










  

65 

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Occupancy (%)

F
lo

w
 R

at
e 

(V
eh

/H
r)

 
(C) Occupancy vs. Flow Rate 

Figure 3-5 Clustering Results for a Detection Station on SR-826 

3.3. Queue Length Estimation 

This study requires the estimation of queue length when using the travel time estimation 

method based on traffic flow theory.  This section discusses how the queue length is 

estimated in this study based on detector data. 

Based on the identified traffic congestion states at the upstream and downstream 

detector stations in the previous step, each roadway link can be identified as one of four 

states: head of a queue, tail of a queue, in queue, or outside a queue.  For an identified 

head of a queue link, the traffic state at the upstream station is determined to be 

congested, that is, in Cluster III or IV, and the traffic states at the first and second 

downstream stations are in Cluster I or II, as shown in Figure 3-6(a).  The consideration 

of the second downstream station in addition to the first is to avoid a situation where a 
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temporary traffic state change in the first downstream station can result in a sudden 

change in the calculated queue length value.  On the other hand, if both the two 

upstream stations are uncongested, that is, in the region of Cluster I or II, and the 

downstream station is in the Cluster III or IV, the link is categorized as a tail of a queue, 

as shown in Figure 3-6(b).  The links between a head of a queue link and a tail of a 

queue link are identified as in-queue links, and the remaining links are identified as 

outside of queue links. 

(a) Head of a Queue 

(b) Tail of a Queue 

Figure 3-6 Identification of Head and Tail of a Queue 

(Note: the number shown in the box represents the state) 

Once the head and the tail of a given queue are identified, the queue length can be 

estimated.  In addition, as another important parameter to the methodology, the queue 

status (growing, dissipating, or stationary), can be determined by comparing the current 

locations of the head and tail of the queue with those at previous timestamps.  Figure 

3-7 presents one example of queue identification for the SR-826 limited access facility in 

the eastbound direction on January 13, 2009.  As shown in this figure, the queue starts 

from the link located between station DS-1533E and DS-1535E at time 7:08 A.M. and 

extends to the first upstream link due to an incident at DS-1533E.  The queue length 

starts to decrease at time 8:16 A.M. and completely dissipates at 8:48 A.M.   
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Figure 3-7 Example of Queue Identification Results 

 

 

 



  

68 

3.4. On-Line Travel Time Estimation 

Travel time is estimated in this study using different methods for on-line (based on 

real-time data) and off-line (based on historical data) applications.  As clarified later in 

this chapter, additional information is available in the case of off-line applications, 

allowing for the more accurate estimation of travel time.  This section describes the 

on-line travel time estimation methods investigated in this study.   

As mentioned earlier, the hybrid approaches developed in this study apply 

different methods to estimate travel time based on the identified congestion level and 

queue location.  Two on-line hybrid travel time estimation models are developed herein: 

the first, referred to as On-Line Hybrid Model 1, combines a speed-based method with a 

traffic flow theory-based method; the second, referred to as On-Line Hybrid Model 2, 

combines two different speed-based methods.  Below is a description of these hybrid 

models.   

3.4.1. On-Line Hybrid Model 1 

The rationale behind Model 1 is that previous studies have reported that speed-based 

travel time estimation methods work well under free-flow conditions, while travel time 

estimation methods based on traffic flow theory work well under congested conditions.  

Thus, the combination of these two estimation methods has the potential of producing a 

better performance.  Model 1 uses a speed-based method to estimate travel times for 

non-congested segments and a traffic flow theory-based method for congested segments.     

The speed-based method selected for use is the Mid-Point method, since it is 

widely used in practice and was shown in this study to perform well for uncongested 



  

69 

conditions, as described later.  This method estimates the travel time along uncongested 

links as follows: 
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where TTi,t is the estimated travel time for link i at time t.  Li denotes the length of the 

link that connects upstream and downstream detector station, and Si,1,t and Si,2,t are the 

speeds at the detection stations upstream and downstream of the link, respectively.   

The travel time for a congested (fully queued) link is estimated using an improved 

traffic dynamics approach developed by Vanajakshi (2009), as follows:  
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where qi,2,t is the flow rate at downstream station of the link i at time t.  The ki in this 

equation is the link density, which is calculated as the average of the densities at the 

immediate upstream and downstream stations.  It should be mentioned that the density k 

in the above equation is estimated from the measured occupancy and the average 

effective vehicle length estimated by using the measured values of speed, volume count, 

and occupancy when the traffic is free-flow, that is,  

            



t tji

tjijtji
jeff q

SNO

m
L

,,

,,,,
,

8.521
                  (3-14) 

            j
jeff

tji
tji N

L

O
k 




,

,,
,,

8.52
                    (3-15) 

where Leff,j is the average effective vehicle length at detector station j, N is the total 

number of lanes at the detector station, and m is the total number of detector records with 

free-flow traffic conditions within the same peak period.    
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When the link is located at the head of a queue, it may be identified as partially 

queued (when the queue is identified upstream of the link but not downstream of the 

link).  Therefore, the travel time estimation for a head of queue link consists of two 

parts: one for the queued section and one for the unqueued section, as shown below. 
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where Li,1 is the length of queue section within the link, while Li,2 is the remaining 

uncongested section.  Similar expression can be used for the travel time estimation of a 

tail of a queue link since such a link can be partially queued also. 

While testing the above model, it was determined that the fast change in the 

queuing status during lane blockage incident conditions requires two refinements to the 

above model.  The refined model is referred to as the Refined On-Line Model 1.  The 

first refinement is to predict the queue length during the queue forming stage to account 

for the lag between the times the vehicles receive the information (e.g., at a Dynamic 

Message Sign location) and the times they arrive at the tail of the queue, as shown in 

Figure 3-8.  

The predicted queue length is calculated based on the current location of the 

vehicle, current ending location of the queue and the propagation of the backward 

forming shock wave.  This propagation speed is calculated as follows:      
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where b denotes the shock wave speed, q2 and q1 are the flow rates within and upstream 

of the queue, respectively, and k2 and k1 are the corresponding densities.  In this study, 

q2 and k2 are approximated by the flow and density at the downstream station of the tail 

of the queue, while q1 and k1 are the traffic parameters at the upstream station of this link.  

Note that when the downstream station of the tail of the queue is within the transition 

region, the parameters at the next downstream station will be used as q2 and k2.  The 

speed within the queued section is estimated as the average speed of all of the detector 

stations within the queue.  This speed is calculated as a function of flow and density.  

 

Figure 3-8 Illustration for the Need of Refinement 1 

The second refinement to the model considers a front recovery shock wave a few 

minutes before the time at which the incident is forecast to be cleared.  This refinement 

can be applied only when such forecasting is possible, for example, by an operator who is 

monitoring a real-time video display of the incident scene and communicating with the 

time t: 

time t+nt: 

time t+t: 

 … 
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incident management team1.  This refinement is to account for vehicles that receive 

travel time information at the DMS locations, with the travel time calculated under the 

assumption that the front of the queue due to the incident at a given location is fixed at 

that location, but in fact, because the traffic is in the recovery stage after the lane 

blockage is cleared, the queue length is decreasing with the head of the queue moving 

upstream due to the fast moving backward recovery shock wave.  If this reduction in 

queue is not considered then the travel time received by the affected vehicles at the DMS 

location will be an overestimated travel time.  Figure 3-9 presents an illustration of this 

situation.  

  

Figure 3-9 Illustration for the Need of Refinement 2 

The refinement applied to address this issue includes the estimation of the 

recovery shock wave speed as follows:  
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1 The utilization of an incident duration prediction model was also considered but 

eliminated from further consideration due to the expected variation in the durations of 

incidents with similar attributes.   
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where f represents the speed of the recovery shock wave, c1 is the capacity during the 

incident, and c2 is the queue discharge rate during incident clearance.  These two 

parameters can be estimated from the normal roadway capacity and the capacity 

reduction factor during the incidents.  The capacity and capacity reduction can be 

estimated based on the Highway Capacity Manual (HCM) procedures and parameters, or 

estimated based on detector station data, if this is possible.  Parameters k1 and k2 are the 

corresponding densities.  The reduction in queue length due to the recovery shock wave 

is then calculated based on the vehicle starting location, the time that incident starts to 

clear, and the speed of recovery shock wave.  The average speed, determined from 

capacity c2 and density k2, is used for those recovered roadway segments.        

It should be pointed out that at the final stage of this study, it was found that 

similar to this study, Yi (2009) developed a travel time estimation framework by 

combining a speed-based method with a traffic-flow theory based method and a 

statistics-based method.  However, Yi’s study is different from this study in that it 

requires 1-second detector data and the knowledge of the timestamps when each vehicle 

enters and exits the detection zone.  This study requires 20-second detector data for 

speed, volume count and occupancy, which is the typical aggregation level of detector 

data in traffic management systems.  Further, Yi (2009) only tested the algorithms for 

very short links with a length of up to 3,300 feet, which may not capture the impacts of 

queue propagation, and also did not test the algorithm during incident conditions.  

Finally, for on-line application, Yi’s study did not take the dynamics of queue into 

consideration.  
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3.4.2. On-Line Hybrid Model 2 

Instead of combining a traffic flow method and a speed-based method as is done in 

On-Line Hybrid Model 1, Hybrid Model 2 combines two different speed-based methods: 

the Mid-Point method and the Minimum Speed method.  The rational is that the 

literature review shows that the Mid-Point method underestimates travel time during 

congested conditions.  Thus, using the minimum of the speeds measured at upstream 

and downstream detectors, as is done in the Minimum Speed method, may produce better 

results.   

The existence of the queue and its status, identified by clustering analysis as 

explained above, can be used with the On-Line Hybrid Model 2 to select the appropriate 

method for travel time estimation, as follows: 

 If there is no queue identified along a path, the traffic is under non-congested 

conditions and the Mid-Point method is applied to estimate the travel time for 

these conditions. 

   When the queue exists and it is growing backward, the Minimum Speed 

method is selected for the travel time estimation to capture the dynamic 

growth of the queue.  Since the Minimum Speed method uses the lower 

value of the upstream and downstream station speeds to represent the average 

link speed, it implicitly considers the queue propagation to the upstream 

station. 

 If the queue is dissipating with a forward recovery shock wave, which occurs 

at the time when the recurrent congestion starts to dissipate at the bottleneck 

due to the reduction of upstream demands, the Minimum Speed method is also 
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applied to account for the congestion considering that the recovery shock 

waves in this case is slow and not as fast as the recovery shock wave in case 

of incident clearance, which is described next. 

 If the queue is dissipating with a backward recovery shock wave, such as in 

the case of incident clearance, the travel time estimation switches back to the 

Mid-Point method.  This is because the fast moving recovery shock wave 

will result in a fast reduction in queue length and it is expected that there will 

be an overestimation if the Minimum Speed method is used in this case.   

Similar to Hybrid Model 1, a refinement is applied to Hybrid Model 2 by 

including in the calculation a front recovery shock wave that is used to account for the 

incident recovery conditions.  The procedures to estimate the impact of the recovery 

shock wave speed on the length of the congested region is the same as that used in Model 

1.  However, Model 2 does not need to account for the near-term growth of the queue 

length during the queue forming stage under incident conditions, as was done in the 

Refined Hybrid Model 1, since the Minimum Speed method already calculates the link 

travel time within the queue if the downstream detector station indicates the presence of a 

queue.   

3.5. Off-Line Travel Time Estimation 

Although this study mainly focuses on the real-time (on-line) estimation of travel time, 

for comparison purposes and for potential use for off-line applications, corresponding 

hybrid off-line estimation models that utilize historical data are also developed.  This is 

also useful since off-line estimates have been used in the training process of real-time 
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short-term travel time prediction methods such as Neural Network, Time Series, 

Regression, and Nearest Neighbor. 

The difference between on-line and off-line estimation methods is that for on-line 

applications, future traffic conditions along the paths of the vehicle are not available and 

only the instantaneous travel time (based on the traffic conditions at the time of the 

estimation) can be used in the estimation.  For off-line estimation, the traffic conditions 

at later time periods are determined based on historical data.  Thus, the actual travel 

time experienced by the vehicles can be estimated based on traffic conditions, as the 

vehicle progresses in its route from one link to the next.   

The method used in this study divides the whole time duration into small time 

periods that are critical to the temporal aggregation level of the detector data, as shown in 

Figure 3-10. 

Figure 3-10 Schematic Diagram for Off-Line Travel Time Estimation 

Space 

Time 

x2 

x0 

x3 

Section 1 

Section 2 

t1 t0 t2 Period 1 Period 2 

x1 

Section 3 

Period 3 

Vehicle Trajectory 

(x0, t0) 

(x1, t1) 

(i+1, t) (i+1, t+1) 

(i, t) 

(i, t+1) 



  

77 

As shown in this figure, a vehicle enters cell i at location x0 and time t0.  The 

remaining time in this time period is compared to the time that is required to reach the 

downstream station, and the minimum value of these two values is used in the travel time 

estimation for this cell.  Depending on the location of the exit point (x1, t1), the vehicle 

can either enter the next link during the same period, which is cell (i+1, t); stay on the 

same link but experience different traffic conditions at time t+1, which is cell (i, t+1); or 

enter the downstream link at the next period of time, which is cell (i+1, t+1).  The 

resulting route travel time of a vehicle is the time that the vehicle arrives at the 

destination (last detection station on the path for which the travel time is estimated) 

minus the time that the vehicle departs from the origin (first detection station on the path 

for which the travel time is estimated).  This concept is similar to the concept presented 

by Van Lint (2004).  However, instead of using the Piece-wise Linear Speed method as 

was done in the study by Van Lint (2004), the hybrid methods developed in this study are 

used to calculate the travel time within each cell.  In parallel to the two on-line hybrid 

models mentioned above, two hybrid off-line models are also developed, which are 

explained below.  

3.5.1. Off-Line Hybrid Model 1 

Similar to the On-Line Hybrid Model 1, the travel time within each cell for the Off-Line 

Hybrid Model 1 are either estimated by the Mid-Point method or Flow-based method, 

depending on the congestion level identified by the clustering analysis, as described 

above.  Given the entry location and time (x0, t0) at each cell, the exit location and time 

(x1, t1) can be written as follows: 
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where xd indicates the downstream detector location for each cell, tp refers to the ending 

timestamp for the cell, which corresponds to the time of the next travel time update, t(xd) 

is the timestamp when reaching the downstream detector location, and x(tp) is the location 

that can be reached by the vehicles at timestamp tp.  The expressions for these two 

parameters vary with the congestion level in the cell.  Below is a detailed discussion of 

how to calculate t(xd) and x(tp) under different conditions. 

Case 1: The cell is free of congestion. 

In this case, the Mid-Point method is used for travel time estimation as it performs well 

under uncongested conditions.  Since the Mid-Point method assumes that each detector 

speed measurement represents the speeds of half the distance to the next detector on both 

sides, the travel time estimation in this case is divided into two parts, depending on 

whether the entry point of vehicles x0 is within the first half of the cell or the second half 

of the cell. 

If the entry point of vehicles x0 is within the second half of the cell, that is,  
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where xu indicates the upstream detector locations; then the corresponding timestamp 

when reaching the downstream detector location t(xd) is expressed as: 
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The location x(tp) that can be reached by the vehicles at the timestamp tp is 
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In the case that the entry point of vehicles is within the first half of the cell, as expressed 

below,  
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The expression for t(xd) is 
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The location x(tp) at timestamp tp is then written as: 
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where t(xm) is the timestamp when the vehicles reach the mid-point of the cell, which is 

calculated by the following: 
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Case 2: The cell is in-queue. 

