 

This research aims to unify three decision problems — order selection, lot sizing 

and job shop scheduling. The existing literature is divided into three levels, according to 

the number of decision problems considered. The first level contains the literature that 

only studies one decision problem. The second level contains the literature that considers 

two of the three decision problems. Literature considering all of them belongs to the third 

level. Although there is a large body of literature in the first and the second levels, there 

is no literature found for the third level. The Venn diagram in Figure 2-1 illustrates 

corresponding categories of literature based on the levels. The abbreviations for each 

category will be used throughout this dissertation. The review on the first level is 

presented in Sections 2.1- 2.3, then followed by the discussion of the second level in 

Sections 2.4 - 2.6. Section 2.7 presents a summary of related research.  

 

 
Figure 2-1  Venn diagram of related literature 

 

OS-LS OS-JSS 

LS-JSS 

OS-LS-JSS 

Order Selection (OS) 

Lot Sizing (LS) 
Job Shop Scheduling (JSS) 
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2.1 Order Selection Problems 

Order selection has been a topic of growing interests since Miller (1969), who 

studies a queuing system with the objective of maximizing the expected value of 

customer orders. In this review, relevant order selection researches are classified by three 

criteria: order arrivals, resource setting and selection criteria, as shown in Table 2-1. For 

dynamic order arrivals, customer demands are described with random distribution; while 

for static arrivals, customer demands are deterministic. Resource setting refers to the 

production environment in which selected orders are processed. Selection criteria are a 

set of objective functions, informed by the tradeoff between rewards obtained from 

selected orders and the cost of fulfilling them. Herein, meeting latest due date (LDD) 

refers to that an accepted order must be completed by latest due date; otherwise, it is 

rejected. Table 2-1 indicates that order selection problems with single resource and 

tardiness objective attracted most research attentions. 

Table 2-1  Order selection literature classification  

Criteria Character Previous Research 

Dynamic Miller (1969), Wester (1992), Jalora (2006) 
Order arrivals 

static Kern (1990), Slotnick (1996) 

Single resource 

Kern (1990), Wester (1992), Ten Kate (1995), Akkan (1997), 

Slotnick (1996), Charnsirisakskul (2004), Jalora (2006), 

Slotnick (2007), Bilginturk (2007)  
Resource setting 

Multiple resources  Hans (2001), Ebben (2005), Roundy (2005) 

Earliness  Akkan (1997), Charnsirisakskul (2004), Jalora (2006) 

Tardiness 

Guerrero  (1988), Kern (1990), Wester (1992), Slotnick 

(1996), Akkan (1997), Ghosh (1997), Hans (2001), Lewis  

(2002), Charnsirisakskul (2004), Bilginturk (2007), Slotnick  

(2007) 

Selection criteria 

Meeting LDD Akkan (1997), Bilginturk (2007), Roundy (2005) 
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In terms of solution approaches, although queuing theory (Miller 1969), decision 

theory (Nagraj Balakrishnan 1996), and simulation (Ten Kate 1995) are proposed in 

literature, formulating mathematical models and applying optimization techniques are 

more common in order selection literature. In addition, heuristics are developed to solve 

specific problems in large scales.  

Kern and Guerrero (1990) present a conceptual model for demand management in 

the assemble-to-order environment. They also formulate a MILP model with the 

objective function of minimizing total cost of lateness, inventory and setup. Slotnick and 

Morton (1996) explore order selection with weighted lateness penalty. They propose a 

branch-and-bound method for small-size problems and heuristics for large-size ones. This 

research is further extended by Lewis (2002) to multi-period scheduling; an optimal 

dynamic programming algorithm is devised. To achieve overall scheduling feasibility for 

existing orders and a newly arrived order, Akkan (1997) suggests several practical 

methods, including backward scheduling, forward scheduling, what-if analysis, 

minimizing fragment cost and compaction. Charnsirisakskul et al. (2004) develop a 

mixed integer programming formulation, and use numerical analysis to examine order 

acceptance, scheduling and due-date setting decisions. In this research, the manufacturer 

has the flexibility to choose lead-times. Roundy et al. (2005) model a job insertion 

problem (selected orders are inserted into a set of orders already scheduled) using MILP. 

They also propose meta-heuristics for this problem, including genetic algorithm (GA), 

simulated annealing (SA) and Tabu search. 

Order acceptance with minimizing weighted tardiness is widely discussed. 

Slotnick and Morton (2007) examine order acceptance with weighted tardiness penalty. 
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They present straightforward separation of sequencing and job acceptance, together with 

a branch-and-bound procedure. Similar problems on order selection with tardiness 

penalty are solved with SA (Bilginturk et al. 2007) and GA (Rom and Slotnick 2009).  

2.2 Lot Sizing   

The first lot sizing model is the renowned Economic Order Quantity (EOQ), 

developed by Harris (1913). Comprehensive survey on modeling lot sizing problem and 

solution approaches can be found in Maes (1988), Karimi (2003), Quadt (2008) and 

among others. Lot sizing problems are classified mainly based upon product complexity 

and existence of resource constraints. If the final product is simply being produced from 

raw materials, it is referred as a single-level problem. If there exists parent–component 

relationship among the items, it is regarded as a multi-level problem. When infinite 

resource capacity is assumed, lot sizing problem is said to be Uncapacitated Lot Sizing 

Problem (ULSP). On the contrary, if capacity constraints are explicitly stated, the 

problem is named as Capacitated Lot Sizing Problem (CLSP). Except for single-level 

ULSP, the other variants of lot sizing problems are strongly NP-hard (Bitran and Yanasse 

1982; Chen and Thizy 1990). As the research under study only considers simple products, 

this review only focuses on the single-level lot sizing problem.  

2.2.1 Single-level ULSP 

The EOQ model assumes constant demand rate and infinite time horizon. As an 

extension to EOQ, Wagner-Whitin (WW) algorithm (Wagner and Whitin 1958) applies 

to time-varying demands and finite discrete planning horizon. It considers all possible 

alternatives of processing an order in the current or previous periods. Selection of 
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alternatives is based on a minimum cost policy, under which each lot size is exactly the 

sum of a set of future demands. To avoid complicated computation of the WW algorithm, 

some practical heuristics for ULSP are proposed, such as EOQ-MRP, Silver-Meal (S-M), 

Part-Period Balancing (PPB), Least Unit Cost (LUC), etc. Detailed description of these 

heuristics can be found in Orlicky (1975), Silver (1985), Eric (1986) and Nahmias (1989). 

A few researchers also compared the performance among ULSP heuristics. For instance, 

Blackburn (1980) compares PPB, S-M and WW in a rolling-scheduling environment and 

revealed that simpler Silver-Meal heuristic can provide a cost performance superior to 

that of the WW algorithm. Gelders and Wassenhove (1981) state that the priori choice of 

suitable heuristic depends on variability of demands and particular cost structure at hand. 

When the demand variability is low, EOQ is suitable; otherwise, S-M heuristics is 

recommended. 

2.2.2 Single-level CLSP 

Compared to ULSP, CLSP attract more research interest since the first work of 

Manne (1958). It is more practical but much more difficult to be solved. Specialized 

heuristics and mathematical programming based approaches are commonly used to solve 

CLSP. 

(1) Specialized heuristics 

Specialized heuristics generally encompass three steps. The first step is lot sizing, 

which is often based on the ULSP heuristics. For example, Dogramaci (1981) and 

Gunther (1987) simply employ Lot-for-Lot to generate initial solution. Dixon and Silver 

(1981) apply S-M method to initialize lot sizes. If the initial lot sizes for all items are 

constructed from the first period to the last period, it is named as period-by-period 
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method. This method can be found in the work of Lambrecht (1979), Dixon (1981), and 

Maes (1986). On the other hand, item-by-item heuristic is proposed by Kirca (1994). The 

initial plan starts from selecting a single item and planning the item over the entire the 

planning horizon.  

The second step is so-called feasibility routine. It is to ensure that all demands are 

satisfied without backlogging and capacity constraints are not violated. It is conducted 

with feedback mechanism or look-ahead mechanism. In the feedback mechanism, excess 

demands are pushed back to an earlier period with leftover capacity, given that the saving 

in setup cost can make up the extra holding cost (Lambrecht and Vanderveken 1979). 

While in the look-ahead method, the minimum required inventory is computed a priori in 

order to avoid capacity violation in later periods (Dixon and Silver 1981; Maes and Van 

Wassenhove 1986).  

The third step is to improve the existing solution by adjusting lot size. For 

example, Dixon and Silver (1981) introduce lot elimination, lot merging, lot interchange 

and use of optimal lot size. Dogramaci et al. (1981) propose left-shift procedure that 

searches for shifts with the largest reduction in overall cost. Karni and Roll (1982) 

introduce 10 types of shifts with calculating cost-saving coefficient which is based on the 

tradeoff between setup and holding costs. Tabu search is also applied to improve CLSP 

solution; see examples in Hindi (1996) and Karimi et al. (2006). The improvement step 

involves a large number of shifts and feasibility checking; therefore, it is generally the 

most time-consuming step in the lot sizing procedure. 
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(2) Mathematical programming based approaches 

The review by Karimi et al. (2003) covers the most important results in exact and 

approximation algorithms until 2003. They survey commonly used techniques, such as 

branch and bound, LP-relaxation and network flow algorithm. Recently, Heuvel and 

Wagelmans (2006) study CLSP with linear costs and present a dynamic programming 

algorithm that solves the CLSP with special cost function in polynomial time. Absi and 

Kedad-Sidhoum (2009) consider safety stock and demand shortage in CLSP. They 

develop a Lagrangian relaxation of the capacity constraints to obtain lower and upper 

bounds. The resultant uncapacitated problem is modeled as a fixed-charge network and 

solved with a dynamic programming algorithm. 

Verma and Sharma (2010) design two Lagrangian relaxations for CLSP with 

considering backlogging and setup time. In the first relaxation, CLSP is relaxed to a 

multi-item ULSP. In the second relaxation, the inventory flow-balance constraint is 

relaxed; the problem is reduced to a single constraint continuous knapsack problem with 

an upper bound on the quantity produced.  

Compared to specialized heuristics, mathematical programming based methods 

usually produce solutions with better quality. However, they need more computational 

efforts, so that they are less applicable to real-life problems. 

2.3 Job Shop Scheduling 

There are many variants of the JSS problem, according to different scheduling 

objectives and constraints. Aside from job shop problems with two machines, or with the 

processing time of operation is either 0 or 1 can be solved in polynomial time, other JSS 

problems are notoriously NP-hard (Blazewicz et al. 1996; Pinedo 2002). In the problem 
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under study, lateness is not allowed; therefore, minimizing makespan of a production lot 

is important for feasibility of scheduling. If a production lot is produced earlier than 

demanded, holding cost will be incurred. Minimizing earliness cost may contribute to 

maximizing overall profit. In addition, rejecting an order causes loss of the corresponding 

revenue. Minimizing this loss is equivalent to minimizing weighted number of tardy jobs 

(WNTJ) in a job shop scheduling problem. Therefore, the review mainly concentrates on 

scheduling problems with minimizing makespan, earliness and WNTJ. 

For makespan minimization, shifting bottleneck method, developed by Adams 

(1988), is the most notable approximation algorithm for JSS. With considering job 

interdependency, Dauzere-Peres and Lasserre (1993) modify Adams’ heuristics and 

obtained better computational performance. More recently, meta-heuristics are applied 

into JSS problems. For example, Huang and Liao (2008) employ Ant Colony 

Optimization (ACO) to generate initial solution, which is further improved by applying 

tabu search iteratively. Zhang et al. (2008) apply a hybrid genetic algorithm for JSS. In 

their research, genetic algorithm is used for global exploration among the population; 

local search served as local exploitation around operation-based chromosomes.  

Owing to the popularity of Just-in-Time (JIT) concept, scheduling problems 

involving earliness and tardiness penalties have received considerable research attentions. 

Early research mainly focuses on single machine systems; see Baker and Scudder (1990) 

for a survey. Recently, job shop environment is considered. Beck and Refalo (2003) 

apply a hybrid technique using constraint programming and linear programming to the 

earliness/tardiness problem in the job shop. Thiagarajan (2005) studies JSS with multi-

level jobs, with the objective of minimizing the sum of weighted earliness, weighted 
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tardiness and weighted flow time of jobs. A set of dispatching rules are presented by 

incorporating the relative costs of earliness, tardiness and holding of jobs in the form of 

scalar weights. Philippe (2008) proposes two Lagrangian relaxations of JIT scheduling 

with relaxation on precedence constraints and machine constraints, respectively. 

For WNTJ problem, Karp (1972) establishes the NP-hardness for the single 

machine system. The special case with common due dates can be viewed as knapsack 

problem so that the weighted shortest processing time (WSPT) heuristics can be applied 

(Pinedo 2002). Other than single machine, WNTJ problem are also considered in parallel 

machine (Ng et al. 2003; M'Hallah and Bulfin 2005), open shop (Brucker et al. 1993; 

Galambos and Woeginger 1995; Svetlana 2000; Baptiste 2003) and flow shop 

(Charnsirisakskul et al. 2004). Heuristic solutions are mostly considered in those 

problems. Limited reserach in job shop can be found in Józefowska et. al (1994), who 

develop dynamic programming algorithm applying Jackson’s indexing method (James 

1956). In their work, only job shop with two machines is considered. 

