
57

specific problem; (ii) an agent is embedded in an environment and can proactively get

information and react to affect that environment; and, (iii) an agent is autonomous and

self-contained in controlling its own states; it performs the action of its best interest.

Figure 16. (a) Agent-oriented modeling; (b) essential modeling steps.

(b)

Agent-oriented modeling:

(1) Identify the agent roles and their responsibilities (activities); and, each agent role

is modeled as an agent net that specifies the behavior of the agent.

(2) Identify the activities that involve external interactions for each agent net.

(3) determine cooperation processes and the coordination context based on the

requirements in step (2).

(4) Generate coordinators for all interaction activities in agent nets.

(5) Compose all coordinators to form the mediator agent net, which specifies the

cooperation process among agents.

(a)

e1
a1 a2

e1
a1 a2

e1
a1 a2

t1 t2p1

p2

p4

e1
a1 a2

p3

a1

a2

a3
a2

e1
a1 a2

a3

e1
a1 a2

a1

 Multi- agent
nets

Mediator

Agent nets

Coordinators

58

In this study, agent-oriented modeling is considered as an approach for constructing

abstract models based on the agent concept defined in Definition 4.1.1. Therefore, the

following major components are supported:

(1) Agent models can be built individually to meet the requirement of their design

objectives;

(2) An agent model can be constructed with essential features, such as autonomy, pro-

activeness, reactivity and sociality.

(3) A coordination model can be constructed to model the cooperation process among

agents; and

(4) Agent models can be coordinated and interact through the coordination model.

Figure 16(a) shows the idea of an agent-oriented modeling approach. First, agent nets are

built individually; and next, they are coupled through coordinators. The resulting model

is a two-level nested PrT net describing a system model with the MAS architecture. The

modeling steps can be summarized into five major steps as shown in Figure 16(b).

4.2 Aspect Orientation of the Internal Structure of an Agent Net

There are different concerns when designing different types of agents [35]. For

example, the concern for designing mobile agents is mobility, and the concern for

designing task agents is collaboration. Various concerns are considered as features of an

agent model. In multi-agent systems, agents are usually designed to solve different

problems. That is, each agent has a different action model with respect to its design

objective; however, it also may shares common features with the others. For example, an

59

agent that consumes resources may share an identical plan of getting authorization for

using resources.

A variety of agent types substantially increases the complexity of agent design. One

of the techniques to manage complexity is modularity. Aspect-oriented programming

(AOP) [21] is one of the techniques applied at the implementation stage for modularity.

The idea of AOP is to wrap crosscutting concerns into aspects, which are desired

properties that can be woven into functional components. In recent years, aspect-oriented

concepts were introduced into an early stage of system design to address the modularity

of abstract models; for example, aspect-oriented modeling for MAS in [48, 49].

In this study, the concept of aspects as modular features is adopted to address the

complexity of building agent models with different internal structures. First, the features

shared among agents are identified and specified as aspects. Next, an agent net can be

constructed by weaving desired features into the fundamental action model. As a

consequence, agent nets are adaptable for different features, thus are more manageable.

Figure 17 shows the conceptual model of an aspect-oriented agent net that is composed of

the fundamental action model and various aspects.

knowlege
plans

Action model

Interaction
protocols

security

mobility

Figure 17. A conceptual model for an aspect-oriented agent net.

60

 Other advantages of an aspect-oriented agent model include net model reusability

and flexibility. In terms of model analysis, an aspect-oriented agent model is amenable

for incremental analysis by gradually weaving additional aspects or, by weaving different

combinations of aspects.

4.2.1 Specifying Aspects

To specify aspects, several terms from AspectJ [22] are used here; however, they are

given different meanings for aspect weaving. These terms are defined as follows.

Definition 4.2.1 An aspect is a modular specification, including an advice, a set of

pointcuts and a set of join points.

Definition 4.2.2 An advice is a PrT net, which specifies the common behavior shared by

multiple agent nets.

Definition 4.2.3 A pointcut specifies a weaving point in the advice; it can be a place or a

transition.

Definition 4.2.4 A join point specifies a weaving point in the target net; it can be a place

or a transition.

A specification table is defined to specify an aspect. The table includes the essential

information defined above. First, the aspect name is identified. Second, the advice to be

woven is defined, including the advice name, the net structure, the semantic definitions

and the pointcuts. Third, the names of target nets and their joint points are specified. The

pointcuts from the advice and the joint points from the target nets are the matching points

for aspect weaving. The specification is shown in Figure 18(a). An aspect weaving is

considered as the process of composing two net structures into a single net structure by

61

connecting the advice to the target net specified in an aspect. Syntactically, two nets are

connected together by specifying weaving points. Semantically, the semantics defined for

weaving points have to be consistent before and after aspect weaving. Note that the

semantic definitions of the advice can be delayed until it has been woven. In addition, it

is assumed that there is no duplicate name in the woven net. That is, it is assumed that

duplicate names with regard to net element definitions of the woven net have been

properly resolved.

Let N be the target agent net, and A be the aspect specification in which advice_name

denotes the advice, PC denotes the set of pointcuts in advice_name, JP denotes the set of

join points in N, and R denotes the set of weaving relations for net N. A weaving

specification N: R defined in aspect A weaves advice_name in A into N based on the

weaving relations specified in R. A weaving relation r in R is a binary relation (pointcuti

→ join_pointi), where pointcuti ∈ PC and join_pointi ∈ JP; that is, r specifies a pair of

matching points for an aspect weaving.

An aspect specification is shown in Figure 18(a). An aspect weaving process is shown

in Figure 18(b).

There are two possible kinds of join points, namely transition join point and place

join point. A place join point is considered as a place where an aspect of alternate choice

can be added or, as a place that can hold the tokens generated from an aspect of some

extended behaviors. A transition join point is considered as a point where an aspect of

some concurrent behaviors can be added or, where an aspect of additional enabling

conditions can be added.

62

Aspect: A;

t1

p1

t2

p2

pointcut1

Advice: advice_name;
P = {pointcut1, p1, p2}; T = {t1, t2}; F = {(pointcut1, t1), (t1, p1), (p1, t2), (t2, p2)};
φ(p1) = φ(p2) = φ(pointcut1) = TYPE;
R(t1) = R(t2) = λ;
L(pointcut1, t1) = L(t1, p1) = L(p1, t2) = L(t2, p2) = x;
M0(p1) = M0(p2) = M0(pointcut1) = { };

Pointcut: pointcut1 [, pointcut2, pointcut3, ….];
N: pointcut1 -> join_point1 [, pointcut2 -> join_point2, pointcut3 -> join_point3 ….];

x x x x

(a)

(b)

Figure 18. (a) An aspect specification table; (b) an aspect weaving process.

In addition to the previous example, some weaving patterns are generalized and

shown in Figure 19, where (a), (b) and (c) are patterns of transition join point since the

weaving point is at a transition; and, the patterns in (d), (e) and (f) are place join point

since the weaving point is at a place. Patterns (a) and (d) are similar to after advice in

Aspect weaving:

(1) ∀ r ∈ R such that, for all incoming arcs (x, pointcuti) and outgoing arcs

(pointcuti, x) defined in F, replace (x, pointcuti) with (x, join_pointi) and

(pointcuti, x) with (join_pointi, x); and, replace L(x, pointcuti) with L(x,

join_pointi) and L(pointcuti, x) with L(join_pointi, x).

(2) Discard pointcuti such that P = P - pointcuti, where P is the set of places in the

advice.

(3) Weaving advice_name into N such that: N.P = N.P ∪P; N.T = N.T ∪ T; N.F =

N.F ∪ F, where N.P is the set of places in target net N, and N.T is the set of

transitions in target net N.

63

AOP; (b) and (e) are before advices; and, (c) and (f) are around advices that can be added

as an explicit control of the net. Intuitively, during a weaving process, a transition join

point must be connected with a place in the advice and a place join point must be

connected with a transition in the advice. This is to ensure the correctness of the syntax

and static semantics of a woven net.

Figure 19. Weaving patterns.

4.3 Modeling a Single Agent Net

An agent net specifies the behavior of a distributed computation entity in the MAS

context. It describes an agent’s behavior without a centralized control. That is, it has the

control over its own internal states. For modeling agent communications, channel

commands are instrumented in transition constraints to specify external message

exchanges. It is assumed that agent nets are communicating within the same context that

has been defined in the semantic domain Spec, and are interpreting the information that is

relevant to their computations based on their best interest. Furthermore, token types

defined for exchanging messages between agent nets must be consistent. As a result, the

messages exchanged among agent nets are in a simpler structure, and are only relevant to

Advice Advice

Advice

(a) (b)

Advice

Advice

(c)

(d) (e) (f)

Advice

64

the behavior of associated agent nets. This principle avoids the redundancy of irrelevant

details and unnecessary complexity with regard to the interpretation of messages. The

modeling steps for an agent net with communication channels can be summarized in

Figure 20.

Figure 20. Modeling steps for an agent net with communication channels.

4.3.1 Modeling Examples

A Gas Station scenario is used as an example to demonstrate the construction of an

agent net.

A Gas Station Scenario

For the operation of a gas station, there are gas consumers, gas suppliers, the bank

and the gas station itself. Gas consumers pump gas for their cars in order to accomplish

(1) Identify the actions engaged for each agent and represent each action as a

transition within an agent net; that is, define T.

(2) Identify the pre-conditions and post-conditions for each transition in T; and, add

associated input places, output places, arcs and transition constraint for all

transition t in T, respectively; that is, define P, F and inscription ins.

(3) Identify the transitions with external interactions in the net, and add associated

channel commands; that is, define Tc in T, and ∀𝑡 ∈ 𝑇𝑐 . (𝑅(𝑡) = 𝑅𝑢(𝑡) ∧ 𝑅𝑐(𝑡)),

where Rc(t) = n!e | n?x; n is the identification of the mediator agent net.

(4) Draw an interaction elicitation table (IET), which contains four columns:

(i) all t in Tc identified in step (3),

(ii) the direction of the information flow associated with t,

(iii) the exchanging information associated with t, and

(iv) the elicited channel command associated with t based on (i), (ii) and

(iii).

65

their plans, while gas suppliers produce gas in order to supply gas to the gas station. The

bank provides banking services, including credit card authorizations that allow customers

to make transactions when pumping gas. The gas station provides an environment for

these activities. There are pumping stations in the gas station where the cars entering the

station can park and pump the gas. The gas pumping process includes four major steps: (1)

the consumer who is driving a car and entering the station can park the car at one of the

pumping stations that are available; (2) after parking at one of the pumping stations, the

consumer must slide their credit card first in order to get the authorization for pumping

gas; (3) if authorized, the consumer can start pumping gas with the choice of regular or

diesel gas; and, (4) the consumer finished pumping and left the station.

Based on the above scenario, there are five different agent roles: (1) regular gas

consumer, who uses a vehicle to commute between home and school; if the car is out of

gas, he goes to the gas station and pumps regular gas; first, he needs to find an available

pumping station, and then to slide his credit card in order to pump gas; (2) diesel gas

consumer, who uses a vehicle to transport goods between the factory and the store; if it is

out of gas, he goes to the gas station and pump diesel gas; he also needs to find an

available pumping station first, and then slides his credit card in order to pump gas; (3)

gas producer, who produces both regular and diesel gas based on orders; (4) the bank,

which provides the credit card transaction service that checks credits and reports credits;

and, (5) the gas station, which is served as the mediator agent that provides the global

view of the gas pumping process in which multiple agents are engaged in.

Example 1: Modeling an agent net with communication channels.

66

Let us take the diesel gas consumer as an example to build the agent net based on the

steps in Figure 20.

Step (1) define T;

 According to the scenario, let T = {ToStore, ToGasStation, Go, ToFactory,

Park, SlideCard, PumpGas, Deny};

Step (2) define P, F, and ins = (𝜑, R, L, M0);

 Let P = {factory, store, GasStation, ToPump, standby, pumped, CreditCard};

 φ(factory) = φ(store) = φ(GasStation) = CAR×INTEGER, where the first

element of the data token is the car type and the second element indicates the

condition of the gas tank (1 represents full tank, 0 otherwise), and

CAR={sedan, truck}; φ (standby) = φ (ToPump) = φ (pumped) =

CAR×INTEGER×INTEGER; φ(CreditCard) = INTEGER denoting credit

card numbers;

 R: see Appendix A1;

 Let M0(factory) = {<truck, 0>} denoting that in place factory there is a truck

with empty tank, M0(credit_card) = {<1>} stores the credit card number, and

all other places in P such that M0(p) = ∅ ;

 F and L are defined accordingly.

Step (3) define Tc;

 Based on the scenario, Tc = {Park, SlideCard, PumpGas, Fail}, while Tu =

{ToStore, ToGasStation, Go, ToFactory}; and let the identification of the

mediator net be S;

71

A BDI model can be nicely modeled using PrT nets [83]. The beliefs are considered

as internal states, which are markings of the net; the desires are goals, which are a set of

reachable markings with respect to some initial marking; and the intentions are choices to

reach the goals with respect to current marking. That is, an agent net is a plan that

includes a set of transition sequences that can reach some goals with respect to some

markings. For example, John’s traveling plan is shown in Figure 24. John is currently at

Miami and intends to go to Los Angeles. Los Angeles is a goal. Nevertheless, there are

two paths available from current location Miami to Los Angeles, namely: (1) Miami-

Houston-Los Angeles, and (2) Miami-Atlanta-Los Angeles. Thus, the set of transition

sequences 𝜎 = {𝜎1,𝜎2}, where 𝜎1 =M0[t1>M1[t3>M2 , 𝜎2 =M0[t2>M1[t4>M2 and the set

of reachable markings [M> = {M0, M1, M2}. [M> denotes the beliefs, 𝜎 denotes the

agent plan, M2 denotes the desire, and transition sequences 𝜎1 and 𝜎2 denote the

intentions. The net structure in Figure 24 exhibits the non-determinism that addresses the

autonomy of path selection to reach the agent goal (Los Angeles).

Miami Los AngelesAtlanta

Houstont1

t2

t3

t4

x

x

x

x

x

x

x

x<John>

Figure 24. John’s traveling plan.

Let 𝜎 be the set of transition sequences with respect to marking M0, and [M> be the

set of markings reachable from M0. A BDI PrT net can be formally defined as follows.

72

Definition 4.3.1 An agent plan is a net structure N = (P, T, F).

Definition 4.3.2 The beliefs of an agent net A with respect to an agent plan N is the set

of reachable markings [M0> with respect to M0.

Definition 4.3.3 A goal of an agent is a goal state Mg of an agent plan N, where

 Mg is a member of [M0>;

 The set of goals MG = {Mg1, Mg2,, … Mgn} is called the desires of an agent plan N,

where MG ⊆ [M0>.

Definition 4.3.4 An intention is an execution sequence 𝜎𝑖= M0t1M1t2… Mgi, where

 𝜎 is the set of possible execution sequences of agent plan N, and

𝜎 = {𝜎1,𝜎2, . . ., 𝜎𝑛};

 𝜎𝑖 ∈ 𝜎; and

 M0 is the initial state and Mgi is the goal state.

A BDI PrT net can be constructed by the following steps:

(1) Identify predicates.

(2) Identify transitions.

(3) Define each intention by connecting relevant predicates and transitions.

(4) Combine all intentions to form the agent plan.

Given an initial marking describing initial beliefs, the agent plan can be checked if

the goals are reachable.

73

4.4 Coordination Modeling

Agents are autonomous and heterogeneous computation entities that are usually built

independently. Therefore, one of the major concerns of designing MAS is the coherence

of overall system. The coherence of the system usually relies on some mediator, which is

employed for task sharing and resource sharing among agents. The process of task

sharing [2] is considered as agent cooperation. The activities of coupling agents during

the cooperation process are considered as agent coordination. Agent communications are

two-way message exchanging activities to facilitate the coordination within an agent

community. As such, a mediator agent net is employed to model the cooperation and

coordination among agent nets (see the conceptual model in Figure 4). The idea is to

coordinate individually modeled agent nets to constitute the global process.

Let S be a mediator agent net as defined in Definition 3.3.2. The mediator agent net S

can be constructed by establishing a set of coordinators for coupling agent nets. A

coordinator in the mediator agent net manages either an input or output information

(resources) associated with an interaction activity of an agent net. A coordinator is

formally defined as follows.

Definition 4.4.1 A coordinator C is a PrT net with net structure (Pc, tc, Fc) where:

 Pc = Pd ∪ Pa, where Pd is the set of places holding data tokens and Pa ≠ ∅;

 Pa is the set of places holding agent net tokens and Pd ≠ ∅;

 tc is a communication transition such that Rc(tc) ≠ 𝜆; and

 Fc is the flow relation indicating the information flows associated with transition tc.

74

4.4.1 Coupling Agent Nets

Figure 25 shows two different coordinators in which Figure 25(a) is an input channel

coordinator, while Figure 25(b) is an output channel coordinator. Coordinators for all

agent nets can be built by drawing a coordination elicitation table (CET). The CET

provides an intermediate step to build the mediator agent net.

inChannelA1

p

a A2

msg

(a) (b)

a outChannelA1

p

a A2

msg

a

Figure 25. (a) An input channel coordinator; (b) an output channel coordinator

Definition 4.4.2 A coordination elicitation table (CET) is a seven-columned table, where:

Column 1. N.Rc(t) is the communication constraint of transition t in an agent

net N;

Column 2. C.tc is the communication transition tc of the coordinator C;

Column 3. C.Rc(tc) is the communication constraint of transition tc of the

coordinator C derived from N.Rc(t);

Column 4. C.Pd is the set of places holding data tokens associated with tc of C;

Column 5. C.Pa is the set of places holding agent tokens associated with tc of

C;

Column 6. C.ltc is the preset of tc;

Column 7. C. tcl is the post set of tc.

 The drawing steps of a CET are shown in Figure 26(a). Each entry in the CET

represents a coordinator accommodating an interaction with an agent net. Therefore, each

75

entry constitutes either an input channel coordinator (Figure 25(a)) or an output channel

coordinator (Figure 25(b)). A coordinator in the mediator agent net manages either an

input or output information (resources) associated with an interaction activity of an agent

net. The mediator agent net S is generated by merging all coordinators in the CET. The

generating steps are shown in Figure 26(b).

Example 3: Modeling the mediator agent net (the gas station).

First, let us look at an example to build coordinators using the steps in Fig. 26(a) for

the Diesel_consumer agent net shown in Figure 21(a).

Step (1) Based on Table 2, there are four entries of Rc(t) in Diesel_consumer agent net:

S?st, S!<car, cr, st>, S?g, S?cr; thus, the first column of the coordination

elicitation table is filled with these entries.

Step (2) For each entry in the first column, the transition tc is added for coupling.

Step (3) Rc(tc) of coordinator C can be defined based on column one pairing with Rc(t)

of agent net N.

Step (4) Define Pa and Pd based on Step (3).

Step (5) Define F based on column Rc(tc).