When the status of the cell is in-queue, the flow-based method is applied to calculate t(xd) 

and x(tp) as follows:  
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where ku and kd are the densities at the upstream and downstream detector locations, 

respectively.  qd represents the flow rate at the downstream detector location of this cell. 

Case 3: The cell is the head of a queue. 

Similar to the On-Line Hybrid Model 1, the head of queue cell consists of two parts, one 

within the queue and one outside the queue, that is, an uncongested part downstream of 

the congestion.  If the vehicles enter the cell in the uncongested part, the values of t(xd) 

and x(tp) are obtained from the downstream detector speed, that is, 
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However, if the vehicles enter the cell within the congested part, the corresponding 

expressions for t(xd) and x(tp) are, 

                 
d

qd

u

u
qd S

xx

q

k
xxtxt


 )()( 00              (3-31) 

         















pqp
u

u

pqqpdq
u

u

p

txttt
k

q
x

txtxttStxt
k

q
x

tx
)()(

)())(())((
)(

00

00

      (3-32) 

where xq is the ending location of the queue within the cell and t(xq) is the timestamp 

when the vehicles reach the location xq.  The vehicles may exit the cell from either the 

congested or uncongested region, and thus two different expressions are formulated for 

x(tp) in Equation 3-32. 
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Case 4: The cell is the tail of a queue. 

Contrary to the head of a queue case described above, the first part of a tail of a queue 

cell is uncongested while the second part of this cell is within the queue.  The method 

used for the estimation of travel time for a tail of queue cell follows the same idea as the 

head of queue cell. 

If the entering location x0 of a vehicle is within a congested region, the 

expressions for t(xd) and x(tp) are written as 

          
d

d
dd q

k
xxtxt  )()( 00                          (3-33) 

                   )()( 00 tt
k

q
xtx p

d

d
pd                     (3-34) 

Otherwise, the corresponding expressions are  
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where xq is the starting location of the queue within the cell and t(xq) is the timestamp 

when the vehicles reach the location of xq.   

As mentioned above, the resulting route travel time of a vehicle is the time that 

the vehicle arrives at the destination (last detection station on the path for which the 

travel time is estimated) minus the time that the vehicle departs the origin (first detection 

station on the path for which the travel time is estimated).   
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3.5.2. Off-Line Hybrid Model 2 

The Off-Line Hybrid Model 2 utilizes the Mid-Point method for uncongested cells and 

the Minimum Speed method for the fully or partially congested cells.  The combination 

of these two speed-based methods aims at utilizing the advantages of each individual 

estimation methods and thus improving the overall estimation performance.    

With the Off-Line Hybrid Model 2, the exit location and exit time (x1, t1) can be 

expressed as the function of entry location and time (x0, t0) as in Equation 3-19.  For the 

uncongested cells, the expressions for t(xd) and x(tp) in this equation are exactly the same 

as those described in Model 1 and are omitted here for brevity.   

The expressions of t(xd) and x(tp) for fully congested or partially congested cells 

are as follows: 
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Note that since the traffic parameters at later time periods are known, the off-line 

hybrid models do not need the refinements to account for fast moving shock waves as the 

on-line hybrid models.  Compared to the previous travel time estimation studies 

(Dhulipala 2002; Xia and Chen 2007), the hybrid off-line models developed in this study 

do not need additional information about incidents, such as the incident occurrence time 

and duration, since the clustering analysis described above will automatically detect the 

occurrence and disappearance of queue.     
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3.6. Summary 

In this chapter, two on-line as well as two off-line hybrid freeway travel time estimation 

models were developed based on point detector measurements.  Before exercising the 

model, detector data is checked, smoothed, aggregated, and imputed.  One of the 

important components of the developed models is incorporating clustering analysis in the 

travel time estimation model to identify traffic conditions.  This is a new contribution 

from this study.  Based on congestion level and queue status identified by the clustering 

analysis, different travel time estimation methods are selected in the developed models to 

take advantage of each individual estimation method.  Hybrid Model 1 uses the 

Mid-Point speed-based method for estimating travel time along uncongested links, and a 

traffic flow-based method for travel time on congested links.  Hybrid Model 2 combines 

two speed-based methods: the Mid-Point method for the uncongested condition and the 

Minimum Speed method for congested conditions.  Variations of these models are 

applied to real-time and off-line conditions, with the off-line versions taking advantage of 

the travel time at future time steps that are known for off-line applications, but not 

real-time applications.  For real-time applications, refinements to the hybrid models are 

developed based on shock wave analysis to capture the dynamics of queue propagation.    
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CHAPTER 4 

MODEL ASSESSMENT AND COMPARISON 

The accuracy and reliability of travel time estimates obtained using various existing 

speed-based methods including the SunGuide algorithm, a simple traffic flow-based 

method based on flow and occupancy, the modified N-D method (a traffic flow method), 

and the hybrid models described in Chapter 3, are evaluated and compared in this study.  

The comparisons are made using simulation models as well as real-world travel time data.  

The description of existing methods included in the comparison of this study can be 

found in the literature review section in Chapter 2.  

4.1. Study Corridor 

Figure 4-1 shows the corridor used as a case study in the comparison.  The study 

corridor is the eastbound section of SR-826, located in Miami-Dade County, Florida, 

starting from the location of detector DS-1509E to the location of detector DS-1549E.  

It includes six interchanges with a total length of about 6.4 miles.  As shown in Figure 

4-1, there are 21 true presence microwave detector stations deployed along this section 

with a spacing that ranges from between 0.3 to 0.5 miles.  However, it is found that 

detector station DS-1513E reported erroneous data during the period of the study, and 

therefore this station is excluded from the analysis.    
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Figure 4-1 Study Corridor and Detector Locations 

4.2. Performance Measures 

Two performance measures are used to quantify the accuracy of the estimated travel 

times.  These performance measures are the mean absolute error (MAE) and mean 

absolute percentage error (MAPE).  These two performance measures are defined as 

follows: 
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where TTi is the ith estimated travel time, and TTi,a is the corresponding real-world or 

simulated travel time (depending on the source of the ground truth data).  N is the total 

number of estimates. 

Because FDOT districts generally post ranges of travel time values rather than 

fixed travel time values on their traveler information devices, it is necessary to quantify 

the reliability of the estimated travel times, as well.  In this study, the reliability of travel 
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time estimates is defined as the percentage of vehicles with travel times that are within 

the range of travel time posted on the traveler information devices.  In addition, the 

percentage of vehicles with travel times that are less than the posted minimum travel time 

(referred to as percentage early in this study) as well as the percentage of vehicles with 

travel time greater than the posted maximum travel time (referred to as percentage late) is 

also reported to differentiate between these two conditions.  This study calculates the 

travel time ranges that are displayed to travelers using the same method used by the 

traffic management centers (TMCs) in South Florida in their real-world operations 

(Florida Department of Transportation District 6, 2010).  With this calculation, if the 

estimated travel time is less than five minutes, the traveler information message to 

travelers is “Under 5 Minutes”.  If the travel time is more than 35 minutes, the message 

is “Over 35 Minutes”.  A 3-minute range is used when the estimated travel time is 

between 5 minutes and 10 minutes, and a 5-minute range is used for travel times between 

10 minutes and 35 minutes. 

4.3. Assessment Based on Simulation Data 

First, the different travel time estimation methods were tested using a simulation model 

that is calibrated for incident and no-incident conditions.  The utilized simulation tool is 

the CORSIM microscopic simulation tool.  The development and calibration of 

simulation models using data collected from ITS have been addressed as part of a 

separate FDOT research project conducted by Hadi et al. (2010).  The details of these 

procedures can be found in the final report of the research project mentioned above and 

will not be repeated here.   
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Three scenarios were used in the comparison.  The first scenario represents 

uncongested conditions and the other two represent non-recurrent congestions caused by 

one-lane blockage incidents with different attributes.  It should be noted that the 

comparison based on simulation presented in this section assumes that all detector 

measurements have 100% accuracy.  This assumption is relaxed in the next chapter to 

determine the impacts of detector errors on the results.  The temporal aggregation level 

of travel time used in the comparison is two minutes, which is a common aggregation 

level used in travel time estimation.  The SunGuide system can be configured to 

estimate travel time based on the Mid-Point and Point-to-Point methods.  The measured 

speeds are capped by the speed limit (for SR-826, the speed limit is 55 mph) in the 

SunGuide system before being used in the travel time calculation.  The comparison with 

the SunGuide estimation is done with and without the capping of the speed based on the 

Point-to-Point method. 

4.3.1. Simulated Uncongested Scenario 

Figure 4-2 presents the travel time results for uncongested conditions and Table 4-1 

shows the accuracy and reliability of various on-line travel time estimation methods for 

this scenario.  The improved N-D method in Table 4-1 refers to the method developed 

by Vanajakshi (2009), which was selected as an example of the latest traffic flow 

theory-based methods that can be found in the literature.  The flow-based method in this 

table is a method that uses the volume count and occupancy to estimate the travel time as 

described in Equation 3-13.  The purpose of including this method is to examine the 
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performance of the flow-based estimation method when not combined with speed-based 

methods.   
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(a) On-Line Estimation Results 
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(b) Off-Line Estimation Results 

Figure 4-2 Estimated Travel Time for Simulated Uncongested Condition  
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As show in Table 4-1, almost all of the on-line travel time methods can achieve 

good accuracy and reliability during uncongested conditions except the Point-to-Point 

method with capped speed, which overestimates the travel time due to the capped speed.  

The comparison among the different speed-based methods shows that the Minimum 

Speed method has slightly higher errors and lower reliability relative to the other 

speed-based methods, although it still performs well.  It also can be seen in Table 4-1 

that the developed models perform well in this case.  Compared to the on-line 

estimation methods, the off-line methods can achieve slightly better estimation 

performance, as shown in Table 4-2.  However, this improvement is not significant. 

Table 4-1 Accuracy and Reliability of Tested On-Line Travel Time Estimation 
Methods for Simulated Uncongested Condition 

Method 
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% Late

Point-to-Point Method w/ Capped Speed 0.74 11.77 80.59 19.41 0 

Point-to-Point Method w/o Capped Speed 0.12 1.92 100 0 0 

Mid-Point Method  0.08 1.31 100 0 0 

Minimum Speed Method  0.14 2.18 97.58 2.42 0 

Average Speed Method  0.08 1.34 100 0 0 

Minnesota Method  0.08 1.32 100 0 0 

Linear Speed Method  0.08 1.33 100 0 0 

Flow-Based Method  0.15 2.38 99.5 0.44 0 

Improved N-D Method  0.15 2.38 99.29 0.71 0 

Developed Hybrid Model 1  0.08 1.31 100 0 0 

Developed Hybrid Model 2  0.08 1.31 100 0 0 
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Table 4-2 Accuracy and Reliability of Tested Off-Line Travel Time Estimation 
Methods for Simulated Uncongested Condition 

Method 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Point-to-Point Method  0.11 1.76 100 0 0 
Mid-Point Method  0.06 0.94 100 0 0 
Minimum Speed Method  0.12 1.99 97.83 2.17 0 
Average Speed Method  0.06 0.99 100 0 0 
Minnesota Method  0.06 0.95 100 0 0 
Linear Speed Method  0.06 0.97 100 0 0 
Constant Acceleration Method 0.06 0.96 100 0 0 
Developed Hybrid Model 1  0.06 0.94 100 0 0 
Developed Hybrid Model 2  0.06 0.94 100 0 0 

 

4.3.2. Simulated Incident Scenario 1 

Figure 4-3(a) presents the results of the on-line travel time estimation for one of the 

incident scenarios used as a case study and referred to as simulated incident scenario 1 in 

the discussion.  In this simulation case, a one-lane blockage incident occurs at 7:35 A.M. 

and lasts for 25 minutes.  For clarity, Figure 4-3(b) presents the same results presented 

in Figure 4-3(a) but only for the Point-to-Point method with capped speeds (i.e., 

SunGuide method), the on-line Minimum Speed method, and the on-line hybrid models 

developed in this study.  Figure 4-3(c) shows the corresponding off-line travel time 

estimation results.  Figure 4-3(a) shows that, unlike the uncongested case, the results 

obtained from different travel time estimation methods vary significantly.  It appears 

that the Minimum Speed method is comparable to the other speed-based methods for this 

incident scenario.  The flow-based method and the improved N-D method can also 

produce relatively good results.  However, these three methods (Minimum Speed, 

Flow-based method and the improved N-D method) overestimate the travel time at the 

later stage of lane blockage due to the effect of the front recovery shock wave, described 
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earlier.  Figure 4-3(a) also includes the results obtained from the hybrid models 

developed in this study without refinements, which are slightly to moderately better than 

those of the flow-based method and the Minimum Speed method but also suffers from the 

front recovery shock wave effect.  The developed refined on-line models that consider 

the front recovery shock wave performed better than the other methods, as shown in 

Figure 4-3(b).  Figure 4-3(b) also shows that the SunGuide method does not perform 

well and significantly underestimates the travel time under this incident scenario.  

Please note that in all the figures presented in this chapter, the developed Hybrid Models 

1 and 2 referred to the models with the refinement described in the previous chapter. 
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(a) On-Line Estimation Results 

Figure 4-3 Estimated Travel Time for Simulated Incident Scenario 1 
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(b) On-Line Estimation Results 

07:00 07:30 08:00 08:30 09:00 09:30
4

6

8

10

12

14

16

18

 

T
ra

ve
l T

im
e 

(M
in

ut
es

)

Timestamp

 Actual Travel Time
 Point-to-Point Method
 Mid-Point Method
 Minimum Speed Method
 Average Speed Method
 Minnesota Algorithm
 Linear Speed Method
 Constant Acceleration Method
 Developed Hybrid Model 1
 Developed Hybrid Model 2

 
(c) Off-Line Estimation Results 

Figure 4-3 Estimated Travel Time for Simulated Incident Scenario 1  
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Table 4-3a lists the accuracy and reliability of each on-line travel time estimation 

method for this simulated incident case between 7:00 A.M. and 9:00 A.M.  As stated 

previously, the lane blockage incident occurs at 7:35 A.M. and lasts for 25 minutes.  It 

can be seen from this table that in general the accuracy and reliability of the estimated 

travel time during the incident conditions are not as good as those for uncongested 

conditions.  The MAPE of travel time estimated by the SunGuide method with capped 

speed is about 12.79% and the corresponding reliability is 76.54% with 7.72% vehicles 

arriving early and 15.74% vehicles arriving late.  Table 4-3a also shows that the 

performances of the compared speed-based methods and flow-based methods are close.  

Compared to the other methods, the two developed hybrid models have slightly less 

errors and higher reliability even without the refinements.  With the refinement, the 

accuracy and reliability of the hybrid models improved even further.  A comparison of 

the results of the developed Hybrid Model 1 and Hybrid Model 2 shows that Model 2 

performs slightly better than Model 1. 

Table 4-3b presents the performances of the on-line travel time estimation 

methods only between 7:30 A.M. and 8:30 A.M., as the time period from 7:00 A.M. to 

9:00 A.M. includes partly uncongested conditions, while the traffic during the period 

between 7:30 A.M. and 8:30 A.M. is completely congested.  Compared to the results for 

the time period 7:00 A.M. to 9:00 A.M., the errors during the time period 7:30 A.M. to 

8:30 A.M. are higher and the reliabilities are lower.  Table 4-3b indicates that the 

selection of the study period for comparison has a great impact on the evaluation of travel 

time estimation performance.   
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Table 4-3a Accuracy and Reliability of Tested On-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 1 between 7:00 A.M. and 9:00 A.M. 