These objectives aforementioned are generally considered independently. An 

exception is Lee (1991), who studies minimizing weighted number of tardy jobs and 

weighted earliness/tardiness penalties. Their research is under a common due date 

assumption and “agreeable ratio condition” (if job i  is relatively more important than job 

j , the weight of earliness and tardiness will be greater than that of job j ). They proved 

that the problem is NP-complete in the strong sense, and hence cannot be solved by using 

any pseudo-polynomial time algorithm.   



 

 
 

20

2.4 Lot Sizing with Order Selection  

Although extensive studies have been conducted in the order selection or the lot 

sizing, extant work integrating them is very limited. Wester et al. (1992) study different 

order selection heuristics in a single machine system, with order arrivals following 

Poisson distribution. They consider setup time saving between similar product groups 

when making a schedule. In the monolithic approach, a new schedule is constructed for 

orders not yet in production and the new order. The schedule is constructed with a 

heuristic that minimizes maximum lateness and total setup time sequentially. In the 

hierarchic approach, re-scheduling of all available orders is based on operation times of 

scheduled orders, the order to be scheduled, and a work content level chosen from 

simulation experiments. They also propose priority rules based heuristic named myopic 

heuristic. It is to select the order that imposes minimum lateness to existing orders. The 

experiments showed that monolithic approach performs better than the others. Geunes et 

al. (2002) study order selection with production planning problem, in which different 

customers order same product with different prices over time periods. They provide a 

shortest path based solution for uncapacitated order selection problem. With taking 

account of lot size limit, a Lagrangian relaxation algorithm is proposed for the 

capacitated order selection problem. In terms of lot sizing, this research only considers 

single item.  

2.5 Order Selection under Job Shop Environments 

In the studies on the order selection, job shop is first considered by Ebben et al. 

(2005), who employ resource loading methods to support the order acceptance decision. 

They compared four resource loading methods: aggregate resource loading, resource 
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loading per resource, EDD based order acceptance and Branch-and-Price resource 

loading. Their experiments indicate that sophisticated approaches significantly 

outperform the straightforward approaches when there are tight due dates. More recently, 

Chen et al. (2009) propose a MILP model for capacity planning and order selection 

problem in the MTO environment. In this research, overtime and outsourcing are 

considered. The proposed model is further solved by Mestry et al. (2011) with a branch 

and price approach.  

2.6 Integration of Lot Sizing and Job Shop Scheduling 

In the classical CLSP, resources used by different products can be simply added 

up. However, in a job shop environment, workload on each machine depends on detailed 

schedule of products, which is subject to precedence constraints. Dauzere-Peres and 

Lasserre (1994) consider an integrated model for lot sizing and scheduling in the job shop. 

They propose a multi-pass decomposition approach that alternatively solves the 

integrated problem at two levels. One level is lot sizing for a given sequence of jobs on 

each machine; the other level is sequencing lots with fixed lot sizes. Their experiments 

also indicated that a modified shifting bottleneck heuristic can provide a better solution 

than priority rule-based dispatching methods. Anwar and Nagi (1997) address the 

integrated scheduling and lot-sizing problem with complex assemblies. The objective is 

to minimize the cumulative lead time of the production and reduce setup and inventory 

costs. They propose a two-phase heuristic that addresses both precedence and capacity 

constraints. Jeong et al. (1999) study a batch splitting method for a job shop scheduling. 

They employ a modified shifting bottleneck procedure to generate initial schedule and 

then split a batch to shorten makespan.  
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2.7 Summary 

These three decision problems (order selection, lot sizing and job shop 

scheduling) are usually treated separately in the literature. The research that integrates 

two of them is very limited; there is no research that addresses three decision problems 

simultaneously. Table 2-2 compares similar problems in literature and the problem 

under study.  

Table 2-2  Summary of similar research problems 

Research Objective Order 

selection 

Lot sizing Job 

shop 

On-time 

delivery 

Solution 

(Mestry et al. 2011) Maximize 

profit 

Yes No Yes Yes Branch and 

price 

(Dauzere-Peres and 

Lasserre 1994) 

Minimize 

cost 

No Multiple items 

Setup cost 

Setup time 

Yes No Heuristics 

(Ebben et al. 2005) Minimize 

lateness 

Yes No Yes Yes Heuristics/ 

Branch and 

price 

(Jeong et al. 1999) Minimize 

makespan 

No Multiple items 

Setup time 

Yes No Heuristics 

(Wester et al. 1992) Minimize 

lateness 

No Setup time No Yes Heuristics 

(Geunes et al. 2002) Maximize 

profit 

Yes Single item 

Setup cost  

No Yes Network flow/ 

LP relaxation 

Proposed research Maximize 

profit 

Yes Multi-items 

Setup cost 

Setup time 

Yes Yes Heuristics 

 

In terms of order selection, the problem under study considers static order 

arrivals, multiple resources and meeting latest due date of customer demands. There is no 

lateness cost; but an earliness cost is incurred if a production lot is completed earlier than 
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demanded. From lot sizing view, the problem under study belongs to the class of single-

level CLSP; the capacity is characterized by job shop constraints. Both setup cost and 

time are explicitly defined; however, they are less addressed jointly in literature. 

Maximizing total profit relates to on-time completion of production lots and minimizing 

weighted number of tardy jobs; but there is no research addressing these issues 

concurrently in job shop scheduling literature.  

According to this review, mathematical modeling and developing heuristics are 

promising in solving complicated order selection and production planning problem. 

However, most existing models and heuristics strongly depend on corresponding problem 

definitions. If extant research findings are adopted, modifications are needed to 

accommodate the characteristics of this problem. In the next chapter, mathematical 

modeling will be first discussed. 
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3 A MATHEMATICAL FORMULATION  

This chapter proposes a mathematical formulation for the order selection and lot 

sizing problem in the MTO environment. Section 3.1 presents the mathematical model 

for the problem under study. The proposed model is verified in Section 3.2. Then the 

usefulness of this model is illustrated in Section 3.3. Finally, the performance of solving 

the proposed model with a commercial solver is evaluated with a set of numerical 

experiments.  

3.1 Mathematical Model  

The input of the problem under study is a set P  of customer orders. Each order 

Pi  only includes single product. The initial gross profit ( ir ), is the price of the order 

excluded by some fixed production costs (such as labor, utility, and overhead). The 

production plan is needed only for selected orders over a set of N  planning periods. For 

each period Nt , each demand for customer order i ( itd ) must be satisfied without 

delay. This on-time fulfillment is prescribed by fully scheduling production lots on a job 

shop with a set M of machines. For each machine Mk  , the setup time for each order i  

( ik ) is given according to process plan. For any production lot, it must be fully 

processed; therefore the total setup cost incurred from different machines on the route iA  

is always fixed. When the last operation of a production lot is completed, inventory is 

incurred. For each order, the lot sizing cost is the sum of setup cost (setup per lot i ) and 

holding cost (cost rate ih ). As there is no machine breakdown, the capacity of each 

machine in each planning period always equals to the length of the planning period c . 
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The objective function of the problem under study is to maximize total profit, 

which is the initial gross profit excluded by lot sizing cost. More detailed nomenclatures 

used for the problem formulation are shown as follows.   

 

Indices and sets 

i : Order }...,2,1{ pP   set of orders  

t : Time period }...,2,1{ nN   set of time periods 

k : Machine   }...,2,1{ mM   set of machines 

 

Parameters 

itL  Production lot of producing final product for order i  during period t  

itkO  Operation of lot itL  on machine k  

ih  Unit holding cost of the product for order i  from one period to the next  

i  Total setup cost for order i  over its production route 

ir  Initial gross profit obtained from accepting order i   

itd  Quantity of demand at the end of period t  from order i   

ik  Unit processing time of the product for order i  on machine k  

ik  Setup time for order i  on machine k  

c  Length of each time period 

iM  Set of machines that can process order i ; || ii Ma   denotes the size of iM  

iA  Set of pairs of machines presenting precedence relations for order i  
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i
m  Last machine on the route of order i  

kP  Set of orders that machine k  can process; || kk Pb   denotes the size of kP  

itq  Production quantity limit for itL  

i  Unit processing of order i  on all machines over its route; 



iMk

iki   

i  Setup time of for order i  on all machines over its route; 



iMk

iki   

 

Decision variables 






otherwise 0, 

 selected is  order   if 1, i
Zi  

itX  Lot size of itL  


itI  Inventory level of the product for order i  at the end of time period t  






otherwise 0, 

  periodat  exists  product  for  setup if 1, t i
Yit  






 

OO
W

itkkti

ktiti

''

 otherwise0,

  to  is sequence  theif1,
''  

itkS  Start time of operation itkO   

itkF  Finish time of operation itkO  

 

The mathematical formulation for the problem under study is presented below.  

Maximize 
 



 


Pi Tt

iti
Pi Tt

iti
Ii

ii IhYrZ   
(3.1)
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Subject to 


  itititiit IdZIX 1,                              Pi , Nt   (3.2)

ititit YqX                                                 Pi , Nt   (3.3)

itikitikitkitk YXSF                           Pi , Nt  , iMk  (3.4)

'itkitk FS                                           Pi , Nt  , iAkk  '  (3.5)

ktitiitkkti
ctWFS ''''    kPi , Nt   , kPi  ' , Nt  '  with 'ii   or 

'tt    

(3.6)

1'''' 
itktiktiti

WW   kPi , Nt   , kPi  ' , Nt  ' with 'ii   and 

'tt   or 'ii   

(3.7)

ctYF ititmi
)1(                                    Pi , Nt   (3.8)

ctnYncF ititmi
)(                                    Pi , Nt   (3.9)


0iI =0                       Pi  (3.10)


inI =0                       Pi  (3.11)

itX , 
itI , itkS , 0itkF                  (3.12)

itX , 
itI   are integer    (3.13)








otherwise

d ti at perioucing p for prod i is setuif product
Yit 0

 1
 (3.14)








otherwise

ed is selectif order i
Zi 0

1
 (3.15)








otherwise0

  to  OOuence is  if the seq1
W itkkti

ktiti

''

''  (3.16)
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Expression (3.1) shows the objective function, in which total initial gross profit, 

setup cost and holding cost are denoted with 
Pi

iirZ , 
 Pi Nt

itiY and 
 



Pi Nt
iti Ih , 

respectively. Constraints (3.2) define inventory balance. They express that if an order i  is 

selected, the entering inventory ( 
1,tiI ) added the current period production ( itX ) are used 

to satisfy the demand ( itd ); what remains is the inventory at the end of current period 

( 
itI ). Constraints (3.2) and Constraints (3.12) (no inventory shortage) ensure that all 

accepted orders are satisfied on time. The coupling between setup and production is 

described in Constraints (3.3). If there is a production lot, a setup is needed. The lot size 

limit itq  is set in two ways. First, itX  cannot exceed the total demand of order i , i.e., 





n

j
ijit dX

1

. Second, for itL , the largest unit processing time on machines forces that the 

maximum allowable lot size is 
}{max ik

k

ct


. Therefore, },

}{max
min{

1




n

j
ij

ik
k

it d
ct

q


. 

 Constraints (3.4) transfer lot sizing into operational level. A setup time is 

required when a production lot is processed; the processing time is proportional to lot 

size. These constraints also indicate no preemption is allowed. Constraints (3.5) state the 

precedence constraints. For each order i , operations follow a predefined route with 'k  as 

the precedent of k . The succeeding operation can only start after its precedent is 

completed. Constraints (3.6) and (3.7) are disjunctive constraints, which ensure that any 

two operations cannot be processed simultaneously on the same machine. They are 

derived from the following constraints:  

ktiitk fs ''  or  itkkti
fs ''         'ii   or 'tt   (3.17)
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Constraints (3.17) cannot be handled by most of commercial programs, so they are 

reformulated by introducing auxiliary variable 
ktiti

W '' , which indicates the sequence of 

two operations itkO  and ktiO '' . If the sequencing variable 0'' 
ktiti

W , Constraints (3.6) will 

result in itkkti
FS '' , i.e., ktiO ''  is processed after itkO . If 1'' 

ktiti
W , Constraints (3.6) turn 

out to be redundant, because the right hand side is non-positive. However, Constraints 

(3.7) will enforce 0'' 
itkti

W , which in turn impose ktiitk FS '' , according to Constraints 

(3.6). These two situations are illustrated in Figure 3-1.  

 
Figure 3-1  Illustration of sequencing variables and disjunctive constraints 

 

Constraints (3.8) and (3.9) reflect the link between lot sizing and scheduling. A 

production lot is completed only when the last operation is completed. For production lot 

itL , the completion time should fall inside period t . Constraint (3.10) and (3.11) show 

that there is no inventory at the beginning or end of the planning horizon. They reflect the 

basic MTO characteristic that production is only triggered by customer orders and 

produced products are all used to satisfy customer demands. 