Table 3 shows the CET in which each entry produces one coordinator. Thus, there are

four coordinators for the Diesel_consumer agent net. Each coordinator is transformed

into a net structure according to table 3. These coordinators are shown in Figure 27(a).

76

Figure 26. (a) The steps for generating CET; (b) the steps for generating the mediator
agent net.

Table 3. The coordination elicitation table.

N.Rc(t) C.tc C.Rc(tc) C.Pd C.Pa C. ltc C. tcl

S?st Park N!st {pumping_stations}
{in_station,

parked}

{pumping_stations,

in_station}
{parked}

S!<car,

cr, st>
Pay

N?<car,

cr, st>
{transactions}

{parked,

waiting}
{parked}

{waiting,

transactions}

S?g PumpDiesel N!g
{authorized,

diesel_gas}

{waiting,

pumped}

{authorized,

diesel_gas, waiting}
{pumped}

S?cr Fail N!cr {authorized}
{ waiting,

parked}

{authorized,

waiting}
{parked}

(a) Generating the coordinators by a coordination elicitation table (CET):
(i) For each agent net N = (P, T, F) in the multi-agent nets MAS, list Rc(t) for all t

in T in the first column of the table.
(ii) Add associated transition tc in the second column for paring with each Rc(t)

listed in the first column.
(iii) Define Rc(tc) in the third column by the following rules:

if N.Rc(t) = S?msg, then C.Rc(tc) = N!msg;
if N.Rc(t) = S!msg, then C.Rc(tc) = N?msg;

(iv) Add a place p to Pd for holding msg, an input place A1 and an output place A2
to Pa for holding net N; if necessary, add other places for holding data tokens.

(v) Determine ltc and tcl based on the following rules;
if C.Rc(tc) = N?msg, then ltc = {A1}, tcl = {A2, p}, F = { (A1, tc), (tc, A2),

(tc, p)};
if C.Rc(tc) = N!msg, then ltc = {A1, p}, tcl = {A2}; F = { (A1, tc), (tc, A2), (p,

tc)};

(b) Generating the mediator agent net from CET:
(i) Merge all coordinators by removing redundant places and redirecting the arcs to

associate transitions.
(ii) Add local transitions and places to S based on the requirements for modeling the

cooperation process.
(iii) Define 𝜑, R, L and M0 for S accordingly.

77

Park

Pumping stations

In station Parked

Pay

Parked

Waiting

Card number

PumpDiesel

authorized

Waiting Pumped

Fail

authorized

Waiting Parked

Park

Pumping stations

In station Parked

Pay

Card number

PumpDiesel

authorized
Fail

Pumped

(a) The coordinators for Diesel_consumer

(b) The intermediate mediator agent net

Diesel gas

Diesel

Waiting

(c) The gas station: a mediator agent net

Park a1

Parked

Pay
a1

tr

a1

transactions

PumpDiesel

r

authorized

Waiting

Fail

a1

Pumped

PumpRegular

r

r

CheckCredit

Bank agent

tr

ReportCredit

a2 a2

r

GetDiesel GetRegular

d r

Diesel gas Regular gas

In station

DriveIn

st

a1

d’ r’

OrderRegularOrderDiesel

rd
dd’ r’ r

a3

a3 a3

a3

Gas producer
agent

DriveOut

stPumping
stations

a1

a1

a1

a1 a1

a1

st

st

Fig. 27. (a) The coordinators of the Diesel_consumer agent net; (b) the intermediate net;
(c) the mediator agent net.

78

Next step is to merge all coordinators to form a single net structure based on the steps

in Figure 26(b). The coordinators shown in Figure 27(a) are merged by the following

steps.

Step (1) Merge all coordinators in Table 3; Figure 27(b) is the intermediate mediator

agent net by merging all coordinators in Figure 27(a); coordinators for other

agent nets in Figure 21 can be built and merged in the same manner.

Step (2) Merge all coordinators for all agent nets result in the mediator net shown in

Figure 27(c). Two boundary transitions “drive_in” and “drive_out” are added

to denote the entering and leaving of agent nets.

Step (3) Define the semantic definitions for the net (see Appendix A2).

4.5 Summary

In an effort to ease the construction of formal MAS models, this chapter presents a

systematic approach for modeling a single agent net with an aspect-oriented approach,

and for modeling the mediator agent net to coordinate agent nets.

Although there were several research works incorporated aspect-oriented concepts

into PrT nets, their focus was not on MAS modeling. For example, in [84, 85], aspect-

oriented concepts were used to address security concerns based on PrT nets. Security

concerns were modeled as aspects and woven into a base net to generate a secured PrT

net model. These works were not related to MAS modeling and were limited to security

issues.

Among research works based on UML for modeling MAS, the work in [86] proposed

an aspect-oriented agent architecture based on UML (Unified Modeling Language). In

79

this work, essential agent concerns were separated from functional components and

modeled as aspectual components. In [48], model roles were defined to model aspects. In

[49], a meta-modeling framework was defined to include aspect-oriented concepts. A

crosscutting composition mechanism was provided to compose agent models and aspects.

These work [48, 49, 86] were based on informal methods and focused on guidelines and

steps for the aspect orientation of an agent program’s internal structure. Their models did

not support formal analysis.

80

CHAPTER 5

A METHOD FOR ANALYZING FORMAL MAS MODELS

Given that there is no existing method for the analysis of nested PrT nets, a model

transformation technique is developed in this dissertation research to transform a MAS

model with a two-level nested PrT net structure into a PROMELA program in SPIN

(Simple PROMELA Interpreter) [38]. As a consequence, a full line of functionalities in

SPIN can be utilized for the analysis of formal MAS models.

Among research works for the analysis of high-level nets, there were two major

approaches adopted: (1) simulation-based model analysis, and (2) model checking. The

most commonly-used tool for the first approach is the CPN (Colored Petri Nets) tool [79].

CPN tool is a well-developed simulation tool based on Colored Petri nets. However, this

dissertation research aims at modeling checking formal MAS models. Therefore, the

model checking approach is adopted. There are two renowned model checkers: (1) SMV

(Symbolic Model Verifier) [15], and (2) SPIN [23]. SMV is a tool for checking whether

or not a finite-state system satisfies specifications given in CTL (Computation Tree Logic)

[87]. SMV has been very successful in verifying hardware systems, however suffers from

the state-explosion problem in verifying software systems. SPIN is a model checking tool

based on the partial order reduction method, which is aimed at reducing the size of the

state space needed to be explored. The SPIN verifier checks abstract models written in

PROMELA that if a given PROMELA model satisfies the claims given in LTL (Linear

Temporal Logic) [39]. SPIN is a well-suited tool for this dissertation research based on

two main reasons: (1) it is a well-developed tool for model checking concurrent and

81

asynchronous software systems; and (2) it supports the modeling of asynchronous

process interactions which is an important feature for studying multi-agent systems.

Therefore, the idea is to transform the formal MAS model into a PROMELA model that

can be analyzed by the model checker SPIN.

Previous works in model translation from Petri nets to executable models generally

fall into two major categories: (1) translation of Petri nets to high-level programming

languages [72, 73, 74, 75]; and (2) translation of Petri nets to the meta-language

supported in simulation tools [76, 77, 78, 79]. The authors in the first category attempted

to use Petri nets as a central means during a model-driven system engineering process

[88], and to generate an implementation dependent prototype from an implementation

independent model. The works in the second category, however, focused on the

validation of system design in critical aspects prior to implementation. The model

transformation in this dissertation research aims at providing a method for verifying the

proposed two-level nested PrT nets. Thus, a set of translation rules are explicitly defined

for model transformation. The transformation technique provides a foundation for further

automation in developing the tool for analyzing nested PrT nets.

The rest of this chapter is organized as follows. Section 5.2 introduces PROMELA

and its semantics engine. Section 5.3 elaborates the translation rules for model

transformation. Section 5.4 provides the proof of correctness regarding the translation.

Section 5.5 presents a translation example from a disaster mitigation system. Section 5.6

demonstrates a method for analyzing the transformed PROMELA model using SPIN.

Section 5.7 draws the conclusion.

82

5.1 The Target Language PROMELA

The specification language used in SPIN is called PROMELA, in which the focus is

on specifying the controls, rather on the computations, of distributed systems. The

program structure and semantics engine of PROMELA are briefly introduced in the

following sections.

5.1.1 The Program Structure

A PROMELA model is constructed from three basic types of objects: (1) processes,

which define the behaviors of distributed entities; (2) data objects, which define the

variables for keeping information; and, (3) message channels, which model the exchange

of information between processes. Figure 28 shows a generic PROMELA program

structure. The detailed syntax and grammar rules of PROMELA can be found in [38].

Figure 28. A generic PROMELA program structure.

#define MAX_TOKENS 10
mtype = { …. } /* defines global data objects */
typedef TYPE { …. }
inline FUNC { … } /* defines macros */
chan CHANNEL = [0] of { .. } /* define global message channel */

active proctype MAIN_PROCESS () {
 /* statement sequence */
}
proctype PROCESS1 () { /* statement sequence */ }
proctype PROCESS2 () { /* statement sequence */ }
………………

83

5.1.2 The Semantics

In a PROMELA program, each declaratory proctype defines a process. Before model

execution, each process is transformed to a FSA (finite state automaton) describing the

execution sequences of that process. A FSA is a tuple (S, s0, L, T, F) [38], where

• S is a set of states denoting the possible points of control within a proctype;

• s0 ∈S, is a distinguished initial state;

• 𝑇 is a set of transition relations denoting the flow of controls, and 𝑇 ⊆ (𝑆 × 𝐿 × 𝑆);

• L is a set of labels that link each transition in T with a specific basic statement that

defines the executability (pre-conditions) and the effect (post-conditions) of that

transition; only six basic statements are allowed as valid labels: print, receive, send,

assignment, assertion and expression, where print and assignment statements are

unconditionally executable; and,

• F is a set of final states, and 𝐹 ⊆ 𝑆.

The global behavior of a concurrent system described by a PROMELA program is

obtained by computing an asynchronous interleaving product of automata. The resulting

system behavior is also represented by an automaton. In the initial system state, all

processes are in their initial state, and all data objects are set to their initial values. The

semantics engine in SPIN executes a PROMELA model in a step by step manner. In each

step, one executable basic statement (transition) is selected out of the transitions in all

active processes. If more than one statement is executable, any one of them can be

selected randomly (non-determinism). Depending on the system state, any statement in a

SPIN model is either executable or blocked; that is, if a process reaches a point where no

84

executable transition left to be executed, it is simply blocked. On the other hand, as long

as there are executable transitions, the semantic engine repeatedly selects one of them at

random and executes it. The execution of a transition is to apply the effect (post-

conditions) defined in that transition. As a result, system variables, local variables, and

the contents of channels may be modified. By simulating the execution of a PROMELA

model, a large directed graph including all reachable system states is generated. Figure 29

shows the operational model of the PROMELA semantics engine.

startset initial
state

any executable
transition t ?

select t and
apply t.effect

Y

N set current
state

blockedtime out?

stop

Y

N

Figure 29. The operational model of the PROMELA semantics engine.

5.2 A Translation Method

The translation for model analysis is aimed at providing a method for analyzing the

proposed two-level nested PrT nets. Therefore, the overall translation principles and

assumptions are discussed as follows.

(1) No embedded C codes.

85

Since the objective of this work is to provide a means to model and verify the

properties of abstract models at the system design stage, the principle is to build a smaller

sufficient abstract model and to avoid possible redundancies. Despite the full description

power of C language, no embedded C code is considered in this translation.

(2) Restricted PrT nets.

PrT nets are very expressive given that: (i) there is no explicit definition regarding the

limitation of the quantity of tokens in a place; (ii) the sorts and their operations are

implicitly defined in the semantic domain Spec; (iii) testing enabling conditions of

transitions and instantiation of tokens are implicit; and, (iv) the firing sequences can be

infinite as long as there are sufficient tokens. On the other hand, a PROMELA model is

an executable program, in which the quantity and types of data objects are bounded and

the execution is finite. Therefore, due to tractability, the expressive power of PrT nets

needs to be restricted by limiting the sorts and the quantity of tokens in each place. As a

result, the nested PrT nets to be translated have a finite state space such that model

executions will terminate appropriately.

(3) Interleaving semantics within a net entity.

For simplicity, it is assumed that all transitions fire immediately after the guard

conditions are evaluated to be true, and the firings are interleaving given that this

restricted semantics does not affect the verification of state-based properties.

(4) Communication channels are communicating in a one-to-one and unidirectional

fashion.

Broadcasting is not considered in this translation; however, it can be done through an

appropriate setup of a loop-statement construct for multiple communications.

86

(5) Machine analysis.

This translation aims at the verification of the proposed two-level nested PrT nets in

order to facilitate the machine analysis of multi-agent systems prior to implementation.

(6) Correctness of translation.

To justify the correctness of this translation, a translation from a two-level nested PrT

net to a PROMELA program is said to be (i) complete, if all the net entities and net

elements in a nested PrT net are faithfully translated to a set of non-overlapping

statements in the target PROMELA program; (ii) consistent, if the target PROMELA

program preserves the dynamic semantics of the nested PrT net; and, (iii) correct, if the

translation is complete and consistent.

5.2.1 Translation Rules

The nested PrT net to be translated is called a multi-agent net. Each net entity in a

multi-agent net is translated to a process in the target PROMELA program. As a result, a

process describes the behavior of an agent, which is an autonomous entity and capable of

interacting with the others. Each net element of a net entity is translated to a set of non-

overlapping compound statements within a process to address the semantics of the net

entity. The static semantics of a net entity is defined by the inscription ins = (φ, L, R, M0),

while the dynamic semantics is defined by the transition enabling and firing rules in

Chapter 3. Therefore, there are net entity translation rules and net element translation

rules. The mapping relations are summarized in Table 4.

87

Table 4. Mapping relations of net elements to PROMELA objects.

PrT net elements PROMELA objects

Net Process

Place Array data object

Transition (event) Guard conditions →
 statement sequence

Communication channels Message channels

A. Net entity translation rule

Let MAS be a set of PrT nets specifying a multi-agent system, including a mediator

agent net and multiple agent nets. Each member in MAS is translated to a process object

in the target PROMELA program. The rule for translating net entities in MAS to their

counterparts in the target PROMELA program is called net entity translation rule. The

rule is defined as follows.

Rule e.1: For every net entity 𝑁 ∈ 𝑀𝐴𝑆, add a process proctype [active] N() { } to the

target PROMELA program, where N is a unique process name.

For example, let MAS = {S, agent1, agent2}, the translated skeleton program in

PROMELA is as follows.

active proctype S() {statement sequence }

proctype agent1(argument_list) { statement sequence }

proctype agent2(argument_list) { statement sequence }

88

The keyword active in the declaratory statement denotes an immediate instantiation of

the process when the program starts to run. The system process is required to be

instantiated immediately as soon as the program starts to run, while agent processes are

not. Instead of declaring as active processes using the declaratory keyword active, agent

processes can be dynamically instantiated during model execution by the statement “run

agenti(argument_list)”, in which the name of the agent process and arguments

representing the initial marking are instantiated through the operator run. The maximum

number of active processes in PROMELA is 255; that is, if |MAS| = n, then 2 ≤ n ≤ 255

given that MAS has at least two members and at most 255 members.

B. Net element translation rules

 Net inscription ins = (𝜑, L, R, M0) specifies the static semantics of a net entity N = (P,

T, F) with respect to the semantic domain Spec. The translation rules for translating net

elements P, T, F and inscription ins are called net element translation rules.

B.1. Place Transition Rules

In PrT nets, a place p in P is a predicate denoting a relation among individuals. Thus,

tokens in p are instantiations of individuals. An arc label in L specifies the variable

extension of a place p to which the arc is connected. A consistent substitution of the

labeled variables on an arc is an instantiation of a particular token in p. For example, a

token <a1,…, ak> in place p is a substitution of arc label x = (x1, …, xk).

To translate a place p to its counterpart in the target PROMELA program, the

translation strategy is to declare an array data object for p for holding tokens. Since the

instantiation of tokens when executing the PROMELA program is simply by selecting the

89

element directly from the array data object, the translation of the associated labeled

variable is omitted to avoid redundancy. In PrT nets, the token type of a place p is defined

by 𝜑(𝑝) = 𝑆𝑂𝑅𝑇, where SORT is valid data types defined in the semantic domain Spec.

In this translation, SORT is restricted to the basic data types in the target language

PROMELA [38]. Due to tractability, the maximum number of elements for each array

data object has to be predefined. In addition, an index is required for each array data object

to keep track of token deposits.

In PrT nets, tokens deposited in a place do not have specific orders, and their

instantiations are implicit. However, for model execution, token instantiations have to be

explicitly defined. For simplicity, the strategy is to let the index of the array data object

always points to the tail of the array. As a result, removing or adding a token is always

happening at the tail of the array data object. For example, an array p has three elements

p[0], p[1], p[2]; assuming that the index is pointing at the third element p[2], which means

the third element p[2] is null and is the first available slot to deposit a token. On the other

hand, if a token is to be instantiated, then p[1] will be instantiated (removed) since it is the

first available token next to the null element p[2]. For translating initial marking M0(p), the

array data object representing p is initialized to desired values at the time of declaration.

In summary, place translation rules are defined based on the following principles:

(1) For all p in P, p and its associated labeled variable are translated to an array data object

in the PROMELA program.

(2) The data type for array data object p is limited to the basic data types supported in

PROMELA.

90

(3) For each array data object p, define the maximum number of elements for p, and

define an integer variable as the index of p.

(4) Removing or adding a token is at the tail of array data object p.

(5) Places that hold agent tokens are not explicitly translated due to two reasons: (a) agent

tokens (agent nets) have been covered in the entity translation rule; (b) the

identification (process id) of an agent token is given at runtime since each agent token

run as an independent process in the PROMELA program.

Place translation rules are summarized in Table 5.

Table 5. Place translation rules.

Rule Elements associated
with a p in P Declarative PROMELA statements

p.1 p
#define MAX_p = MAX;
place_p p[MAX_p];
int p_idx = TAIL;

p.2 𝜑(p)= sort1×…×sortn
typedef place_p {
 sort1 x1; … ; sortn xn};

p.3 M0(p) p[MAX_p] = INITIAL_VALUES;

 For example, let 𝜑(𝑝) = 𝑖𝑛𝑡 × 𝑖𝑛𝑡; that is, the sort of place p is a Cartesian product of

two integers. Assuming that place p holds a maximum of four tokens, the translated

PROMELA statements are as follows.

#define MAX_p = 4

typedef place_p { int x; int y }

place_p p[MAX_p] = 0;

int p_idx = 0;

91

B.2. Transition translation rules.

The set of transitions T specifies the events that can change the marking of a PrT net.