Method 
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% Late

Point-to-Point Method w/ Capped Speed 1.24 12.79 76.54 7.72 15.74
Point-to-Point Method w/o Capped Speed 1.10 9.07 79.66 0.85 19.49
Mid-Point Method  0.96 7.83 80.48 2.00 17.52
Minimum Speed Method  0.86 8.23 75.53 15.55 8.92 
Average Speed Method  1.26 9.88 78.24 0.58 21.19
Minnesota Method  1.06 8.50 80.18 1.64 18.18
Linear Speed Method  1.18 9.32 78.70 0.58 20.72
Flow-Based Method  0.94 8.64 80.21 8.76 11.03 
Improved N-D Method  0.99 9.30 79.93 9.20 10.87
Hybrid Model 1 w/o Refinement  0.87 7.76 82.26 7.45 10.29
Hybrid Model 2 w/o Refinement 0.76 6.80 82.23 7.88 9.88 
Developed Hybrid Model 1  0.58 5.55 85.98 4.93 9.09 
Developed Hybrid Model 2  0.60 5.50 87.85 1.59 10.57

 
Table 4-3b Accuracy and Reliability of Tested On-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 1 between 7:30 A.M. and 8:30 A.M. 

Method 
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% Late

Point-to-Point Method w/ Capped Speed 1.87 16.08 57.90 9.08 33.03
Point-to-Point Method w/o Capped Speed 2.07 16.28 57.32 1.78 40.90
Mid-Point Method  1.86 14.78 59.05 4.19 36.76
Minimum Speed Method  1.58 14.43 55.20 26.08 18.73
Average Speed Method  2.45 18.81 54.34 1.21 44.46
Minnesota Method  2.05 16.10 58.42 3.45 38.14
Linear Speed Method  2.29 17.72 55.31 1.21 43.48
Flow-Based Method  1.74 15.21 59.33 17.52 23.15
Improved N-D Method  1.83 16.34 58.82 18.38 22.80
Hybrid Model 1 w/o Refinement  1.68 14.65 62.78 15.62 21.60
Hybrid Model 2 w/o Refinement 1.46 12.73 62.72 16.54 20.74
Developed Hybrid Model 1  1.11 10.24 70.59 10.34 19.07
Developed Hybrid Model 2  1.15 10.12 74.50 3.33 22.17

Tables 4-4a and 4-4b present the accuracy and reliability of various off-line 

estimation methods for simulated incident scenario 1 from 7:00 A.M. to 9:00 A.M. and 

from 7:30 A.M. to 8:30 A.M., respectively.  As stated before, the off-line estimation can 
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be used as a basis for training travel time prediction algorithms.  Thus, the examination of 

off-line estimation results can give an indication of whether travel time prediction has the 

potential to improve the accuracy and reliability of the calculated travel time.  In 

addition, off-line travel time estimation is important for planning studies.  As shown in 

both tables, for off-line applications, the Minimum Speed method has a relatively better 

performance than other speed-based methods.  Again, the developed hybrid models 

have higher accuracy and reliability than the other methods.  The comparison between 

the results in Table 4-3b and Table 4-4b shows that both the on-line methods and off-line 

methods have similar performance except that the off-line Minimum Speed method and 

the developed off-line hybrid models perform better than their on-line versions, as 

illustrated in Figure 4-4.    

Table 4-4a Accuracy and Reliability of Tested Off-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 1 between 7:00 A.M. and 9:00 A.M. 

Method 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Point-to-Point Method  1.09 9.28 80.65 0 19.35 

Mid-Point Method  0.94 7.74 83.63 0 16.37 

Minimum Speed Method  0.44 4.45 91.30 4.76 3.94 

Average Speed Method  1.25 9.99 80.07 0 19.93 

Minnesota Method  1.04 8.51 79.99 0 20.01 

Linear Speed Method  1.17 9.41 79.39 0 20.61 

Constant Acceleration Method 1.28 10.19 79.39 0 20.61 

Developed Hybrid Model 1  0.42 3.84 94.17 1.18 4.65 

Developed Hybrid Model 2  0.42 3.86 91.65 1.59 6.76 

 



  

96 

Table 4-4b Accuracy and Reliability of Tested Off-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 1 between 7:30 A.M. and 8:30 A.M. 

Method 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Point-to-Point Method  2.06 16.76 59.39 0 40.61 
Mid-Point Method  1.83 14.82 65.65 0 34.35 
Minimum Speed Method  0.75 6.82 87.02 4.71 8.27 
Average Speed Method  2.45 19.24 58.19 0 41.82 
Minnesota Method  2.04 16.32 58.01 0 41.99 
Linear Speed Method  2.29 18.10 56.75 0 43.25 
Constant Acceleration Method 2.50 19.65 56.75 0 43.25 
Developed Hybrid Model 1  0.80 7.02 87.77 2.47 9.76 
Developed Hybrid Model 2  0.79 7.05 82.48 3.33 14.19 
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(a) Mid-Point Method 

Figure 4-4 Comparison of On-Line and Off-Line Estimation Methods  

(continued on next page)  
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(b) Minimum Speed Method 

Figure 4-4 Comparison of On-Line and Off-Line Estimation Methods  

4.3.3. Simulated Incident Scenario 2 

Figure 4-5 presents the results for on-line travel time estimation for Simulated Incident 

Scenario 2.  Similar to the Simulated Incident Scenario 1, the incident attributes in 

Scenario 2 correspond to a real-world incident from the FDOT District 6 SunGuide 

incident management database.  This one-lane blockage incident occurred at 7:23 A.M.  

After 35 minutes, the incident was moved to the shoulder and the blocked lane was open.  

The incident was completely cleared at 8:45 A.M., 82 minutes after it started.  This 

incident is more severe than Scenario 1, as it has a longer duration and the capacity drop 

due to the incident is higher by about 35%.  The arrival of fire trucks at this incident 

location appears to have a higher impact on the capacity compared to Scenario 1.  

Figure 4-5(a) shows that the estimation results from various on-line methods.  To show 
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the results more clearly, Figure 4-5(b) presents the same results but only for the 

SunGuide method, Minimum Speed method, and on-line Hybrid Models.  As shown in 

these two figures, the travel time estimated using various on-line methods are not 

satisfactory in this incident scenario unless a refinement is applied to the hybrid models 

to account for the front shock wave recovery.  The SunGuide method (i.e., 

Point-to-Point method with capped speed) underestimate the travel time during the queue 

forming stage, and overestimate the travel time at the end of lane blockage.  A similar 

trend can be found for other methods.  One reason for this is that these methods estimate 

the travel time based on the current traffic conditions, without capturing the dynamic 

changes in the queue length as the vehicles progress from the departure location to the 

destination.  As shown in Figure 4-5(b), the refined on-line hybrid models overcome 

this shortcoming with the consideration of a front recovery shock wave.  Figure 4-5(c) 

presents the corresponding off-line travel time estimation results.  It is seen from this 

figure that the off-line estimation methods can avoid the unrealistic estimated peaking in 

travel time observed in the on-line methods at the later lane-blockage stage when not 

considering the front recovery shock wave.   



  

99 

07:00 07:30 08:00 08:30 09:00 09:30 10:00
0

10

20

30

40

50

60

70

80

 

T
ra

ve
l T

im
e 

(M
in

ut
es

)

Timestamp

 Actual Travel Time
 Point-to-Point Method 

         w/ Capped Speed
 Point-to-Point Method 

         w/o Capped Speed
 Mid-Point Method
 Minimum Speed Method
 Average Speed Method
 Minnesota Algorithm
 Linear Speed Method
 Flow-Based Method
 Improved N-D Method
 Hybrid Model 1 w/o Refinement
 Hybrid Model 2 w/o Refinement
 Developed Hybrid Model 1
 Developed Hybrid Model 2

 
(a) On-Line Estimation Results 
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(b) On-Line Estimation Results 

Figure 4-5 Estimated Travel Time for Simulated Incident Scenario 2 

(continued on next page) 
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(c) Off-Line Estimation Results 

Figure 4-5 Estimated Travel Time for Simulated Incident Scenario 2   

Table 4-5 presents the performance of on-line and off-line travel time estimation 

methods for Simulated Incident Scenario 2.  As shown in Table 4-5, the travel time 

produced by the SunGuide method with capped speed has a MAE of 3.61 minutes, a 

MAPE of 22%, and a reliability of 55%.  About 18% of the vehicles arrive at the 

destination earlier than the posted travel time range and 26% of vehicles arrive late.  

Without capping the speed, the results are a little bit better, but still are not good.  Table 

4-5 also reveals that the on-line hybrid models do not perform well without the 

refinements.  However, with the refinements, the developed on-line hybrid models 

produce much better results when compared to the other methods.  The comparison 

between these two on-line hybrid models shows that Model 2 has lower errors and higher 
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reliability than Model 1 under this scenario.  The reason for the difference in 

performance of the travel time estimation methods between Incidents 1 and 2 is that 

Incident 2 has a more severe capacity constraint.  Removing this constraint during the 

incident clearance stage resulted in a higher and faster impact on the experienced travel 

time.  Thus, not accounting for the recovery shock wave has a higher impact in Incident 

2 compared to Incident 1.   

Table 4-5 Accuracy and Reliability of Tested On-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 2 

Method 
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% Late

Point-to-Point Method w/ Capped Speed 3.61 22.27 55.36 18.37 26.27
Point-to-Point Method w/o Capped Speed 3.56 19.57 61.27 8.66 30.07
Mid-point Method  3.71 20.31 61.11 9.61 29.28
Minimum Speed Method  3.88 22.28 59.53 21.59 18.88
Average Speed Method  3.74 20.36 59.97 6.60 33.43
Minnesota Method  3.68 20.17 60.22 9.45 30.33
Linear Speed Method  3.70 20.23 60.10 7.63 32.27
Flow-Based Method  4.49 25.04 60.46 20.32 19.22
Improved N-D Method  3.32 19.92 59.61 20.52 19.87
Hybrid Model 1 w/o Refinement  4.42 24.47 62.87 17.34 19.79
Hybrid Model 2 w/o Refinement 3.84 21.66 60.87 18.94 20.19
Developed Hybrid Model 1  1.89 11.08 67.46 10.50 22.04
Developed Hybrid Model 2  1.75 9.82 70.03 7.71 22.26

Table 4-6 lists the performances of the off-line estimation methods for the 

Simulated Incident Scenario 2.  Compared to the results of Table 4-5, the off-line 

estimation methods perform much better than the on-line estimations.  For example, the 

MAE, MAPE, and reliability are 3.71 minutes, 20%, and 61%, respectively for the 

on-line Mid-Point method; and 2.51 minutes, 13%, and 72%, respectively for the off-line 

counterpart.  Again, the off-line Minimum Speed and the hybrid models produce 

satisfactory results under this scenario as shown in Table 4-6.  The results in Table 4-6 
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indicate that travel time prediction could be beneficial for incident conditions, 

particularly more severe incidents with long incident durations.   

Table 4-6 Accuracy and Reliability of Tested Off-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 2 

Method 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Point-to-Point Method  2.73 14.75 70.60 1.67 27.72 
Mid-Point Method  2.51 13.37 72.32 2.15 25.54 
Minimum Speed Method  1.21 7.35 73.68 11.49 14.83 
Average Speed Method  3.31 17.62 65.16 0.99 33.85 
Minnesota Method  2.77 14.74 69.41 2.04 28.55 
Linear Speed Method  3.10 16.47 67.22 0.99 31.79 
Constant Acceleration Method 3.43 18.23 64.08 0.99 34.93 
Developed Hybrid Model 1  1.03 6.28 76.69 8.90 14.41 
Developed Hybrid Model 2  1.21 7.07 75.60 9.05 15.36 

4.4. Comparison Based on Real-world Data 

In addition to the use of simulation, further assessment of travel time estimation methods 

was made using real-world data.  The actual travel time was collected using videos from 

CCTV cameras deployed along the study corridor by matching the vehicles passing the 

field of view of one CCTV camera location to those passing the field of view of another 

CCTV camera location.  The results for one congested case and one uncongested case 

are presented in this section.  Both investigated cases represent recurrent conditions (no 

incident conditions).  For the uncongested case, the travel times between two detector 

stations, DS-1515E and DS-1545E (a distance of about 5.02 miles), were collected for the 

midday period on December 2, 2008.  For the congested case, the travel times between 

detector stations DS-1519E and DS-1545E (a distance of about 4.58 miles) were 

collected for the morning peak period on March 10, 2010.  



  

103 

Figure 4-6 presents the travel time estimation results for the two cases mentioned 

above.  It should be mentioned that the congestion level in the congested case is 

significantly lower than the congestion level resulting from the incident scenarios 

explored in the simulation models and discussed in Section 4.3.  Figures 4-6(a) and 

Figure 4-6(b) show the estimation results for uncongested conditions during the Midday 

period.  It is seen from these figures that although the travel times produced by the 

Point-to-Point method with capped speed overestimates the travel time due to the capped 

speed, the difference between the estimated travel times by the SunGuide method and the 

actual travel time is small.  The travel time estimates obtained using the speed-based 

methods as well as the developed models were also very close when the traffic is not 

congested.  Compared to the other methods, the Minimum Speed method slightly 

overestimated the travel time, and the results from the flow-based method and improved 

N-D method experienced more fluctuations.   

For the congested case, the results shown in Figures 4-6(c) and 4-6(d) indicate 

that except for the Minimum Speed method, all of the other speed-based methods, 

including the Point-to-Point method with capped speed, underestimated the travel time 

under congested traffic conditions.  This was true for both the on-line and off-line 

applications.  The flow-based method and the improved N-D method performed better.  

The developed hybrid models also produced travel times that were also close to the actual 

travel times.   
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(a) On-Line Estimation Results during Midday on Dec. 2, 2008 
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(b) Off-Line Estimation Results during Midday on Dec. 2, 2008 

Figure 4-6 Estimated Travel Time for Real-world Case 

 (continued on next page)  
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(c) On-Line Estimation Results during Morning Peak Period on Mar. 10, 2010 
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(d) Off-Line Estimation Results during Morning Peak Period on Mar. 10, 2010 

Figure 4-6 Estimated Travel Time for Real-world Case 
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Since not all individual vehicle travel times can be collected and the actual travel 

time distribution is unknown when using real-world point traffic detector data in the 

analysis, the reliability of the estimated travel time cannot be calculated using data that 

was produced based on simulation, as discussed in previous sections.  Thus, only the 

accuracy performance measures are presented in Tables 4-7 and 4-8.  As shown in Table 

4-7, the performance of various travel time estimation methods during uncongested 

conditions (Case 1) are similar to those obtained from simulation.  The Minimum Speed 

method, flow-based method, and the Improved N-D method were slightly less accurate 

than other methods for uncongested conditions.  For congested conditions (Cases 2), the 

Minimum Speed method and Hybrid Model 2 perform the best among the tested methods.  

The traffic flow method and Hybrid Model 1 also perform relatively well compared to 

other methods.  A comparison of the results from the off-line methods with those from 

the on-line methods indicates that the off-line estimation improved the travel time 

estimation slightly. 

Table 4-7 Accuracy of Tested On-Line Travel Time Estimation Methods for 
Real-world Cases 

Case 1 (Uncongested) Case 2 (Congested) 
Method MAE 

(Min.) 
MAPE 

(%) 
MAE 
(Min.) 