Constraints (3.12) impose non-negativity constraints for the lot size, inventory 

and scheduling variables. Constraints (3.13) further enforce that lot size and inventory 

variables are integers only. Finally, Constraints (3.14) ~ (3.16) impose the binary 

restrictions on decision variables Y, Z and W, respectively. 
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Table 3-1  Number of decision variables for the proposed model 

Variables Size 

itX  np 

itY  np 

iZ  P 


itI  np 

itkS  
Ii

ian  

itkF  
Ii

ian  

ktiti
W ''  




Mk

kk nbnb )1(  

 

Table 3-1 lists the number of variables. In total, there are np2  integer variables 

(excluding binary variables), 



Mk

kk nbnbnpp )1(  binary variables and 
Pi

ian2  

continuous variables. As the number of binary variables is the most important indicator 

for problem complexity, the model becomes more complex when the number of orders or 

planning period increases. Also, if more machines are flexible to process multiple items 

(i.e., kb is large), there will be more sequencing variables and constraints; consequently, 

the model will be more complex as well. Figure 3-2 illustrates this relation with assuming 

each machine can process equal number of orders. It shows number of binary variables 

increases significantly when n  or kb  increases, with fixed p and m. 
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Figure 3-2  Illustration of the increasing of number of binary variables 

 

3.2 Model Verification  

The proposed model is coded with AMPL and further solved by CPLEX. These 

tools are capable of handling MILP optimization. A small-size problem instance is 

designed to validate the model and verify its optimality. The instance involves three 

orders being processed on two machines. The planning horizon is divided into three time 

periods; each period is 10 time units in length. Table 3-2 lists the data for customer 

orders; Table 3-3 shows job shop related settings. In this instance, the initial gross profit 

is larger compared expected lot sizing cost, so that an incoming order cannot be 

obviously rejected. The dynamic demands for each order are specified at each period. 

The total demand (in time units) is relatively high, especially for the third period. Setup 
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cost and time are significant. The route for each order is unique; different orders share 

common machines. Therefore, input data are consistent with the problem definition.  

Table 3-2  Customer order related data for the small-size problem instance 

itd  i  ir ($) ih ($/unit) i ($) 
t=1 t=2 t=3 

1 500 1 70 20 10 30 
2 800 1 10 0 0 60 
3 400 1 50 0 10 30 

 

Table 3-3  Job shop related settings for the small-size problem instance 

ik  ik  i  iA  
k=1 k=2 k=1 k=2 

1 12 0.1 0.1 1 2 
2 21 0.1 0.1 1 1 
3 2 - 0.2 - 2 

 

itX  Schedule 
Order# 

t=1 t=2 t=3 m/c # Period 1 Period 2 Period 3 

1 30 0 30 

2 0 15 45 

3 0 40 0 

1 

2 

Total profit $1435  setup time     manufacturing time 

Figure 3-3  AMPL/CPLEX Solution for the small-size problem instance 

 

By solving the mathematical model, a solution is obtained, as shown in Figure 3-3. 

In this solution, all orders are accepted. The feasibility of this solution is verified with the 

following aspects: (1) all lot sizes are integer numbers, (2) total production for each order 

matches corresponding total demands, (3) each individual demand is ensured with on-

time delivery, (4) schedule of operations follows specified route, (5) no overlapped 

operations on any machine, (6) there is no pre-emption, (7) one setup is associated with 
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each operation, (8) processing time of each operation is proportional to corresponding lot 

size, and (9) the last operation of any lot is completed in corresponding planning period.  

Therefore, the model is verified, as it conforms to problem definition. The 

optimality of this solution is verified as follows. 

(1) Rejecting any order will cause loss of total profit, because all orders are 

profitable. 

(2) Order 1 is planned with the best lot sizing that minimizes total cost. Any 

change on its lot sizes will increase lot sizing cost. 

(3) Order 2 is planned with two lots, which is not optimal in respect of lot sizing. 

To reduce lot sizing cost, the lot in the second period (lot size=15) should be moved to 

the third period. However, the lot at the third period is already on a critical path 

( 231232322112111 OOOOO  ). Even moving one production unit will cause 

delay of 231O  for 2 time units, which indicates rejecting order 2 and thus cause loss of 

profit. Any other changes on production lot of order 2 will decrease total profit as well.  

(4) Order 3 is planned with one lot. This is the optimal lot sizing; any change will 

cause increasing of cost. 

(5) Changing the schedule of operations that are not on the critical path does not 

affect the total profit. For example, if 222O  is moved to be beginning of the planning 

horizon, the feasibility can still be sustained.   

To sum up, any changes to current solution cannot contribute to increasing of total 

profit. Therefore, current solution is an optimal solution.   



 

 
 

34

3.3 What-If Analysis Using the Proposed Model 

The proposed model not only helps MTO enterprises selectively accept 

orders and schedule them; it also supports decision-making in response to 

changes on customer requirements or production environment. To illustrate the 

usefulness of the proposed model, the problem instance mentioned in previous 

section is used as a base case in this section.  

(1) Increasing of Setup cost 

If setup cost is much higher than holding cost, it is preferred to group some lots in 

order to save the setup cost. For example, setup cost per lot for order 2 is increased as $20, 

due to the increasing of machine tooling, labor cost, etc. The optimal solution from 

solving the new model is shown in Figure 3-4. Order 2 is processed with one lot only, so 

that the minimum lot sizing cost is achieved. However, the resultant production lot uses 

most of resources in the second period, and then imposes order 3 being process with two 

lots in the first and the third periods. If the MTO manager still uses the schedule in Figure 

3-3, the total profit is $1415, which is lower than the profit of solving the new model. 

Therefore, this model can help MTO manger make proactive adjustment on production 

plan when cost structure is changed.  

itX  Schedule 
Order# 

t=1 t=2 t=3 m/c # Period 1 Period 2 Period 3 

1 30 0 30 

2 0 0 60 

3 10 0 30 

1 

2 

Total profit $1420  setup time     manufacturing time 

Figure 3-4  Optimal solution after increasing setup cost  
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(2) Change of engineering 

An MTO manager may be faced with change of engineering. For example, if the 

unit processing time of order 2 on machine 2 is changed to 0.02, for engineering purpose, 

optimal solution will indicate rejecting order 3 (see Figure 3-5). This is caused by 

competition of resources between orders. Order 2 appears to be more profitable than 

order 3, and it requires more resource during the second period on machine 2. As there is 

no resource to accommodate order 3, it is rejected. Based on this result, the MTO 

manager may raise the price for order 2 to compensate the loss on order 3.  

 

itX  Schedule 
Order# 

t=1 t=2 t=3 m/c # Period 1 Period 2 Period 3 

1 30 0 30 

2 0 0 60 

3 Not selected 

1 

2 

Total profit $1140  setup time     processing time 

Figure 3-5  Optimal solution after change of engineering 

(3) Price negotiation  

The MTO manager may wonder what price is profitable for certain order, so that 

they can accept it. However, due to the complexity of lot sizing and scheduling, it is 

difficult to estimate production cost accurately when negotiating price with the customer. 

The proposed model can serve as a reference to such a situation. Significantly decreasing 

the initial gross profit of an order will result in rejecting this order. For example, the 

initial gross profit of order 1 is decreased to $150, the optimal solution shown in Figure 

3-6 indicates that order 1 is rejected. If the profit for order 1 is adjusted to $200, order 1 

is selected; the lot sizes and schedule is same as Figure 3-3. This clearly indicates that the 
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acceptable price is between $150 to $200. Such a what-if analysis can support the MTO 

manager making decision when quoting an order.  

 

itX  Schedule 
Order# 

t=1 t=2 t=3 m/c # Period 1 Period 2 Period 3 

1 Not selected 

2 0 0 60 

3 0 40 0 

1 

2 

Total profit $1110  setup time     manufacturing time 

Figure 3-6  Optimal solution after decreasing order initial gross profit  

 
(4) Due date assignment 
 

Customers may inquire if their orders can be fulfilled earlier. The answer can only 

be made after carefully examining production capacity and potential cost incurred. For 

example, the customer who placed order 2 expects to get their order delivered at the end 

of the second period rather than the third period, i.e. 0,60 2322  dd . By solving the 

proposed model with new parameters on demands, the result is obtained, as shown in 

Figure 3-7. Although order 2 is still acceptable, but cost is increased by $35, compared to 

the base case. If the customer further request expediting order 2 to be delivered at the end 

of the first period, a new solution is obtained from the proposed model with updated 

demands (see Figure 3-8). This solution suggests not selecting order 2. 

The two situations aforementioned illustrate the proposed model can be used to 

assist the MTO manager on due date assignment. In the first situation, a higher price may 

be imposed to the urgent order to make up for loss of profit. In the second situation, it is 

better to negotiate with customer for a later delivery; otherwise, there is no resource to 

produce the order and a significant loss of profit will be caused. 
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itX  Schedule  

Order# t=1 t=2 t=3 m/c # Period 1 Period 2 Period 3 

1 30 0 30 

2 30 30 0 

3 0 10 30 

1 

2 

Total profit $1400  setup time     manufacturing time 

Figure 3-7  Solution for the case with an earlier due date  

 

itX  Schedule 
Order# 

t=1 t=2 t=3 m/c # Period 1 Period 2 Period 3 

1 30 0 30 

2 Not selected 

3 0 40 0 

1 

2 

Total profit $670  setup time     manufacturing time 

Figure 3-8  Solution for the case with earliest delivery  

3.4 Run Time Analysis 

As CPLEX uses a branch-and-bound approach to find an optimal solution, it can 

hardly solve problem instances with large number of integer or binary variables within 

practical time. To evaluate the performance of using CPLEX to solve the proposed 

model, a set of large-scale problem instances are tested. The base case is shown in Table 

3-4 ( 0.0005ikp , 0.05ik , 1c  and 5m ). Random problem instances are extended 

by increasing number of orders ( p ) and number of periods ( n ). The number of machines 

is fixed because resources in a MTO enterprise are relatively stable. Demands are 

generated with discrete Uniform (0, 100). The route of new order is randomly duplicated 

from existing orders. For each instance, 20 replicates are generated and solved. 
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Table 3-4  Base case for large-scale problem instances 

itd
 i  ir  ih

 i  iA
 

t=1 t=2 t=3 t=4 t=5 

1 300 0.01 30 12345 100 100 100 100 100 

2 300 0.01 20 245 0 0 300 0 0 

3 500 0.01 30 134 0 0 0 200 0 

4 500 0.01 100 321 0 0 200 0 200 

5 500 0.01 20 5213 0 300 0 50 80 
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Figure 3-9  CPLEX run time for different problem sizes  

 

Figure 3-9 (a) shows the run time vs. number of orders planned over five periods. 

Figure 3-9 (b) presents the run time vs. number of periods on which five orders are 

planned. When the number of orders is more than 8 or the number of periods is more than 

10, the run time is over half an hour and increases significantly. The experiments indicate 

that CPLEX is not suitable for practical use because a practical problem may involve 

more than 100 orders, 20 periods and 30 machines. A more efficient method is expected 

to solve the problem under study. Heuristic methods will be proposed to serve for this 

purpose in the next chapter. 
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4 HEURISTICS 

When the commercial solver CPLEX is used to solve the mathematical model 

proposed in Chapter 3, it requires a large amount of computational time, even for 

moderate-scale problem instances. Therefore, the second phase of this research is to 

explore the applicability of heuristics. Although heuristic methods cannot guarantee an 

optimal solution, the shorter run time is favorable for practical applications. This chapter 

includes 6 sections. Section 4.1 provides an overview of heuristic approaches. Sections 

4.2 - 4.4 introduce heuristics on order selection, deselecting orders and scheduling, 

respectively. Finally, two lot sizing procedures are presented in Section 4.5 and Section 

4.6. 

4.1 Overview of Heuristic Approaches 

The input for the problem under study is a set of incoming orders, which trigger 

production planning; therefore, order selection has to be conducted at the very beginning. 

Since each customer order includes a unique product and there is no product family, each 

order has to be treated one by one. Given an order from the set of incoming orders cS , it 

has to be processed either into set of selected orders S  or set of deselected orders S . 

Therefore,   S S  and   SSS c . If an order in cS  is apparently not 

profitable or unable to be scheduled, it is directly moved to S (see Figure 4-1 arc 1). The 

other orders can be selected one by one (see Figure 4-1 arc 2). If an order turns out to be 

not profitable due to a large lot sizing cost, it is moved to S (see Figure 4-1 arc 3); 

otherwise the total profit will be decreased. Aside from possible loss of profit, an order 
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may not be fully scheduled due to resource limit, so it is also deselected to S (see Figure 

4-1 arc 3), in order to achieve feasibility.  

cS SS

 
Figure 4-1  Order process direction among sets of orders 

 

When an order is dropped from S , the order in S  can be taken back to cS (see 

Figure 4-1 arc 4), if the order S  is not rejected via arc 1 in Figure 4-1. Consider the 

following situation. Suppose two orders i  and j  share a common resource k . Initially, 

j  is fully scheduled, but order i is deselected due to capacity limit of resource k (see 

Figure 4-2 a) during a planning time length ct ( t  periods). But in a later iteration, order 

j  is deselected too. This leaves a chance for order i  to be scheduled (see Figure 4-2 b). 

The condition is that the released resource must be more than the production time 

required by order i . If order i  is processed as one lot, it will require least production 

time on every machine. Therefore, order i  may be fully scheduled only when 





t

w
iwikkj dR

1

 .  
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                     (a)            (b)    

Figure 4-2  Illustration of recourse utilization in deselecting order process 

 

In order to achieve a better profit while ensuring feasibility, lot sizing and 

scheduling need to be conducted jointly for orders in S . Two lot sizing procedures are 

constructed. One procedure is first conducting lot sizing with least cost and then ensuring 

scheduling feasibility. Because lot sizing cost is first minimized, this procedure is named 

as minimum cost heuristic. Another procedure is to conduct lot sizing in a period-by-

period manner. Since each period considers minimum cost increasing, it is called as 

minimum cost increase heuristic. For convenience, they are denoted as LS1 and LS2, 

respectively.   