For all t ∈ T, there exists a constraint formula R(t) that defines the pre-conditions for

enabling t and post-conditions after firing t. The set of all possible firing sequences with

respect to some initial marking defines the dynamic behavior of a PrT net. Based on the

dynamic semantics of PrT nets, (1) an enabled transition may not fire immediately; (2) the

firing of an enabled transition is atomic; and (3) enabled transitions can fire non-

deterministically and concurrently. In this translation, however, it is assumed that an

enabled transition fires immediately and the transition firings are interleaving. These

assumptions do not affect the verification of state-based system properties such as safety

and liveness properties, thus are adequate for this study. Transition translation rules are

defined based on the following principles:

(1) All transitions in a net are compositional in a do…od loop. Within the loop, transitions

in conflict are specified by a selection construct if … fi. As a result, the executability of

transitions within the loop will be repeatedly checked in which the selection of

transitions for execution is non-determinism based on PROMELA’s semantics engine.

(2) The constraint formula R(t) of a transition t is translated to a associated PROMELA

construct in the form: precondition-statements → post-condition-statements, where the

executability of t is based on the ‘precondition-statements’ and the firing of t is an

atomic execution of post-condition-statements in PROMELA.

(3) The universal quantifier ∀ and existential quantifier ∃ in R(t) are translated into

do…od loop statements since they involve checking all or part of the elements in an

array data object.

92

(4) The channel command specified in R(t) is translated to a rendezvous channel with

buffer size 0 in PROMELA to address synchronous interactions among agents. The

system channel that is shared by all agents is declared as a global message channel to

be used for exchanging messages among processes. In addition, a local channel in each

process is declared to receive messages from the mediator net through the global

message channel.

Transition translation rules are summarized in Table 6.

A constraint formula R(t) of t is composed of Ru(t) ∧ Rc(t), where Ru(t) is a non-

communication constraint and Rc(t) is a communication constraint; Rc(t) = ∅ if transition t

is not a communication channel. A constraint formula R(t) is translated to a PROMELA

construct in the form: precondition-statements-t → post-condition-statements-t. In

PROMELA, a separator ‘;’ is usually used for the separation of sequential composition of

statements and declarations; it is not a statement terminator. The right arrow sign ‘→’ is a

separator as well, and not a logical implication. For program readability, however, the

arrow sign ‘→’ is used instead of the ‘;’ sign for separating pre-condition statements and

post-condition statements. Precondition statements are guard statements, which may

include relational statements (expressions with relational operators <, >,≤ 𝑎𝑛𝑑 ≥),

equality statements, inequality statements, or a compound statement of the above

statements connecting by logical and operator ‘&&’ or logical or operator ‘||’. For

example, if the pre-conditions for transition t are defined as: 𝑥 ≠ 1 ∧ (𝑦 = 0 ∨ 𝑧 > 1); the

translated PROMELA statement is x != 1 && (y == 0 || z > 1). The evaluation result of the

guard statements is either true or false.

93

Table 6. Transition translation rules.

Rule t.1. Communication channel translation rule

Channel Interactions (synchronization)

(1) declare global message channel:
chan S = [0] of { MSG, chan};
(2) declare local message channel in the
system net:
chan a_id;
(3) declare local message channel in an
agent net:
chan me = [0] of { MSG };

typedef MSG {
 …………
 }

(1) agent net initiate communication:
 MSG msg;

 S!start(me); /* agent send */
 S?msg(a_id); /* the system receive
*/
(2) system response:
 MSG msg;

 a_id!msg; /* system send */
 me?msg; /* agent receive */

Rule t.2. Structural translation rule

Step 1: for each non-conflicting transition
t ∈ T such that R(t) = pre ∧ post, R(t) is
translated into an atomic statement:
:: atomic { pre-statements-t →
 post- statements-t }

t

Step 3: for k conflicting transitions t1 .. tk
such that R(ti) = prei ∧ posti

t1

tk

Translated PROMELA statements:
:: atomic { guard-condition →
 if :: pre-statements-t1 →
 post-statements-t1
 :: pre-statements-t2 →
 post-statements-t2
 ………..
 :: pre-statements-tk →
 post-statements-tk
 fi }

Step 2: Compose all atomic statements
into a do…od construct:
do
:: atomic { pre-statements-t1 →
 post- statements-t1 }
:: atomic { pre-statements-t2 →
 post- statements-t2 }
 ………..
:: atomic { pre-statements-tn →
 post-statements-tn }
od

94

Rule t.3. Constraint formula with channel command translation rules

(i) R(t) = pre ∧ c?msg ∧
 post
translated statement:
:: atomic {

 statements-t; c?msg
→ post-statements-t }

(ii) R(t) = c?msg ∧ post
translated statement:
:: atomic {
 c?msg →
 post-statements-t }

(iii) R(t) = pre ∧ post ∧
 c!msg
translated statement:
:: atomic {
pre-statements-t →
 post-statements- t; c!msg }

Rule t.4. Constraint formula translation rules

Components PROMELA statements

preconditions pre
(a logical formula containing
operators =,≠, <, >,≤,≥, ∧, ∨)

(1) relational statements with relational-
operators <, >, <= or >= :
 op1 relational-operator op2;
(2) statements with equality or inequality
operators == or !=:
 op1 == op2; or, op1 != op2
(3) logical statement with logical-operators
&& or ||:
 relational-statement-1 logical- operators
 relational-statement-2

universal quantifier ∀ in R(t)
(e.g., ∀𝑥 ∈ 𝑋. (𝑝𝑟𝑒 ∧ 𝑝𝑜𝑠𝑡))

int p_idx = 0;
do

 :: p_idx < MAX_p && !pre → break
 :: p_idx < MAX_p && pre → p_idx++
 :: p_idx >= MAX_p → post; break
od

existential quantifier ∃ in R(t)
(e.g., ∃𝑥 ∈ 𝑋. (𝑝𝑟𝑒 ∧ 𝑝𝑜𝑠𝑡))

int p_idx = 0;
do

 :: p_idx < MAX_p && pre → post; break
 :: p_idx < MAX_p && !pre → p_idx++
 :: p_idx >= MAX_p → break
od

post-conditions post
(a logical formula containing ∧ 𝑜𝑟 ∨)

a statement sequence including valid
expressions in PROMELA

95

A global message channel S_CHAN is shared by agent processes to send messages to

the system process; local message channel a_id in the system process is used to send

messages to agent processes; and, local message channel me in agent processes is used to

receive message from the system process. That is, channels ‘a_id’ and ‘me’ are matching

pairs of message channels. Note that if an input channel is used as part of the pre-

conditions and is not a sole pre-condition, then the input channel has to be put at the end

of a set of precondition statements. The reason for this is the executability of a rendezvous

message channel depends on the other matching message channel based on the semantics

engine of PROMELA. It will cause an error if an input channel is put in the middle of a

conjunction of guard statements. In addition, a separator ‘;’ has to be used instead of

logical and operator ‘&&’ between the input channel and its previous guard statements.

This precaution is to make sure that the original semantics of the net is translated

correctly. For example, let agent1 = (P, T, F) be an agent net, where P = {p1,

p2}; 𝜑(𝑝1) = 𝜑(𝑝2) = 𝑖𝑛𝑡; T = {t1, t2}; F = {(p1, t1), (p1, t2), (t1, p2), (t2, p2)}; L(p1,

t1) = L(p1, t2) = x; L(t1, p2) = L(t2, p2) = z; R(t1) = x > 3 ∧ me?y ∧ z = x - y; R(t2) =

x ≤ 3 ∧ me?y ∧ z = x + y; M0(p1) = {5}; M0(p2) = ∅; the translated PROMELA statements

by applying translation rule t.3 are as follows.

 chan me = [0] of { int }

 do

 :: atomic { x > 3; me?y → z = x - y }

 :: atomic { x ≤ 3; 𝑚𝑒? 𝑦 → z = x + y }

 od

96

The transition constraint R(t1) = x > 3 ∧ me?y ∧ z = x – y, where x > 3 ∧ me?y is the

pre-conditions and z = x – y is the post-condition. The pre-conditions are translated to

PROMELA statements as “x > 3; me?y”, where two guard statements are separated by the

separator ‘;’ instead of logical and operator ‘&&’; that is, the pre-conditions cannot be

specified as “x > 3 && me?y”, which will cause an error.

If a constraint formula contains universal quantifier ∀, then the whole set of tokens

need to be examined. For example, ∀𝑥 ∈ 𝑋. (𝑝𝑟𝑒 → 𝑝𝑜𝑠𝑡), where every element of X has

to be checked for pre-condition pre. The strategy is to use an index for the array object

that contains the tokens, and examine each element for the pre-condition. As soon as an

element is found to be false, then the formula is immediately evaluated as a false. On the

other hand, if a constraint formula contains quantifier ∃, then only one element in the array

object is needed to satisfy the pre-condition. A constraint formula containing quantifiers is

translated to PROMELA statements by applying rule t.4 in Table 6.

Let us look at a translation example for a transition constraint formula without channel

command. Let a constraint formula R(t) be defined as pre → post where pre is ∃p∈P.(p[1]

= ra[4]) ∧ ∀r∈R.(r[1] ≠ ra[3]), and post is R’ = R ∪ <ra[3], ra[4]>∧ ra’[4] = ‘added’; the

translated PROMELA statements are shown in Figure 30.

5.2.2 Model Transformation

Let MAS be the set of PrT nets called multi-agent nets specifying a multi-agent system,

and PROG be the target PROMELA program. The transformation steps can be defined as

follows:

97

Step 1. Apply entity translation rule e.1 to MAS such that, for all 𝑁 ∈ 𝑀𝐴𝑆, add a process

proctype N() to the target PROMELA program 𝑃𝑅𝑂𝐺.

Step 2. For each process 𝑁() in 𝑃𝑅𝑂𝐺, add PROMELA statements by applying rule p.1~

p.3 to all 𝑝 ∈ 𝑃 associated with net entity N.

Step 3. For each process 𝑁() in 𝑃𝑅𝑂𝐺, add PROMELA statements by applying rule t.1~

t.4 to all 𝑡 ∈ 𝑇 associated with net entity N.

Figure 30. A constraint formula translation example.

5.3 Correctness of the Translation

The translation is under the assumption that every PrT net in the formal MAS model

has finite tokens. In addition, an interleaving semantics is adopted in translating transition

cnt = 0; p12_idx--;
do :: cnt < MAX_SESSION && pa[cnt].roleP ==
 p12[p12_idx].content → cnt = 0; break
 :: cnt < MAX_SESSION && pa[cnt].roleP !=
 p12[p12_idx].content → cnt++
 :: cnt >= MAX_SESSION →
 printf("Role %e denied !", p12[p12_idx].content);
 p12[p12_idx].content = error
od;
do :: cnt < MAX_ROLE && ra[cnt].user == p12[p12_idx].category
 → ra[ra_idx].roleR = p12[p12_idx].content;
 p12[p12_idx].content = updated; break
 :: cnt < MAX_ROLE && ra[cnt].user != p12[p12_idx].category → cnt++
 :: cnt >= MAX_ROLE && ra_idx < MAX_ROLE
 → ra[ra_idx].user = p12[p12_idx].category;
 ra[ra_idx].roleR = p12[p12_idx].content;
 p12[p12_idx].content = added; ra_idx++; break
 :: ra_idx >= MAX_ROLE
 → printf("Exceed maximum role");
 p12[p12_idx].content = error; break
od;

98

firings. The correctness of the translation is justified based on translation completeness

and behavior consistency between two models.

5.3.1 Completeness

Definition 5.3.1 Given a multi-agent net MAS and a translated PROMELA program

PROG, the translation from MAS to PROG is complete if all net entities and net elements

in MAS are covered by associated language constructs in PROG.

(1) Completeness of net entity translation

Lemma 1. Given a multi-agent net MAS and a translated PROMELA program PROG, a

net entity translation is complete if, ∀ 𝑁 ∈ 𝑀𝐴𝑆 such that, there exists a process proctype

N() in PROG.

Proof. Based on net entity translation rule e.1, a skeleton process is faithfully created for

each net entity in MAS. Therefore, PROG covers all entities in MAS.

(2) Completeness of net element translation

Lemma 2. Given a net entity N in MAS and its associated process 𝑁() in PROG,

where 𝑁 = (𝑃,𝑇,𝐹) , a net element translation of N is complete if, net elements

𝑃,𝑇,𝐹 and their static semantics 𝜑, 𝐿,𝑅, 𝑎𝑛𝑑 𝑀0 are properly mapped to associated

PROMELA statements in process 𝑁().

Proof. Rule p.1~p.3 and t.1~t.4 cover all net element translations of net N given that (i)

for all places p in P such that, 𝜑(𝑝), 𝐿(𝑝, 𝑥) 𝑎𝑛𝑑 𝑀0(𝑝) are translated by applying rule

p.1~p.3; and, (ii) for all t in T such that, R(t) is translated by applying rule t.1~t.4. Thus,

the process 𝑁 () covers all syntactic and static semantics definitions of a net entity N.

99

(3) Completeness of multi-agent net translation

Lemma 3. Given a multi-agent net MAS and a translated PROMELA program PROG, a

multi-agent net translation is complete if, ∀ 𝑁 ∈ 𝑀𝐴𝑆 , there exists a process

𝑝𝑟𝑜𝑐𝑡𝑦𝑝𝑒 𝑁() in PROG such that, 𝑁() covers the syntactic and static semantics of N.

Proof. Given Lemma 2, the net element translation rules can be applied to all N in MAS.

Thus, PROG is a complete translation of multi-agent net MAS.

5.3.2 Consistency

The dynamic behavior of a PrT net depends on the initial marking, instantiation of

tokens and the definition of transition constraints. That is, the variation of the initial

marking and instantiation of data tokens result in different execution sequences at runtime

based on the same transition constraints. Therefore, the behavior consistency of two

models in the translation is justified based on the same initial marking.

Definition 5.3.2 Given a multi-agent net MAS and a translated PROMELA program

PROG, MAS and PROG are behavior consistent if,

(i) For every net entity N ∈ MAS, there is a process N() in PROG preserves the dynamic

semantics of N.

(ii) For every transition t in T of the net entity N ∈ MAS, there is an atomic language

construct E in the process N() in PROG such that, E preserves the semantics of R(t).

Lemma 4. Given a transition t with R(t) = pret ∧ postt in N, and its associated language

construct E = pre-statements-t → post-statements-t in process N(); E is semantically

consistent with R(t) if, for a firing M[t/𝛼>M’ in N there exists an execution s E s’ in N()

such that M ⟺ s and M’⟺ s’.

100

Proof. If E is executable under state s in the process N(), then pre-statements-t must be

true; the execution of E under state s results in state s’. By rule t.2~t.4, (i) pre-statements-

t is a mapping of pret in R(t) implies M ⟺ s; and, (ii) post-statements-t is a mapping of

postt in R(t) implies M’⟺ s’.

Lemma 5. Given a net entity N ∈ 𝑀𝐴𝑆, and a complete translation process N() in PROG

from N, N() is semantically consistent with N if, for any firing sequence 𝜎 in N starting

from the initial marking M0, there exists an execution sequence e starting from the initial

state s0 in N(), such that 𝜎 ⟺ 𝑒 when M0 = s0.

Proof.

(1) By Lemma 4, a firing 𝜎 = M0t0M1 of transition t0 under the initial marking M0 in N

implies that there is an execution e = s0E0s1 under the initial state s0 in N() such that,

M0 ⟺s0 and M1 ⟺s1; thus, e is semantically consistent with 𝜎.

(2) By (1), e is semantically consistent with 𝜎 for the case 𝜎 = M1t1M2 and e = s1E1s2

such that, M1 ⟺s1 and M2 ⟺s2. It immediately follows that e is consistent with 𝜎 for

the case 𝜎 = M0t0M1t1M2 and e = s0 E0s1E1s2, since M1, s1 are the derivatives of M0, s0

and M2, s2 are the derivatives of M1, s1 respectively.

(3) By (1) and (2), for an execution 𝜎 = M0t0M1t1M2….Mk-1tk-1Mk starting from the initial

marking M0 in N, there is an execution e = s0 E0s1 E1s2… sk-1 Ek-1sk starting from the

initial state s0 in N() such that, 𝜎 and e are consistent given that M0 ⟺ s0, M1⟺

s1, …, and Mk⟺sk.

101

(4) Based on the same initial state, other executions are proved by (1), (2) and (3). Thus,

given a net entity N and a complete translation process N() from N, N() preserves the

semantics of N.

By Lemma 1 through 5, the correctness of this translation approach transforming the

formal MAS model to a concrete model in PROMELA is proved.

5.4 A Translation Example

Figure 31 shows a formal MAS model specifying a disaster mitigation system called

BCIN (Business Continuity Information Network) [89]. Based on our previous study [90],

BCIN employs a role-based access control for system resources. Each role has a distinct

behavior model. The BCIN net shown in Figure 31 is the formal model to visualize the

control of resources in BCIN. The semantic definitions for BCIN net are shown in

Appendix A4. BCIN net is transformed to a PROMELA program by applying the

translation rules defined in the previous sections. The resulting BCIN net consisting of one

system net and four agent nets, has 28 transitions (excluding boundary transitions), 31

places and 16 communication channels.

The translated PROMELA model contains 237 lines of codes, including five processes:

(1) the system net; (2) supervisor role (S_NET); (3) observer role (O_NET); (4) primary

contact role (P_NET); and, (5) participant role (PR_NET). The PROMELA model for the

BCIN net is shown in Appendix B.

102

RAs

User

UserOut Actor

UserIn

R

R
u

u u

a

PAs

a

P

Activated

m End

AssignRole

AssignPA

RBAC

Read
m

m

m

p2 rReadDB
r

BCIN
Database

returnR

SendM
p3

p4

m

wWriteMG
w

p8 returnMw’

m

Publish
p6 pPublishRS

p

returnP

D’

D

m

m

m

p1

m
p7 r’

m

p5

m
p9

p’

m

D

D

D’

Communication
ChannelsResource

Controls

System Net

r’

w’

p’

r

UpdateRA

R
R’

RAm p12

returnRA

P
p11

p10

m

ra

ra

ra’

ra’

m

m

<David,
O_NET>

<Emily,
P_NET>

<Alice,
S_NET>

Agent nets

Activated

Start

Wait

Read Input

ReturnResult

Output

e

x

e

e

e

O_NET

x

ActorOut

a

Sessionsm

S

S
S’

S’

S

S

Start

Wait

Send

Input

ReturnResult

Output

Reade

x

e

e

e

P_NET

x

e

e

P

Figure 31. The BCIN net.

5.5 Model Analysis

Two types of correctness claims are considered in model checking the formal MAS

model: (1) safety properties; and (2) liveness properties. A safety property defines an

invariant that the model must always satisfy. A liveness property states that something

good does happen on executing the model. Given a transformed PROMELA model, and

correctness claims given in LTL, the model checker SPIN either proves that such claims

are impossible or it provides examples of behaviors that match the claims. There are

several ways to encode correctness claims in PROMELA. This section discusses how a

transformed formal MAS model can be analyzed by the model checker SPIN.