MAPE 
(%) 

Point-to-Point Method w/ Capped Speed 0.56 11.32 0.65 9.95 
Point-to-Point Method w/o Capped Speed 0.14 2.81 0.94 14.78 
Mid-point Method  0.14 2.87 0.66 10.20 
Minimum Speed Method  0.23 4.71 0.37 6.31 
Average Speed Method  0.14 2.83 0.81 12.66 
Minnesota Method  0.14 2.86 0.70 10.86 
Linear Speed Method  0.14 2.84 0.76 11.76 
Flow-Based Method  0.18 3.56 0.53 8.79 
Improved N-D Method  0.20 3.90 0.54 9.03 
Developed Hybrid Model 1  0.14 2.87 0.46 7.75 
Developed Hybrid Model 2 0.14 2.87 0.39 6.80 
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Table 4-8 Accuracy of Tested Off-Line Travel Time Estimation Methods for 
Real-world Cases 

Case 1 (Uncongested) Case 2 (Congested) 
Method MAE  

(Min.) 
MAPE 

(%) 
MAE  
(Min.) 

MAPE 
(%) 

Point-to-Point Method  0.14 2.71 0.94 14.75 
Mid-point Method  0.14 2.70 0.63 9.68 
Minimum Speed Method  0.23 4.67 0.33 5.40 
Average Speed Method  0.13 2.66 0.81 12.55 
Minnesota Method  0.14 2.68 0.69 10.61 
Linear Speed Method  0.13 2.67 0.75 11.65 
Constant Acceleration Method 0.13 2.66 0.82 12.63 
Developed Hybrid Model 1  0.14 2.70 0.38 6.20 
Developed Hybrid Model 2 0.10 2.70 0.35 5.74 

4.5. Summary 

The developed hybrid travel time estimation models, as well as various speed-based 

methods and flow-based methods were evaluated in this chapter using both simulated and 

real-world travel time data.  The performance measures in terms of accuracy and 

reliability were quantified.  The results indicate that all tested methods perform 

reasonably well under uncongested traffic conditions.  However, their performances 

vary with the increase in congestion level.  The comparison with other estimation 

methods shows that the developed hybrid models perform well in all cases, but need 

refinements for on-line applications in the case of incident conditions particularly during 

incidents with a sharp drop in capacity.  The refinement considers the dynamics of 

queue propagation and clearance, and requires the prediction of when the incident will be 

cleared.  Further comparison between the on-line and off-line travel time estimation 

results reveals that off-line methods perform significantly better only during fast 
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changing congested conditions such as during incidents.  For uncongested conditions, 

the off-line methods produce results that are almost as good as their on-line counterparts. 
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CHAPTER 5 

IMPACTS OF INFLUENTIAL FACTORS 

In addition to the impacts of the estimation algorithms on the quality of the estimations, 

factors such as the impacts of data preprocessing procedures, detector errors, detector 

spacing, and travel time posting strategies are also expected to affect the accuracy and 

reliability of travel time estimation.  Therefore, the impacts of these factors on the 

on-line travel time estimation are investigated in this study.  The results presented in this 

chapter are based on using the Hybrid Model 2 as an example, since the impacts of these 

factors on all other methods generally show the same trend as this hybrid model.  The 

analysis results of the other estimation methods can be found in Appendix A.  Note that 

Hybrid Models 1 and 2 in these tables refer to the refined on-line hybrid models 

developed in this study.   

5.1. Data Preprocessing 

Data preprocessing includes data filtering, data smoothing, data aggregation, and data 

imputation.  This study investigates and compares the impacts of different methods to 

perform these steps on travel time estimation, as described below.   

5.1.1. Data Smoothing 

In this section, two different smoothing methods are compared: the simple moving 

average (which is the method used in SunGuide) and the exponential moving average.  

The Simulated Incident Scenario 1, described in Section 4.3.2, is used to test the impacts 

of data smoothing methods on travel time estimation.  In this scenario, the estimated 
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travel time is updated every 2 minutes, and the estimation performance is calculated for 

the time period 7:30 A.M. – 8:30 A.M.  Table 5-1 presents the estimation results with 

these two types of smoothing methods for the on-line Hybrid Model 2.  As shown in 

Table 5-1, for the simple moving average method, the estimation errors generally increase 

with the increase in the value of rolling period.  As mentioned in the previous section, 

the rolling period is a parameter that controls the moving window size for the 

determination of number of data points to be used in the moving average.  When a large 

rolling period is used, more historical information is included in the travel time 

estimation, which can dilute changes in traffic conditions such as queue length changes, 

resulting in higher estimation errors in fast changing situations like incident scenarios.  

It can also be seen from this table that a smaller rolling period will achieve better 

reliability in travel time estimation for incident conditions. 

The travel time estimation results obtained using the exponential moving average 

are also presented in Table 5-1.  The smoothing factor in the exponential moving 

average method can have any value between 0 and 1.  A higher value of this smoothing 

factor reduces the effects of older observations faster.  Comparing the results with those 

calculated from the simple moving average indicates that for Hybrid Model 2 and the 

investigated incident scenario, the exponential moving average method produces 

significantly more accurate and reliable results than the simple moving average method, 

since the exponential moving average method can give more weight to the latest data in 

the smoothing.  A smoothing factor of 0.4 is sufficient to produce good results.  It 

should be mentioned that these results are based on a simulation analysis that assumes 

100% detector measurement accuracy. 
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Table 5-1 Accuracy and Reliability of Travel Time Estimation Using Different 
Smoothing Methods  
Hybrid 
Model 2 

Factor 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% Late

1-minute 1.44 12.72 63.70 17.17 19.13 
2-minute 1.59 13.86 61.45 16.72 21.83 
3-minute 1.73 15.00 58.93 16.72 24.35 
4-minute 1.89 16.29 56.23 19.01 24.76 

Simple 
Moving 
Average 

Rolling 
Period 

5-minute 2.04 17.72 48.65 24.81 26.54 
0.2 1.49 12.51 69.21 3.33 27.46 
0.4 1.15 10.12 74.50 3.33 22.17 
0.6 1.03 9.28 73.92 4.36 21.71 
0.8 0.99 8.98 74.73 4.54 20.74 

Exponential 
Moving 
Average 

Smoothing 
Factor 

1.0 1.09 9.60 73.23 4.48 22.29 

5.1.2. Data Imputation 

To test the effects of different data imputation methods, 50% of the detector 

measurements were randomly removed for the Simulated Incident Scenario 1.  As 

mentioned earlier in this chapter, data imputation can be conducted spatially and/or 

temporally, and the spatial imputation can be performed within a station or between 

stations.  Therefore, different combinations of these imputation types were tested in this 

study including with or without within-station imputation for speed, with or without 

temporal imputation, and four different types of between-station imputations that are 

commonly used in practice.  These four types are the following: 

 Simple average, 

 Linear interpolation, 

 Linear interpolation for speed and occupancy but factor method for volume, 

and 
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 Factor method for all traffic parameters, as mentioned in the data 

preprocessing section.   

For the factor method, the factors are estimated based on data for all workdays in 

December, 2008.  The results are presented in Table 5-2. 

Table 5-2 Results of Different Data Imputation Methods 
Hybrid 
Model 2 

Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Hybrid Model 2 w/o missing data 1.15 10.12 74.50 3.33 22.17

Simple Average 1.23 10.72 72.20 4.77 23.03
Linear Interpolation 1.23 10.70 72.20 4.77 23.03
Linear Interpolation 
for S and O, and 
Factor for V 

1.23 10.70 72.20 4.77 23.03

w/o 
Temporal 
Imputation 

Factor Method 1.24 10.77 71.97 4.77 23.26
Simple Average 1.23 10.64 72.20 4.77 23.03
Linear Interpolation 1.22 10.61 72.20 4.77 23.03
Linear Interpolation 
for S and O, and 
Factor for V 

1.22 10.61 72.20 4.77 23.03

w/o 
Within- 
Station 
Imputation Average of 

Temporal 
and Spatial 
Imputations 

Factor Method 1.23 10.64 72.20 4.77 23.03
Simple Average 1.20 10.48 73.58 4.77 21.65
Linear Interpolation 1.20 10.48 73.58 4.77 21.65
Linear Interpolation 
for S and O, and 
Factor for V 

1.20 10.48 73.58 4.77 21.65

w/o 
Temporal 
Imputation 

Factor Method 1.20 10.48 73.58 4.77 21.65
Simple Average 1.20 10.48 73.58 4.77 21.65
Linear Interpolation 1.20 10.48 73.58 4.77 21.65
Linear Interpolation 
for S and O, and 
Factor for V 

1.20 10.48 73.58 4.77 21.65

w/  
Within- 
Station 
Imputation Average of 

Temporal 
and Spatial 
Imputations 

Factor Method 1.20 10.48 73.58 4.77 21.65
Note: S represents speed, V dictates volume count, and O is occupancy.  

Table 5-2 shows the impacts of the data imputation methods on the performance 

of travel time estimation results.  It should be mentioned that the performance 
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calculation is based on the time period between 7:30 A.M. and 8:30 A.M, which is 

heavily impacted by the incident conditions.  The results in this table show that the 

impact of randomly missing data when properly imputed is not high.  As mentioned 

above 50% of the detector measurements were removed randomly.  Slight differences in 

the accuracy of the resulting travel times can be observed from Table 5-2 for different 

imputation methods.  Note that the rows with within-station imputation, simple average 

between stations, and without temporal imputation corresponds to the imputation method 

used in SunGuide software.  Since travel time cannot be estimated when some of 

detector data are missing, the results presented in Table 5-2 cannot be compared to those 

without data imputation.  

5.2. Detector Errors 

Traffic data measured by point detectors include errors of different types: 

 Intrinsic errors due to measurement noise that reflects detector inaccuracy,  

 Systematic errors (for example, due to inadequate calibration or device 

inaccuracy), and  

 Data missing due to incidental and/or structural failure resulting from 

temporary power outages or detector malfunctions.   

The impacts of these three types of errors on travel time estimation performance are 

investigated in this study and discussed below. 

5.2.1. Intrinsic Errors 

Intrinsic errors are inherent to detectors and reflect their measurement inaccuracies.  The 

magnitude of the intrinsic error in measuring a given variables depends on the detector 
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type under consideration.  For example, Electronic Integrated Systems Inc. (EIS), the 

vendor of the RTMS detectors, reported that for RTMS detectors from a side fire location; 

the errors are expected to be 10% in speed, 5% in volumes, 10% in long vehicle volumes, 

and 5% in occupancy (EIS 2010).  To investigate the impacts of such errors on travel 

time estimation, the detector data resulting from CORSIM were modified to emulate 

these types of errors.  Similar to the study by Byon et al. (2009), a normal distribution 

was used to introduce the intrinsic errors in the simulated detector data of this study.  

The used normal distribution has a mean of zero, and a standard deviation determined by 

device measurement accuracy.  As shown in Figure 5-1, 99.7% of measurements are 

within 6 standard deviations of the mean detector error (zero) for a normal distribution.  

This assumption leads to the following equation: 

                    ErrX typical  26                                 (5-1) 

where  denotes the standard deviation, Xtypical is selected to be a common measurement 

value at the high end of each of the three basic variables (speed, volume, or occupancy), 

and Err is the corresponding measurement error.  Measurement at the high end is 

selected such that the worst case standard deviation is accounted for.  As an example, 

this investigation assumes that Err for speed measurement is 10%; Err for volume 

measurement is 5%, and Err for occupancy measurement is also 5%.  With the 

assumptions of 65 mph, 1,700 veh/hr, and 100%, as respective typical speed, volume, and 

occupancy measurements, Equation 5-1 yields the following standard deviations values: 

2.2 mph for speed, 28.3 veh/hr for volume, and 1.7 for occupancy.  Note that this is only 

one example.  Depending on the local situation and specific devices used, the values of 

Err and Xtypical may vary but the same methodology can still be applied.  
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Figure 5-1 Illustration of Normal Distribution for Intrinsic Errors 

In this study, the intrinsic errors were introduced in two simulated scenarios: an 

uncongested scenario and Incident Scenario 1.  For each scenario, 10 random cases were 

generated and the results are presented in Table 5-3 for Hybrid Model 2 and in Tables A-5 

and A-6 (in Appendix A) for other methods.  Note that a number of 10 random cases 

satisfies the minimum sample size required at a 95% confidence interval for normal 

distribution.  As shown in Table 5-3, the performance of Hybrid Model 2 does not 

change much with the intrinsic errors introduced for the uncongested scenario.  

However, the performance is affected by the error for the incident scenario.  It should be 

noted that the results presented in Table 5-3 are with data filtering and imputation.  The 

impacts of intrinsic errors are expected to be higher without proper filtering and 

imputation and also with higher detector error. 
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Table 5-3 Impacts of Intrinsic Errors on Travel Time Estimation Performance  

Hybrid Model 2 Cases 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% Late

w/o Intrinsic Errors 0.082 1.31 100 0 0 
Average 0.083 1.33 100 0 0 

Minimum 0.081 1.30 100 0 0 

Simulated 
Uncongested 
Conditions 

w/ 
Intrinsic 
Errors Maximum 0.085 1.36 100 0 0 

w/o Intrinsic Errors 1.15 10.12 74.50 3.33 22.17 
Average 1.58 12.87 64.59 4.24 31.17 

Minimum 1.23 10.66 61.17 2.59 22.34 

Simulated 
Incident 
Conditions 

w/ 
Intrinsic 
Errors Maximum 1.75 13.97 71.17 6.49 34.75 

5.2.2. Systematic Errors 

Point detectors are not always well calibrated or have systematic underestimation or 

overestimation problems in measurements.  These are referred to as systematic errors in 

the reported measurements.  Examination of the detector measurements in this study 

showed that some detector stations always reported consistently high or consistently low 

values compared to the expected values based on adjacent detector measurements and 

traffic flow theory concepts.  Figure 5-2 shows the average free flow speed based on the 

detector data reported at station, DS-1513E, for two time periods.  As mentioned in 

Highway Capacity Manual (HCM) 2000, the free flow speed of a freeway segment is 

expected to prevail at flow rates between 0 pc/h/ln and 1,200 pc/h/ln (HCM 2000).  In 

this study, this definition was used to estimate the average free flow speed for the detector 

station with potential problems based on 5-minute aggregated detector data between 

12:00 A.M. and 5:00 A.M. from December 1, 2008 to February 28, 2009.  As shown in 

Figure 5-2, the data set is divided into two time periods.  Time Period 1 is from 

December 1, 2008 to January 15, 2009 and Time Period 2 is from January 16, 2009 to 

February 28, 2009.  It is seen from this figure that for Time Period 1, the resulting free 
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flow speed for Lane 1 is close to 90 mph and the free flow speed for Lane 2 and Lane 3 

are higher than 90 mph.  However, in Time Period 2, the average free flow speed for 

Lane 1 drops to 50 mph, while those for Lanes 2 and 3 are about 65 mph. 65 mph seems 

to be a reasonable free flow speed based on the free flow speeds at an adjacent detection 

station.  The 90 mph and 50 mph speed measurements seem to be due to systematic 

errors of about +26.87 mph and -14.6 mph, respectively.   