 From the above discussion, the proposed heuristic is an iterative procedure 

integrating order selection, lot sizing and job shop scheduling. It is described as follows. 

Step 1. Select an order from cS  and move it to S . 

Step 2. Conduct lot sizing and scheduling for S . 

Step 3. If the schedule is feasible and the profit does not decrease, continue to select 

the next order. Otherwise, deselect an order from S . 

Step 4. Take a deselected order back from S  to cS . To avoid infinite loop, an order 

can only go through this step no more than three times. 

Step 5. If cS =Φ, stop; otherwise go to Step 1. 
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In this framework, rules on selecting/ deselecting orders, lot sizing and scheduling 

are not specified. The following sections in this chapter focus on developing heuristics 

for each of them. The selection of heuristics will be discussed in the next chapter.  

4.2 Order Selection Approaches 

4.2.1 Screening of Orders 

When an order is associated with significant lot sizing cost or needs long 

processing time, it is necessary to evaluate if the order can be rejected directly. This 

screening step at the beginning of the heuristic procedure can avoid unnecessary 

computations in later steps.  

(1) Screening based on profit 

As the total profit is the sum of profit for all selected orders, minimizing cost of 

every order will contribute to maximizing total profit. Lot sizing for single order without 

considering scheduling is the uncapacitated lot sizing problem (ULSP), which can be 

solved to optimality with the WW algorithm. As described in Nahmias (1989), the WW 

algorithm can be implemented by a one-way network with 1n   nodes given there are n  

periods (see Figure 4-3). For any pair of ji  , ),( jiarc  represents a setup taking place in 

period i  and the lot size equals to the total demand in period 11,...,ji,i  . The weight 

ijw  is the lot sizing cost from period i  to 1j  . Therefore, every path from 1 to 1n   

corresponds to a lot sizing solution; the total lot sizing cost equals to the weight of arcs 

on the path. The optimal lot sizing can be obtained from solving the shortest path 

problem.  
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Figure 4-3  A network presentation of lot sizing 

 

Dijkstra Algorithm (Dijkstra 1959) is adopted in this research, as it is an efficient 

algorithm to solve “one-to-all” network (Rardin 1997). In the network, every arc only 

starts from the node with smaller number to the node with larger numbers. Therefore, if a 

node is a permanent node, only the nodes with larger numbers are considered as 

candidates of next permanent labeled nodes. The pseudo code to find the optimal lot 

sizing for a customer order is as follows. 

Let weight(i,j) be the lot sizing cost; 

Let permTable(i,j) temporary path cost, set permTable=Max_value; 

Let path(i) be the final shortest path; 

permNode=0; 

for pass=1 to n+1: 

 minCost=Max_value; 

 for j=permNode+1 to n+1; 

  if  pertable(pass-1,j)<minCost: 

   minCost= permTable(pass-1,j); 

   permNode=j; 

  end if; 

 end for; 

 if  permNode=n+1 break; 

for  j=permNode+1 to n+1; 
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  if minCost+weight(permNode,j)≤permTable(pass-1,j): 

   permTable(pass,j)=minCost+weight(permNode,j); 

   path(j)=permNode;     

  else permTable(pass,j)=permTable(pass-1,j); 

  end if; 

 end for; 

end for ;   

k=n+1; 

while k>1: 

 t2=k; 

 t1=path(k); 

 k=t1; 

 X(t1)= sum demand from t1 to t2-1; 

 k=k-1; 

End while; 

 

As this lot sizing method provides the least cost for every order, the maximum 

profit can be computed. If an order’s cost calculated from this method overweighs its 

initial gross profit, it should be permanently rejected.  

(2) Screening based on workload 

Consider an extreme case when full capacity is used to serve for one order. The 

cumulative demand for order i  from period 1 to t , is denoted as 



t

j
ijit dD

1

. The least 

workload (in time units) on machine k  resulted from the cumulative demand is 

ikikit pD  . As no machine can be overloaded at any period, the order screening 

condition is obtained, as shown (4.1). If an order violates this condition, it should be 

permanently rejected.  
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ctD ikikit                           Pi , Nt  iMk ,  (4.1) 

 

4.2.2 Heuristics for Selecting Single Order  

Without detailed production plan, the cost cannot be exactly estimated. One 

alternative is to use the lot sizing cost from the WW algorithm. The following indices are 

used for selecting single order.  

(1) Most Profit (MP)  

In order to achieve a larger profit for every order, the most profitable order is 

selected all the time. If an order is finally planed with the WW lot sizing, this order 

selection rule can ensure maximum profit. Let iC  be the lot sizing cost of order i , then 

the index MPI  (profit) is calculated as: 

 )max( ii
Si

MP CrI
c




 (4.2) 

(2) Least Workload (LWK)  

Aggregate workload of an order is an important order selection criterion; 

examples can be found in the work of Wester (1992) and Ebben (2005). In the problem 

under study, the aggregate work load is considered with respect to total processing time 

without lot sizing. To facilitate scheduling, the order with least workload is first 

considered. The index LWKI  (workload) is calculated as: 

 







 



n

t
iti

Si
LWK dI

c
1

max   (4.3) 

(3) Weighted Most Profit (WMP)  

If the job shop environment is viewed as an aggregate resource, selecting orders 

with different profits is equivalent to the Knapsack problem. A greedy approximation 
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algorithm for the knapsack problem is to select the item with weighted profit (Dantzig 

1957). Therefore, the index WMPI  (ratio) is calculated as:  

 

























 n

t
iti

ii

Si
WMP

d

Cr
I

c

1

max


 

(4.4) 

(4) Least Resource Competition (LRC) 

When conducting order selection, schedule of all former selected orders should be 

taken into account (Wester et al. 1992). Intuitively, selecting the order whose route 

differs from that of existing orders may lessen resource competition among orders. The 

competition level can be measured by the ratio of demand to unused resource. Here, 

cumulative demand and resource are considered, because they are less sensitive to the lot 

sizing decision. If the ratio is low, the new order is more likely to seize resources; 

consequently a feasible schedule can be constructed. This heuristic consists of the 

following steps. 

Step 1. Calculate ktR , the unused resource of machine k  at period t . 

Step 2. The cumulative resource availability over period t  is calculated as 





t

j
kjkt RC

1

.  

Step 3. Determine the cumulative demand on resource k  as 

)(
1




t

j
ijikikijikt YXD  . 

Step 4. For each order i , calculate the resource competition index as the 

maximum rate of demand to resource over all machines, i.e., 
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









kt

ikt
LRC C

D
I max . The order with the least resource competition index is 

selected. 

 

4.3 Deselecting Orders 

Aforementioned order selection rules are based on estimated resource unitization. 

Therefore, it is possible that selected orders cannot be fully scheduled. Assume an order 

i  is first selected. If it is deselected due to limited capacity, there will be no effect on the 

total profit of formerly selected orders. If an order j  from the formerly selected orders is 

deselected, the profit of j  should not exceed that of i ; otherwise, deselecting i  is the 

best choice to maintain the total profit. If i  is more profitable, it should be accepted, but 

some less profitable orders have to be deselected. Figure 4-4 illustrates this situation. 

Initially, S = },,{ cba  and the schedule is feasible. Suppose including order i  results in 

an infeasible schedule. To achieve feasibility, order a, c are deselected successively, 

given deselecting them results in less loss of profit than deselecting i . As a result, 

S = },{ ib  is the new set of selected orders. 
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Figure 4-4  Illustration of deselecting multiple orders to achieve feasibility 

 

To identify which order should be deselected, the profit and resource consumption 

information are taken into account. At this stage, resource utilization and lot sizes are 

obtained from the existing production plan. The following rules are used to deselect an 

order from the list of selected orders. 

(1) Least Profit (LP): Deselect the order with least profit.  

(2) Most Workload (MWK): Deselect the order which imposes the most workload on 

machines.  

(3) Weighted Least Profit (WLP): Deselect the order with least ratio of profit over 

resource consumption. 

(4) Maximum Lateness (LMAX): If an operation results in maximum lateness in the 

scheduling, corresponding order is deselected.  

The first three rules focus on order level; the logic is against the MP, LWK, and 

WMP, respectively. The last rule focuses at scheduling level. The logic is consistent with 
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Wester et al. (1992), who addressed controlling orders’ lateness in the order selection 

problem.  

4.4 Scheduling Production Lots 

After lot sizing, each production lot is further planned as a set of operations, 

according to process specification. In this research, disjunctive graph is employed to 

represent the job shop scheduling problem and facilitate designing scheduling algorithms.  

4.4.1 A Brief Description on Disjunctive Graph Representation 

Disjunctive graph is one of the most popular graphic models used for describing 

instances of the job shop scheduling problem. It is a directed graph G = (V, C, D). Herein, 

V denotes a set of vertices corresponding to operations, and two additional vertices. The 

two additional vertices are the source node (S) and terminal node (T). These two nodes 

represent the start and end of a schedule, respectively. Both nodes have zero processing 

time. C is a set of conjunctive arcs that reflect the precedence constraints initially 

connecting every two consecutive operations from the same job. Undirected disjunctive 

arcs D connect mutually unordered operations, which require the same machine. In a 

disjunctive graph, each arc is labeled with a positive weight which equals to the 

processing time of the precedent operation. Generally, release time is labeled on the arc 

from S to the first operation of the job. Figure 4-5 shows an example of disjunctive graph, 

which represents the job shop data in Table 4-1. The scheduling task is to determine the 

sequence of operation 1, 5 on 1M , and operation 2, 4 on 2M . 
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Table 4-1  Job shop data for disjunctive graph example 

Job Machine sequence Processing time 

1J  321 MMM   25,20,10 321  ppp  

2J  12 MM   10,25 54  pp  

 

 

Figure 4-5  An example of the disjunctive graph 

 

4.4.2 Disjunctive Graph for Lot Scheduling 

The disjunctive graph for scheduling production lots of the problem under study is 

constructed with the following steps. 

(1) Construct conjunctive arcs  

Operations of a production lot are generated according to the predefined process 

planning. Given an operation itkO , the production time is calculated as ikitik X   . The 

conjunctive arcs for a production lot correspond to the process planning.  

(2) Calculate release time of operations 

An operation can only start after the completion of its preceding operation. 

According to production route, the following formulas on release time of operation itkO  

are derived: 
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''' ikikititkitk Xrr                Pi , Nt  iMk ,  

where 'k  is the immediate precedent machine of k on the route  

 (4.5) 

If an operation is the last operation and another production lot from the same 

order is planned ahead of it, there are two conditions under consideration. First, given 

two lots itL  and 'it
L ( 'tt  ), 

imitO ' (the last operation of 'it
L ) should be processed 

before
iitmO (the last operation of itL ). Otherwise, lot 'it

L cannot be completed on time. 

Therefore, a disjunctive arc is predefined for 
imitO ' 

iitmO . 
iitmO should start no earlier 

than the completion of 
imitO ' , which is 

iii imimitmit Xr   '' . Second, To avoid early 

completion, the last operation 
iitmO cannot start before 

ii imimit τX1)tc  ( . Hence, in 

addition to condition (4.5), the following condition is obtained for the release time of 

those last operations. 

))1(,max( '' iiiii imimitimimitmititk XtcXrr    

'tt  , iMkIi  ,  
(4.6) 

 

(3) Assign latest finish time to operations 

A feasible production plan requires each production lot must be completed in the 

corresponding planning period. At the operational level, it implies any operation should 

be completed no later than corresponding latest finish time. The latest finish time can be 

calculated recursively starting from the last operation of the production lot. For operation 

itkO , the latest finish time is: 
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''' ikikititkitk Xdd         Pi , Nt  iMk ,  

where 'k  is the immediate succeeding machine of k on the route. 
(4.7) 

 

(4) Add the source node and terminal node  

The source node S is connected to all the first operations of production lots; the 

weights represent corresponding release time of operations. All last operations of 

production lots are connected with the terminal node T. When those last operations are 

imposed with release time, they are connected with node S. 

Figure 4-6 shows an example of disjunctive graph for scheduling production lots. 

Two production lots for order i and one production lot for order 'i  are illustrated in this 

figure. The routes of both orders are predefined as k’k. Conjunctive arcs are added 

according to this route. Arc S ''kitO , S 'itkO  and S ''' ktiO  are associated with zero 

weight, as those first operations can start at the beginning. The weight of arc from S to 

those last operations ( itkO , kitO '  and ktiO '' ) are calculated from formula (4.5) and (4.6). At 

this point, no disjunctive arc is defined, except for kitO '  itkO , because the are last 

operations from same order.  
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Figure 4-6  Illustration of the disjunctive graph for scheduling production lots 

 

4.4.3 Scheduling Heuristics 

The job shop scheduling problem is NP-hard; therefore heuristic methods are 

most commonly used. In the research under study, two categories of heuristics are under 

consideration: shifting bottleneck heuristic (SBN) and priority rule-based dispatching 

(PRD) scheduling.  

(1) Shifting Bottleneck (SBN) 

In the disjunctive graph of scheduling production lots (see Figure 4-6), if the 

weight of arc starting from last operation itkO  to T is posted as itkdcn  , a feasible 

schedule can be ensured with cnC max . Then, a max|| CJ m  problem is formed. This 

problem can be solved with the shifting bottleneck heuristic (Adams et al. 1988). 