103

5.5.1 Encoding System Properties in PROMELA

In SPIN, correctness claims are used to formalize erroneous system behaviors. The goal

is to decide whether design requirements could possibly be violated [38]. There are six

basic constructs in PROMELA to specify correctness properties:

(1) Basic assertions; an assertion statement is a correctness claim, which asserts that the

expression used in the statement cannot be false.

(2) End-state labels; a meta-label indicating a valid end-state other than the default end-

state of a process. A default end-state is at the end of the codes of a process.

(3) Progress-state labels; a meta-label marking the execution of some statement; they

can be used to detect a non-progress cycle.

(4) Accept-state labels; they are used to find all cycles that do pass through at least one of

those labels; and, there should not exist any execution that can pass through an

accept-state label infinitely often.

(5) Never claims; they are used to specify either finite or infinite system behavior that

should never occur. A never-claim is checked at each execution step of the model

execution.

(6) Trace assertions; they are used to formalize statements about valid or invalid

sequences of operations that processes can perform on message channels [38]. All

channel names referenced in a trace assertion must be globally declared, and all

message fields must be globally known constants or mtype symbolic constants.

Traces on monitoring rendezvous channels can only capture the occurrence of the

receive part of a handshake, not of the send part. Receive events on rendezvous

channels can be monitored with trace assertions, but not with never claims.

104

Let us look at some examples using the above constructs to encode the correctness

claims of the BCIN net [90]. Since BCIN net models the resource control among agent

nets, there are several important properties need to be ensured:

(a) A user cannot access the system without a valid role assignment.

(b) A user enacting a role can only perform the actions pre-assigned based on permission

assignments.

(c) A user can only play a role at one time.

(d) For each request received by the system net, there will be a response to the agent net

eventually.

Property (a), (b) and (c) are considered as safety properties, which are required to be

true at all times, and property (d) is considered as a liveness property. Safety properties

can be encoded using basic assertions or never claims, while liveness properties can be

encoded using meta-labels and trace assertions. These properties are translated into

PROMELA codes as follows.

Although the constraint formula: ∀r∈R.(r[1] ≠ u) defined in transition ‘UserOut’

(Appendix A4) enforces the elimination of invalid user tokens, a system invariant can be

defined to check whether or not the BCIN model satisfies property (a). For example, the

constraint formula states that if the user has not yet been assigned a role (a member of the

set of role assignment R), then the user cannot enter the system. Intuitively, all users in the

system must be members of the set R. Therefore, the correctness claim can be defined as

follows.

Property (a)

105

 assert (valid_user == ra[0].user || valid_user == ra[1].user || valid_user ==

ra[2].user)

The assertion states that a valid user must be one of the users that defined in the array

data object ‘ra’ that stores valid role assignments. All possible user identities need to be

enumerated in order to check if this correctness claim is satisfied. An assertion statement

is the only type of correctness property that can be checked in the simulation mode in

SPIN. The execution will stop at the point where the assertion fails.

Another way to encode the correctness claim for this property is using a never claim.

The property requires that a user cannot access the system without a valid role assignment;

that is, at all time, users who are in sessions should be valid users. In the PROMELA

model for BCIN net (Appendix B), the array data object ‘session[act_idx].sname’ stores

the user names in sessions. Therefore, when ‘session[act_idx].sname’ is not null, it has to

be one of the member of role assignments stored in the array data object ‘ra’. Let

proposition p denotes users in sessions, and proposition q denotes valid users. The

property can be encoded into a LTL formula [] (p -> q), where

 p is defined as: session[act_idx] != NULL, and

 q is defined as:

(session[act_idx].sname == ra[0].user || session[act_idx].sname == ra[1].user ||

session[act_idx].sname == ra[2].user || session[act_idx].sname == ra[3].user)

SPIN provides a built-in translator that translates a LTL formula to never claim

statements. A property can be encoded in a LTL formula first, and then translated into

PROMELA codes using the translator provided. The PROMELA statements generated

106

from the above formula is shown in Figure 32, which results in the verification report in

Figure 33.

In BCIN net, an actor is a valid user enacting a predefined agent role. An agent role is a

role model with predefined permission assignments for accessing system resources. The

constraint formula: ∃p∈P.(p[1] = a[2]) defined in transition AssignPA (Appendix A4)

makes sure that an associated role model is available to be activated. To assure this

property, a correctness claim can be defined as follows.

Property (b)

 assert (actor.roleR == pa[0].roleP || actor.roleR == pa[1].roleP || actor.roleR ==

pa[2].roleP || actor.roleR == pa[3].roleP)

The assertion states that an agent role that an actor is enacting must be one of the

predefined role models.

A session constraint is enforced by the formula ∃ s∈ S.(s = u) in the constraint

definition of transition UserOut. In the PROMELA model, an assertion statement “assert (

inSession == false)” asserts that a user can only have one session at a time.

Property (c)

The message channels in agent processes are declared as local message channels in the

BCIN model. Since a trace assertion can only monitors global channels, this property can

be checked simply using a progress label at a receiving message channel to make sure the

agent receives the information from the server. For example, “progress: me?m” states that

Property (d)

107

it is impossible for the system to execute forever without also passing through the labeled

states. In other words, the receive-message channel in an agent process should be visited

infinitely often.

Figure 32. The PROMELA codes for a never claim.

#define p (session[act_idx].sname != NULL)

#define q (session[act_idx].sname == ra[0].user || session[act_idx].sname ==

ra[1].user || session[act_idx].sname == ra[2].user || session[act_idx].sname ==

ra[3].user)

 /*

 * Formula As Typed: [] (p -> q)

 * The Never Claim Below Corresponds

 * To The Negated Formula !([] (p -> q))

 * (formalizing violations of the original)

 */

never { /* !([] (p -> q)) */

T0_init:

 if

 :: (! ((q)) && (p)) -> goto accept_all

 :: (1) -> goto T0_init

 fi;

accept_all:

 skip

}

108

Figure 33. The verification report for the never claim.

(Spin Version 5.2.4 -- 2 December 2009)
 + Partial Order Reduction

Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 acceptance cycles + (fairness disabled)
 invalid end states - (disabled by never claim)

State-vector 234 byte, depth reached 174, errors: 0
 148 states, stored
 33 states, matched
 181 transitions (= stored+matched)
 452 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
 0.035 equivalent memory usage for states (stored*(State-vector +
overhead))
 0.262 actual memory usage for states (unsuccessful compression:
743.19%)
 state-vector as stored = 1842 byte + 16 byte overhead
 2.000 memory used for hash table (-w19)
 0.305 memory used for DFS stack (-m10000)
 2.501 total actual memory usage

pan: elapsed time 0.002 seconds

#endif

109

In summary, safety properties can be checked through never claims and basic

assertions, while liveness properties can be checked through never claims, progress-state

labels and trace assertions. One important liveness property in formal MAS models is that

an agent’s request is eventually responded. This can be checked by using a progress-state

label at the receive-message channel statement of an agent net. SPIN provides a translator

for translating valid LTL formulas into never claims. Note that, liveness properties deal

with infinite runs. An infinite run only happens in a finite system if the run is cyclic [38].

SPIN checks liveness properties by identifying acceptance cycles [38]. Table 7

summarizes the encoding rules.

Table 7. Encoding system properties

System Properties PROMELA statement

System invariant:

 [] p

#define p ……….

assert (p)

Properties expressed in LTL:

(1) [] (p -> q)

(2) [] (p -> <> q)

(3) <> [] p

(4) [] (p -> <> q)

(5) Other valid LTL formula

#define p ……….

#define q ……….

never {

……….

}

Liveness property:

an agent net eventually received

the response

………

progress:

 me?msg;

…………

110

5.5.2 Model Checking the MAS Model

Table 8 shows the transformation statistics from the BCIN net to the PROMELA

model.

After generating the PROMELA model and desired correctness claims, the model is

ready to be checked in SPIN. There are verification mode and simulation mode in SPIN.

Usually, the model is checked in the verification mode first. If errors are found, execution

trails can be examined step by step in the simulation mode.

Table 8. Statistics of model transformation.

The BCIN Net The PROMELA Model

 5 individual nets

(1 system net and 4 agent nets)

 31 places

 28 transitions

(including 16 communication

channels, excluding

boundary transitions)

 5 processes

 237 lines of codes

 328 execution trails generated

(executing with some initial

marking)

 2.501 Mbytes of memory used

(500 states per second)

The BCIN model is used as an example running under XSpin version 5.2.3 based on

the following initial marking (initial state):

M0(User) = {<Emily>};

M0(RAs) = {<David, observer>, <Alice, supervisor>, <Emily, contact>};

M0(PAs) = {<observer, O_NET>, <supervisor, S_NET>, <contact, P_NET>,

<participant, PR_NET>};

M0(BCIN_Database) = {<advisory, Wilma>, <message, generator>}.

111

While the BCIN model is checked under the verification mode, agent nets are activated

at different point in the PROMELA model to test the correctness of interactions between

processes at runtime. In addition, unknown agent identities are also intentionally

introduced at some points of the execution to test the exception handling of the

PROMELA model. System properties (a), (b), (c) and (d) defined in the previous section

are added in the PROMELA model and checked in both verification mode and simulation

mode. While execution in verification mode, there was an error found as shown in Figure

34. By examining the simulation trails and sequence chart, the errors from the verification

report and some subtle errors in the PROMELA model can be found and fixed. The

interaction of agent processes in the corrected BCIN model is shown in Figure 35.

Figure 34. The verification output with non-progress cycle detected.

112

Figure 35. The sequence chart of agent interactions in a simulation run.

5.6 Summary

In this chapter, a methodology for analyzing formal MAS models is developed and

presented. The objective is to provide a method to study the behavior of a given MAS

model. The methodology is summarized as follows.

(1) Translation rules are defined for model transformation from the formal MAS model

to the PROMELA model, including the net entity translation rule that transforms a

PrT net into a process skeleton in PROMELA, and net element translation rules that

transform places and transitions into their associated PROMELA language constructs.

(2) Given a nested PrT net model specifying MAS, an equivalent PROMELA model can

be generated using the translation rules defined.

113

(3) Given the transformed PROMELA model, the correctness claims can be encoded for

model checking, including safety properties and liveness properties.

(4) The PROMELA model can be executed in the verification mode for checking desired

properties. If there are errors, the model can be diagnosed under the simulation mode

by examining the execution trails generated during verification.

Based on this study, the transformed PROMELA model is fairly efficient in model

analysis. However, there are two issues need to be considered for further automation of

code generation from a formal MAS model to a PROMELA program. First, due to the

complexity of transition constraints, manual modifications for transition translation may

be needed after applying the translation rules. Second, since tokens at a place are

structured data represented by an array data object, specifiers need to enumerate all

possible substitutions to construct correctness claims.

The methodology presented in this chapter provides a foundation for tool development.

The future work is to automate model analysis based on the transformation technique

developed. The idea is to use nested Petri nets as the modeling tool for behavior models at

the front-end, and the model checker SPIN as the analysis tool at the back-end.

114

CHAPTER 6

CASE STUDY

This chapter discusses case studies in three different application domains. Section 6.1

presents the case study of a wireless sensor network with mobile devices. Section 6.2

introduces the case study of an e-market. Section 6.3 elaborates the modeling of a

business continuity information network for disaster mitigation.

6.1 Wireless Sensor Network with Mobile Devices

 Recent wireless sensor network systems (WSN) integrate mobile devices to take

advantage of the storage, communication ability and computation power of the mobile

devices for gathering and sharing sensor data [34]. Since mobile devices constantly

change their locations, the idea of sharing information through WSN with mobile devices

is in a publish/subscribe pattern where the subscribers (some mobile devices) express the

interest in some class of information and the publisher (some mobile device) picks up the

information from a sensor at its current location and broadcasts the information to the

subscribers. An information server is employed to manage group information of the

mobile devices.

A key idea of the coordination is that mobile devices share common interest (sensor)

data within the same group or among different groups. The coordination mechanism is a

form of publish and subscribe and provides a paradigm for organizing multiple mobile

devices through an interest-management server, in which groups of mobile devices are

formed based on the location of their interested information. Mobile devices that issue

queries for sensor data are subscribers. The server manages subscribers' information but

115

does not directly publish sensor data; that task is actually done by mobile devices using a

multicast mechanism that sends the shared data to a group address given by the server.

The sensor nodes in WSN are divided into clusters according to their geographic

locations and the information of clusters is kept in the server. Each cluster, identified by a

unique cluster id, has a cluster head and the sensor data within a cluster is periodically

sent to the cluster head, which serves as a communication point with entities outside the

cluster. The entities involved in communication behaviors have been identified and

shown in Figure 36. The arrows denote the message flows.

subscribe

Mobile
Device

Server

friendly update

group joiningCluster
Head

unsubscribe

pickup data

sensor data

gain publish

Group Address

fail

Figure 36. Message flows between the entities in a WSN with mobile devices.

The WSN with mobile devices [91] is used as an example and modeled using the two-

level PrT nets defined in Chapter 3. Based on the communication relations in Figure 36,

the mobile devices are modeled as agent tokens of a server net. A mobile device can

issue a query (subscribe), pick up sensor data, publish shared data, gain shared data and

116

unsubscribe. The behavior models of a mobile device and the server net are discussed in

the following sections.

6.1.1 The Interest-Management Server Model

When the server receives a query request from a mobile device, there are some

interactions between the server and the mobile device. The interaction scenarios are

described as follows.

(1) The server checks whether or not there exists some common interest group with an

interest at current location of the mobile device. If there is an existing common interest

group at current location of the requesting mobile device, a message containing the group

address is sent back to the mobile device. The message includes the instruction for

'friendly update', which is an action for the mobile device to pick up the sensor data from

the relevant cluster head. After picked up the sensor data, the mobile device multicasts

the data to the group address indicating in the message from the server.

(2) Followed by the friendly update, the server adds the requesting mobile device to the

identified common interest group(s) that have the same query region as the subscribing

mobile device. In the case that no existing cluster region covers the query region, a failed

message is sent to the mobile device. The mobile device can unsubscribe after getting the

result. When the server receives an unsubscribe message, it removes the information of

the unsubscribing mobile device. Table 9 summarizes the actions of the server.

The following conventions have been used: (1) the model does not restrict the multiple

subscriptions of the same group for the same mobile device; (2) it is assumed that the

information required for multicasting is kept in the server, and the information is

accessible during a multicast; (3) there is no action for a mobile device to temporarily

117

join a group to perform a friendly update; (4) the original query content is used as the

unsubscribing message and assume that the group address described in the requirement is

a unique and fixed value, such as a cluster id. Figure 37 shows the server's behavior

model according to the information and control flows in Table 9.

Table 9. The server’s actions.

Actions Pre-conditions Post-conditions

Subscribe
Mobile device sends a

query
Query received

Instruct friendly

update

Mobile device’s current

location exist common

interest sharing group.

Sends a message to mobile

device to instruct a friendly

update at its current location.

Group Joining

Mobile device’s query

region is covered at least by

one cluster

Adds the mobile device to the

common interest sharing group

(s) with the same query region

and sends a joining message to

the mobile device.

Fail
None of the cluster regions

covered the query region.

Sends a fail message to the

mobile device.

Unsubscribe

Received the unsubscribe

message from a mobile

device

Removes the information of

the unsubscribing mobile

device

118

.

Output channel

Input channel

p1
md

subscribe

p2

joinf_update

unsubscribe

<m,q>

p3

fail

<m,q>

C

<m,q><m,q>

<m,q>

<m,q>

<m,q>
p4

C

C

C
C’

C’

Figure 37. The behavior model of the information server.

Semantic Definitions of the Server net

Token Types:

)()3(
)()4()2(

)()1(
)(_

_

CLUSTERp
QUERYMobileNetpp

MobileNetp
MobileIDssGroupAddreregionClusterClusterIDCLUSTER

TimeToLiveregionQueryationCurrentLocMobileIDQueryIDQUERY

℘=
×℘==

℘=
℘×××=

××××=

ϕ
ϕϕ

ϕ

Note that, QUERY and CLUSTER are Cartesian product of predefined data types, which

define the contents of a query, and the subscribed information about common interest

groups, respectively. Query_region and Cluster_region are of the same type that can be

used to represent a set of coordinates, which define the covered region of a query and the

cluster region, respectively. The MobileNet is the net token defined by a mobile device

net.

119

Transition Constraints:

])2[]4[]4[']4[]2[.(?)(
'_']!2[)]4[]2[.()(

)],3[],2[(]!2[])2[]4[]4[']4[]2[.()]4[]2[.()(
)],3[],2[(]!2[)]4[]]2[]3[.()_(

?)(

qccqcCcqneunsubscribR
failedonsubscriptiqqcCcfailR

qccqqccqcCcqcCcjoinR
qccqccqCcupdatefR

mdmqnsubscribeR

−=∧∅≠∩∈∀∧=
∧∅=∩∈∀=

∧∪=∧∅≠∩∈∀∧∅≠∩∈∃=
∧∅≠∧∈∈∃=

=∧=

Note: transition subscribe is fireable when a matched output channel n in other net is

ready. Transition f_update is enabled if mobile device q[2]’s (an id) current location q[3]

is in cluster region c[2] and a non-empty set c[4] of mobile devices subscribed to cluster

region c[2]. After firing, the friendly update message is sent through the channel.

Transition join add mobile device id q[2] to the set of subscribed mobile devices c[4]. If

query region q[4] is not covered by any cluster region c[2] in C, transition fail will fire

and a failing message is sent through channel q[2]. Transition unsubscribe removes the

active query token and its subscribed information.

6.1.2 The Mobile Device Model

A mobile device communicates with the user, server, other mobile devices and cluster

heads. First, a user may generate a query through the interface on the mobile device when

he/she needs information. Then, the mobile device sends a query request message to the

server for subscription. Various actions may be taken according to the responding

message from the server. If a friendly-update instruction message is received, the mobile

device has to pick up the sensor data from the cluster head at current location, and

publishes the data to a group address indicating in the friendly-update message. Upon

receiving the group-joining instruction message and by the expiration of Time-To-Live

time frame, the mobile device may receive the data through other mobile devices.

120

Table 10. A mobile device’s actions.

Actions Pre-conditions Post-conditions

input query
The user of the mobile
device needs information

A query is generated containing
query id, mobile id, current
location, query region and
Time-To-Live(valid time)

Subscribe
A query message is ready to
send to the server.

Waits for the reply from the
server.

friendly update
The server instructs a
friendly update

Get the friendly update message
and ready to pickup data from
the cluster head in current
region

join
Server has sent a group-
joining message

(1) received sharing data from
group members, or

(2) picks up the sensor data
directly by itself

(3) performs direct injection to
acquire the data and
publishes

Fail
Server has sent a failed
message

Outputs the error message to the
user

Gain
Cluster data is published by
group members

Got the data and ready to
unsubscribe

Publish
Sensor data has been picked
up.