To investigate the impacts of systematic errors on travel time estimation results, 

different scenarios were created in this study by introducing systematic errors to the 

error-free simulated detector data for uncongested scenario and Incident Scenario 1, as 

shown below in Table 5-4.  Note that in each scenario having more than one detection 

station with a failure, the distances between the stations with the problem are selected to 

be equal.  
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Figure 5-2 Estimated Free Flow Speed for Detection Station DS-1513E 
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Table 5-4 Tested Scenarios for Systematic Errors 

Case No. Detector Station  
Lanes with 
Systematic Errors

Systematic Error in Speed
(“+”: increase;  
 “-”: decrease) 

1 DS-1529E  All Lanes  + 26.87 mph 
2 DS-1509E and DS-1529E All Lanes +26.87 mph 

3 DS-1509E, DS-1523E and 
DS-1535E 

All Lanes +26.87 mph 

4 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

Lane 1 +26.87 mph 

5 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

Lane 1 and Lane 2 +26.87 mph 

6 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

All Lanes +26.87 mph 

7 DS-1529E  All Lanes  -14.60 mph 
8 DS-1509E and DS-1529E All Lanes -14.60 mph 

9 DS-1509E, DS-1523E and 
DS-1535E 

All Lanes -14.60 mph 

10 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

Lane 1 -14.60 mph 

11 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

Lane 1 and Lane 2 -14.60 mph 

12 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

All Lanes -14.60 mph 

Table 5-5 presents the performance of Hybrid Model 2 for the simulated 

uncongested and incident conditions when systematic errors are introduced.  It is shown 

in Table 5-5a that with larger systematic errors, both accuracy and reliability are reduced.  

Comparing the results with and without data filtering indicates that the developed data 

filtering procedures can slightly improve the estimation performance for systematic high 

speed errors, but not for systematic low speed errors, since it is difficult to differentiate 

the systematic low speed from the drops in speeds due to congestion.  Tables 5-5b 

presents similar results but for incident conditions.  Again, the results in this table show 

that the data filtering procedures may help to improve the performance of the estimation 

method.   
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Table 5-5a Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Uncongested Conditions  

Cases 
Hybrid 
Model 2 

Systematic 
High/Low 

Speed 

Stations w/ 
Errors 

Lanes at 
Stations w/ 

Errors 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

w/o Errors 0.08 1.31 100 0 0 
1 Station All Lanes 0.12 1.91 100 0 0 
2 Stations All Lanes 0.15 2.30 100 0 0 
3 Stations All Lanes 0.21 3.24 100 0 0 
4 Stations 1 Lane 0.18 2.88 100 0 0 
4 Stations 2 Lanes 0.28 4.51 100 0 0 

Systematic 
High Speed 

4 Stations All Lanes 0.37 5.85 100 0 0 
1 Station All Lanes 0.21 3.40 86.59 13.41 0 
2 Stations All Lanes 0.27 4.30 86.37 13.63 0 
3 Stations All Lanes 0.38 5.96 87.06 12.95 0 
4 Stations 1 Lane 0.10 1.67 99.34 0.66 0 
4 Stations 2 Lanes 0.32 5.13 90.77 9.23 0 

w/o Data 
Filtering  

Systematic 
Low Speed 

4 Stations All Lanes 0.71 11.29 83.58 16.42 0 
w/o Errors 0.08 1.31 100 0 0 
1 Station All Lanes 0.11 1.72 100 0 0 
2 Stations All Lanes 0.11 1.77 100 0 0 
3 Stations All Lanes 0.17 2.68 100 0 0 
4 Stations 1 Lane 0.11 1.80 100 0 0 
4 Stations 2 Lanes 0.17 2.69 100 0 0 

Systematic 
High Speed 

4 Stations All Lanes 0.33 5.15 100 0 0 
1 Station All Lanes 0.21 3.40 86.59 13.41 0 
2 Stations All Lanes 0.27 4.30 86.37 13.63 0 
3 Stations All Lanes 0.38 5.95 87.06 12.95 0 
4 Stations 1 Lane 0.10 1.67 99.34 0.66 0 
4 Stations 2 Lanes 0.32 5.13 90.77 9.23 0 

w/ Data 
Filtering 

Systematic 
Low Speed 

4 Stations All Lanes 0.71 11.29 83.58 16.42 0 
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Table 5-5b Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Incident Conditions  

Cases 
Hybrid 
Model 2 

Systematic 
High/Low 

Speed 

Stations w/ 
Errors 

Lanes at 
Stations w/ 

Errors 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

w/o Errors 1.15 10.12 74.50 3.33 22.17
1 Station All Lanes 1.16 10.17 74.38 2.99 22.63
2 Stations All Lanes 1.16 10.21 74.84 2.53 22.63
3 Stations All Lanes 1.25 11.05 74.38 1.49 24.12
4 Stations 1 Lane 1.99 15.88 60.02 0.23 39.75
4 Stations 2 Lanes 2.37 19.00 54.62 0.23 45.15

Systematic 
High Speed 

4 Stations All Lanes 2.54 20.62 53.88 0.23 45.89
1 Station All Lanes 1.50 13.11 64.39 15.11 20.51
2 Stations All Lanes 1.25 10.95 71.22 7.64 21.14
3 Stations All Lanes 1.10 10.47 75.07 8.73 16.20
4 Stations 1 Lane 1.58 13.26 61.86 15.91 22.23
4 Stations 2 Lanes 1.69 14.70 52.38 22.92 24.70

w/o Data 
Filtering  

Systematic 
Low Speed 

4 Stations All Lanes 5.62 42.88 41.53 39.06 19.41
w/o Errors 1.15 10.12 74.50 3.33 22.17
1 Station All Lanes 1.15 10.09 74.38 2.99 22.63
2 Stations All Lanes 1.15 10.09 74.38 2.99 22.63
3 Stations All Lanes 1.22 10.71 74.84 1.61 23.55
4 Stations 1 Lane 1.28 11.17 70.76 5.28 23.95
4 Stations 2 Lanes 1.53 13.05 67.43 2.35 30.21

Systematic 
High Speed 

4 Stations All Lanes 2.50 20.13 53.88 0.23 45.89
1 Station All Lanes 1.50 13.13 64.45 15.28 20.28
2 Stations All Lanes 1.25 10.93 71.22 7.64 21.14
3 Stations All Lanes 1.08 9.78 75.53 4.65 19.82
4 Stations 1 Lane 1.22 10.78 70.42 9.02 20.56
4 Stations 2 Lanes 1.50 13.05 64.96 12.23 22.80

w/ Data 
Filtering 

Systematic 
Low Speed 

4 Stations All Lanes 3.46 25.72 55.43 15.16 29.41

The accuracy of some types of point detectors decrease under low speed 

conditions.  To test how such errors in low speed measurements affect the accuracy and 

reliability of travel time estimation methods, systematic errors are introduced to the 

error-free simulated detector data when speed is less than 20 mph, and the analysis results 
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are presented below by using Hybrid Model 2 as an example.  It is seen from Table 5-6 

that when the measured low speeds are artificially increased or decreased by 20%, the 

error of the estimated travel time increass slightly from 10.1% to about 12%.  However, 

with an introduced systematic error of 40% in the measured speeds, the estimated error in 

travel time increased by 4% to 5%, compared to the case without errors in measured 

speeds.  The reliability of travel time estimates decreases significantly when the point 

detector systematically reports lower speeds than the actual values during the congested 

conditions, as shown in Table 5-6.  Note that the results presented in Table 5-6 are 

obtained with data filtering procedures.  

Table 5-6 Impacts of Systematic Errors in Low Speed Measurements on Travel 
Time Estimation Performance for Simulated Incident Conditions  

Method Cases  
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

w/o Errors 1.15 10.12 74.50 3.33 22.17
20% Increase in Low Speed 1.37 11.52 71.97 1.21 26.82
40% Increase in Low Speed 1.66 13.57 68.18 0.98 30.84
20% Decrease in Low Speed 1.46 12.33 61.69 16.94 21.37

Hybrid Model 2 

40% Decrease in Low Speed 1.88 15.19 57.15 16.83 26.02

5.2.3. Incidental and Structural Failure 

In addition to the two types of errors mentioned above, incidental and/or structural 

failures may also exist in detector data (Vant Lint 2004).  The incidental or occasional 

failure occurs randomly.  Various factors may contribute to its occurrence, such as 

temporary communication system failure resulting from power outrages.  Figure 5-3 

presents histograms of incidental and structural failures for detectors DS-1509E-Lane-1 

and DS-1549E-Lane-1, as examples, and also for all the detectors along SR-826 in 

December, 2008.  Note that the units of the x-axis in Figures 5-3(a) and 5-3(c) are 
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minutes and those for Figures 5-3(b) and 5-3(d) are hours.  Most of the missing data 

duration is less than 2 minutes. 

To quantify the impacts of incidental and structural failures, worst case scenarios 

were created by introducing failures to the error-free simulated detector data.  These 

failure scenarios were created based on what happens in real-world detector data during 

the study period in December, 2008.  Since a detector may fail more than once, the 

longest duration of the missing data during the failure period was used. 

Table 5-7 shows the impacts of incidental and structural failures on travel time 

estimation performance during both uncongested and incident conditions.  The results in 

this table show that, even with the worst case of incidental and structural failures, after 

imputing the missing data, these failures do not have high impacts on the estimated travel 

time accuracy for the uncongested conditions.  However, for the incident scenario, the 

existence of incidental and structural failures can result in a large increase in estimation 

errors and also a reduction in reliability.  This can be explained by the fact that even 

though the data imputation procedure is applied to replace the missing data during 

incident conditions, due to fast changes in traffic conditions, the filled data may not be 

able to completely capture such changes, resulting in a less satisfactory performance.       
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Figure 5-3 Examples of Incidental and Structural Failures 
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Figure 5-3 Examples of Incidental and Structural Failures 
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Table 5-7 Impacts of Incidental and Structural Failures on Travel Time Estimation 
Performance  

Hybrid Model 2 Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 0.08 1.31 100 0 0 Simulated 
Uncongested 
Conditions 

w/ Incidental and 
Structural Errors 

0.10 1.54 100 0 0 

w/o Errors 1.15 10.12 74.50 3.33 22.17 Simulated 
Incident 
Conditions 

w/ Incidental and 
Structural Errors 

1.95 17.58 62.44 15.45 22.11 

5.3. Detector Spacing 

Number of detectors as well as their locations may affect the travel time estimation 

performance.  In order to study such impacts, some simulated detector data are 

intentionally removed to increase the average detector spacing.  Table 5-8 presents the 

sensitivity analysis results for the impacts of detector spacing.  As mentioned in the 

previous chapter, the average spacing between detectors deployed along the eastbound of 

SR-826 is about 0.3 miles.  As shown in Table 5-8, for uncongested traffic conditions, 

an increase in detector spacing only slightly reduces the accuracy and reliability of travel 

time estimation, as the traffic is relatively stable in this case.  However, the performance 

of travel time estimation is greatly affected with the increase in detector spacing for 

incident scenario.  For example, as the detector spacing increases from about 0.3 miles 

to 0.6 miles, the MAPE increases from 10.1% to 19.7%, and the reliability decreases 

from 74.5% to 52.8%.  This is because large detector spacing cannot capture the 

changes in traffic dynamics.  With the further increase in detector spacing from 0.6 

miles to about 1.2 miles, the performance of travel time estimation appears to be almost 

the same for investigated conditions.        
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Table 5-8 Impacts of Detector Spacing on Travel Time Estimation Performance  

Hybrid Model 2 
Approximate 

Detector Spacing 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

0.3 0.08 1.31 100 0 0 
0.6 0.10 1.57 100 0 0 

Simulated 
Uncongested 
Conditions 1.2 0.09 1.40 99.75 0.25 0 

0.3 1.15 10.12 74.50 3.33 22.17 
0.6 2.56 19.74 52.84 1.15 46.01 

Simulated 
Incident 
Conditions 1.2 2.57 19.72 53.76 1.49 44.74 
 

5.4. Travel Time Posting Configuration 

Travel time posting strategies, such as travel time updating frequency, travel time link 

length, and the range of posted travel time are also expected to affect the accuracy and 

reliability of travel time estimates.  This section includes the results of tests conducted 

in this study to investigate the impacts of these influential factors.   

5.4.1. Travel Time Updating Frequency 

Sensitivity analysis is conducted in this study to understand the impacts of the travel time 

updating frequency on the accuracy and reliability of travel time estimates.  Updating 

frequencies ranging from one to five minutes are included in the analysis.  Table 5-9 

displays the travel time estimation results for the simulated uncongested conditions and 

incident conditions as well.  The results in this table indicate that for the uncongested 

conditions, a longer travel time updating interval does not lead to worse estimation 

performance, since the traffic is relatively stable under uncongested conditions.  But for 

the incident scenario, it is seen that the errors increase and that the reliability is reduced 

with an increase in the travel time updating interval.  This indicates that more frequent 
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updates in travel time estimates are preferred for incident conditions due to the varying 

traffic conditions during incidents.  

Table 5-9 Travel Time Estimation Performances with Different Travel Time 
Updating Frequencies  

Hybrid Model 2 
Updating 

Frequency 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

1-minute 0.10 1.62 100 0 0 
2-minute 0.08 1.31 100 0 0 
3-minute 0.07 1.16 100 0 0 
4-minute 0.07 1.15 100 0 0 

Simulated 
Uncongested 
Conditions 

5-minute 0.07 1.06 99.89 0.11 0 
1-minute 1.16 10.21 74.24 2.58 23.18 
2-minute 1.15 10.12 74.50 3.33 22.17 
3-minute 1.31 11.31 70.55 4.64 24.81 
4-minute 1.35 11.85 55.38 17.69 26.93 

Simulated 
Incident 
Conditions 

5-minute 1.34 11.25 69.56 6.86 23.58 

5.4.2. Travel Time Link Length 

To show the impacts of travel time link lengths, four different travel time links are 

defined as follows: 

 DS-1523E – DS-1549E (Distance: 4.24 miles) 

 DS-1521E – DS-1549E (Distance: 4.55 miles) 

 DS-1517E – DS-1549E (Distance: 5.27 miles) 

 DS-1509E – DS-1549E (Distance: 6.42 miles) 

Table 5-10 presents the travel time estimation accuracy and reliability for these 

defined travel time links under the simulated uncongested and Incident 1 scenarios.  The 

mean absolute errors are shown to increase with the increase in the link length.  

However, the mean absolute percentage errors do not monotonically change with such an 

increase in distance as this performance measure is also related to the actual travel time 
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spatial distribution along the studied travel time link.  The reliability does not 

necessarily decreases as the distance increases since the reliability is also determined by 

the range of posted travel time.  Similar conclusions can be obtained based on the results 

in Table 5-10 for incident conditions.  Any conclusions based on the reported results are 

limited to the range of the increase in length investigated in this study.  

Table 5-10 Travel Time Estimation Performances with Different Travel Time Link 
Lengths   
Hybrid 
Model 2 

Origin-Destination 
Distance 
(Miles) 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 
DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23
DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 

Simulated 
Uncongested 
Conditions 

DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 
DS-1523E-DS-1549E 4.24 0.88 13.69 91.40 0 8.60
DS-1521E-DS-1549E 4.55 1.05 13.50 81.94 4.59 13.47
DS-1517E-DS-1549E 5.27 1.05 10.90 75.52 3.38 21.10

Simulated 
Incident 
Conditions 

DS-1509E-DS-1549E 6.42 1.15 10.12 74.50 3.33 22.17

5.4.3. Posted Travel Time Range 

As mentioned above, FDOT District 6 divides the estimated travel time into four 

categories: less than 5 minutes, between 5 and 10 minutes, between 10 and 35 minutes, 

and greater than 35 minutes (FDOT District 6 2010).  The corresponding ranges of 

travel time for these four categories are under 5 minutes, 3-minute range around the 

estimated travel time, 5-minute range around the estimated travel time, and over 35 

minutes, respectively. 

Sensitivity analysis is conducted to see how the reliability of travel time 

estimation changes by adjusting the posted travel time range.  The corresponding 

estimation performance is listed in Table 5-11.  This table shows that for uncongested 
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conditions, the reliability of the posted travel time is close to 100% even when the posted 

travel time range is decreased to 2 minutes.  However, if the travel time range is further 

reduced to 1 minute, the reliability of the estimated travel time is significantly impacted.  