Detailed description of this method can also be found in Pinedo (2002). In this method, 

the bottleneck machine is identified by finding machine with largest maxL  in a single 

machine scheduling problem. Although the branch and bound and preemptive EDD rule 
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can generate a good solution for max|,| Lprecr1 j (Pinedo 2002), it needs a great amount 

of computational effects, especially when there are more operations defined on every 

machine. Therefore, earliest due date (i.e. schedule the operation with latest finish time 

first) rule is employed to solve the maximum lateness problem.  

(2) Priority Rule-based Dispatching (PRD) 

Dispatching rules are easy to be implemented and generally requires much shorter 

computational time. The scheduling priority index is calculated for each operation. 

Although many PRDs are proposed in literature, there is no single priority rule dominates 

performance comparisons (Baker 1984). In this research problem, minimizing makespan 

and number of tardy orders would be advantageous for on-time delivery and total profit 

maximization. By referring to scheduling rules summarized in Panwalkar (1977) and 

Haupt (1989), PRDs considered in this research is listed in see Table 4-2. To fit the 

problem under study, some customizations are made. 

Table 4-2  PRDs used for scheduling 

Abbreviation Description 

EOFT Earliest Operation Finish Time. Among all operations that are ready for scheduling, first 

schedule the operation with the least latest finish time.  

MWKR Most Work Remaining. This scheduling method starts from identifying the order with the 

most remaining work. The remaining work is calculated as the processing time of all 

unscheduled lots and unscheduled operations of those partially scheduled lots. Then for the 

identified orders, select the lot with earliest production period. The prioritized operation is 

the first unscheduled operation of the selected lot. 

CR 

 

Critical Ratio. Critical Ratio is an index computed by dividing the time remaining until the 

due date by the work time remaining, i.e., 
itk

itkitk
itk

ESd
CR




 . Here, itk  and 
itkES  denote the 

processing time and earliest start time of itkO , respectively. A smaller index indicates the 

operational time is tighter; therefore, the operation with the least critical ratio is first 

scheduled. 
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Abbreviation Description 

SPT Shortest Processing Time. Schedule the operation with the shortest processing time first. 

This rule is advantageous for minimizing average flow time. 

LPT Longest Processing Time. Schedule the operation with the longest processing time first. The 

rule can contribute to minimizing makespan. 

PEDD Profit and EDD. First, select the order with largest profit. Then apply EDD(i.e. least latest 

finish time) to schedule operations of the selected order.  

LSLK 

 

Least Slack. Select the operation with least slack time. This method is to schedule least 

flexible operation first, so that fewer orders are expected to be rejected due to scheduling 

infeasibility. 

MQ Most Queues. This method is to first schedule the operation with most subsequent 

operations. Herein, subsequent operations refer to succeeding operations defined by the 

route, and all operations in the production lots at later periods. In other words, the operation 

with greatest effects to other operations is prioritized, so that it is expected to facilitate 

scheduling more operations within production horizon. 

RND Random Scheduling. The prioritized operation is randomly selected. This method is used as 

the benchmark for evaluating other scheduling rules. 

 

4.4.4 Feasibility Check 

To ensure on-time completion of every operation, the following conditions should 

be met.   

itkikikititk dpXr                    Tt iMkIi  ,  (4.8) 

If this condition is not met, scheduling is terminated. Further actions should be 

taken, such as deselecting orders or adjusting production lots. The following sections 

cover these issues.  

4.5 Minimum Cost Heuristic (LS1) for Lot Sizing 

The minimum cost heuristic follows the concept of improving production 

schedule from an initial solution (Karimi et al. 2003). The initial lot sizing is generated 
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with the WW algorithm for every order; therefore, the total profit is maximized. 

However, this optimal lot sizing may result in an infeasible schedule, especially when 

customer demands are much heavier than production capacity. As a solution, lot size 

change methods are used to balance resource consumptions among different planning 

periods. Since the implementation of the WW algorithm was presented in Section 4.2.1, 

this section only focuses on lot size change methods.  

4.5.1 Identification of the Critical Lot  

Two questions are involved in changing lot sizes. The first question is which 

production lot should be changed; the second question is in what quantity should the lot 

be changed so that scheduling feasibility is facilitated. The first question can be answered 

by examining the infeasible schedule, on which at least one operation is delayed. The 

operation with maximum lateness determines the level of infeasibility; therefore, the 

production lot corresponding to this operation is the lot to be changed (critical lot). To 

answer the second question, it is necessary to investigate detailed schedule and evaluate 

the consequence of lot sizing changing.  

(1) Two types of restricts on a schedule 

Given a schedule, every operation has two types of constraints on its earliest start 

time: disjunctive constraint and conjunctive constraint. The conjunctive restricted 

operation (CRO) is identified as the immediate precedent operation that is scheduled on 

the same machine. Meanwhile, disjunctive restricted operation (DRO) is the immediate 

precedent operation according to the order’s route. If there is no gap between an 

operation and its precedent operation, they are regarded as strongly constrained. 

Otherwise, they are weakly constrained. Figure 4-7 shows two examples. Operation 1j  
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and 2j  are originated from the same order. In (a), 1j  is the strong CRO for 2j  and 

operation i  is the weak DRO. While in (b), 1j  is the weak CRO for 2j , and operation i  

is the strong DRO. As forward non-delay scheduling methods are used in this research 

(see Section 4.4.3), the idle time on a schedule is the starting time of an operation to the 

finish time of its weakly constrained operation, either CRO or DRO. Changing lot size 

can affect the processing time of operations defined on different machines; therefore, it is 

possible to reduce the idle time. 

 

Figure 4-7  Illustration of constraints among operations 
 

(2) Limit of lot size change 

To facilitate analysis of lot sizing changing, a topological sorting is applied to 

label all nodes in the disjunctive graph presented in Section 4.4.2. A precedent node is 

always labeled with a smaller integer than that of its succeeding nodes.  

If the lot size of itL  is decreased by one unit, all operations of this lot will be 

firstly affected, because the processing time of each operation relies on the lot size. Also, 

if the sequence of operations defined on machines is kept unchanged, changing lot size 

will cause shift of schedule. Specifically, if the processing time of an operation is 

changed, all operations with larger label numbers (from the typological sorting) will be 

affected. Suppose itkO is the source operation (i.e., no operation with smaller label 
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number is affected by lot size change). The shifting rate of itkO  is ik , because one unit 

lot size decreasing will reduce processing time by ik . Effects of lot size change can be 

categorized into three situations: (1) if an operation is strongly constrained by its 

precedent operation, the operation can obtain same shifting rate; (2) if an operation ( 'itkO ) 

is from the same production lot as the source operation, the shifting rate should be 

increased by the unit processing time of the affected operation itself, i.e., 'ikikv   ; 

(3) an operation cannot obtain shifting rate from its weakly constrained operation, 

because idle time exists between them. 

After shifting of schedule, operations being affected may be on another critical 

path, which causes continually reducing lot sizing cannot contribute to feasibility. This is 

illustrated in Figure 4-8. Before lot sizes being changed, the idle time between two 

operations on a machine is  ; the shifting rate of two operations are   and ' , 

respectively. Denote the lot size decreasing quantity is x , then the condition for the limit 

of lot size decreasing is 
'vv

x



 . This is the basic limit on lot size change; it should be 

applied to every pair of two constrained operations. 

In addition, on-time completion of the last operation of any production lot may 

affect the limit of lot size change. Still use schedule in Figure 4-8 as an example and 

suppose itkO  is the last operation of a production lot. If lot size change makes the start 

time of itkO  change from 0S  to 1S , then xvSS  01 . According to release time 

condition in equation (4.6), the last operation’s starting time 

])([1 ikitik xXcctS   . Then, an additional condition for those last operations is 

obtained: 
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ikpv

cctS
x





)(0 

 (4.9) 

After calculating lot size change limit for all pairs of constrained operations, the 

smallest limit is denoted as *Q . 

OitkAfter changing lot size

vv’

OitkOi’t’k
Before changing lot size

Δ

Oi’t’k

S0

S1

β

 

Figure 4-8  Illustration of shifting schedule of an operation when changing lot sizes 
 

4.5.2 Adjusting Lot Size  

In order to explore all possibilities of achieving a feasible schedule, both 

backward and forward moving directions are considered. Figure 4-9 demonstrates the two 

classes of lot size change with moving quantity ix . The source period is t  and the target 

period is 't . 

di,1 di,t’ ... di,t di,n

Xi,1 Xi,t’ ... Xi,t Xi,n
... ...

Δxi

(a) Backward: Move to an earlier period

di,1 ...di,t di,n

Xi,1 ...Xi,t Xi,n
... ...

(b) Forward:  Move to a later  period

... ... ... ...di,t’

Xi,t’

Δxi

 

Figure 4-9  Two directions of lot size change 
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Table 4-3  List of lot size change methods 

Lot moving direction Target period Moving 

quantity Backward Forward 

Partial (1) Backward lot transferring (5) Forward lot transferring Has lot 

Entire (2) Backward lot merging (6) Forward lot merging 

Partial (3) Backward lot splitting (7) Forward lot splitting No lot 

Entire (4) Backward lot shifting (8) Forward lot shifting 

 

The effect (cost change and resource balance) of lot size change depends on the 

moving quantity and whether a production lot exists in target period. Table 4-3 lists all 

situations. If a production lot exists in the target period, moving a partial lot is called lot 

transferring; while moving the entire lot is equivalent to merging two production lots. If 

there is no production lot in the target period, moving partial production quantity is 

equivalent to splitting the source production lot into two lots; while moving the entire 

production lot to another period is shifting the production lot. 
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Figure 4-10  Effect on resource consumption by changing lot sizes 

The basic lot size change is conducted between two adjacent periods. Lot sizing 

change over multiple periods can be achieved through multiple iterations of the basic lot 

size change. The effect on schedule is graphically illustrated in Figure 4-10. For each 

method, the upper level shows the original schedule and the lower level shows the 

schedule after lot size change. The cost variation and resource consumption are analyzed 

as follows. 
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(1) Backward lot transferring 

This method is valid only when no operation from the target lot is on a critical 

path. It balances current production work load on the current period and the pervious 

period. In respect of cost change, this method only increases holding cost ii xh  . For 

resource consumption, the total resource used (in time unit) keeps unchanged on every 

machine, because there is no extra setup.  

(2) Backward lot merging 

Merging production lots reduces a setup, but the holding cost increases because 

the source lot is produced earlier. Also, a much tighter production is resulted, because the 

internal due date of the source lot is shorten. Therefore, this method is valid only when 

setup time is relatively large. Otherwise, it merely contributes to a feasible schedule. The 

increase of cost is iiti Xh  . 

(3) Backward lot splitting 

If there is no production in the previous period, move a partial lot to pervious 

period will create a new production lot. Therefore, the lot sizing cost is increased by 

iii xh  . For resource consumption, an extra setup time is needed. 

(4) Backward lot shifting 

This method is to move current production lot to the previous period, given it 

cannot be scheduled in the current period. The saved holding cost is ii xh  , For resource 

consumption, the total production time needed keeps unchanged.  

(5) Forward lot transferring 

This method is to move partial current production quantity to a future period. It is 

valid only if there exists advance production (AP, the portion of current production used 
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to satisfy demands). The lot sizing cost is reduced by ii xh . The total resource 

consumption keeps unchanged.   

(6) Forward lot merging 

Merging two production lots not only reduces setup cost, but also save holding 

cost. In total, the cost decreases by itii Xh . However, the precondition is that the entire 

source lot is advance production.  

(7) Forward lot splitting 

With this method, a new production lot is created. Therefore, the setup cost is 

increased; but the holding cost is saved. In total, the cost increasing is iii xh  . The 

total resource consumption is increased by a setup time.  

(8) Forward lot shifting 

Moving the entire production lot to the future period can reduce holding cost by 

iti Xh . As there is no change on setup, total resource consumption keeps unchanged. Still, 

this lot changing method is valid only when the entire source lot is advance production.   

4.5.3 Selection on Lot Change Method 

After the critical lot and limit of lot size change are identified, the moving 

quantity Q  needs to be decided. Intuitively, if the schedule is infeasible with a larger 

maxL , the lot size should be changed with a larger quantity. Otherwise, only a small 

adjustment is needed. This implies moving quantity should be related to the level of 

infeasibility, which can be measured by maxL . Therefore, the following formula is used to 

determine the moving quantity.  
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 ),min( max*

i

L
QQ


     (4.10) 

 This formula integrates lot sizing and scheduling requirement. As a result, any lot 

size is not required to be exactly the sum of a set of future demands; therefore, it leaves 

more chances for constructing a feasible schedule.  

 

 

Figure 4-11  Determination on lot size change method 

Figure 4-11 summarizes the selection on lot changing methods for two directions. 

Selection on moving direction (forward or backward) is based on the cost of lot size 
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change methods. The method resulting in least lot sizing cost increment is selected. For 

backward merging, it is valid only when the setup time is larger compared to the unit 

processing time. Otherwise, the moving quantity is set as 
i

i
it h

X


 , to avoid too much 

increment on holding cost. For forward lot size change, the moving quantity is set as 

),min( * APQQ  , so that all demands are met without delay. 