Published the data and ready to
unsubscribe

Direct pickup
Current location is inside
the query region

Interact directly with cluster
head to acquire sensor data

Direct injection

Current location is not in
the query region and the
valid time for the query
is about to expire and no
sharing data is available

Request sensor data from query
region cluster head remotely
through sensor network
routing

Unsubscribe
Received the data and sends
an unsubscribe message to
the server

Outputs the data to the user

121

In other case, if the mobile device traveled to the same region with its query region

before receiving the interested data through group sharing performed by the other mobile

devices, it can pick up the sensor data itself and share the data with the members in the

same group. If no such group sharing event happens when the time of a valid query is

going to expire, i.e., no one in the same group ever reached the query region or no

friendly update is performed, the mobile device will perform the ‘direct injection’, which

is a way of getting the sensor data from the query region through sensor network routing.

After received and published the data, the mobile device can unsubscribe from the server.

The data received by the mobile device is properly extracted and displayed on the

interface of the mobile device for the user. Table 10 shows the actions of a mobile device.

Based on the actions listed in Table 10, the behavior model of a mobile device is

developed and shown in Figure 38. Figure 39(a) shows the group address multicast

behavior model, and 39(b) shows the cluster head’s behavior model. It is assumed that a

mobile device knows its location through the GPS (Global Positioning System) or other

localization techniques. Place p8 in Figure 38 keeps the mobile device’s id and its current

location. Place p2 in Figure 39(a) refers to the same database as place p3 in Figure 38,

which is assumed to be accessible during a multicast. In the model, the content of the

responding message from the server contains the query information.

Semantic Definitions of Mobile Device’s PrT Model

Token Types:

122

ationCurrentLocMobileIDp
DATAp

DATAQUERYp
ssGroupAddreDATAp

QUERYssGroupAddrep
QUERYssGroupAddreregionClusterp

QUERYp
TimeToLiveregionQueryQueryIDp

TimeToLiveregionQueryationCurrentLocMobileIDQueryIDQUERY

×=
℘=

×℘=
×℘=

×℘=
××℘=

℘=
××=

××××=

)8(
)()7(

)()6(
)()5(

)()4(
)_()3(

)()2(
_)1(

_

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

Note: QUERY, Cluster_region and Query_region are of the same type as defined in the

server’s behavior model. QueryID, MobileID, CurrentLocation, TimeToLive,

GroupAddress and DATA are predefined data types.

Transition Constraints:

)],2[(!]2[)_(
!]2[)(

?)(
),,?()(

?)(
),,?()_(

!]3[]5[]2[]4[]2[]3[]1[]2[]1[]1[)(

gaqcrcrclpickupdirectR
sgagaspublishR

dgagainR
qgacrSjoinR

dSfailR
qgacrSupdatefR

qSrqrqclqclqrqsubscribeR

∧∈=
∧==

=
=
=

=
∧=∧=∧=∧=∧==

dcrindatasensorR
qSeunsubscribR

gaqcrqcrclinjectiondirectR

?)__(
!)(

)],2[(!]5[]2[)_(

=
=

∧−=∧∉= ετ

Note: ε is a predefined and small constant value, which is determined by the designer to

enforce the firing of the transition. Transition input query and output data are boundary

transitions for user interface. Transition positioning is the boundary transition that has the

function of obtaining the current location (coordinates) of the mobile device. Transition

subscribe is enabled whenever there is token r available from the input place p1 and a

matched input channel S in the server net is ready. Transition f_update, join and fail are

123

unconditionally ready for firing whenever output channel S in the server is ready to

output messages. Transition gain is unconditionally ready for fire whenever output

channel ga from group address multicast is ready to broadcast messages. Transition

publish is ready for firing when sensor data s is received through transition sensor data in

through input channel cr. Transition direct pickup is enabled if current location cl[2] is in

query region cr. After firing, a message is sent through output channel cr to the cluster

head to request data. Transition direct injection is enabled if current location cl[2] is not

in the query region and the time to live q[5] is going to expire within ε. Transition

unsubscribe is enabled if query q is finished and data d is available in p6. After firing,

data d is output to p7 and query q is sent through output channel S to the server to be

removed from subscribed information.

p1

publish

subscribe

p2

f_update

p4unsubscribe

q

gain

fail

q

r

input
query

output
data

d

direct
injection

d

p7

p6

q

<q,d>

<q,d>

Output channel

Input channel

<ga,q>

<ga,q>

sensor data in s

join
q

<cr.ga.q>
<q,d>

direct
pickup

<ga,q>

p3

p5

d

p8

cl

positioning

cl

cl’

r

cl

s

<cr.ga.q> <cr.ga.q>

<cr.ga.q>
<cr.ga.q>

cl

Figure 38. The mobile device's behavior model.

124

(a)

p1

send receive
<md,ga>

<md,ga>

(b)

p2

d

p1

send receive

<d,ga>
<d,ga>

p2

C

Figure 39. (a) Group address multicast (b) Cluster head data communication

Semantic Definitions of Group Address Multicast’s PrT Model

Token Types:

)()2(
)1(

)(_

CLUSTERp
ssGroupAddreDATAp

MobileIDssGroupAddreregionClusterClusterIDCLUSTER

℘=
×=

℘×××=

ϕ
ϕ

Transition Constraints:

))!].(4[]3[.()(
),?()(

dmdcmdgacCcsendR
gadmdreceiveR

∈∀∧=∈∀=
=

Semantic Definitions of Cluster head Data Communication’s PrT Model

Token Types:

DATAp
ssGroupAddreMDp

MobileIDMD

=
×=

℘=

)2(
)1(

)(

ϕ
ϕ

Transition Constraints:

),(!)(
),?()(

gadmdsendR
gamdmdreceiveR

=
=

6.1.3 A Query Request Scenario

Let us look at a simple scenario based on the behavior models defined in previous

sections.

125

A campus WSN system with information-management server keeps the information of

three cluster regions: library, cafeteria and gymnasium. The students on campus are

usually interested in the conditions of these locations (for example, available space in the

library). There are four students, John, Mary, Peter and Eric with their own mobile

devices, and they are at different locations on campus. John and Mary are currently at the

library; Peter is at the cafeteria and Eric is at the gym. Eric finished his workout and is

heading to the cafeteria but wondering if the cafeteria is crowded or not. So Eric sends a

query request through his mobile device to subscribe for information about the cafeteria.

In the meantime, John and Mary finished their study at the library and are also heading to

the cafeteria for lunch; they have sent query requests and subscribed for the information

about the cafeteria. Peter has finished his lunch at the cafeteria and is heading to the gym.

He subscribed the information for the gym. As such, two different common interest

groups have been formed based on the interested regions: (1) John and Mary for the

cafeteria, and (2) Peter for the gym. Eric's query request scenario is used as an example to

demonstrate the interaction behaviors between Eric and the server. Let the current

marking M0 of the server for the above scenario be the following:

M0 (p1)={John, Mary, Peter, Eric}

M0 (p2)= ∅

M0 (p3)={(1, library, 1, ∅), (2, cafeteria, 2, {md1,md2}), (3, gym, 3, {md3})}

M0(p4)={(John, q1, md1, library, cafeteria, 10), (Mary, q1, md2, library, cafeteria, 10),

(Peter, q1, md3, cafeteria, gym, 10)}

For simplicity, only Eric's mobile device net is demonstrated in which there are

interactions with the server, the group address multicast and the cluster head. Initially,

126

only place p8 has tokens, which stores the mobile ids and the current location of the

mobile device. After Eric sent a query request through the mobile device's interface, a

query request message containing the information of a query id, a mobile device id, the

current location, the query region and a maximum waiting time for the query is

generated. That is, there is a token q = {q1, md4, gym, cafeteria, 10} has been generated.

Since the server is ready to input message through transition ‘subscribe’, together with

the transitions ‘subscribe’ in the mobile device net, a synchronized communication

occurs as a result of firing a pair of matching transitions. After firing the matching

transitions, the server received the query request. That is, the token {Eric, q1, md4, gym,

cafeteria, 10} is output to p2 in both nets. This query simply says that the mobile device

md4 is interested in the information of the region cafeteria; and its current location is

gym; and, this query is valid only within 10 seconds after the query is sent. The mobile

device is ready to join a common interest group.

Next, the server checks if there exists a common interest group in mobile device md4's

current location gym. Refers to place p3, which holds the information of subscriptions

and regions in the server net, there is a common interest group indicating cluster id '3',

which is the region gym, linking a group address '3' and mobile device id 'md3'. The

server then responds with the friendly update message containing {gym, 3} through

output channel ‘md4’, which is the communication channel to Eric's mobile device. The

mobile device's input channel ‘f_update’ simultaneously receives that message. Eric's

mobile device then requests the sensor data through the communication channel ‘direct

pickup’ with the cluster head at the situated region. As soon as it got the response through

‘sensor data in’ from the cluster head, the mobile device publishes the data to the group

127

address ‘3’ through the firing of transition ‘publish’ in Figure 38. The shared data is sent

through a multicast, and the mobile device ‘md3’, which is Peter, will receive the data.

After instructing a friendly update, the server adds Eric's mobile device to the group of

region 'cafeteria' through a simultaneous firing of transition 'join' in Figure 37 and Figure

38. Eric’s mobile device received the group joining message containing {cafeteria, 2},

indicating that he has joined in the group address ‘2’ in region cafeteria. After Eric joined

the group, Mary happens to arrive at the cafeteria and gets the information of the cafeteria.

She publishes the information for sharing to group address '2'. All the mobile devices in

the same group, John and Eric, received the information of the cafeteria through input

channel 'gain'. After Eric received the data, he sends an unsubscribing message through

transition 'unsubscribe' with output channel S to server. Server receives the message and

removes Eric's subscription information. The firing sequence of the mobile device net

regarding Eric's query request is as follows.

M0 [input query> M1 [subscribe> M2 [f_update> M3 [direct pickup> M4 [sensor data in>

M5 [publish> M6 [join> M7 [gain> M8 [unsubscribe> M9 [output data>

The firing sequence of the server net regarding Eric's query request is:

M0 [subscribe> M1 [f_update}> M2 [join> M3 [unsubscribe>

The firing sequence of the group address multicasting net and the cluster head net regards

to Eric's query request is:

M0 [receive> M1 [send>

The corresponding pairs of communication channels are listed in Table 11.

Let the firing sequence of Eric's request query be the sequence called ReqSeq, the

transition firings of these nets be represented in the order of [server net, mobile device

128

net, group address multicast net, cluster head net], and λ be no transition firing in the

net. The concurrently firing sequence ReqSeq of these nets regarding Eric's request query

is as follows.

ReqSeq = [λ , input query, λ , λ], [subscribe, subscribe, λ , λ], [f_update ,f_update, λ ,

λ], [λ , direct pickup, λ , receive], [λ , sensor data in, λ , send], [λ , publish, receive,

λ], [join, join, λ , λ], [λ , gain, send, λ], [unsubscribe, unsubscribe, λ , λ], [λ ,output

data, λ , λ]

Table 11. Communication channels.

Server Mobile Device Group
Multicast

Cluster
head

Subscribe(in) Subscribe(out)

F_update(out) F_update(in)

Join(out) Join(in)

Fail(out) Fail(in)

Unsubscribe(in) Unsubscribe(out)

 Publish(out) Receive(in)

 Gain(in) Send(out)

 Direct
pickup(out) Receive(in)

 Sensor data in(in) Send(out)

 Direct
injection(out) Receive(in)

6.1.4 Discussion

 During this study, the applicability of two-level nested PrT nets is examined in

modeling various aspects of an agent – autonomy, reactivity, pro-activeness, sociability,

129

and mobility. It is worth noting that, through this case study [91], I found the usefulness

of formal modeling, which forces me to explicitly deal with all hidden assumptions and

missing requirements. The messages and control flows between mobile devices and the

server can be nicely modeled using two-level nested PrT nets. However, WSN involves

low level communication mechanisms, such as the multicast. Although, the broadcasting

of messages can be specified by a first order logic formula indicating all agent members,

the details of low-level communications have to be abstracted away, such as identifying

current coordinates (locations) of a mobile device.

6.2 E-Market

 In the e-market study [36], an Interaction Model is defined to handle the coordination

behaviors of a set of possible agent conversations in an e-market. A Conversation is an

execution sequence, which is initiated by a requestor and ended with a successful

commitment or terminated by a failure resulted from any participant that is engaged in

the conversation. In a typical e-market, there are buyers and sellers engaging in some

high-level negotiations for the goods.

Let us consider a simple conversation scenario at an e-market where seller and buyer

auctioning goods. The conversation is in a format as: sender: communicative act,

message content and receiver. An example of conversations is as follows.

Seller: request, ‘sell book 30’, broker

Broker: agree, ‘posted book 30’, seller

Buyer: request,’ buy book 25’, broker

Broker: inform, ‘sell book 25’, seller

Seller: commit, ‘commit book 25’, broker

Broker: inform, ‘buy book 25’, buyer

130

Buyer: commit, ‘commit book 25’, broker

A higher level of abstraction is used to represent the message for demonstration

purpose. The negotiation process about the transaction of a payment and the shipping

detail between a seller and a buyer is abstracted away, since it is not relevant to the

coordination behavior. The conversation starts from a request of a seller who wants to

sell book for 30 dollars, the broker agreed with the request and posted the information.

The buyer sends a request to the broker for buying the book. The broker informs the

seller that there is someone wants to buy the book for 25 dollars and the seller agreed

with the price. The broker informs the buyer and the deal is committed by the buyer.

First of all, there are three entities engaged in the conversation: a broker, a seller and a

buyer. The broker is served as the coordinator thus modeled as the higher level host net,

which provides the information service of auctioning goods. The buyer and seller are

participants in the activity of auctioning goods, therefore modeled as agent nets at the

lower level. According to the conversation scenario, the communicative acts in verb

represent actions. These actions are transformed into transitions. For example, the seller

has ‘request’ and ‘commit’ actions, which imply proactive and reactive behaviors,

respectively. The actions should be linked to a message outgoing place. After received a

message, a seller’s decision logic decides which action to be taken according to its local

knowledge and policy. The seller’s, buyer’s and the broker’s interaction model are shown

in Figure 40 and Figure 41, respectively .

131

request

commit

reasoning

p4

sendreceive

p1

p3
fail

p2
im

om

im

m
m

mm

om om

set request

p

posted pm
pm

m

p5

m

Figure 40. The seller’s and buyer’s interaction model.

Token Types:

PRICEp
MESSAGEppp

RECEIVERPRICEACTSENDERMIDMESSAGE

=
====

××××=

)3(
)5()4()2()1(

ϕ
ϕϕϕϕ

Note: type MESSAGE is a Cartesian product of predefined type which can represent

message id, sender id, action, price and receiver id. PRICE is a preset price defined by an

integer.

Transition Constraints:

}'','','{']2[)(
]2[]5[]4[]4[''']3[

]5[]2[]1[]1['']3[]1[]1[)(
)'']2[

)]3['']2[()]3['']2[(()(
!)(

?)(

postedcommitrequestmfailR
mommomsellom

mommomcommitmmpmcommitR
immcommitmimm

pimsellimpimbuyimreasoningR
omSsendR

imSreceiveR

∉=
=∧=∧=

∧=∧=∧=∧==
=∨=∧=

∧≤∧=∨≥∧==
=
=

25)3(
)5()2()1(

}}1,30,,1,1{{)4(
'']2[)(

'']2[)(

0

300

0

=
∅===

=
=∨==

=∧==

pM
pMpMpM
ssellapM

mpmpostedmpostR
momrequestmrequestR

132

Note: transition ‘receive’ and ‘send’ are used to input and output messages through

communication channels. Transition commit is enabled when there is a previous request

exists in place p5 and a response message for that request is also available. If the message

content cannot be identified, the message is discarded through transition ‘fail’. Transition

‘set request’ inputs message tokens from outside of the model. Transition ‘reasoning’

decides which action to be taken based on the received message. The initial marking M0

sets a message token with message id #1, sender agent id a1, book price 30 dollars,

minimum acceptance price 25 dollars, and receiver id s1.

sendreceive
p2

commit

inform

p1

p3

p4

participate unparticipate

im

im

om

omD’

D

D

a a

D D’

im

agree

a a

im om

Figure 41. The broker’s interaction model.

Token Types:

DIRECTORYp
MESSAGEpp

AGENTNETp
RECEIVERPRICEACTSENDERMIDDIRECTORY

RECEIVERPRICEACTSENDERMIDMESSAGE

=
==

=
××××=

××××=

)4(
)3()2(

)1(

ϕ
ϕϕ

ϕ

Note: type MESSAGE and DIRECTORY are of the same type that is defined in the agent

model. Type AGENTNET defines the net tokens.

133

Transition Constraints:

)''']3[]1[]1[.()(
]2[]5[]4[]4[]3[]3[

]5[]2[]1[]1[]1[]1[.()(inf
])2[]5[]4[]4['']3[]5[]2[
]1[]1[)']1[]1[.(()(

!]5[)(
?)(

imDDcommitimdimDdcommitR
domdomdom

domdomimdDdormR
imomimompostedomimom
imomimDDimdDdagreeR

omaidomaidsendR
imaidreceiveR

−=∧=∧=∈∃=
=∧=∧=

∧=∧=∧=∈∃=
=∧=∧=∧=

∧=∧∪=∧≠∈∀=
∧==

=

Note: transition ‘receive’ and ‘send’ are used to input messages and output messages

through channels respectively. Transitions ‘participate’ and ‘unparticipate’ allow agent

nets enter and leave the system. Transition ‘agree’ sends a message for a successful

posting back to agents. Transition ‘inform’ notifies agents that there is a matched deal.

When the deal is committed, the information is deleted from the directory through

transition ‘commit’.

6.2.1 Discussion

In this case study, a higher level of abstraction is used to describe the negotiation

mechanism to avoid unnecessary redundancy in message interpretation. However, e-

market involves intensive context-based interactions, which result in a too fine-grained

abstract model that introduced additional complexity for model analysis.

There are several major research issues to be solved. First, an agent’s decision logic

decides the degree of autonomy and the behavior of how an agent should react to external

events. The decision logic largely depends on the knowledge base of the agent. Thus,

knowledge representation in a Petri net model is a challenging issue. Second, all entities

have to speak the same language in order to understand each other and the content of the

exchanged information, which is usually domain specific. Third, message exchange in

134

multi-agent systems is often asynchronous, i.e. agents may not need to respond

immediately or wait for responses. However, there may still be some temporal

dependency among agent tasks. Fourth, some of the methodologies for MAS design used

an organization view; for instance, the work in [42]. It is possible for an agent to be

assigned more than one role based on requirements.

6.3 Disaster Mitigation

 Disaster management has been one of the major application areas for multi-agent

systems due to its socially significant nature. Heterogeneous agents are engaged in an

emergency scenario [9, 10, 11, 12, 89, 92]. The major concerns are resource management

and emergency response among distributed agents.