Table 5-11 Travel Time Estimation Reliability with Different Posted Travel Time 
Ranges  

Hybrid Model 2 
Range of Posted 
Travel Time 

Reliability 
(%) 

% Early % Late 

[TT-2, TT+2] 100 0 0 
[TT-1, TT+2] 100 0 0 
[TT-1, TT+1] 99.29 0 0.71 

Simulated Uncongested 
Conditions 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 
[TT-2, TT+3] 74.50 3.33 22.17 
[TT-2, TT+4] 75.88 3.33 20.79 
[TT-2, TT+5] 75.88 3.33 20.79 
[TT-1, TT+4] 69.67 9.54 20.79 
[TT-1, TT+5] 69.67 9.54 20.79 

Simulated Incident 
Conditions 

[TT-1, TT+6] 70.25 9.54 20.22 

Note that the posted travel time range in Table 5-11 for incident conditions is 

mainly for travel time estimates that are greater than 10 minutes, due to the congestion 

caused by the incident.  It can be seen from this table that if the upper value of travel 

time range is increased to higher than 3 minutes, the reliability of the estimated travel 

time does not improve much.  This indicates that such an adjustment is not beneficial.  

Furthermore, decreasing the lower range to 1 minute reduces overall reliability.  

5.5. Summary 

The impacts of data preprocessing procedures, detector errors, detector spacing, and 

travel time posting strategies on travel time estimation accuracy and reliability were 

investigated through sensitivity analysis.  Two data smoothing methods were compared: 

the simple moving average method and exponential moving average method.  The 
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results show that the exponential moving average method can produce better results 

during incident conditions as this method gives more weights to the latest data.  The 

comparison of different data imputation methods indicated that the imputation method 

used in the SunGuide software appears to perform as good as other investigated methods.  

Three types of detector errors, intrinsic errors, systematic errors, and incidental 

and structural failures, were examined by intentionally introducing errors to 100% 

accurate simulated detector data.  The performances of travel time estimation based on 

these detector data with errors were compared to those estimated from 100% accurate 

detector data.  The analysis results show that detector errors have negligible impacts on 

travel time estimates during the uncongested conditions within the investigated ranges of 

errors; however, the performance of travel time estimation can deteriorate significantly in 

incident scenarios.  Similarly, the impacts of detector spacing were examined by 

removing certain detector data.  The sensitivity analysis results indicate that congested 

conditions such as incidents require closer detector spacing.   

Travel time posting configurations were considered in this study in terms of travel 

time updating frequency, travel time link length, and posted travel time range.  It is 

found that for uncongested conditions, travel time can be estimated accurately and 

reliably even with a longer updating interval, longer travel time link length, and small 

range of posted travel time.  However, for incident conditions, the travel time estimation 

requires a shorter updating frequency (such as 1-minute), shorter travel time link length, 

and a wider posting range to achieve a better performance.   
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CHAPTER 6 

RESEARCH SUMMARY 

This study has developed two hybrid on-line travel time estimation models and two 

corresponding off-line methods to estimate freeway travel times based on point detector 

measurements.  The accuracy and reliability of travel time estimation using these 

models were compared to the  existing speed-based and traffic flow-based methods 

using simulation and real-world data.  In addition, the performance of travel time 

estimation under different conditions, such as different congestion levels, incident 

conditions, detector errors, and various estimation method basic parameters, was also 

investigated.  This chapter summarizes the original contributions of the proposed 

methodology and conclusions of the study, and discusses the direction of future work.  

6.1. Study Contribution 

Compared to existing travel time estimation methods, the main contributions of this study 

are the following:  

 A clustering analysis-based traffic condition identification procedure was 

incorporated in travel time estimation.  This provides an automatic way to 

identify congestion level and queue status, and in turn provides a threshold for 

switching between different travel time estimation methods, as described next.  

 Based on the performance of individual estimation methods under certain 

conditions, two hybrid models were developed.  Hybrid Model 1 combines 

the Mid-Point method with a traffic flow-based method.  Hybrid Model 2 

combines the Mid-Point method with the Minimum Speed method.  Such 
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combinations may achieve better performance since different methods 

perform differently under different traffic conditions, including no-congestion, 

recurrent conditions and incidents.   

 In addition, instead of assuming one value for the average effective vehicle 

length used in the traffic flow-based estimation method, an effective way to 

compute this parameter based on detector data in the same peak period was 

proposed in this study.   

 During incident conditions with fast changing queue lengths, shock wave 

analysis-based refinements were introduced to the developed models to 

account for the fast queue prorogation and recovery. 

 Both on-line and off-line hybrid models were developed and compared in this 

study; this provides some insight into the conditions under which the accuracy 

and reliability of travel time estimates can potentially be improved.  

 In addition to traditional accuracy measures, performance measures, in terms 

of percentage of vehicles arriving to the destination within a given travel time 

range, percentage of vehicles arriving early, and percentage of vehicles 

arriving late, were proposed in this study to quantify the reliability of travel 

time estimation.  This is closely related to the practice of posting travel time 

as a range of travel time instead of an exact value, which is usually posted in 

real-world applications.    

 Detector errors, including intrinsic errors, systematic errors, and incidental 

and structural failures, were introduced to the error-free simulated detector 
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data to study how detector errors affect the travel time estimation accuracy 

and reliability.    

6.2. Conclusions 

In this study, travel time estimates obtained from existing speed-based methods, traffic 

flow-based method, and the developed models were tested by using both simulation and 

real-world travel time data as ground truth data.  The results indicate that all of the 

tested methods perform at acceptable and comparable levels at low congestion levels.  

However, their performances vary with the increase in congestion levels.  During low 

congestion levels, the Minimum Speed method and flow-based methods produce slightly 

less accurate results compared to other methods.  But the difference is not significant.  

For moderately recurrent congested conditions and fast-changing conditions during 

incidents, the performances of these two methods are comparable to the performances of 

other methods.  The comparison with other estimation methods shows that the 

developed hybrid models perform well in all cases.  Further comparisons between the 

on-line and off-line travel time estimation results reveal that off-line methods perform 

significantly better only during fast-changing congested conditions such as during 

incidents.  The difference in performance between the on-line and off-line methods 

increases with the increase in congestion levels.   

The impacts of major influential factors, such as data preprocessing procedures, 

detector errors, detector spacing, and travel time posting strategies, on the performance of 

travel time estimation, were also investigated in this study.  The results indicate that the 

spatial imputation method used in the SunGuide software to account for missing data 
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appears to perform as good as other investigated methods.  When estimating travel time 

during incident conditions, the use of the exponential moving average produces more 

accurate and reliable results compared to the simple moving average method used in 

SunGuide, since the exponential moving average method can give more weight to the 

latest data in the smoothing and can thus better account for the fast-changing dynamic 

conditions during incidents.  When using the simple moving average method during 

incident conditions, shorter rolling time periods produce better results.   

The results also show that the intrinsic errors caused by measurement noise, 

systematic errors (e.g., due to inadequate calibration or device inaccuracy), and data 

missing due to incidental and/or structural failure have significantly higher negative 

impacts on the performance of travel time estimation during congested conditions than 

for uncongested conditions.  Similarly, larger detector spacing does not worsen the 

performance of travel time estimation during uncongested conditions, but has significant 

impacts on the estimation accuracy and reliability during incidents.  

The results of the sensitivity analysis in this study indicates that for uncongested 

conditions, a longer travel time updating interval does not lead to poorer estimation 

performance.  For incident scenarios, the errors increase and the reliability decreases 

with the increase in the travel time updating interval.  The absolute errors also increase 

with the increase in the travel time link length under incident conditions.  With regard to 

the range of travel time posted on ATIS devices, it appears that a posted travel time range 

of two-to-three minutes generally produces good results for uncongested conditions.  

However, if the travel time range is further reduced to one minute, the reliability of the 

estimated travel time is significantly impacted.  For incident scenarios, a slightly larger 
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travel time range may increase the reliability of travel time estimation, but the 

improvement is not significant.  

6.3. Future Work 

The hybrid models for freeway travel time estimation developed in this study are not 

perfect, and merit some further studies in the following areas: 

 For real-time applications, a refinement needs to be made to the developed 

models at the later stages of lane blockage to capture the effect of front recovery 

shock wave during incident clearance.  However, this requires the knowledge of 

approximate lane blockage duration.  Future efforts may focus on incorporating 

existing incident duration models including lane blockage duration models in 

travel time estimation.  

 Even though the developed hybrid models were tested using simulated incidents, 

it is not clear how these models perform when applying them to real-world 

incident cases.  It is necessary to collect real-world travel time data, especially 

during various types of incidents, to further test these models.  

 The off-line hybrid models developed in this study can be used in the training 

process of real-time short-term travel time prediction approaches such as Neural 

Network, whose performances may be compared to the developed on-line hybrid 

models in future studies.  

 The reliability of travel time estimation was only quantified based on simulation.  

Due to lack of data, this study did not quantify the estimation reliability for 

real-world cases.  In the future, additional real-world data, such as vehicle 
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trajectory data, or travel time distribution data, should be collected and used in the 

evaluation of travel time estimation reliability.   

 There is limited information regarding point detector accuracy under various 

conditions.  Experiments should be conducted to test the measurement accuracy 

of different types of detectors, especially during low speed conditions.  This 

information can be further used in the methodology developed by this study to 

investigate their impacts on travel time estimation performance. 
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APPENDIX A 

SENSITIVITY ANALYSIS RESULTS FOR TRAVEL TIME ESTIMATION 

 
This appendix presents detailed analysis results for the impacts of major influential 

factors on the accuracy and reliability of travel time estimates.  

A.1 Impacts of Data Smoothing Methods 

Table A-1 Accuracy and Reliability of Travel Time Estimation Using Simple 
Moving Average 

Method 
Rolling 
Period 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

1-minute 1.87 14.91 58.42 3.50 38.08 

2-minute 1.96 15.51 58.53 2.53 38.94 

3-minute 2.05 16.23 59.56 2.01 38.43 

4-minute 2.11 16.63 59.10 2.47 38.43 

Point-to-Point 
Method 

5-minute 2.17 17.09 58.24 3.91 37.85 

1-minute 1.69 13.70 62.03 4.19 33.77 

2-minute 1.79 14.37 60.89 4.19 34.92 

3-minute 1.87 15.05 60.25 3.68 36.07 

4-minute 1.95 15.62 61.34 2.99 35.67 

Mid-Point 
Method 

5-minute 2.04 16.31 57.50 6.43 36.07 

1-minute 1.49 13.54 66.57 14.36 19.07 

2-minute 1.81 15.78 56.86 18.15 24.99 

3-minute 1.78 15.66 57.21 17.81 24.99 

4-minute 1.81 16.03 54.22 20.79 24.99 

Hybrid Model 1 

5-minute 1.91 17.08 52.79 22.23 24.99 

1-minute 1.44 12.72 63.70 17.17 19.13 

2-minute 1.59 13.86 61.45 16.72 21.83 

3-minute 1.73 15.00 58.93 16.72 24.35 

4-minute 1.89 16.29 56.23 19.01 24.76 

Hybrid Model 2 

5-minute 2.04 17.72 48.65 24.81 26.54 
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Table A-2 Accuracy and Reliability of Travel Time Estimation Using Exponential 
Moving Average 

Method 
Smoothing 

Factor 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

0.2 2.22 17.30 57.38 1.09 41.53 

0.4 2.07 16.28 57.32 1.78 40.90 

0.6 2.03 16.06 58.47 2.24 39.29 

0.8 2.04 16.09 58.24 2.24 39.52 

Point-to-Point 
Method 

1.0 2.04 16.17 55.66 3.45 40.90 

0.2 2.02 15.93 58.53 3.67 37.79 

0.4 1.86 14.78 59.05 4.19 36.76 

0.6 1.82 14.49 59.97 3.10 36.93 

0.8 1.82 14.53 58.53 3.91 37.57 

Mid-Point 
Method 

1.0 1.84 14.66 59.10 3.85 37.05 

0.2 1.50 13.51 61.63 12.52 25.85 

0.4 1.11 10.24 70.59 10.34 19.07 

0.6 1.13 10.72 66.63 14.70 18.67 

0.8 1.11 10.52 66.97 14.88 18.15 

Hybrid Model 1 

1.0 1.44 12.77 61.00 19.30 19.70 

0.2 1.49 12.51 69.21 3.33 27.46 

0.4 1.15 10.12 74.50 3.33 22.17 

0.6 1.03 9.28 73.92 4.36 21.71 

0.8 0.99 8.98 74.73 4.54 20.74 

Hybrid Model 2 

1.0 1.09 9.60 73.23 4.48 22.29 
 

A.2 Impacts of Data Imputation Methods 

Table A-3 Results of Different Data Imputation Methods without Within-Station 
Imputation 

Method 
Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Simple Average 2.09 16.38 57.09 2.93 39.98

Linear Interpolation 2.09 16.35 57.09 2.93 39.98
Point-to- 
Point 
Method 

w/o 
Temporal 
Imputation Factor Method 2.09 16.38 57.15 3.10 39.75
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Method 
Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Simple Average 2.08 16.28 57.09 2.93 39.98

Linear Interpolation 2.08 16.25 57.09 2.93 39.98
Point-to- 
Point 
Method 

Average of 
Temporal 
and Spatial 
Imputations Factor Method 2.08 16.30 57.09 2.93 39.98

Simple Average 1.87 14.86 59.97 3.50 36.53

Linear Interpolation 1.87 14.85 59.97 3.50 36.53
w/o 
Temporal 
Imputation Factor Method 1.88 14.95 59.74 3.50 36.76

Simple Average 1.86 14.79 59.97 3.50 36.53

Linear Interpolation 1.86 14.77 59.97 3.50 36.53

Mid-Point 
Method Average of 

Temporal 
and Spatial 
Imputations Factor Method 1.87 14.81 59.97 3.50 36.53

Simple Average 1.09 10.23 68.70 10.91 20.39

Linear Interpolation 1.08 10.16 68.70 10.91 20.39
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.10 10.35 68.75 10.68 20.56

w/o 
Temporal 
Imputation 

Factor Method 1.15 10.79 66.28 12.92 20.79

Simple Average 1.08 10.15 68.70 10.91 20.39

Linear Interpolation 1.08 10.09 68.70 10.91 20.39
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.09 10.20 68.70 10.91 20.39

Hybrid 
Model 1 

Average of 
Temporal 
and Spatial 
Imputations 

Factor Method 1.11 10.46 68.70 10.91 20.39

Simple Average 1.23 10.72 72.20 4.77 23.03

Linear Interpolation 1.23 10.70 72.20 4.77 23.03
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.23 10.70 72.20 4.77 23.03

w/o 
Temporal 
Imputation 

Factor Method 1.24 10.77 71.97 4.77 23.26

Simple Average 1.23 10.64 72.20 4.77 23.03

Linear Interpolation 1.22 10.61 72.20 4.77 23.03
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.22 10.61 72.20 4.77 23.03

Hybrid 
Model 2 

Average of 
Temporal 
and Spatial 
Imputations 

Factor Method 1.23 10.64 72.20 4.77 23.03
 



  

151 

Table A-4 Results of Different Data Imputation Methods with Within-station 
Imputation 

Method 
Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Simple Average 2.06 16.14 57.09 2.93 39.98

Linear Interpolation 2.06 16.14 57.09 2.93 39.98
w/o 
Temporal 
Imputation Factor Method 2.06 16.14 57.09 2.93 39.98