4.5.4 An Iterative Procedure to Relax Infeasibility  

To change an infeasible schedule to a feasible one, multiple iterations of lot size 

change may be needed. The iterative procedure is shown in Figure 4-12. In this 

procedure, if maxL  does not keep decreasing, another critical lot is considered. If changing 

lot size has been applied to all production lots and still no feasibility can be achieved, a 

customer order is deselected, base on the rules of deselecting orders introduced in Section 

4.3.  
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Figure 4-12  Procedure of achieving feasibility by lot size change 

4.6 Minimum Cost Increase Heuristic (LS2) for Lot Sizing 

Instead of conducting optimal lot sizing for every order at the beginning, lot 

sizing can be constructed in a period-by-period manner. At each period, feasibility is first 

ensured and then profitability is desired. One renowned CLSP heuristic applying this 

concept is the Dixon-Silver method (DS), developed by Dixon and Silver (1981). The 

proposed LS2 heuristic is an extension to the DS method. 
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4.6.1 A Brief Description of the DS Method  

DS method considers including some future demands into the current period 

production, given such an inclusion is cost-saving. It is also characterized by a look-

ahead mechanism on ensuring feasibility.  

(1) Two portions a production lot  

The quantity of a production lot can be divided into two portions: advance 

production (AP) and on-time production. Advance production is the production quantity 

that accounts for future demands. Including AP saves setup cost, but it increases holding 

cost. At any period, after advance production is conducted, the net demand turns to be the 

original demand deducted by advance production. The on-time production should always 

equal to the net demand; otherwise, production and demands are unbalanced. Given an 

item i , the integer number of periods of demands that a production lot will exactly satisfy 

is named as time supply ( iT ). 

(2) Criterion of including advance production  

In the DS method, Including AP is applied to the lot with the largest decrease of 

average cost per unit time per capacity absorbed. Herein, Average Cost (AC) per unit 

time is defined in Silver-Meal method (Silver and Meal 1973).  

i

T

t
itii

ii T

dth
TAC

i





 1

)1(
)(


 

(4.11) 
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Therefore, decrease of average cost per unit per capacity ( iu ) is represented as 

1

)1()(






iTi

iiii
i dk

TACTAC
u  

where ik  is the resource utilization rate for item i  

(4.12) 

Hence, the time supply iT  should be increased by one period for the lot with 

largest positive iu . 

(3) Consideration of feasibility 

Resource capacity in the current period imposes a limit on time supply increasing. 

In the DS method, resource consumption for different items is addable, maximum 

advance production that do not validate capacity at current period is derived. In addition, 

the DS method also provides a look-ahead mechanism: if advance production is not 

conducted for a certain item at current period, there may not be enough resource to 

produce it in the future periods. With such a contradiction, advance production should be 

considered for the sake of future feasibility, even though such a plan increases lot sizing 

cost. 

(4) Period-by-period procedure 

On-time production and advance production are conducted from the first period to 

the last period, given feasibility can be sustained. The basic procedure for the DS is as 

follows.   

Step 1.  Given all input items, initialize the net demands at each period as the 

original demands. 

Step 2.  Set working period t=1. 
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Step 3.  Conduct on-time production for the net demand in period t. If the capacity 

constraint is not validated, continue; otherwise, terminate this procedure 

with an infeasible solution. 

Step 4.  If t=n (the last planning period), stop this procedure with a feasible 

solution. Otherwise, conduct advance production and continue.  

Step 5.  Move working period to the next period (t=t+1), and go to Step 3. 

 

4.6.2 Modification to the DS Method  

The setting of the problem under study differs from CLSP in the following 

aspects. First, workload from different orders cannot be simply added up, due to job shop 

schedule. Second, setup time is explicitly defined, thus there is no constant resource 

consumption rate for any order. Third, orders are not mandatory for production; 

consequently, feasibility can always be achieved by deselecting orders. To accommodate 

characteristics of the problem under study, the following modifications to the DS method 

are made. 

(1) Condition for conducting advance production 

According to equation (4.12), the profit index ( iu ) is designed as:  

1

)1()(





iTii

iiii
i d

TACTAC
u


 (4.13) 

(2) Feasibility pre-check with a look-ahead mechanism 

The on-time delivery requirement enforces that cumulative production should 

meet cumulative demand at any period; this condition can be ensured by producing as 

much as net demand 
itd . When advance production is conducted, net demand should be 
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updated accordingly. If the current production does not include any future demands, then 

the future demands have to be fulfilled by consuming resources in the future periods. 

However, future resource utilization cannot be exactly calculated, due to possible lot 

sizing. For simplicity, Lot-for-Lot production is presumed. The expected resource 

consumption on machine m  at each period t  calculated as follows.  

If the expected cumulative resource consumption exceeds cumulative capacity, 

advance production is needed. Hence, time supply increases until cumulative demand 

cannot be met by cumulative resource consumption, and the first period found is denoted 

as ct . In other word, ct  is the first iT  that violates (4.15). For any order, ct  is calculated 

for all machines on its route, and the smallest one is selected as a limit on time supply. 

Moreover, schedule of production lots should be taken into account. For 

simplicity, consider an extreme case that production lots from an order are scheduled in 

parallel. The cycle time for this order should be no more than the total production time 

divided by the number of lots (denoted as w ). Therefore, when a time supply violates 

(4.16), another limit on ct  is obtained.  
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With the two conditions in (4.15) and (4.16) on future production and resource 

availability, the smallest ct  is chosen as the maximum increment of time supply for an 

order.  

Table 4-4  Decisions on including future demands  

Future feasibility Profit index 

Feasible Not feasible 

0iu  Include only full net demand Include as much as possible 

0iu  Not include Include as much as possible 

 

(3) Tradeoff between feasibility and profit 

From the cost perspective, include future demands only when 0iu , given there 

is enough resource currently. But if future feasibility cannot be ensured, it is necessary to 

include future demands as much as possible. Table 4-4 lists the determination of 

including future demands into the current period. 

(4) Deal with infeasibility  

In the DS method, feasibility check is formulated with a set of closed-form 

equations. However, in the present research problem, job shop scheduling should be 

conducted to verify the feasibility. Moreover, a feasible schedule may not be obtained 

with a single pass of lot sizing, because advance production is based on estimated 

resource consumption. As shown in Table 4-4, advance production is not conducted when 

0iu  and future feasibility is ensured. Considering job shop scheduling, advance 

production is neither conducted when it worsens infeasibility, which is indicated by maxL . 

More specifically, the following procedure is designed to control a schedule transiting 

from infeasibility to feasibility.  
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(a) Initially, set the quantity of advance production for item *i (the item with 

maximum profit index) as the net demand, i.e., 
ctiAP dQ * .  

(b) Schedule production lots. A positive maxL  indicates too much future demands 

have been included into the current period; therefore, APQ  is reduced by 
*

max

i

L


 and redo 

scheduling. As a result, it is possible that only a partial demand of a future period is 

included into the current period production. If a feasible schedule is found, advance 

production is successfully conducted. Otherwise, keep on reducing APQ  if maxL  keeps 

decreasing. If maxL  does not converge to zero, consider the next item with maximum 

profit index. 

(c) After a feasible schedule is found, update future net demand and increase time 

supply for *i . 

 The flow chart in Figure 4-13 further details the procedure aforementioned at one 

time period.  
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Figure 4-13  Flow chart of LS2 heuristic at one time period 

4.6.3 A Summary on Minimum Cost Increase Heuristic  

The procedure of minimum cost increase heuristic is summarized in the following 

steps. The basic framework is the similar to the DS method, but deselecting orders and 

job shop scheduling requirements are incorporated.  

Step 1. Set working period t=1.  

Step 2. Conduct on-time production (lot size equals net demand).  

Step 3. Schedule production lots. If a feasible schedule is obtained, continue; 

otherwise, deselect order according to an order deselection rule. 

Step 4. If t=n, stop. The lot sizes and schedule are the final solution for selected 

orders. 
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Step 5. Estimate expected future resource utilization; find the maximum time supply 

ct for every order. 

Step 6. For all order with its time supply less than ct  (denoted as tS ), calculate iu . 

Find order *i  with )(umaxu i
Si

i*
t

  and consider it for advance production with 

the decision matrix presented in Table 4-4. 

Step 7. Schedule the resulted operations. If a feasible schedule is obtained, go to Step 

5. Otherwise, work on the next period directly. 

Step 8. If t<n, t=t+1 and go to Step 2.  
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5 EXPERIEMENTATION  

In Chapter 4, heuristics on order selection, lot sizing and job shop scheduling are 

presented individually. This chapter focuses on the selecting combined heuristic rules 

among them, with systematically designed experiments. Moreover, the performance of 

the proposed heuristic methods is evaluated, by comparing them with the commercial 

solver CPLEX.  

5.1 Experimental Design 

The experimentation is to unveil the applicability of heuristics presented in 

Chapter 4. As there are no benchmark data, problem instances are generated randomly. 

Then, heuristics are implemented to each random instance.  

5.1.1 Random Instances Generation 

(1) Basic problem settings 

The mathematical model introduced in Chapter 3 reveals that problem complexity 

not only depends on the number of machines (m), number of periods (n), number of 

orders (p), but also on the production route and machine flexibility. Hence, a factor called 

system complexity ( sc ) is used to create job shop system. It is the ratio of the number of 

machines on route for an order divided by m. A higher sc  indicates more operations are 

needed for an order; thus, more orders are likely to share common machines. The design 

for the basic problem settings is shown in Table 5-1. Since these random instances will be 

further solved by CPLEX, setting of levels is based on the run time analysis presented in 

Section 3.4. The length of the planning period equals to the capacity of every machine in 

each period. It can be set arbitrarily, because other related parameters can be adjusted 
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accordingly; consequently the problem characteristics are not affected. In this 

experimentation, length of the planning period is set as 100  time units.  

Table 5-1  Design for basic problem settings 

Factor  Low level High level 

p Uniform(5, 15) Uniform(15, 25) 

n Uniform(3, 7) Uniform(8, 15) 

m Uniform(5, 10) Uniform(11, 20) 

sc Uniform(0, 0.2) Uniform(0.3, 0.6) 

 

(2) Parameters 

Parameters in the problem under study are categorized into resource related 

parameters and profit related parameters. Resource related parameters reflect the 

expected workload of customer orders. They are demands, unit processing time, and 

setup time. Herein, unit processing time is the base parameter; it is simulated with 

uniform distribution (0.5, 1.5). Given 10 orders with demand rate of 10 per period, and all 

orders sharing same machine, all machines will be fully loaded. With such a benchmark, 

demand at low level is set with a mean of 5; high level is set with a mean of 20. 

According to Maes and Wassenhove (1988), demand variation over time for a single item 

(also called lumpiness) affects the lot sizing complexity. Demands of each order can be 

randomized with setting zero demands in some periods. Two levels on the proportion of 

zero demands (20% and 80%) are considered in this experimental design. Also, there are 

two levels of setup time; they are set by referring to the unit processing time.  

Profit related parameters include holding cost, setup cost and initial gross profit. 

The base is the holding cost, which is set as uniform (0.5, 1.5). Setup cost is designed 

with two levels, with a mean of $10 and $50 respectively. With considering the expected 
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lot sizing cost, the initial gross profit is set with a mean of $500. Such a design is to 

ensure that customer orders cannot be apparently rejected. To create randomness on 

discrimination of orders’ profit, variation for initial gross profit is designed with two 

levels. Table 5-2 lists the design of related parameters. With the design in Table 5-1 and 

Table 5-2, 256 random instances are generated. 

Table 5-2  Design of parameters 

 Factor  Low level High level 

Demand ( itd ) Uniform(0, 10) Uniform(10, 30) 

Zero demands 20% 80% 

Resource  

related  

parameters 
Setup time ( ik ) Uniform(0, 5)  Uniform(5, 15) 

Revenue ( ir ) Uniform(400, 600) Uniform(200, 800) Profit 

 related  

parameters 
Setup cost ( i ) Uniform(10, 20) Uniform(20, 80) 

 

5.1.2 Factor of Heuristics  

A Java-based application is developed to implement the proposed heuristic 

methods introduced in Chapter 4. The following table summarizes all heuristics involved 

in the experimentation. 

Table 5-3  List of heuristic methods  

Factors Levels 

Order selection(OS) (1) Most Profit (MP)  

(2) Least Workload (LWK) 

(3) Weighted Most Profit (WMP) 

(4) Least Resource Competition (LRC) 
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Factors Levels 

Order Deselection (OD) (1) Least Profit (LP)  

(2) Most Workload (MWK) 

(3) Weighted Least Profit (WLP) 

(4) Maximum Lateness (LMAX ) 

Lot sizing procedure (LS) (1) Minimum cost heuristic (LS1) 

(2) Minimum cost increase heuristic(LS2) 

Job shop scheduling (JSS) (1) Shifting Bottleneck (SBN)  

(2) Earliest Operation Finish Time (EOFT) 

(3) Most Workload Remaining (MWKR) 

(4) Critical Ratio (CR) 

(5) Shortest Processing Time (SPT) 

(6) Largest Processing Time (LPT) 

(7) Profit and EDD (PEDD)  

(8) Least Slack (LSLK) 

(9) Most Queue (MQ) 

(10) Random (RND) 

 

5.2 Result Analysis on Heuristic Methods 

5.2.1 Measurements on Solution Performance and System Parameters  

The analysis on experiment results is to reveal the relation between solution 

approaches and solution performance. Therefore, problem setting and applied heuristics 

are considered as input factors. The target (or response) is the solution performance, 

which is measured in two aspects: solution quality and run time. The solution quality 

refers to the total profit of a problem instance solved by heuristics. However, absolute 

values on profit of different instances are not comparable, because instances may 

significantly differ from each other on problem setting. Therefore, for each problem 

instance, the best heuristic solution is first identified. Then, for all heuristics applied to 
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that instance, the ratio of profit to the best heuristic solution (referred as profit ratio) is 

used as the indicator of solution quality.  