In this case study [90], the multi-agent modeling approach is applied to a Business

Continuity Information Network (BCIN) [89], which is aimed to prepare private sectors

for a rapid recovery after major disasters. Since BCIN employs a role-based access

control, the agent-oriented approach is used to model the interactions between agent roles

and the BCIN system. At current stage, BCIN system supports static information sharing,

including (1) the advisories from public agencies, and (2) the resources provided by

private sectors. Yet, the interdependencies between recovery plans and the resources

from private sectors were not studied. The availability of resources is rather dynamic in

the aftermath of a disaster, and affects the feasibility of recovery plans. The objective of

this work is to provide a dynamic model to study the interdependencies of activities and

the dynamics of resource consumptions in BCIN prior to deployment to ensure system

dependability.

135

We consider BCIN system as a coordination model to accommodate multiple agents

in a multi-agent system context. BCIN currently employs a role-based access control

(RBAC) mechanism [93]. Some use case scenarios are as follows.

Scenario 1: David, a member from EOC (Emergency Operations Center), intends to get

the most up-to-date information about Hurricane Wilma, which has been announced as a

category one hurricane. The advisory for Wilma has been published and is available in

BCIN.

Scenario 2: Alice, a supervisor from Hardware Depot for emergency response, intends to

assign John as the primary person to publish the resources provided by their company.

Scenario 3: Eric, the supervisor of EOC, is going to publish a new advisory for an

incoming hurricane.

Scenario 4: Emily, a primary contact for emergency response from Shop Mart, has

entered BCIN system and read information about resources provided by other companies.

She decided to send a message to Hardware Depot, which has three power generators

available. Shop Mart needs the generators for frozen foods.

 For simplicity, this case study only demonstrates the above scenarios instead of all

possible scenarios. However, the above scenarios are typical examples in accessing

information in the BCIN system. The actors and their associated actions are listed in

Table 12 based on the above scenarios.

Here, an actor is an external entity that interacts with the system. Each actor plays a

different role regarding system access. That is, each role has different permission

assignments (PAs) [93], which describe the operations that a role can perform in the

system. To this end, an actor is modeled as an agent net, and BCIN system as the system

136

net that accommodates agents. In the following sections, the steps for generating agent

nets and the system net with communication channels are introduced. Modeling examples

based on the above scenarios in the BCIN system are given as well.

Table 12. Actors and their associated roles and actions.

Actors Roles Actions

David Company Observer read information

Alice Company Supervisor assign roles

John Company Participant publish resources

Eric EOC Supervisor publish advisories

Emily Primary Contact send messages

6.3.1 Modeling Interactions in an Agent Net

The behaviors related to permission assignments are considered as an interaction

aspect of an agent net. An interaction aspect addresses the sociality of an agent and is

called a role model. Since the information stored in BCIN database is organized based on

categories, a typical flow of event for an action in a role model is: (1) send a

request(action, x, criteria) to trigger the system process action regarding category x based

on the criteria, and (2) get the result of action from a receive(action, x, result). A ‘request’

denotes an outgoing data flow to the system, while a ‘receive’ denotes an incoming data

flow from the system.

Formally, a role model RM with the net structure (PRM, TRM, FRM) is a PrT net, which

models the interaction aspect of an agent net. The set of permission assignments PAs of

an RM defines the set of operations OP, where each op∈OP is either a request(action, x,

criteria) or a receive(action, x, result) operation. A request operation involves an

outgoing data flow to the system, and a receive operation involves an incoming data flow

137

from the system. The set of transition Top ⊆ TRM models the set of OP in an RM. As a

result, a role model RM with communication channels can be generated based on the

algorithm in Figure 42.

.

Figure 42. An algorithm for generating a role model.

Example1: A PrT net for a supervisor role model.

Let us look at an example to build a role model for a supervisor role by applying the

algorithm in Figure 42. Based on Table 12, the operations permitted for a supervisor role

are read information, publish advisories, and update role assignments. Therefore, the

1: set Top =∅ ;

2: ∀op∈OP

 { top = action;

 Top = Top ∪ top ;

add top and top and associated arcs;

∀𝑝 ∈ (𝑡𝑜𝑝 ∪ 𝑡𝑜𝑝), define φ(p);

define Ru(top);

/* Ru(top)∈R(top) is a non-communication constraint */

label each arc of top with sort-respecting variables;

 if action∈request {

Rc(top) = S!x;

 /* S is the system id, x∈L (top, p) and p∈top */

 R(top) = Ru(top) ∪ Rc(top); }

if action∈receive {

Rc(top) = S?e;

 /* S is the system net id, e∈L (p, top) and p∈top */

 R(top) = Ru(top) ∪ Rc(top); }

 }

138

action in request(action, x, criteria) is instantiated and results in request(Read, x,

criteria), request(Publish, x, criteria), and request(Assign, x, criteria).

For simplicity, only action Return is used in operation receive(action, x, result). As a

result, the set of operations OP is defined as {request(Read, x, criteria), request(Publish,

x, criteria), request(Assign, x, criteria), receive(Return, x, result)}. The denotation of an

op is not restricted, however should be differentiated in terms of the direction of an

information flow. For example, all operations in OP denoted as request/receive can be

denoted as output/input instead. After OP is defined, a PrT net for the supervisor role can

be generated based on the algorithm in Figure 42. The resulting net structure for a

supervisor role is shown in Figure 43, where relevant semantic definitions are given in

Appendix A3. Note that, two boundary transitions (with no input or output places) ‘Input’

and ‘Output’ are added to denote the interfaces of the role model for non-interaction

aspects.

Non-interaction
aspects

start

waiting

Read

Input

Returnresult

Output

Publish e

x

e

e

e

S_NET

x

e

eAssign e

e

x

Figure 43. A role model for a supervisor role.

6.3.2 Modeling Interactions in the System Net

The system net has three major components in order to accommodate multiple agents;

namely access controls, communications and resource controls. Access controls address

139

the security aspect of the system, while communications and resource controls address

the coordination among agents.

a. Modeling Role-based Access Control

From a system view, each user has to be assigned a role for the purpose of access

control. Based on Table 12, each user plays a different role. However, it is possible that

different users play the same role and one user plays more than one role at the same time.

Therefore, a role is considered as a pattern of interactions within the system. A role

assignment happens at runtime, that is, a user becomes an actor enacting a role given by

the system after successfully started a session. To this end, the strategy is to keep a net

template for each distinct role in a repository. A net template is the behavior model of a

role interacting with the system, and is activated while a valid user enacting the role. This

strategy not only conforms to the agent-oriented design, but also allows the adaptation of

interaction behaviors at runtime. Net templates can be built for every distinct roles based

on the algorithm described in Figure 42. Activated role models are executing

concurrently. In other words, the role models that are activated from the same template

(users enacting the same role) have different markings (states).

Formally, a RBAC model is a tuple (RAs, PAs, Sessions, AssignRole, AssignPA), where

RAs is a set of U×R relations of users U and roles R, PAs is a set of R×RM relations of R

and role model RM, Sessions is a set of user sessions represented by U×R, AssignRole:

U→R, is a function that maps a user in U to a role in R, AssignPA: R→RM is a function

that maps a role in R to a role model RM. Each element in the RBAC model is mapped to

an appropriate net element; for example, RAs, PAs, Sessions are modeled as places and

the functions are modeled as transitions (see RBAC in Figure 31), where transition

140

AssignRole assigns a valid user a role based on predefined RAs, and transition AssignPA

assigns PAs by activating an associated role model from net templates. Activated role

models (net tokens) are kept in place Activated with their identifications. Note that

boundary transitions UserIn, UserOut, ActorOut and End are added to generate or

eliminate tokens. A session constraint [93] is enforced by the formula: ∃s∈S.(s = u) in

transition UserOut to eliminate an invalid user token that has an active session in place

Sessions. Relevant dynamic definitions can be found in Appendix A4.

b. Modeling interactions and resource controls

In the system net, a typical interaction sequence of an operation is: (1) an agent net

sends the request for an operation (incoming information flow); (2) the system net

performs the operation requested (resource controls); and, (3) the result is sent back to the

agent net (outgoing information flow). The information flows involved in the above

sequence are modeled by a pair of transitions with input/output channel commands to

address the interactions with agent nets. Let the set of operations OPs denotes the

resource controls in a system net S; a RC net with net structure (Prc, Trc, Frc) models the

data and controls of an operation op∈OPs, and there exists a pair of transition tin and tout

model the input and output channel respectively, where tin∈Trc and tout∈Trc. The

algorithm in Figure 44 describes the steps to build a RC net that models an operation op.

Example 2: A PrT net for operation ‘read’ in system net.

For simplicity, a transition readDB and a pair of input place and output place are used

to model data access against BCIN database (resource controls). Input channel transitions

‘Read’ and output channel transition ‘returnR’ are added to address the data flows

141

from/to agent nets. The net structure for operation ‘read’ is shown in Figure 45. Note that

a transition with a channel command in the system net has an input and an output places

that hold agent net tokens, which can be instantiated for interactions. For example, places

Activated and p1 stores the agent net tokens to enable input and output channel transitions

Read and returnR when interactions are desired. Detailed constraint definitions are

elaborated in Appendix A4.

Figure 44. The algorithm for generating a RC net.

Read
p2 rReadDB

r

BCIN
Database

returnR

p1

m
p7 r’

m

D
r’

r

Activated

m

m

Figure 45. A resource acquisition operation.

1: define Prc, Trc and Frc for operation op∈OPs.

2: for all p∈Prc define φ(p);

3: for all t∈Trc define Ru(t);

4: for all f∈Frc define L;

5: add an input channel tin to Trc;

 define tin, tinand associated arcs;

 define Ru(tin);

 Rc(tin) = a?x; /* a is the agent net id */

 R(tin) = Ru(tin) ∪ Rc(tin);

6: add an output channel tout to Trc;

 defne tout and toutand associated arcs;

 define Ru(tout);

 Rc(tout) = a!e; /* a is the agent net id */

 R(tout) = Ru(tout) ∪ Rc(tout);

142

The BCIN Net

A BCIN net based on the operations in Table 12 is shown in Figure 31 by applying the

algorithms described previously for modeling RBAC, communication channels and

resource controls. The detailed semantic definitions for the net are given in Appendix A4.

The resource controls addressed are rather straightforward in this example for

demonstration purpose. However, further policies for resource sharing during a global

process can be modeled in two ways: (1) define further constraints (rules) in output

channel transitions for dispatching resources; and/or (2) add an input place (or multiple

input places) representing additional pre-conditions for the enabling of output channel

transitions. Either way, the policies are enforced at the point of synchronization, which

results in an outgoing information flow downward to an agent net.

6.3.3 Soundness of BCIN Net

There are several important properties regarding information access in BCIN need to

be ensured: (1) an invalid user cannot play a role in the system; (2) an actor cannot

perform the operations that were not assigned; (3) a user cannot play more than one role

at the same time; and, (4) for a request received from an agent net, there will be a

response to the agent net eventually. The prove sketches for the above properties are

given as follows.

Property (1): The constraint formula: ∀r∈R.(r[1] ≠ u) defined in transition ‘UserOut’

(Appendix A4) enforces the elimination of invalid user tokens, where R is the set of

valid role assignments.

Property (2): The constraint formula: ∃p∈P.(p[1] = a[2]) defined in transition AssignPA

make sure that an associated role model is available to be activated. Since role models are

143

predefined based on PAs, user behaviors are well controlled. The constraint formula

∀p∈P.(p[1] ≠ a[2]) defined in transition ‘ActorOut’ eliminates the user token that has not

yet been assigned any permissions.

Property (3): A session constraint is enforced by the formula ∃s∈ S.(s = u) in the

constraint definition of transition UserOut; that is, if a user is already in Sessions, it is

considered as an invalid user and is eliminated.

Property (4) The semantic definitions for a RC net constructed by applying algorithm

given in Figure 44 has to be carefully defined to make sure that if there is a request token

rq in p such that p∈tin, there will be a result token rs in p such that p∈tout, and the agent

id∈rq equals to the agent id∈rs. For example, in Figure 45, there will be an agent token

in place p1 and a request token in place p2 with the same agent id if transition Read fired.

Since the constraint definition of transition ReadDB (Appendix A4) encompasses

exception handling, there will be a result token sent to place p7 eventually.

6.3.4 Discussion

This work provides a dynamic model to study the interdependencies of activities and

the dynamics of resource consumptions in BCIN. Yet, further studies for the

interdependencies between the recovery plans and resources from private sectors are

needed, since the availability of resources is rather dynamic in the aftermath of a disaster,

and affects the feasibility of the recovery plans from private sectors. Although, it is

difficult to obtain the detail information regarding the recovery plans from private sectors,

recovery plans from private sectors are essential for further studies of the dynamics of

agent behaviors during a disaster scenario.

144

CHAPTER 7

CONCLUSION

To address the representation and analysis of complex systems with the MAS

architecture, this dissertation research developed a framework that provides a

comprehensive methodology for modeling and analyzing MAS based on model-oriented

formal methods. An important element of the framework is modularity, which is fulfilled

by an agent-oriented modeling methodology incorporated with aspect-oriented concepts.

As a result, the MAS model is a modular composition of multiple agent nets, and the

individual agent net is a modular composition of agent features. The advantages of a

modular system model includes: (i) adaptability for future extensions; (ii) reusability of

modular components; (iii) conciseness of the model; and (iv) compositionality for

incremental analysis.

The underlying formalism of the framework is PrT nets, which is adapted and infused

with agent-oriented concepts for modeling MAS. A key idea is to support the modeling

of the dynamic structure in MAS. The nested PrT nets defined in this study facilitate the

modeling of a hierarchical MAS architecture, which can be changed dynamically. Nested

PrT nets can be checked by the model checker SPIN. SPIN is an excellent tool for model

checking logical correctness of distributed software systems. This study takes advantage

of the functionalities in the model checker SPIN to verify nested PrT nets. Given a nested

PrT nets describing the behavior of a MAS, a PROMELA program can be generated

through the model transformation technique developed in this study for model checking.

145

The contributions, limitations and future works based on this dissertation research are

discussed in the following sections.

7.1 Contributions

The framework presented in this dissertation provides a systematic approach for

modeling and analyzing complex systems within the MAS context. Given a multi-agent

system with a set of agent roles, their behavior models can be constructed and analyzed

following the methodology provided in this dissertation. Compared to other works based

on Petri nets([24, 25, 26, 27, 28, 29, 30] in Table 1), this dissertation research provides a

more comprehensive framework featured a well-defined formal model with a dynamic

structure, agent communication notations, agent coordination modeling, a comprehensive

modeling methodology, and the tool support for machine analysis. Major contributions of

this dissertation research are summarized as follows.

(1) Developed a process model based on PrT nets to address the modeling of multi-agent

systems.

 Support agent-oriented modeling in which the system model is a modular

composition of multiple agent nets;

 Support the modeling of a dynamic MAS architecture in which the formal MAS

model is a two-level nested PrT net;

 Support the modeling of dynamic agent communications with the instrumentation

of channel commands in transition constraints.

(2) Developed a methodology for constructing formal MAS models.

146

 Provide an aspect orientation technique for constructing individual agent nets with

different features;

 Provide a technique for agent coordination modeling to ease the construction of

formal MAS models.

(3) Developed a model transformation technique for model checking formal MAS

models.

 Define a set of translation rules that systematically transform nested PrT nets to

PROMELA programs in SPIN for automatic model analysis.

7.2 Limitations

The framework supports the modeling of essential characteristics found in MAS [1, 4,

8, 94, 95]. Some limitations are discussed as follows.

(1) The MAS model focuses on the interdependencies between agent nets, rather on the

computations. Therefore, the detail of how to implement the search algorithm for

solving a problem efficiently using an agent program [32] is outside the scope of this

study.

(2) The nested PrT nets defined in this study is limited to a two-level nested net structure

under the assumption of a two-layered multi-agent architecture. However, it can be

extended to a multi-level structure by defining the relations between mediator agent

nets.

(3) Agent communications are in a one-to-one and unidirectional fashion through channel

commands instrumented in transition constraints. Transitions with channel commands

can fire many times as long as there are sufficient tokens. Since channel names are

agent identifications, broadcasting or one-to-many communication can be achieved

147

by defining the constraint formula and tokens. For example, given a set of agent

identifications, send the same message token to all members of the set.

(4) Agent communications involve high-level knowledge exchange in which the context

of the knowledge is usually domain specific. Thus, the structure of the messages is

difficult to be generalized in the abstract models. Therefore, in this work, the

messages exchanged among agents are in a simpler structure that is only relevant to

the behavior models. The idea is to focus on the control flows with regard to system

resources, and to produce a smaller sufficient model for model checking. This

approach is applicable to most MAS domains, such as control systems, workflow

managements and disaster mitigations where the resource management and controls

are the central issues. However, for application domains where intensive context-

based interactions are involved, such as the e-commerce, the messages need to be

handled with a different approach. For example, based on our e-market case study,

there are certain patterns with regard to agent interactions. This can be dealt with by

naming all possible interaction patterns and modeling each pattern as an aspect as

defined in Chapter 4. That is, the interactions can be treated as agent features.

Another way to handle content-rich messages is to use only one pair of input and

output channels to handle incoming and outgoing messages uniformly in each agent

net. As a result, the interpretation of the messages is a part of the agent behaviors.

(5) The BDI model provides a theoretical foundation to build intelligent computer

systems by explicitly modeling the mental states to mimic the reasoning behaviors of

human. Based on the case study in [83], PrT nets can naturally model agent

knowledge in terms of logical formulas. However, agent reasoning involves domain

148

specific ontology and inference techniques, which will result in a too fine-grained

abstract model for model checking.

(6) There are limitations for model checking nested PrT nets:

 Given that nested PrT nets are very expressive, they need to be restricted in order

to be properly translated into PROMELA models. That is, due to tractability, the

sort of a place is restricted to the data types supported in PROMELA, and the

quantity of tokens in the place is finite. As a result, the transformed concrete

model to be analyzed has a finite state space such that the model execution in the

model checker SPIN will terminate appropriately.

 For simplicity, all transitions in the PROMELA model fire immediately after the

guard conditions are evaluated to be true, and the firings are interleaving given

that this restricted semantics does not affect the verification of state-based

properties.

 The properties can be checked are restricted within the scope of the model

checker SPIN has to offer with XSpin version 5.2.3.

7.3 Future Works

Based on the limitations described in the previous section, several research directions

are possible.

(1) Extension of current framework.

Currently, the framework supports two-level nested PrT nets. It can be extended

to a multi-level structure. An idea for this extension is to define the relation among

mediator agent nets. That is, the mediator agent of an agent community serves as a

proxy to other communities.

149

(2) More case studies.

Three different application domains have been studied in this dissertation research,

namely wireless sensor network, disaster mitigation and e-market. However, there are

other domains [1] need to be further investigated.

(3) Context and knowledge representation problems.

Agents are heterogeneous computation entities in the MAS context. Thus, each

agent has its own computational logic. However, an essential element in MAS is

coordination in which agents must communicate within the same context. The context

of the high-level knowledge exchanged is considered as the precondition of an agent

plan. That is, an agent reasons about the context of knowledge it currently has to

decide whether or not a plan is feasible. How to define the meta-knowledge for agent

communications is an interesting topic. For example, represent resources, policies and

trust metrics among distributed agencies during an emergency response scenario.