Simple Average 2.06 16.14 57.09 2.93 39.98

Linear Interpolation 2.06 16.14 57.09 2.93 39.98

Point-to- 
Point 
Method 

Average of 
Temporal 
and Spatial 
Imputations Factor Method 2.06 16.14 57.09 2.93 39.98

Simple Average 1.84 14.66 59.97 3.50 36.53

Linear Interpolation 1.84 14.66 59.97 3.50 36.53
w/o 
Temporal 
Imputation Factor Method 1.84 14.66 59.97 3.50 36.53

Simple Average 1.84 14.66 59.97 3.50 36.53

Linear Interpolation 1.84 14.66 59.97 3.50 36.53

Mid-Point 
Method Average of 

Temporal 
and Spatial 
Imputations Factor Method 1.84 14.66 59.97 3.50 36.53

Simple Average 1.13 10.49 68.52 10.91 20.56

Linear Interpolation 1.12 10.41 68.70 10.91 20.39
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.14 10.61 68.52 10.91 20.56

w/o 
Temporal 
Imputation 

Factor Method 1.14 10.72 68.52 10.68 20.79

Simple Average 1.14 10.53 68.52 10.91 20.56

Linear Interpolation 1.13 10.48 68.52 10.91 20.56
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.14 10.59 68.52 10.91 20.56

Hybrid 
Model 1 

Average of 
Temporal 
and Spatial 
Imputations 

Factor Method 1.17 10.84 67.15 10.91 21.94

Simple Average 1.20 10.48 73.58 4.77 21.65

Linear Interpolation 1.20 10.48 73.58 4.77 21.65
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.20 10.48 73.58 4.77 21.65
Hybrid 
Model 2 

w/o 
Temporal 
Imputation 

Factor Method 1.20 10.48 73.58 4.77 21.65
 
 



  

152 

Method 
Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Simple Average 1.20 10.48 73.58 4.77 21.65

Linear Interpolation 1.20 10.48 73.58 4.77 21.65
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.20 10.48 73.58 4.77 21.65
Hybrid 
Model 2 

Average of 
Temporal 
and Spatial 
Imputations 

Factor Method 1.20 10.48 73.58 4.77 21.65
 

A.3 Impacts of Intrinsic Errors 

Table A-5 Impacts of Intrinsic Errors on Travel Time Estimation Performance for 
Simulated Uncongested Conditions 

Method Cases 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% Late

w/o Errors 0.121 1.92 100 0 0 

Average 0.123 1.95 100 0 0 

Minimum 0.121 1.92 100 0 0 
Point-to-Point 
Method  

w/ 
Intrinsic 
Errors Maximum 0.125 1.98 100 0 0 

w/o Errors 0.082 1.31 100 0 0 

Average 0.083 1.33 100 0 0 

Minimum 0.081 1.30 100 0 0 
Mid-Point 
Method 

w/ 
Intrinsic 
Errors Maximum 0.085 1.36 100 0 0 

w/o Errors 0.082 1.31 100 0 0 

Average 0.083 1.33 100 0 0 

Minimum 0.081 1.3 100 0 0 
Hybrid Model 1 w/ 

Intrinsic 
Errors Maximum 0.085 1.36 100 0 0 

w/o Errors 0.082 1.31 100 0 0 

Average 0.083 1.33 100 0 0 

Minimum 0.081 1.30 100 0 0 
Hybrid Model 2 w/ 

Intrinsic 
Errors Maximum 0.085 1.36 100 0 0 
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Table A-6 Impacts of Intrinsic Errors on Travel Time Estimation Performance for 
Simulated Incident Case 1 between 7:30 A.M. and 8:30 A.M. 

Method Cases 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% Late

w/o Errors 2.07 16.28 57.32 1.78 40.90

Average 2.03 16.02 57.84 2.00 40.16

Minimum 1.96 15.43 54.16 1.72 38.43
Point-to-Point 
Method 

w/ 
Intrinsic 
Errors Maximum 2.13 16.73 59.62 3.04 44.06

w/o Errors 1.86 14.78 59.05 4.19 36.76

Average 1.83 14.59 60.24 3.95 35.81

Minimum 1.76 14.08 58.24 3.10 34.18
Mid-Point 
Method 

w/ 
Intrinsic 
Errors Maximum 1.91 15.15 62.26 4.77 37.79

w/o Errors 1.11 10.24 70.59 10.34 19.07

Average 1.62 13.59 63.18 10.24 26.59

Minimum 1.27 11.00 59.51 3.91 21.94
Hybrid Model 1 w/ 

Intrinsic 
Errors Maximum 2.00 16.03 69.33 14.36 30.90

w/o Errors 1.15 10.12 74.50 3.33 22.17

Average 1.58 12.87 64.59 4.24 31.17

Minimum 1.23 10.66 61.17 2.59 22.34
Hybrid Model 2 w/ 

Intrinsic 
Errors Maximum 1.75 13.97 71.17 6.49 34.75

 

A.4 Impacts of Systematic Errors 

Table A-7a Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Uncongested Conditions without Data Filtering 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 0.12 1.92 100 0 0 
Case 1 0.17 2.67 100 0 0 
Case 2 0.22 3.51 100 0 0 
Case 3 0.26 4.07 100 0 0 
Case 4 0.23 3.65 100 0 0 
Case 5 0.32 5.09 100 0 0 
Case 6 0.40 6.29 100 0 0 
Case 7 0.09 1.43 100 0 0 
Case 8 0.08 1.29 100 0 0 

Point-to-Point 
Method 

Case 9 0.10 1.58 99.73 0.27 0 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 10 0.08 1.26 100 0 0 
Case 11 0.11 1.75 99.53 0.47 0 
Case 12 0.24 3.85 87.54 12.46 0 

w/o Errors 0.08 1.31 100 0 0 
Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 
Case 7 0.08 1.33 100 0 0 
Case 8 0.10 1.60 99.82 0.18 0 
Case 9 0.16 2.54 93.85 6.15 0 
Case 10 0.10 1.52 99.91 0.09 0 
Case 11 0.19 3.07 91.19 8.81 0 

Mid-Point 
Method 

Case 12 0.35 5.57 83.58 16.42 0 
w/o Errors 0.08 1.31 100 0 0 

Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 
Case 7 0.08 1.27 100 0 0 
Case 8 0.09 1.45 99.95 0.05 0 
Case 9 0.15 2.47 94.89 5.11 0 
Case 10 0.10 1.52 99.89 0.11 0 
Case 11 0.19 3.04 91.19 8.81 0 

Hybrid Model 1 

Case 12 0.33 5.30 83.58 16.42 0 
w/o Errors 0.08 1.31 100 0 0 

Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 

Hybrid Model 2 

Case 7 0.21 3.40 86.59 13.41 0 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 8 0.27 4.30 86.37 13.63 0 
Case 9 0.38 5.96 87.06 12.95 0 
Case 10 0.10 1.67 99.34 0.66 0 
Case 11 0.32 5.13 90.77 9.23 0 
Case 12 0.71 11.29 83.58 16.42 0 

Note: the definition for each case is explained in Table 5-4. 

 
Table A-7b Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Uncongested Conditions with Data Filtering 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 0.12 1.92 100 0 0 

Case 1 0.16 2.47 100 0 0 

Case 2 0.17 2.63 100 0 0 

Case 3 0.21 3.27 100 0 0 

Case 4 0.16 2.53 100 0 0 

Case 5 0.21 3.28 100 0 0 

Case 6 0.34 5.35 100 0 0 

Case 7 0.09 1.43 100 0 0 

Case 8 0.08 1.29 100 0 0 

Case 9 0.10 1.58 99.73 0.27 0 

Case 10 0.08 1.26 100 0 0 

Case 11 0.11 1.76 99.43 0.57 0 

Point-to-Point 
Method 

Case 12 0.24 3.85 87.54 12.46 0 

w/o Errors 0.08 1.31 100 0 0 

Case 1 0.11 1.72 100 0 0 

Case 2 0.11 1.77 100 0 0 

Case 3 0.17 2.69 100 0 0 

Case 4 0.11 1.80 100 0 0 

Case 5 0.17 2.69 100 0 0 

Case 6 0.33 5.15 100 0 0 

Case 7 0.08 1.33 100 0 0 

Case 8 0.10 1.60 99.65 0.36 0 

Mid-Point 
Method 

Case 9 0.16 2.55 94.00 6.01 0 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 10 0.10 1.53 99.94 0.06 0 

Case 11 0.19 3.08 91.19 8.81 0 

Case 12 0.35 5.57 83.58 16.42 0 

w/o Errors 0.08 1.31 100 0 0 

Case 1 0.11 1.72 100 0 0 

Case 2 0.11 1.77 100 0 0 

Case 3 0.17 2.69 100 0 0 

Case 4 0.11 1.80 100 0 0 

Case 5 0.17 2.69 100 0 0 

Case 6 0.33 5.15 100 0 0 

Case 7 0.08 1.27 100 0 0 

Case 8 0.08 1.32 100 0 0 

Case 9 0.13 2.11 98.66 1.34 0 

Case 10 0.10 1.53 99.89 0.11 0 

Case 11 0.19 3.04 91.19 8.81 0 

Hybrid Model 1 

Case 12 0.31 4.91 83.58 16.42 0 

w/o Errors 0.08 1.31 100 0 0 

Case 1 0.11 1.72 100 0 0 

Case 2 0.11 1.77 100 0 0 

Case 3 0.17 2.68 100 0 0 

Case 4 0.11 1.80 100 0 0 

Case 5 0.17 2.69 100 0 0 

Case 6 0.33 5.15 100 0 0 

Case 7 0.21 3.40 86.59 13.41 0 

Case 8 0.27 4.30 86.37 13.63 0 

Case 9 0.38 5.95 87.06 12.95 0 

Case 10 0.10 1.67 99.34 0.66 0 

Case 11 0.32 5.13 90.77 9.23 0 

Hybrid Model 2 

Case 12 0.71 11.29 83.58 16.42 0 
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Table A-8a Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Incident Conditions without Data Filtering 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 2.07 16.28 57.32 1.78 40.90 

Case 1 2.09 16.47 57.50 1.61 40.90 

Case 2 2.15 16.97 57.50 1.61 40.90 

Case 3 2.25 17.98 57.27 1.61 41.13 

Case 4 2.52 19.66 55.20 0.23 44.57 

Case 5 2.76 21.81 53.99 0 46.01 

Case 6 2.92 23.40 52.67 0 47.33 

Case 7 2.04 16.09 58.07 3.10 38.83 

Case 8 2.02 15.92 60.14 3.50 36.36 

Case 9 1.93 15.70 56.40 8.73 34.87 

Case 10 1.84 14.71 58.36 6.78 34.87 

Case 11 1.83 15.20 61.69 9.88 28.43 

Point-to-Point 
Method  

Case 12 2.30 20.40 46.76 35.38 17.86 

w/o Errors 1.86 14.78 59.05 4.19 36.76 

Case 1 1.89 14.98 59.51 3.10 37.39 

Case 2 1.91 15.11 59.10 2.64 38.25 

Case 3 2.04 16.28 59.45 1.61 38.94 

Case 4 2.49 19.35 53.65 0.00 46.35 

Case 5 2.81 22.15 52.56 0.00 47.44 

Case 6 3.01 24.03 51.23 0.00 48.77 

Case 7 1.83 14.67 60.77 4.25 34.98 

Case 8 1.82 14.61 60.20 5.05 34.75 

Case 9 1.80 15.31 60.60 9.82 29.58 

Case 10 1.63 13.55 67.20 6.55 26.25 

Case 11 1.82 16.10 54.80 22.46 22.75 

Mid-Point 
Method 

Case 12 3.46 29.78 33.95 48.48 17.58 

w/o Errors 1.11 10.24 70.59 10.34 19.07 

Case 1 1.08 9.90 73.75 6.72 19.53 

Case 2 1.09 9.95 73.75 6.72 19.53 

Case 3 1.20 10.53 76.62 2.41 20.96 

Hybrid Model 1 

Case 4 1.15 10.19 76.68 2.13 21.19 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 5 1.21 10.73 76.79 1.78 21.42 

Case 6 1.36 12.09 76.28 0.92 22.80 

Case 7 1.45 12.62 69.84 13.50 16.66 

Case 8 1.46 13.01 59.51 23.84 16.66 

Case 9 1.01 10.03 69.73 15.57 14.70 

Case 10 1.20 11.23 66.17 18.09 15.74 

Case 11 1.46 13.01 59.16 24.35 16.48 

Case 12 1.84 16.97 54.68 30.67 14.65 

w/o Errors 1.15 10.12 74.50 3.33 22.17 

Case 1 1.16 10.17 74.38 2.99 22.63 

Case 2 1.16 10.21 74.84 2.53 22.63 

Case 3 1.25 11.05 74.38 1.49 24.12 

Case 4 1.99 15.88 60.02 0.23 39.75 

Case 5 2.37 19.00 54.62 0.23 45.15 

Case 6 2.54 20.62 53.88 0.23 45.89 

Case 7 1.50 13.11 64.39 15.11 20.51 

Case 8 1.25 10.95 71.22 7.64 21.14 

Case 9 1.10 10.47 75.07 8.73 16.20 

Case 10 1.58 13.26 61.86 15.91 22.23 

Case 11 1.69 14.70 52.38 22.92 24.70 

Hybrid Model 2 

Case 12 5.62 42.88 41.53 39.06 19.41 

 
Table A-8b Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Incident Conditions with Data Filtering 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 2.07 16.28 57.32 1.78 40.90 

Case 1 2.08 16.33 57.38 1.72 40.90 

Case 2 2.08 16.35 57.38 1.72 40.90 

Case 3 2.18 17.18 57.27 1.61 41.13 

Case 4 2.08 16.47 58.36 2.13 39.52 

Case 5 2.30 18.21 58.64 0.23 41.13 

Point-to-Point 
Method 

Case 6 2.79 22.03 52.84 0.00 47.16 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 7 2.04 16.08 58.76 3.10 38.14 

Case 8 2.01 15.91 60.14 3.50 36.36 

Case 9 2.03 15.97 60.94 2.87 36.19 

Case 10 1.99 15.65 57.90 4.37 37.74 

Case 11 1.97 15.71 57.84 6.38 35.78 

Case 12 2.11 17.76 56.98 13.79 29.24 

w/o Errors 1.86 14.78 59.05 4.19 36.76 

Case 1 1.87 14.79 58.99 3.62 37.39 

Case 2 1.87 14.80 58.99 3.62 37.39 

Case 3 2.00 15.83 59.33 1.72 38.94 

Case 4 1.89 15.20 60.37 2.70 36.93 

Case 5 2.18 17.33 58.07 0.23 41.70 

Case 6 2.90 22.95 52.67 0.00 47.33 

Case 7 1.84 14.68 60.83 4.42 34.75 

Case 8 1.82 14.62 60.20 5.05 34.75 

Case 9 1.84 14.84 59.74 5.51 34.75 

Case 10 1.81 14.59 61.34 5.05 33.60 

Case 11 1.89 15.81 61.34 8.39 30.27 

Mid-Point 
Method 

Case 12 2.77 22.59 48.02 21.42 30.56 

w/o Errors 1.11 10.24 70.59 10.34 19.07 

Case 1 1.14 10.47 71.11 9.36 19.53 

Case 2 1.14 10.49 71.11 9.36 19.53 

Case 3 1.09 9.80 75.65 4.02 20.33 

Case 4 1.66 13.64 69.39 3.04 27.57 

Case 5 1.73 14.22 66.69 2.70 30.61 

Case 6 1.64 13.84 67.09 2.64 30.27 

Case 7 1.44 12.57 69.84 13.50 16.66 

Case 8 1.46 12.93 60.77 22.57 16.66 

Case 9 1.05 10.35 66.97 19.30 13.73 

Case 10 1.61 13.69 66.40 8.90 24.70 

Case 11 1.52 12.94 68.87 5.74 25.39 

Hybrid Model 1 

Case 12 1.46 13.05 64.62 13.79 21.60 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 1.15 10.12 74.50 3.33 22.17 