To quantify problem characteristics, the following numerical measurements are 

used as system parameters for a problem instance.  

(1) Basic problem scale measurements: Number of orders (p), Number of planning 

periods (n), Number of machines (m). 

(2) Number of conjunctive constraints (conjSum): This factor is calculated as the total 

number of technical constraints for all orders. Meanwhile, in order to compare 

different instances, the ratio of conjunctive constraints (conj_Ratio) is defined. It is 

conjSum divided by p. These two factors measure the complexity of product process 

planning. 

(3) Number of disjunctive constraints (disjSum): This factor is calculated as the total 

number of disjunctive constraints. Similar to conj_Ratio, ratio of disjunctive 

constraints (disj_Ratio) is defined as disjSum divided by m. These two factors reflect 

the complexity of production.  

(4) Demand rate (demand_rate): It is calculated as the total demand (in time unit) divided 

by total capacity. Here, total demand is calculated with assuming single production 

lot for each order; total capacity is calculated as cnm  .  

(5) Demand-to-capacity ratio: The demand rate does not distinguish process routes of 

different orders, so it is only a rough estimation. To be more detailed, the demand to 

capacity ratio on each machine is considered. Given a problem instance, large 

variation may exist on different machines. Therefore, mean, median, max and 
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standard deviation for all machines are calculated; they are denoted as load_mean, 

load_median, load_max, load_stdev, respectively.   

(6) Variability coefficient of demand (demand_VC): As suggested by Silver (1985), 

demand variability effects lot sizing performance. Herein, demand_VC is defined as 

the variance of demands for every order divided by the square of average demand for 

all orders. This factor reflects the variability of demand for all orders. 

(7) Coefficient of variation for initial gross profit (revenue_CV): Coefficient of variation 

is a normalized measure of dispersion; it is defined as the ratio of the standard 

deviation to the mean. With this measure on initial gross profit, different instances 

can be compared. A larger revenue_CV indicates the input orders significantly differ 

from each other in terms of initial gross profit. 

(8) Setup time ratio (st_ratio): It is calculated as total setup time for all items divided by 

total unit processing time. It measures the overall significance of setup time for an 

instance. 

(9) Setup cost ratio (sc_ratio): Setup cost ratio for every item is defined as setup cost 

divided by holding cost. For a problem instance, sc_ratio is the average of setup cost 

ratios for all items. This factor measures the significance of the setup cost in contrast 

with the holding cost.  

(10) Model related factors: In Table 3-1, the numbers of different types of decision 

variables are derived. They are used to quantify problem instance because they reflect 

problem complexity. Number of continuous variables, integer variables and binary 

variables are represented with conVar, intVar and binVar, respectively. 
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5.2.2 Solution Quality of Different Heuristics 

 

Figure 5-1  Tree diagram on solution quality with including problem setting factors  

 
  SAS Enterprise Miner is employed to explore the relations among heuristic rules 

and solution quality. It can create predictive and descriptive models based on analysis of 

vast amounts of data, which may involve both continuous and categorical objects 

(Matignon 2007). To discover the rules of applying heuristic methods, both system 

parameters and heuristic methods are considered as the input of the tree model. The profit 

ratio is the target variable. The resultant tree diagram is shown in Figure 5-1. In the 

EOFT 
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diagram, each branch is associated with the partition of a splitting variable. On each 

node, the upper number is the node identifier; the lower number is the mean response of 

that partition. If a node only relates to system parameters, all nodes are pruned. In terms 

of solution quality, the following basic conclusion can be made. 

(1) Job shop scheduling rules significantly affect solution quality. The SBN and EOFT 

rules perform much better than others.   

(2) Lot sizing rules affects solution quality, depending on setting of system parameters. 

The selection rules are mainly based on the expected maximum demand-to-capacity 

ratio and setup cost ratio. The LS1 heuristic is suitable for not complex and not 

heavily loaded job shop. In such a situation, most orders can sustain the profit 

obtained from the best lot sizing because of less resource conflicts. Also, the LS1 is 

preferred when setup cost is less significant. This is resulted from to the fact that 

more small-sized production lots are generated so that scheduling feasibility is more 

likely to be ensured. The LS2 can better handle complex item’s route under higher 

demands (maximum demand-to-capacity ration on bottleneck machine is higher than 

2.27), since more feasibility checks are applied. The setup cost ratio appears to be 

influential to selection of lot sizing procedure; this is consistent with Gelders (1981), 

who concluded conducting lot sizing based on cost structure at hand.  

(3) For order selection, either WMP or MP can contribute to best solution quality. 

(4) The order deselection methods appear to be not significant. This is mainly due to the 

procedure of taking deselected order back. This procedure tends to produce the same 

list of deselected orders, no matter what rule is used for deselecting an order.  
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5.2.3 Evaluation of Scheduling Rules 

Since scheduling rules turn to be most significant factors that affect solution 

quality, Figure 5-2 further depicts the solution quality in terms of profit ratio under 

different scheduling methods. Compared to the random scheduling, the supervised 

scheduling methods are shown to be more effective. More importantly, this chart 

indicates that emphasis on the due date can achieve better a solution. For example, EOFT 

and SBN consider due date as the most important factor; they achieve much better 

solution quality than others. CR and LSLK partially incorporate due date; the solution 

quality is worse than EOFT and SBN. The other methods almost ignoring the due date 

result in even worse solution quality. The importance of the due date mainly lies in the 

requirement on non-delay production. Ignoring due date may lead to rejecting profitable 

orders and thus missing the corresponding revenue.  

In terms of run time, different instances are not comparable, because of different 

problem settings. Therefore, for each instance, run time used by a scheduling rule is 

compared to the time used by the random scheduling. The time ratio of different 

scheduling rules is shown in Figure 5-3. The scheduling rules other than EOFT and SBN 

use less time, mainly because some orders are rejected in an early stage and then solution 

time is saved. The solution quality of EOFT and SBN significantly outperform the others; 

meanwhile, computational costs used by them are short and acceptable for 

implementation purposes (95 percentile of run time for EOFT and SBN are 14.4 and 16.8 

seconds, respectively).  
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Figure 5-2  Solution quality of different scheduling rules 
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Figure 5-3  Run time comparison for different scheduling rules 
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5.2.4 Evaluation of Lot Sizing Heuristics  
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Figure 5-4  Box-plot for profit and time ratio (LS2 to LS1) 

Figure 5-4 further plots the detailed comparison on the performance of the two lot 

sizing procedures. Herein, solutions are classified by the combination of order selection, 

scheduling and deselection rules (abbreviated numbers are shown in Table 5-3). Figure 

5-4 indicates that the LS2 method achieves better profit, but it requires much more run 

time. Table 5-4 summarizes the numeric statistics between the two heuristics. On the 

average, applying the LS2 achieves 4.6% better profit. The median of profit ratio is 

around 1; it indicates the LS2 can produce extremely better solutions for a few instances.  

Table 5-4  Summary statistics on solution quality (LS2 to LS1) 

 
Ratio of Profit Ratio of Run time 

Mean 104.6% 53 

Median 100.3% 32 
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   (a) LS1                                                                      (b) LS2 

Figure 5-5  Tree diagram of run time (in minutes) 
 

Figure 5-5 further explores the factors that affect run time for the LS1 and LS2. 

For the LS1, setup cost ratio is the most influential factor. This is because an order with a 

lower setup ratio is generally planned with more production lots, and thus more 

computational efforts are needed on scheduling. A lower setup time ratio also results in 

more run time; this is mainly due to the lot size change procedure, which tends to split an 

order when the setup time is not significant. If demand rate is high, some orders may be 

rejected in an earlier stage; therefore, run time is saved, since lot sizing and scheduling 

are no more needed. In addition, binVar also affects run time. This is mainly because 

more scheduling efforts will be needed when there are more operations on each machine.  
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For the LS2, conVar is the most important factor that affects run time. It is 

proportional to the number of planning periods and process complexity of orders. intVar 

appear to be significant because the LS2 method runs in a period-by-period manner. 

Lower setup cost or time ratio results in more production lots; so that run time increases. 

Still, lower demand causes more orders be accepted, so that more run time is needed.  

Since all the instances from the experimental design are solved within a relatively 

short time (95% instances are solved in 16 seconds), extended experiments with larger 

problem sizes are designed to test the lot sizing heuristics. Herein, the job shop is fixed 

with m =30 and n =10. All orders are set with low setup ratio, which requires more run 

time as indicated by Figure 5-5. The other parameters are randomized. For each p, 10 

replicates are tested. Figure 5-6 depicts the run time for both heuristic procedures. For the 

LS1, the mean and median of run time increase almost linearly; problems with 100 orders 

can still be solved within 1 minute. For the LS2, there is a large variation on different 

instances, even for the same p. This is because other parameters appear to be quite 

influential on number of operations formed, which greatly affects run time. Nevertheless, 

problems with 100 orders are solved within 6 minutes. Therefore, both methods can be 

used to solve real-life problem instances. 
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 Figure 5-6  Run time vs. Number of products for large-scale problem instances 
 

5.2.5 Comparison on Order Selection Rules 

  Figure 5-7 further compares different order selection rules, in terms of solution 

quality and run time. It indicates that the WMP and MP rules achieve the best solution 

quality. The run times for both rules are acceptable. WMP is slightly better than MP, 

because it needs relatively shorter run time. LWK and LRC are not effective, which 

indicates detailed workload estimation cannot contribute to maximizing total profit. To 

better conduct order selection, the initial gross profit should be the first concern.  
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Figure 5-7  Comparison on order selection rules 

5.2.6 The Proposed Heuristic Approach 

The best heuristic rules discovered in previous sections are incorporated into the 

heuristic framework introduced in Section 4.1. The proposed procedure is show in Figure 

5-8.   
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Figure 5-8  The proposed heuristic procedure 
 

5.3 Comparison between Heuristic Solutions and CPLEX Results 

The comparison is to validate the performance of the proposed heuristic method, 

in terms of solution quality and run time. 

5.3.1 CPLEX Results  

 
Each randomly generated problem instance is coded with AMPL and solved with 

CPLEX. Getting the optimal solution for a large-scale problem instance requires a great 
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amount of computational time, due to the NP-hardness of the problem under study. 

Therefore, the run time for CPLEX is limited to half an hour. For each instance, CPLEX 

reports a solution and an absmipgap (absolute mixed-integer optimality gap tolerance) 

value. The absmipgap is the difference between the best integer solution and optimal 

value of LP relaxation. If absmipgap=0, the feasible solution found is an optimal 

solution. As the problem is a maximization problem, the optimal value of LP relaxation 

can be used as an upper bound.   

 

Figure 5-9  Categories of CPLEX solutions  

 

The CPLEX solutions are classified into four categories: (1) optimal solution 

found within the time limit; (2) feasible but not optimal solution is reported; (3) fail to 

report feasible solution, but report absmipgap; and (4) neither feasible solution nor 

absmipgap is reported due to memory limit. The pie chart in Figure 5-9 shows the 

proportions among the four categories. It indicates that half of the problem instances 

cannot be solved to any feasible solution. For around 1/3 instances, feasible but not 

optimal solutions are found. For the rest instances (20%), optimal solutions are reported. 

Further analysis on factors affecting each solution category reveals CPLEX cannot obtain 

an exact solution within the time limit mainly due to the large the number of binary 
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variables and constant variables (see Figure 5-10). This result is consistent with the 

analysis in Section 3.1.  

For problem instances with LP relaxation, relmipgap (relative mixed-integer 

optimality gap tolerance) is a dimensionless measure for the gap between the feasible 

solution and the upper bound. It is the ratio of absmipgap to the feasible solution. The 

histogram in Figure 5-11 indicates that most feasible solutions quite approximate to the 

optimal value of the LP relaxation. Particularly, the relmipgap values for 60% LP 

relaxation solutions are within 10%. The larger gaps are mainly resulted from instances 

with a large number of binary variables. 
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Figure 5-10  Factors affecting run time of CPLEX  
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Figure 5-11  Relative frequency of relmipgap in LP relaxation solutions 

5.3.2 Comparison on Solution Quality 

The comparison on solution quality is conducted for different CPLEX solution 

categories. For an instance optimally solved by CPLEX, the CPLEX solution can be 

directly used as a benchmark. For an instance that are not optimally solved by CPLEX 

but a feasible solution is obtained, the heuristic solution is compared to the feasible 

solution and the upper bound, respectively. If CPLEX fails to report any feasible solution, 

the heuristic solution is compared to the upper bound only.  

Table 5-5  Statistics on the ratio of heuristic solution to CPLEX 

Feasible, not optimal Not Feasible Measurement Optimal 

Feasible solution Bound Bound 

mean 98.3% 2119.4% 90.5% 84.9% 

median 100.0% 99.4% 93.0% 84.9% 

 

Table 5-5 lists the comparison result for different CPLEX solution categories. 

This table indicates that the heuristic method achieves almost same solution quality as the 

CPLEX optimal solutions. For those instances with feasible but not optimal CPLEX 
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solutions, on the average, heuristic method significantly outperforms CPLEX. This is 

because CPLEX can only find feasible production schedule for very few orders within 

the time limit. Since the ratios are asymmetrically distributed, the median is considered as 

an indicator as well. A sign test shown in Table 5-6 indicates there is no statistically 

difference between heuristic method and CPLEX. When CPLEX fails to report any 

feasible solution, the proposed heuristic method achieves 84.9% solution quality to the 

upper bound.   