(4) Tool development.

One of the key elements to increase the value of the proposed methodology is to

develop a tool that provides a reasonable user interface for easy prototyping and

analysis. This can be done in two directions.

 Integrate nested PrT nets with current tools. Recently, a tool based on SAM

(Software Architecture Model) [77] has been developed to support the editing of

two-level nested PrT nets. The translation rules defined for model transformation

in this dissertation research provides a foundation for further tool development in

model analysis by integrating SPIN as the model checker at the back-end.

150

 Develop a general-purpose tool for modeling and simulation of agent-based

systems. Dynamic interactions in a multi-agent system are difficult to be directly

observed. A hand-on tool for simulation will help. However, current state-of-the-

art tools for agent-based modeling and simulation need to be investigated first.

151

REFERENCES

[1] M. Wooldridge: An Introduction to Multiagent Systems, J. Wiley, New York, 2002.

[2] Edmund H. Durfee: Distributed Problem Solving and Planning, Lecture Notes in
Computer Science, Vol. 2086, pp.118-149, 2001.

[3] L. Baresi, E.D. Nitto, C. Ghezzi: Toward Open-World Software: Issue and
Challenges. IEEE Computer 39(10): 36-43, 2006.

[4] K. P. Sycara: Multi-Agent Systems, AI Magazine, Vol. 19, No. 2, pp.11-12, 1998.

[5] M. Wooldridge and P. Ciancarini, Agent-Oriented Software Engineering, The State
of The Art. Lecture Notes in Computer Science, Vol. 1957, 2001, pp. 1–28.

[6] M. Wooldridge: Agent-Based Software Engineering, IEEE Proceedings on Software
Engineering, pp. 26-37, 1997.

[7] F. Bergenti, M.-P. Gleizes and F. Zambonelli: Eds. Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering
Handbook, Volume 11. Springer-Verlag, 2004.

[8] N. R. Jennings and M. Wooldridge, Agent-Oriented Software Engineering.
Proceedings of the 9th European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, 2000.

[9] F. Fiedrich, an HLA-based Multi-agent System for Optimized Resource Allocation
after Strong Earthquakes. In Proceedings of WSC 2006, Monterey, pp. 486-492.

[10] H. Kitano, and S. Tadokoro, RoboCup Rescue: A Grand Challenge for Multi-agent
and Intelligent Systems. AI Magazine Vol. 22, No. 1, 2001, pp. 39–52.

[11] K. F.R. Liu, Agent-Based Resource Discovery Architecture for Environmental
Emergency Management, Expert System with Applications, Vol. 27, No.1, July
2004, pp. 77-95.

[12] X. Pan, C. Han, K. Dauber, K. H., A Multi-Agent Based Framework for the
Simulation of Human and Social Behaviors During Emergency Evacuations, AI &
Society, Vol. 22, No. 2, 2007, pp.113-132, Springer-Verlang.

[13] J. M. Wing: A Specifier's Introduction to Formal Methods. IEEE Computer, Vol.
23, No. 9, pp. 8-24, 1990.

[14] G. Barrett: Model checking in practice: The T9000 Virtual Channel Processor,
IEEE Transactions on Software Engineering, Vol. 21, No.2, pp: 69–78. 1995.

152

[15] E. M. Clarke, O. Grumberg and D. A. Peled: “Model Checking”, The MIT Press,
1999.

[16] M. Wooldridge. Reasoning about Rational Agents. The MIT Press: Cambridge,
MA, 2000.

[17] H. J. Genrich, Predicate/Transition nets. Advances in Petri Nets 1986, pp. 207–247.

[18] C. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[19] R. Valk: Petri nets as token objects: An introduction to elementary object nets,
Application and Theory of Petri Nets, Vol. 1420 of LNCS, pp. 1-25, June 1998.

[20] R. Valk: Concurrency in communicating object Petri nets, Concurrent Object-
Oriented Programming and Petri Nets, Lecture Notes in Computer Science, Berlin,
2000, Springer-Verlag.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. M.
Loingtier, J. Irwin: Aspect-oriented programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). Springer-Verlag LNCS
1241, June 1997.

[22] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold: Getting
Started with AspectJ, Communication of ACM, Vol. 44, No. 10, pp. 59-65, 2001.

[23] G. J. Holzmann: The Model Checker Spin, IEEE Transactions on Software
Engineering, Vol. 23, No. 5, May 1997, pp. 279-295.

[24] M. Kohler, D. Moldt, H. Rölke: Modeling the Structure and Behavior of Petri Net
Agents, Application and Theory of Petri Nets 2001, LNCS Vol. 2075, pp: 224-241,
2001.

[25] M. Kohler, H. Rolke, Modeling Mobility and Mobile Agents Using Nets Within
Nets, Proc. of International Conf. on Application and Theory of Petri Nets, LNCS
vol. 2679 (2003), 121-139.

[26] D. Moldt, F. Wienberg: ”Multi-Agent Systems Based on Coloured Petri Net”, The
Proceedings of the 18th International Conference on Application and Theory of
Petri Nets”, LNCS 1248, pp.82-101, 1997.

[27] D. Xu, J. Yin, Y. Deng and J. Ding: A Formal Architecture Model for Logical
Agent Mobility. IEEE Transactions on Software Engineering. Vol. 29, No. 1, pp.
31-45, Jan. 2003.

[28] J. Ding, P. J. Clarke, D. Xu, and X. He: A Formal Model-Based Approach for
Developing an Interoperable Mobile Agent System, International Workshop on
Agent-Oriented Software Development Methodology, 2005.

153

[29] H. Xu and S. M. Shatz, A Framework for Model-based Design of Agent-oriented
Software. IEEE Transactions on Software Engineering, 2003, pp. 15–30.

[30] J. Lian, Sol M. Shatz,: A Modeling Methodology for Conflict Control in Multi-
Agent Systems, International Journal of Software Engineering and Knowledge
Engineering (IJSEKE) 2008, Vol 18, No. 3, pp.263-303.

[31] N. R. Jennings, K. Sycara, M. Wooldridge, “A Roadmap of Agent Research and
Development”, Journal of Autonomous Agents and Multi-Agent Systems, Vol. 1,
No. 1, pp. 7-38, 1998.

[32] S. Russell, P. Norvig: Artificial Intelligence: a Modern Approach, Second Edition,
Prentice Hall, 2003.

[33] K. Sycara, K. Decker, A. Pannu: Distributed Inteligent Agents, IEEE Expert, Vol.
11, pp. 36-46, 1996.

[34] E. Ekici, Y. Gu, D. Bozdag, “Mobility-based communication in wireless sensor
networks”. IEEE Communications Magazine, Vol.44, no.7 (2006), 56-62.

[35] H. S. Nwana: “Software Agents: An Overview”, Knowledge Engineering Review,
Vol. 11, No. 3, pp. 205-244, 1996.

[36] L. Chang, J. Ding, X. He, S. Shatz: A Formal Approach for Modeling Software
Agents Coordination, Comm. of SIWN, Vol. 3, 2008, pp.58-64.

[37] T. Murata, Petri Nets: Properties, Analysis and Applications, an invited survey
paper, Proceedings of the IEEE, Vol.77, No.4 pp.541-580, April, 1989.

[38] G. J. Holzmann, The SPIN Model Checker: Primer and Reference Manual,
Addison-Wesley, September, 2003.

[39] A. Pnueli, The Temporal Logic of Programs, Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, Providence, R.I., pp. 46-57,
1977.

[40] D. Kinny, M. Georgeff and A. Rao, “A Methodology and Modeling Technique for
Systems of BDI Agents,” Proceedings of the Seventh European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, 1996.

[41] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini: Tropos: An
Agent-Oriented Software Development Methodology. In Journal of Autonomous
Agents and Multi-Agent Systems. May 2004. Kluwer Academic Publishers.

[42] F. Zambonelli, N. R. Jennings and M. Wooldridge: Developing Multiagent
Systems: The Gaia Methodology. ACM Transactions on Software Engineering and
Methodology, Vol. 12, No.3, pp.417 – 470, 2003.

http://www.troposproject.org/papers_files/jaamas04.pdf�
http://www.troposproject.org/papers_files/jaamas04.pdf�

154

[43] M. P. Singh, Synthesizing Coordination Requirements for Heterogeneous
Autonomous Agents, Autonomous Agents and Multi-Agent Systems, Vol.3, No. 2.
pp. 107-132, 2000.

[44] N. Jennings: Coordination Techniques for Distributed Artificial Intelligence, in G.
O`Hare and N. Jennings, Eds., Foundation of Distributed Artificial Intelligence,
Sixth-Generation Computer Technology Series, pp. 187-210, 1996.

[45] D. Gelenter and N. Carriero. Coordination Languages and Their significance.
Communications of the ACM, 35(2):97–107, February 1992.

[46] N. H. Minsky, T. Murata. On Manageability and Robustness of Open Multi-agent
Systems. In C. Lucena, A. Garcia, A. Romanovsky, J. Castro, P. Alencar Editors,
Computer Security, Dependability, and Assurance. LNCS 2940, February 2004.

[47] R.G. Smith: The Contract Net Protocol: High-Level Communication and Control in
a Distributed Problem Solver, IEEE Transactions on Computers, Vol. C-29, No.12,
December 1980.

[48] C. Silva, J. Araujo, A. Moreira, J. Castro, D. Penaforte, A. Carvalho: Towards an
Aspect Oriented Modeling in Multi-agent Systems, Proceedings of the III Brazilian
Workshop on Aspect-Oriented Software Development (WASP 2006), October 17,
2006, Florianópolis, Santa Catarina, Brasil.

[49] A. Garcia, C. Chavez, and R. Choren: An Aspect-Oriented Modeling Framework
for Designing Multi-Agent Systems, Lecture Notes in Computer Science, Volume
4405/2007, pp. 35-50, Springer-Verlag, Berlin Heidelberg 2007.

[50] B. Bauer: Extending UML for the Specification of Interaction Protocols,
Submission for 6th the Call for Proposal of FIPA and revised version of FIPA-99.

[51] B. Bauer, J. P. Muller, J. Odell: Agent UML: A Formalism for Specifying Multi-
agent Interaction, LNCS Vol. 1957, pp. 109-120, Springer 2001.

[52] J. Odell, H. V. D. Parunak, and B. Bauer: Representing Agent Interaction Protocols
in UML. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software
Engineering — Proceedings of the First International Workshop (AOSE-2000).
Springer-Verlag: Berlin, Germany, 2000.

[53] L. Cabac, D. Moldt: Formal Semantics for AUML Agent Interaction Protocol
Diagram, LNCS Vol. 3382, pp. 47-61, Springer-Verlag 2005.

[54] FIPA, Interaction Protocol Library Specification, 2000.

[55] R. Cervenka and I. Trencansky: The Agent Modeling Language-AML: A
Comprehensive Approach to Modeling Multi-Agent Systems, Birkhauser Verlag
AG, 2007.

155

[56] V. T. da Silva, R. Choren, C. J. P. de Lucena: Using the MAS-ML to Model a
Multi-agent System, Software Engineering for Multi-Agent Systems II, Research
Issues and Practical Applications, pp. 129-148, Springer 2004.

[57] V. T. da Silva, A. F. Garcia, A. Brandão, C. Chavez, C. J. P. de Lucena, P. S. C.
Alencar: Taming Agents and Objects in Software Engineering, Software
Engineering for Large-Scale Multi-Agent Systems, Research Issues and Practical
Applications, pp. 1-26, Springer 2003.

[58] H. Barringer, M. Fisher, D. Gabbay, G. Gough and R. Owens, METATEM: A
Framework for Programming in Temporal Logic, Proceedings on Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness. LNCS, Vol.
430, pp.94-129.

[59] A. S. Rao, M. Georgeff: Modeling Rational Agents within a BDI Architecture,
Proceedings of Knowledge Representation and Reasoning, pp.473-484, 1991.

[60] A. S. Rao, M. Georgeff: BDI Agents: From Theory to Practice. In Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95), pages
312–319, San Francisco, CA, June 1995.

[61] X. He: PZ nets—A Formal Method Integrating Petri net with Z, Information and
Software Technology, Vol. 43, No.1, pp. 1-18, 2001.

[62] M. d’Inverno, D. Kinny, M. Luck, M. Wooldridge: A formal specification of
dMARS, Proceedings of the Fourth International Workshop on Agent Theories,
Architectures and Languages, pp.155–176. Springer-Verlag, 1997.

[63] M. P. Luck, N. Griffiths and M d’Inverno, From Agent Theory to Agent
Construction: A Case Study. Proceedings of the ECAI’96 Workshop on Agent
Theories, Architectures, and Languages: Intelligent Agents III 1997, Vol. 1193,
Springer-Verlag: Heidelberg, Germany, pp. 49–64.

[64] L. Cabac, M. Duvigneau, D. Moldt, H. Rolke: Modeling Dynamic Architectures
Using Nets-Within-Nets, Application and Theory of Petri Nets 2005, LNCS 3536,
pp.148-167, Springer-Verlag.

[65] J. Lian and S. M Shatz, Potential arc: A Modeling Mechanism for Conflict Control
in Multi-agent Systems. Proceedings of the 4th Symposium on Design, Analysis,
and Simulation of Distributed Systems (DASD-06) 2006, pp. 467–474.

[66] C. Hanachi and C. Blanc, “Protocol Moderators as Active Middle-Agents in Multi-
Agent Systems,” Autonomous Agents and Multi-Agent Systems, Vol. 8, No. 2, pp.
131-164, 2004.

[67] J. R. Celaya, A. A. Desrochers, R. J. Graves: Modeling and Analysis of Multi-agent
Systems using Petri Nets, Journal of Computers, Vol. 4, NO. 10, October, 2009.

156

[68] D. Xu, R. Volz, T. Loerger, J. Yen: Modeling and Verifying Multi-agent Behaviors
Using Predicate/Tansition Nets, Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering, pp.193-200, 2002.

[69] S. Christensen, N. Hansen: “Colored Petri nets extended with channels for
synchronous communication”, Proc. of International Conf. on Application and
Theory of Petri Nets, (1994), 159-178.

[70] O. Kummer: Simulating Synchronous Channels and Net Instances, In Jörg Desel,
Peter Kemper, Ekkart Kindler, and Andreas Oberweis, editors, Forschungsbericht
Nr. 694: 5. Workshop Algorithmen und Werkzeuge für Petrinetze, number
Forschungsbericht Nr. 694, pages 73-78. Fachbereich Informatik, Universität
Dortmund, 1998.

[71] M. Wooldridge, N. Jennings: Intelligent Agents: Theory and Practice, The
Knowledge Engineering Review, Vol. 10, No. 2, pp.115-152, 1995.

[72] Y. Fu, Z. Dong, and X. He: “A Translator of Software Architecture Design from
SAM to Java”. International Journal of Software Engineering and Knowledge
Engineering, vol. 17, no.6, 2007, 709-755.

[73] X. He: “Translating Hierarchical Predicate Transition Nets into CC++ Programs”,
Information and Software Technology, vol.42, no.7, 2000, 475-488.

[74] S. Lewandowski and X. He: “Generating Code for Hierarchical Predicate Transition
Net Based Designs”, Proceedings of the 12th International Conference on Software
Engineering and Knowledge Engineering (SEKE2000), Chicago, July, 2000, 15-22.

[75] S. Philippi: Automatic Code Generation from High-Level Petri Nets for Model
Driven System Engineering, The Journal of Systems and Software, Vol. 79, 2006,
pp. 1444-1455.

[76] G. Argote, P. Clarke, X. He, Y. Fu, and L. Shi: "A Formal Approach for Translating
a SAM Architecture to PROMELA", Proc. of the International Conference on
Software Engineering and Knowledge Engineering (SEKE08), San Francisco, July,
2008.

[77] X. He and Y. Deng: A Framework for Developing and Analyzing Software
Architecture Specifications in SAM. The Computer Journal, Vol. 45, No. 1, 2002,
pp. 111–128.

[78] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng: “Formally Analyzing Software
Architectural Specifications Using SAM”, Journal of Systems and Software, vol.71,
no.1-2, 2004, 11-29.

[79] K. Jensen, L. M. Kristensen and L. Well: “Coloured Petri Nets and CPN Tool for
Modelling and Validation of Concurrent Systems”, International Journal on

157

Software Tools and Technology Transfer, vol. 9, no. 3-4, pp. 213-254, Springer
Berlin, June, 2007.

[80] K. Sycara, J. A. Giampapa, B. Langley, M. Paolucci: The RETSINA MAS, a Case
Study, in SELMAS 2003, pp.232-250. Springer-Verlag.

[81] K. Fischer, J. P. Muller, M. Pischel: A Pragmatic BDI Architecture, Intellligent
Agent II, Vol. 1037, pp.203-218, Springer-Verlag, 1995.

[82] P. R. Cohen, H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, Vol. 42, pp.213–261, 1990.

[83] L. Chang and X. He: "Towards Adaptable BDI Agent: a Formal Aspect-Oriented
Modeling Approach", Proceedings of the International Conference on Software
Engineering and Knowledge Engineering (SEKE09), Boston, July, 2009, pp. 189-
193.

[84] D. Xu, K. E. Nygard: Threat-Driven Modeling and Verification of Secure Software
Using Aspect-Oriented Petri Nets. IEEE Transactions on Software Engineering,
Vol.32, No.4, pp.265-278, IEEE Press.

[85] H. Yu, D. Liu, X. He, L. Yang, S. Gao: Secure Software Architectures Design by
Aspect Orientation, Proceedings of the 10th IEEE International Conference on
Engineering of Complex Computer Systems, pp.47-55, 2005, IEEE Computer
Society.

[86] A. Garcia, U. Kulesza, C. Lucena: Aspectizing Multi-agent Systems: From
Architecture to Implementation, SELMAS, LNCS Vol. 3390, pp.121-143, February
2005, Springer Berlin / Heidelberg.

[87] E. A. Emerson, J. Srinivasan: Branching Time Temporal Logic, LNCS, Vol. 354,
Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, pp.123-172, Springer Berlin / Heidelberg, 1989.

[88] R. B. France, B. Rumpe: “Model-Driven Development of Complex Software: A
Research Roadmap”, Proc. of 2007 Future of Software Engineering, pp. 37-54.

[89] K. Saleem, S. Luis, Y. Deng, S.C. Chen, V. Hristidis, T. Li: Towards a Business
Continuity Information Network for Rapid Disaster Recovery, Proceedings of the
9th Annual International Conference on Digital Government Research, Partnerships
for Public Innovation, Montreal, Canada, pp. 107-116, 2008.

[90] L. Chang and X. He: "A Multi-Agent Model for a Business Continuity Information
Network", Proceedings of the 22nd International Conference on Software
Engineering and Knowledge Engineering 2010 (SEKE10), San Francisco, CA,
July, 2010.

158

[91] L. Chang, X. He, J. Lian, and S. Shatz: "Applying a Nested Petri Net Modeling
Paradigm to Coordination of Sensor Networks with Mobile Agents", Proc. of
Workshop on Petri Nets and Distributed Systems 2008, Xian, China, June, 2008,
pp.132-145.