Case 1 1.15 10.09 74.38 2.99 22.63 

Case 2 1.15 10.09 74.38 2.99 22.63 

Case 3 1.22 10.71 74.84 1.61 23.55 

Case 4 1.28 11.17 70.76 5.28 23.95 

Case 5 1.53 13.05 67.43 2.35 30.21 

Case 6 2.50 20.13 53.88 0.23 45.89 

Case 7 1.50 13.13 64.45 15.28 20.28 

Case 8 1.25 10.93 71.22 7.64 21.14 

Case 9 1.08 9.78 75.53 4.65 19.82 

Case 10 1.22 10.78 70.42 9.02 20.56 

Case 11 1.50 13.05 64.96 12.23 22.80 

Hybrid Model 2 

Case 12 3.46 25.72 55.43 15.16 29.41 

 
Table A-9 Impacts of Systematic Errors in Low Speed Measurements on Travel 
Time Estimation Performance for Simulated Incident Conditions  

Method Cases  
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

w/o Errors 2.07 16.28 57.32 1.78 40.90

20% Increase in Low Speed 2.24 17.46 55.08 0.34 44.57

40% Increase in Low Speed 2.42 18.86 54.62 0.11 45.26

20% Decrease in Low Speed 1.92 15.38 57.73 6.09 36.19

Point-to-Point 
Method 

40% Decrease in Low Speed 1.76 14.50 63.47 7.58 28.95

w/o Errors 1.86 14.78 59.05 4.19 36.76

20% Increase in Low Speed 2.08 16.31 60.65 1.21 38.14

40% Increase in Low Speed 2.28 17.76 54.22 0.98 44.80

20% Decrease in Low Speed 1.68 13.75 62.67 7.06 30.27

Mid-Point 
Method 

40% Decrease in Low Speed 1.59 13.56 66.28 9.82 23.89

w/o Errors 1.11 10.24 70.59 10.34 19.07

20% Increase in Low Speed 1.18 10.68 67.89 11.83 20.28

40% Increase in Low Speed 1.23 10.87 68.06 10.68 21.25

20% Decrease in Low Speed 1.12 10.31 68.35 12.58 19.07

Hybrid Model 1 

40% Decrease in Low Speed 1.25 11.24 67.78 10.97 21.25
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Method Cases  
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

5% Increase in Volume 1.10 9.91 72.95 7.98 19.07

10% Increase in Volume 1.17 10.91 64.33 16.54 19.13

5% Decrease in Volume 1.17 11.10 67.55 14.30 18.15

10% Decrease in Volume 1.08 10.06 71.74 9.59 18.67

w/o Errors 1.15 10.12 74.50 3.33 22.17

20% Increase in Low Speed 1.37 11.52 71.97 1.21 26.82

40% Increase in Low Speed 1.66 13.57 68.18 0.98 30.84

20% Decrease in Low Speed 1.46 12.33 61.69 16.94 21.37

40% Decrease in Low Speed 1.88 15.19 57.15 16.83 26.02

5% Increase in Volume 1.15 10.15 74.50 3.33 22.17

10% Increase in Volume 1.16 10.18 74.55 3.50 21.94

5% Decrease in Volume 1.15 10.12 74.50 3.33 22.17

Hybrid Model 2 

10% Decrease in Volume 1.15 10.12 74.50 3.33 22.17
 

A.5 Impacts of Incidental and Structural Failures 

Table A-10 Impacts of Incidental and Structural Failures on Travel Time 
Estimation Performance for Simulated Uncongested Conditions  

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 0.12 1.92 100 0 0 
Point to Point 
Method  w/ Incidental and 

Structural Errors 
0.14 2.18 100 0 0 

w/o Errors 0.08 1.31 100 0 0 
Mid-Point 
Method w/ Incidental and 

Structural Errors 
0.10 1.53 100 0 0 

w/o Errors 0.08 1.31 100 0 0 
Hybrid Model 1 w/ Incidental and 

Structural Errors 
0.10 1.53 100 0 0 

w/o Errors 0.08 1.31 100 0 0 
Hybrid Model 2 w/ Incidental and 

Structural Errors 
0.10 1.54 100 0 0 
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Table A-11 Impacts of Incidental and Structural Failures on Travel Time 
Estimation Performance for Simulated Incident Conditions 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 2.07 16.28 57.32 1.78 40.90 
Point to Point 
Method  w/ Incidental and 

Structural Errors 
2.04 16.21 55.66 6.61 37.74 

w/o Errors 1.86 14.78 59.05 4.19 36.76 
Mid-Point 
Method w/ Incidental and 

Structural Errors 
2.06 17.00 58.07 10.57 31.36 

w/o Errors 1.11 10.24 70.59 10.34 19.07 
Hybrid Model 1 w/ Incidental and 

Structural Errors 
1.80 16.36 58.13 25.16 16.72 

w/o Errors 1.15 10.12 74.50 3.33 22.17 
Hybrid Model 2 w/ Incidental and 

Structural Errors 
1.95 17.58 62.44 15.45 22.11 

 

A.6 Impacts of Detector Spacing 

Table A-12 Impacts of Detector Spacing on Travel Time Estimation Performance 
for Simulated Uncongested Conditions  

Method 
Approximate 

Detector Spacing 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

0.3 0.12 1.92 100 0 0 

0.6 0.14 2.29 100 0 0 
Point-to-Point 
Method 

1.2 0.08 1.29 99.94 0.06 0 

0.3 0.08 1.31 100 0 0 

0.6 0.10 1.57 100 0 0 
Mid-Point 
Method 

1.2 0.09 1.40 99.75 0.25 0 

0.3 0.08 1.31 100 0 0 

0.6 0.10 1.57 100 0 0 Hybrid Model 1 

1.2 0.09 1.40 99.75 0.25 0 

0.3 0.08 1.31 100 0 0 

0.6 0.10 1.57 100 0 0 Hybrid Model 2 

1.2 0.09 1.40 99.75 0.25 0 
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Table A-13 Impacts of Detector Spacing on Travel Time Estimation Performance 
for Simulated Incident Conditions  

Method 
Approximate 

Detector Spacing 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

0.3 2.07 16.28 57.32 1.78 40.90 

0.6 2.86 21.96 53.99 0.46 45.55 
Point-to-Point 
Method 

1.2 2.86 22.08 52.15 0.86 46.98 

0.3 1.86 14.78 59.05 4.19 36.76 

0.6 2.85 21.85 51.52 0.92 47.56 
Mid-Point 
Method 

1.2 2.77 21.30 51.81 1.26 46.93 

0.3 1.11 10.24 70.59 10.34 19.07 

0.6 1.89 15.13 63.18 1.67 35.15 Hybrid Model 1 

1.2 1.93 15.38 56.81 4.02 39.17 

0.3 1.15 10.12 74.50 3.33 22.17 

0.6 2.56 19.74 52.84 1.15 46.01 Hybrid Model 2 

1.2 2.57 19.72 53.76 1.49 44.74 
 

A.7 Impacts of Travel Time Updating Frequency 

Table A-14 Travel Time Estimation Performances with Different Travel Time 
Updating Frequencies for Simulated Uncongested Conditions  

Method 
Updating 

Frequency 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

1-minute 0.14 2.20 100 0 0 

2-minute 0.12 1.92 100 0 0 

3-minute 0.12 1.91 100 0 0 

4-minute 0.12 1.90 100 0 0 

Point-to-Point 
Method 

5-minute 0.12 1.86 100 0 0 

1-minute 0.10 1.62 100 0 0 

2-minute 0.08 1.31 100 0 0 

3-minute 0.07 1.16 100 0 0 

4-minute 0.07 1.15 100 0 0 

Mid-Point 
Method 

5-minute 0.06 1.03 100 0 0 

1-minute 0.10 1.62 100 0 0 Hybrid Model 1 

2-minute 0.08 1.31 100 0 0 
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Method 
Updating 

Frequency 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

3-minute 0.07 1.16 100 0 0 

4-minute 0.07 1.15 100 0 0 

5-minute 0.07 1.03 100 0 0 

1-minute 0.10 1.62 100 0 0 

2-minute 0.08 1.31 100 0 0 

3-minute 0.07 1.16 100 0 0 

4-minute 0.07 1.15 100 0 0 

Hybrid Model 2 

5-minute 0.07 1.06 99.89 0.11 0 

 
Table A-15 Travel Time Estimation Performances with Different Travel Time 
Updating Frequencies for Simulated Incident Conditions  

Method 
Updating 

Frequency 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

1-minute 1.99 15.63 59.27 0.80 39.93 

2-minute 2.07 16.28 57.32 1.78 40.90 

3-minute 2.04 16.05 55.83 3.83 40.35 

4-minute 2.29 18.19 48.17 8.67 43.17 

Point-to-Point 
Method 

5-minute 2.25 17.58 52.85 6.75 40.41 

1-minute 1.79 14.23 60.99 1.89 37.12 

2-minute 1.86 14.78 59.05 4.19 36.76 

3-minute 1.86 14.82 57.62 6.15 36.23 

4-minute 2.08 16.81 47.70 14.37 37.93 

Mid-Point 
Method 

5-minute 2.12 16.77 54.37 7.92 37.71 

1-minute 1.10 9.85 73.38 9.07 17.56 

2-minute 1.11 10.24 70.59 10.34 19.07 

3-minute 1.15 10.54 69.04 12.46 18.49 

4-minute 1.54 13.77 46.77 25.31 27.92 

Hybrid Model 1 

5-minute 1.27 11.29 66.33 8.80 24.87 

1-minute 1.16 10.21 74.24 2.58 23.18 

2-minute 1.15 10.12 74.50 3.33 22.17 

3-minute 1.31 11.31 70.55 4.64 24.81 

4-minute 1.35 11.85 55.38 17.69 26.93 

Hybrid Model 2 

5-minute 1.34 11.25 69.56 6.86 23.58 
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A.8 Impacts of Travel Time Link Length 

Table A-16 Travel Time Estimation Performances with Different Travel Time Link 
Lengths for Simulated Uncongested Conditions 

Method Origin-Destination 
Distance 
(Miles) 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

DS-1523E-DS-1549E 4.24 0.05 1.17 100 0 0 

DS-1521E-DS-1549E 4.55 0.05 1.11 99.64 0.08 0.28 

DS-1517E-DS-1549E 5.27 0.07 1.27 100 0 0 

Point-to- 
Point 
Method 

DS-1509E-DS-1549E 6.42 0.12 1.92 100 0 0 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 

DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 

DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
Mid-Point 
Method 

DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 

DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 

DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
Hybrid 
Model 1 

DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 

DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 

DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
Hybrid 
Model 2 

DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

 
Table A-17 Travel Time Estimation Performances with Different Travel Time Link 
Lengths for Simulated Incident Conditions 

Method Origin-Destination 
Distance 
(Miles) 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

DS-1523E-DS-1549E 4.24 0.92 14.00 86.78 0 13.22

DS-1521E-DS-1549E 4.55 1.07 13.27 77.93 4.59 17.48

DS-1517E-DS-1549E 5.27 1.86 16.59 57.41 2.49 40.10

Point-to- 
Point 
Method 

DS-1509E-DS-1549E 6.42 2.07 16.28 57.32 1.78 40.90

DS-1523E-DS-1549E 4.24 1.13 17.15 73.36 0 26.64

DS-1521E-DS-1549E 4.55 1.44 17.28 75.94 0.09 23.97

DS-1517E-DS-1549E 5.27 1.74 15.85 58.30 1.38 40.32
Mid-Point 
Method 

DS-1509E-DS-1549E 6.42 1.86 14.78 59.05 4.19 36.76

 DS-1523E-DS-1549E 4.24 0.63 10.10 91.98 0.35 7.67 
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Method Origin-Destination 
Distance 
(Miles) 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

DS-1521E-DS-1549E 4.55 0.85 11.09 87.02 0.13 12.85

DS-1517E-DS-1549E 5.27 0.97 9.97 75.48 6.10 18.43

Hybrid 
Model 1 

DS-1509E-DS-1549E 6.42 1.11 10.24 70.59 10.34 19.07

DS-1523E-DS-1549E 4.24 0.88 13.69 91.40 0 8.60 

DS-1521E-DS-1549E 4.55 1.05 13.50 81.94 4.59 13.47

DS-1517E-DS-1549E 5.27 1.05 10.90 75.52 3.38 21.10
Hybrid 
Model 2 

DS-1509E-DS-1549E 6.42 1.15 10.12 74.50 3.33 22.17
 

A.9 Impacts of Travel Time Posting Range 

Table A-18 Travel Time Estimation Reliability with Different Posted Travel Time 
Ranges for Simulated Uncongested Conditions 

Method 
Range of Posted 
Travel Time 

Reliability 
(%) 

% Early % Late 

[TT-2, TT+2] 100 0 0 

[TT-1, TT+2] 100 0 0 

[TT-1, TT+1] 99.29 0 0.71 
Point-to-Point Method 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 

[TT-2, TT+2] 100 0 0 

[TT-1, TT+2] 100 0 0 

[TT-1, TT+1] 99.29 0 0.71 
Mid-Point Method 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 

[TT-2, TT+2] 100 0 0 

[TT-1, TT+2] 100 0 0 

[TT-1, TT+1] 99.29 0 0.71 
Hybrid Model 1 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 

[TT-2, TT+2] 100 0 0 

[TT-1, TT+2] 100 0 0 

[TT-1, TT+1] 99.29 0 0.71 
Hybrid Model 2 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 
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Table A-19 Travel Time Estimation Reliability with Different Posted Travel Time 
Ranges for Simulated Incident Conditions  

Method 
Range of Posted 
Travel Time 

Reliability 
(%) 

% Early % Late 

[TT-2, TT+3] 57.32 1.78 40.90 

[TT-2, TT+4] 58.93 1.78 39.29 

[TT-2, TT+5] 59.97 1.78 38.25 

[TT-1, TT+4] 56.58 4.14 39.29 

[TT-1, TT+5] 57.61 4.14 38.25 

Point-to-Point Method 

[TT-1, TT+6] 58.42 4.14 37.45 

[TT-2, TT+3] 59.05 4.19 36.76 

[TT-2, TT+4] 64.85 4.19 30.96 

[TT-2, TT+5] 68.18 4.19 27.63 

[TT-1, TT+4] 62.44 6.61 30.96 

[TT-1, TT+5] 65.77 6.61 27.63 

Mid-Point Method 

[TT-1, TT+6] 67.57 6.61 25.85 

[TT-2, TT+3] 70.59 10.34 19.07 

[TT-2, TT+4] 73.12 10.34 16.54 

[TT-2, TT+5] 75.13 10.34 14.53 

[TT-1, TT+4] 65.02 18.44 16.54 

[TT-1, TT+5] 67.03 18.44 14.53 

Hybrid Model 1 

[TT-1, TT+6] 68.12 18.44 13.44 

[TT-2, TT+3] 74.50 3.33 22.17 

[TT-2, TT+4] 75.88 3.33 20.79 

[TT-2, TT+5] 75.88 3.33 20.79 

[TT-1, TT+4] 69.67 9.54 20.79 

[TT-1, TT+5] 69.67 9.54 20.79 

Hybrid Model 2 

[TT-1, TT+6] 70.25 9.54 20.22 
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