Table 5-6  Sign test on the ratio of heuristic solution to CPLEX feasible solution 
---------------------------------------------------------------------------------------------- 

Sign Test for Median: Ratio to CPLEX Feasible  

Sign test of median =  1.000 versus not = 1.000 

                         N  Below  Equal  Above       P  Median 

Ratio to CPLEX Feasible  78     45      0     33  0.2129  0.9993 

---------------------------------------------------------------------------------------------- 

5.3.3 Comparison on Run Time 

To compare run time of heuristic method with CPLEX, only the instances with 

optimal CPLEX solution and the LP relaxation solution are considered. The ratio of 

CPLEX run time to that of heuristic method is used as the indicator. Table 5-7 lists both 

mean and median on the indicator. It shows that the proposed heuristic method is much 

faster than CPLEX. When the scale of a problem instance becomes large, CPLEX is 

unlikely to report an optimal solution; in this situation, the efficiency of heuristic method 

becomes more significant.  

Table 5-7  Ratio of run time (CPLEX to Heuristic) 

Measurement Optimal LP Relaxation solution 

mean 1037 2544 
median 13 1316 
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To sum up, the performance of proposed heuristic procedure is verified. The 

proposed heuristic method achieves almost same quality as the commercial solver 

CPLEX for simple-size problem instances. For moderate-size problem instances, the 

proposed heuristic method reports a feasible solution that is no worse than CPLEX just in 

a few minutes. For large-scale problem instances, the heuristic approach achieves around 

85% solution quality to the upper bound; while CPLEX cannot report any feasible 

solution. Although the run time of the heuristic method depends on problem setting, the 

extended experiments indicate that the heuristic methods can solve problem instances up 

to 100 orders within 6 minutes. Therefore, the proposed heuristic method is effective and 

efficient for solving practical problem instances of industrial size. 
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6 A CASE STUDY 

To further illustrate modeling and solving order selection and lot sizing problem 

in the MTO environment, a case study is introduced in this chapter. A comparative study 

verifies the applicability of the proposed heuristic solution approach.  

6.1 Description of a Industrial Case 

This research has been applied to a Miami based company. The company makes a 

large variety of gears, such as bevel gears, sprockets, anti-backlash gears, etc. The 

manufacturing process is a typical MTO operation and job shop is used for production. 

Each customer order only contains one single product and no bill of material (BOM) is 

involved. Customer orders are first received by sales department; engineering department 

plans manufacturing process according to customer requirements. Review of incoming 

orders is conducted at the beginning of every week. Now the company faces heavy 

customer demands; on-time delivery is a primary requirement. However, the production 

capacity is limited, so order selection decision needs to be made for orders arrived during 

recent week. Some customers place orders with multiple due dates (mainly for heavy 

buyers), so the company needs to decide on how to combine demands at different 

periods. If the requested quantity of a customer order is too large, the company also needs 

to split the order, so as to expedite order fulfillment. If an order is accepted, it is released 

to the production department as a work order. Each work order involves several 

operations according to the process plan. As an example, Figure 6-1 illustrates the 

process plan for an order on the spur gears. Some work orders involves complicated 

products may need more than 20 operations; therefore, scheduling operations on the job 

shop is a difficult task for production planners. Since order selection, lot sizing and 
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scheduling decisions are involved in this industrial case, it therefore best illustrates the 

problem discussed in the present study. 
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Figure 6-1  An exemplary process of work order 

6.2 Implementation 

The proposed heuristic methods are applied as a Java application. At the 

beginning of each order review period, a problem instance is formed and solved with the 

application. If an order is partially completed, only the remaining routes are considered. 

To avoid an in-process order being rejected, the order is imposed with additional 

extremely large initial gross profit. After solving the problem, the extra initial gross profit 

is deducted so that the total profit will not be affected. Since the WMP heuristic is used 

for order selection, such a conversion can ensure an in-process order always be selected 

and scheduled first. This case study uses three months operational data. Therefore, 12 

problem instances are under consideration. In the operational data, some operations are 

associated with fixed production time. To facilitate problem modeling, they are converted 

as operations with setup time only. The basic system parameters for the problem formed 

are listed in Table 6-1. According to the proposed heuristic procedure (see Section 5.2.6), 

the minimum cost heuristic (LS1) is used for lot sizing. EOFT is employed as the 

scheduling rule and the least profit (LP) rule is taken as the order deselection rule.  
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Table 6-1  System parameters for each instance 

week # p sc_Ratio demand_VC binVar load_median load_max 

1 17 9.27 374.68  1,259,806 0.03 0.39 

2 14 8.64 327.36  1,413,158 0.02 0.46 

3 13 6.98 137.54  2,694,432 0.04 0.86 

4 29 6.67 43.14  3,477,486 0.04 1.19 

5 41 8.57 50.79  4,612,662 0.04 1.29 

6 37 10.56 118.9  6,087,406 0.04 1.44 

7 38 11.25 70.74  8,986,100 0.04 1.62 

8 27 13.06 9385.54  1,438,020 0.01 0.11 

9 20 7.39 2864.73     437,398 0.03 0.23 

10 15 16.25 612.36  2,707,426 0.03 0.57 

11 19 18.9 1695.11  1,736,974 0.03 0.49 

12 40 14.8 11458.94     437,998 0.03 0.23 

 

6.3 Result Analysis 

The applicability of the proposed heuristics is verified by comparing them with 

legacy planning tool. With the current tool, orders are firstly classified into priority list 

and non-priority list. Orders in the priority list are first planned. Orders in the same list 

are scheduled with the critical ratio rule. The orders that are already in process are set as 

prioritized orders, since they should not be rejected. The newly incoming orders are put 

into the non-priority list. They need to be reviewed for scheduling feasibility. An order is 

rejected if it cannot be delivered on time. In this scheduling tool, lot sizing is done with 

the Lot-for-Lot policy.  

The comparative results are shown in Figure 6-2. Here, cP  represents the total 

profit of selected orders from current scheduling tool; hP  denotes the total profit obtained 

from the application which has been applied with the proposed heuristics. It indicates the 
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proposed solution approach performs better for most planning periods. On the average, it 

achieves 16.62% better profit than current planning method. This is mainly resulted from 

selecting more incoming orders. Also, all problem instances can be solved within 15 

seconds. 

-

50,000

100,000

150,000

200,000

250,000

Pc Ph %Improvement

Pc  120,841  131,935 114,904  139,176  143,750  115,503  108,809 118,351 128,170  139,063  133,970  145,116 

Ph  174,995  202,558 131,355  132,336  145,644  127,749  115,924 133,193 168,502  161,364  133,982  164,229 

%Improvement 44.81% 53.53% 14.32% -4.91% 1.32% 10.60% 6.54% 12.54% 31.47% 16.04% 0.01% 13.17%

1 2 3 4 5 6 7 8 9 10 11 12

 
Figure 6-2  Result of implementing proposed heuristic approach 

 
 

From this case study, the applicability of the method is verified, as it can be 

implemented in a real-life case. With the proposed approaches, the company creates a 

feasible production plan that achieves a better profit and ensures on-time delivery at the 

same time. Since the proposed heuristic method can runs in a short time, the company 

can also use it for what-if analysis, such as price negotiation, due date determination, etc. 

The what-if analysis may require running the heuristics for multiple iterations, but the run 

time would not be an obstacle.  
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7 CONCLUSIONS AND FUTURE RESEARCH 

This chapter summarizes this research in Section 7.1.  Future research is presented 

in Section 7.2.    

7.1 Summary 

This research addresses the problem of coordinating order selection, lot sizing, 

and job shop scheduling problems with its objective of maximal profit.  This problem 

constantly faces managers in an MTO operation. These three decision problems are 

usually treated separately in the literature and are mostly led to heuristic solutions. 

Therefore, this research aims to answer the following questions: (1) how to select 

customer orders to potentially maximize total profit, (2) how to plan orders to make them 

profitable and schedulable, and (3) How to schedule production lots to ensure on-time 

completion. 

To answer these questions, the research is broken down to two phases. The first 

phase focuses on analytical definition on the research problem and mathematical 

modeling. The second phase is to design the heuristic solution approach that can solve 

problem in practical size.  

In the first phase, the research problem is defined as a job shop problem in 

concurrence with lot sizing and order selection consideration. A subset of incoming 

customer orders need to be selected in order to maximize the total profit, while meeting 

the deadline of each selected order. In this problem, only single product is included in 

each order. Each order may have multiple delivery dates and each due date must be met. 

To satisfy the time-varying customer demands, lot sizing should be conducted for saving 

production cost and balancing resource utilization at different planning periods. The lot 
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sizing cost is composed of setup and holding costs; it offsets the revenue obtained from 

selected orders. Lot sizing also affects workload in the job shop in each planning period, 

because lot size determines processing time of corresponding operations. In this problem, 

profit of an order is defined as the initial gross profit minus lot sizing cost; initial gross 

profit refers to the price of an order deducted by some fixed production cost. With 

considering the nature of the concurrent problem, a MILP model is developed by 

integrates three types of decision variables. In this model, initial gross profit of orders, 

process plan, manufacturing time and costs are considered. Some what-if scenarios are 

discussed to illustrate the usefulness of this model, but only for small size problems. 

Experiments on large-scale problems show that directly solving the mathematical model 

takes a prohibitively long computation time. Therefore, the second phase is focused on 

developing an efficient heuristic solution approach.  

In this dissertation, a set of rules on order selection, deselection and job shop 

scheduling are proposed. Also, two lot sizing heuristics are presented. The minimum cost 

heuristic (LS1) lot sizing method employs the WW algorithm to generate initial lot sizes. 

Then lot sizes are adjusted to achieve scheduling feasibility. The minimum cost increase 

heuristic (LS2) employs the DS method as the framework for lot sizing. It works in a 

chronological manner. At each working period, the decision on conducting advance 

production is mainly based on a profit index that measures decreasing of average cost per 

period per capacity. Also, the feasibility check is conducted for both the working period 

and future periods.  

 With experiments on simulated problem instances, the rules of selecting 

heuristics are obtained. Basically, selection of lot sizing heuristic depends on system 
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parameters, which quantify different aspects of a problem instances. The proposed LS2 

heuristic performs the best, when the demand-to-capacity ratio at the bottleneck machine 

(i.e., maximum work load ratio) is high. This method can better deal with heavily loaded 

job shop, mainly because more feasibility checks are conducted. The proposed LS1 

heuristic is suitable for less loaded job shop, because the minimum lot sizing cost are 

more likely to be maintained. Order selection with WMP and scheduling with due date 

related rules (e.g. SBN and EOFT) are found to be the best choice. Compared to the 

commercial solver CPLEX, the heuristic approach is more effective and efficient. Figure 

7-1 shows the solution quality under different CPLEX solution categories. Furthermore, 

the modeling and heuristic approaches are verified with an industrial case. It shows that 

the proposed solution approach achieves 16% better profit compared to the legacy 

planning tool.  
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median 100.00% 99.40% 84.90%

Cplex Optimal Cplex Feasible LP Solution

 

Figure 7-1  Ratio of heuristic solution to CPLEX solution  

 

The contribution of this research is twofold. First, a mathematical model that 

formally defines the order selection and lot sizing problem under the MTO environment 

is presented. It is the first model that integrates the three decision problems. In the model 
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formulation, the disjunctive constraints are converted to linear constraints by reformation 

of a set of logic constraints. Also, a unique constrain that ensures a production lot to be 

completed in a designated time interval is designed. These constraint servers for 

coordinating lot sizing and job shop scheduling. Secondly, the proposed solution 

approach is able to solve large-scale problem within a practical time. The solution 

performance is shown to be effective and efficient by comparing with the commercial 

solver CPLEX. The proposed heuristic procedure can be adopted for supporting MTO 

operations. 

7.2 Future Research 

This research can be extended by improving current heuristic solution approach. It 

was found out in developing the heuristic solution that scheduling was most time 

consuming in search for solutions. One possibility to further improve heuristic’s 

efficiency is to consider rescheduling of partial operations (as defined in the routings). 

One possible drawback with partial rescheduling is being trapped in a local search loop. 

Adding random selection to re-scheduling could help break a local trap. 

In terms of improving solution quality, meta-heuristic approaches such as GA, 

TS, and SA could be applied to the order selection process. The solution obtained from 

the proposed heuristic would be a good initial solution candidate for a meta-heuristics 

procedure. The neighborhood search could further improve the solution by engaging in 

pair-wise exchange of order acceptance. 

This research can also be extended by changing the problem setting to fit other 

industrial applications. For example, some customers could accept late delivery with 

penalties. In such case, the shifting bottleneck concept could be imbedded in the 
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proposed heuristic framework for job shop scheduling, when the objective is related to 

weighted lateness. Similarly, the DS method could be extended for lot sizing decision, by 

incorporating lateness penalty in its look-ahead feasibility routine. 

Another possible extension is to consider orders with product assembly and BOM. 

It would extend the application of this research into companies which engage in build-to-

order operations that involve fabrication of components and assembly of finished goods. 

The extension may start with first solving the problem at a parent product level and then 

handle components in a hierarchical fashion, similar to a MRP process. Common 

components typically are more flexible for lot sizing and scheduling, for they are shared 

by multiple orders.  Accordingly one might consider scheduling common components 

last to maximize the use of available resources. 
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