[92] N. Okada, E. Hideshima: A Petri Net Approach for Modeling Bottlenecks in the
Restoration and/or Restructuring Process of Multiplex disaster-Damaged Urban
Infrastructure Systems, Journal of Natural Disaster Science, Vol. 17, No. 2, 1995,
pp.75-86.

[93] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman: Role-Based Access
Control Models. IEEE Computer Vol. 29, No.2, pp. 38-47, 1996.

[94] M. P. Luck, P. McBurney, and Ch. Preist: Agent Technology: Enabling Next
Generation Computing (A roadmap for Agent-Based Computing), AgentLink II,
January 2003.

[95] M. P. Luck, P. McBurney, J. Gonzalez-Palacios: Agent-based Computing and
Programming of Agent Systems. LNCS 3862, pp. 23-37, Springer, 2006.

159

APPENDIX A

SEMANTIC DEFINITIONS

A1. Figure 21.

Diesel_consumer

P = {factory, store, GasStation, ToPump, standby, pumped, CreditCard};

Tc = {Park, SlideCard, PumpDiesel, Deny};

Tu = {ToStore, ToGasStation, Go, ToFactory};

𝜑(factory) = 𝜑(store) = 𝜑(GasStation) = CAR×INTEGER;

𝜑(standby) = 𝜑(ToPump) = 𝜑(pumped) = CAR×INTEGER×INTEGER;

CAR = {sedan, truck}; 𝜑(CreditCard) = INTEGER;

R(ToStore) = c[2]=1; R(ToGasStation) = c[2]=0; R(Go) = c[2]=1 ∧ g=1;

R (ToFactory) = 𝜆; R (Park) = S?st; R(SlideCard) = S!<c[1], cr, st>; R(PumpDiesel)

= S?g ∧ c’[2]=1; R(Deny) = S?cr;

M0(factory) = {<truck, 0>}; M0(CreditCard) = {<1>}; M0(store) = ∅ ;

M0(GasSstation) = ∅; M0(ToPump) = ∅; M0(standby) = ∅; M0(pumped) = ∅;

F and L are as seen in the Figure 21(a).

Gas_producer

P = {Ready, Orders, Diesel, Regular};

Tc = {TakeOrder, SendDiesel, SendRegular};

Tu = {ProduceRegular, ProduceDiesel};

𝜑(Ready) = INTEGER; 𝜑(Orders) = INTEGER;

 𝜑(Diesel) = 𝜑(Regular) = INTEGER;

R(TakeOrder) = S?o; R(SendDiesel) = S!ds; R (SendRegular) = S!rs;

R (ProduceRegular) = o=2 ∧ rs=1; R(ProduceDiesel) = o=1 ∧ ds=1;

M0(Ready) = {<1>} ; M0(Orders) = ∅ ; M0(Diesel) = ∅ ; M0(Regular) = ∅;

F and L are as seen in the Figure 21(b).

160

Regular_consumer

P = {home, school, GasStation, ToPump, standby, pumped, CreditCard};

Tc = {Park, SlideCard, PumpRegular, Deny};

Tu = {ToSchool, ToGasStation, Go, ToHome};

𝜑(home) = 𝜑(school) = 𝜑(GasStation) = CAR×INTEGER;

𝜑(standby) = 𝜑(ToPump) = 𝜑(pumped) = CAR×INTEGER×INTEGER;

𝜑(CreditCard) = INTEGER;

R(ToSchool) = c[2]=1; R(ToGasStation) = c[2]=0; R(Go) = c[2]=1 ∧ g=1;

R (ToHome) = 𝜆; R (Park) = S?st; R(SlideCard) = S!<c[1], cr, st>;

R(PumpRegular) = S?g ∧ c’[2]=1; R(Deny) = S?cr;

M0(home) = {<sedan, 0>}; M0(CreditCard) = {<2>}; M0(school) = ∅ ;

M0(GasStation) = ∅; M0(ToPump) = ∅; M0(standby) = ∅; M0(pumped) = ∅;

F and L are as seen in the Figure 21(c).

The bank

P = {Ready, transaction, Accounts, Report};

Tc = {CheckCredit, ReportCredit};

Tu = {Deny, Authorize};

𝜑(Ready) = INTEGER;

𝜑(transaction) = INTEGER×CAR×INTEGER×INTEGER;

𝜑(Accounts) = INTEGER×INTEGER;

𝜑(Report) = INTEGER×CAR×INTEGER×INTEGER×INTEGER;

R(CheckCredit) = S?cr; R(ReportCredit) = S!<cr,r>;

R (Authorize) = ∃𝑎 ∈ 𝐴. (𝑡𝑟[3] = 𝑎[1]) ∧ 𝑎′[2] = 𝑎[2] − 1 ∧r[1]=t[1] ∧r[2]=t[2]

∧r[3]=t[3] ∧r[4]=t[4] ∧r[5]=1;

R (Deny) = ∀𝑎 ∈ 𝐴. (𝑡𝑟[3] ≠ 𝑎[1]) ∧ r[1]=t[1] ∧r[2]=t[2]∧r[3]=t[3] ∧

r[4]=t[4] ∧r[5]=0;

M0(Ready) = {<1>} ; M0(CardNumber) = ∅ ;

M0(Accounts) = {<1,5>, <2, 4>, <3,3>, <4,1>} ; M0(Report) = ∅;

F and L are as seen in the Figure 21(d).

161

A2. Figure 27(c).

P a = {in_station, parked, bank_agent, waiting, gas_producer_agent, pumped };

P d = {pumping_station, transactions, authorized, diesel_gas, regular_gas};

Tc = {Park, Pay, CheckCredit, ReportCredit, PumpDiesel, PumpRegular, Fail,

GetDiesel, GetRegular, OrderRegular, OrderDiesel};

Tu = {drive_in, drive_out};

𝜑(in_station) = 𝜑(parked) = 𝜑(waiting) = 𝜑(pumped) =

INTEGER×CONSUMER_AGENT;

𝜑(bank_agent) = INTEGER×BANK_AGENT;

𝜑(gas_producer_agent) = INTEGER×GAS_PRODUCER_AGENT;

𝜑(transactions) = INTEGER×CAR×INTEGER×INTEGER;

// the three integers represent agent id, car type, credit card number and pumping

station respectively;

𝜑(authorized) = INTEGER×CAR×INTEGER×INTEGER×INTEGER;

// the four integers represent agent id, car type, credit card number, pumping station

and credit report repespectively;

𝜑(pumping_station) = INTEGER;

𝜑(diesel_gas) = 𝜑(regular_gas) = INTEGER;

R(Park) = N!st; R(Pay) = N?<c, cr, st>∧tr[1]=a1[1]∧tr[2]=c∧tr[3]=cr∧tr[4]=st;

R (CheckCredit) = N!tr; R(ReportCredit) = N?r;

R(PumpDiesel) = a1[1]=r[1]∧r[2]=truck∧r[5]=1∧d’=d-1∧g=1∧N!g;

R(PumpRegular) = a1[1]=r[1]∧r[2]=sedan∧r[5]=1∧r’=r-1∧g=1∧N!g;

R(Fail) = r[5]=0∧N!cr; R (GetDiesel) = N?ds ∧ 𝑑′ = 𝑑 + 𝑑𝑠;

R(GetRegular) = N?rs ∧ 𝑟′ = 𝑟 + 𝑟𝑠;

R(OrderDiesel) = 𝑑 < 1 ∧ N!1; R(OrderRegular) = 𝑟 < 1 ∧ N!2;

R(drive_in) = R (drive_out) = 𝜆;

M0(in_station) = {<1, dieselConsumer>, <2, regularConsumer>}; M0(parked) = ∅;

M0(waiting) = ∅ ; M0(pumped) = ∅; M0(bank_agent) = {<3, bank>};

M0(gas_producer_agent) = {<4, producer>};

M0(pumping_station) = {<1>, <2>, <3>}; M0(credit_card) = ∅;

162

M0(diesel_gas) = {<10>}; M0(regular_gas) = {<10>};

F and L are as seen in the Fig. 27(c).

A3. Figure 43.

The supervisor role

φ(start) = φ(waiting) = NAME×ACTION×CATEGORY×CONTENT;

φ(result) = CONTENT;

R(Read) = e[1] = ‘read’∧ S!e;

R(Publish) = e[1] = ‘publish’∧ S!e;

R(Assign) = e[1] = ‘assign’∧ S!e;

R(Return) = S?r∧ r[2] = e[1]∧ x = r[4]

A4. Figure 31.

The BCIN net

φ(Users) = NAME;

φ(RAs) = ℘(NAME×ROLE);

φ(Sessions) = ℘(NAME);

φ(Actor) = NAME×ROLE;

φ(PAs) = ℘(ROLE×RM);

φ(Activated) = φ(p1) = NAME×RM;

φ(BCIN_Database) = ℘(CATEGORY×CONTENT);

φ(p2) = φ(p7) = NAME×ACTION×CATEGORY×CONTENT

φ(p3) = φ(p5) = φ(p11) = NAME×RM;

φ(p4) = φ(p8) = φ(p6) = φ(p9) = φ(p12) = φ(p10) = NAME×ACTION ×

CATEGORY×CONTENT;

R(UserOut) =∃s∈S.(s = u)∨∀r∈R.(r[1] ≠ u);

R(AssignRole) =∃r∈R.(r[1] = u)∧ a = r;

R(AssignPA) =∃p∈P.(p[1] = a[2]) ∧m[1] = a[1]∧m[2] = p[2]∧ S’=S∪a[1];

R(ActorOut) =∀p∈P.(p[1] ≠ a[2]);

R(End) = m[1]?op∧ op[1] = ‘quit’∧ ∃s∈S.(s = m[1])∧ S’= S\s;

R(Read) = m[1]?op∧ r = op;

163

R(ReadDB) =(∃ d∈D.(d[1] = r[3])∧ r’[4] = d[2])∨ (∀ d∈D.(d[1] ≠ r[3]) ∧ r’[4] =

‘error’);

R(returnR) = m[1]= r’[1]∧m[1]!r’;

R(SendM) = m[1]?op∧w = op;

R(WriteMG) = D’= D ∪ <w[3], w[4]>∧w’[4] =’message sent’;

R(returnM) = m[1] = w’[1]∧ s!w’;

R(Publish) = m[1]?op∧ p = op;

R(PublishRS) = D’= D ∪ <p[3], p[4]>∧ p’[4] =’published’;

R(returnP) = m[1] = p’[1]∧m[1]!p’;

R(RA) = m[1]?op∧ ra = op;

R(UpdateRA) = (∃ p∈P.(p[1] = ra[4]) ∧ ((∀r∈R.(r[1] ≠ ra[3] ∧R’ = R ∪ <ra[3],

ra[4]> ∧ ra’[4] = ‘added’)∨ (∃ r∈R.(r[1] = ra[3]) ∧ r’[2] = ra[4]))∧ ra’[4] =

‘updated’))∨ (∀ p∈P.(p[1] ≠ ra[4])∧ ra’[4] = ‘error’);

R(returnRA) = m[1] = ra’[1]∧m[1]!ra’;

164

APPENDIX B

THE PROMELA MODEL FOR BCIN NET

#define NULL 0
#define MAX_SESSION 4
#define MAX_ACTIVATED 4
#define MAX_ROLE 4
#define MAX_DB 4
#define MAX_TOKENS 4

mtype = { read, publish, sendM, assign, quit };
mtype = { updated, added, error, message_sent, published}
mtype = { david, john, alice, emily, mary};
mtype = { observer, supervisor, contact, participant };
mtype = { advisory, message, resource };
mtype = { Wilma, generator};
mtype = { O_NET, S_NET, P_NET, PR_NET };

typedef MSG {
 pid agent_id;
 mtype action;
 mtype category;
 mtype content }

typedef ROLE {
 mtype user;
 mtype roleR }

typedef PA {
 mtype roleP;
 mtype net }

typedef IN_SESSION {
 pid sid;
 mtype sname }

typedef BCIN_DB {
 mtype DB_category;
 mtype DB_content }

chan S = [0] of { MSG, chan};

inline initial_marking(pl, p_pid, v1, v2, v3) { pl.agent_id = p_pid;
pl.action = v1; pl.category = v2; pl.content = v3 }
inline add_token(p_in, p_out) { p_out.agent_id = p_in.agent_id;
p_out.action = p_in.action; p_out.category = p_in.category;
p_out.content = p_in.content}
inline remove_token(p) { p.agent_id = 0; p.action = 0; p.category
= 0; p.content = 0 }

active proctype system_net()
{

165

 chan aid;
 MSG m, p12[MAX_TOKENS] = NULL, p2[MAX_TOKENS] = NULL,
p4[MAX_TOKENS] = NULL, p6[MAX_TOKENS] = NULL;
 byte cnt, act_idx = 0, p12_idx = 0, p2_idx = 0, p4_idx = 0, p6_idx
= 0;

 ROLE actor, ra[MAX_ROLE] = NULL;
 IN_SESSION session[MAX_SESSION] = NULL;
 ra[0].user = david; ra[0].roleR = observer;
 ra[1].user = alice; ra[1].roleR = supervisor;
 ra[2].user = emily; ra[2].roleR = contact;
 byte ra_idx = 3;

 PA pa[MAX_SESSION];
 pa[0].roleP = observer; pa[0].net = O_NET;
 pa[1].roleP = supervisor; pa[1].net = S_NET;
 pa[2].roleP = contact; pa[2].net = P_NET;
 pa[3].roleP = participant; pa[3].net = PR_NET;

 BCIN_DB db[MAX_DB] = NULL;
 db[0].DB_category = advisory; db[0].DB_content = Wilma;
 db[1].DB_category = message; db[1].DB_content = generator;
 byte db_idx = 2;
 bool inSession = false;
 mtype valid_user = NULL;

 /* RBAC Begin */
 mtype user_in = emily;

 do
 /* UserOut */
 :: atomic { user_in != NULL -> cnt = 0;
 do
 :: cnt < MAX_SESSION ->

if :: session[cnt].sname == user_in -> printf("User %e in
session !", user_in); user_in = NULL; inSession = true; break

:: session[cnt].sname != user_in -> cnt++

 fi
 :: cnt >= MAX_SESSION -> cnt = 0; inSession = false; break
 od;
 do
 :: inSession == false ->

if :: cnt < MAX_ROLE && ra[cnt].user == user_in -> valid_user
 = user_in; user_in= NULL; break

 :: cnt < MAX_ROLE && ra[cnt].user != user_in -> cnt++
 :: cnt >= MAX_ROLE -> printf("No role assignment for %e
!",
 user_in); user_in = NULL; break
 fi;
 od }

 /* Assign Role */
 :: atomic { valid_user != NULL -> cnt = 0;
 do

166

 :: cnt < MAX_ROLE ->
 if :: ra[cnt].user == valid_user -> actor.user =
 ra[cnt].user; actor.roleR = ra[cnt].roleR; valid_user =
 NULL; break
 :: ra[cnt].user != valid_user -> cnt++
 fi;
 :: cnt >= MAX_ROLE -> break
 od }
 /* ActorOut */
 :: atomic { actor.user != NULL -> cnt = 0;
 do
 :: cnt < MAX_SESSION && pa[cnt].roleP != actor.roleR ->
 cnt++
 :: cnt < MAX_SESSION && pa[cnt].roleP == actor.roleR ->
/* Assign PA */
 if :: actor.roleR == supervisor -> session[act_idx].sid =
 run agentS(assign, john, participant)
 :: actor.roleR == observer -> session[act_idx].sid = run
 agentO(read, advisory, Wilma)
 :: actor.roleR == contact -> session[act_idx].sid = run
 agentP(sendM, message, generator)
 :: actor.roleR == participant -> session[act_idx].sid =
 run agentPR(publish, resource, generator)
 fi;
 session[act_idx].sname = actor.user; act_idx++; actor.user
 = NULL; actor.roleR = NULL;
 actor.user = NULL; actor.roleR = NULL; break
 :: cnt >= MAX_SESSION -> printf("Role %e not available !",
 actor.roleR); break
 od }

/* RBAC End */

/* Main Operation */
 :: atomic { S?m(aid) ->
 /* Assign RA */
 if :: m.action == assign ->
 if :: p12_idx < MAX_TOKENS -> add_token(m, p12[p12_idx]);
 p12_idx++
 :: p12_idx >= MAX_TOKENS -> printf("Exceed maximum
 token deposits!")
 fi;
 /* UdateRA */
 cnt = 0; p12_idx--;
 do :: cnt < MAX_SESSION && pa[cnt].roleP ==
 p12[p12_idx].content -> cnt = 0; break
 :: cnt < MAX_SESSION && pa[cnt].roleP !=
 p12[p12_idx].content -> cnt++
 :: cnt >= MAX_SESSION -> printf("Role %e denied !",
 p12[p12_idx].content); p12[p12_idx].content = error
 od;
 do :: cnt < MAX_ROLE && ra[cnt].user ==
 p12[p12_idx].category -> ra[ra_idx].roleR =
 p12[p12_idx].content; p12[p12_idx].content =
 updated; break

167

 :: cnt < MAX_ROLE && ra[cnt].user !=
 p12[p12_idx].category -> cnt++
 :: cnt >= MAX_ROLE && ra_idx < MAX_ROLE ->
 ra[ra_idx].user = p12[p12_idx].category;
 ra[ra_idx].roleR = p12[p12_idx].content;
 p12[p12_idx].content = added; ra_idx++; break
 :: ra_idx >= MAX_ROLE -> printf("Exceed maximum role");
 p12[p12_idx].content = error; break
 od;
 /* returnRA */
 aid!p12[p12_idx] ; remove_token(p12[p12_idx])
 /* read */
 :: m.action == read -> user_in = alice;
 if :: p2_idx < MAX_TOKENS -> add_token(m,
p2[p2_idx]);
 p2_idx++
 :: p2_idx >= MAX_TOKENS -> printf("Exceed maximum
 token deposits!")
 fi;
 /* readDB */
 cnt = 0; p2_idx--;
 do :: cnt < MAX_DB && db[cnt].DB_category ==
 p2[p2_idx].category -> p2[p2_idx].content =
 db[cnt].DB_content; break
 :: cnt < MAX_DB && db[cnt].DB_category !=
 p2[p2_idx].category -> cnt++
 :: cnt >= MAX_DB-> p2[p2_idx].content = error;
 break
 od;
 /* returnR */
 aid!p2[p2_idx]; remove_token(p2[p2_idx])
 /* sendM */
 :: m.action == sendM ->
 if :: p4_idx < MAX_TOKENS -> add_token(m, p4[p4_idx]);
 p4_idx++
 :: p4_idx >= MAX_TOKENS -> printf("Exceed maximum
 token deposits!")
 fi;
 /* WriteMG */
 p4_idx--;
 if :: db_idx < MAX_DB -> db[db_idx].DB_category =
 p4[p4_idx].category; db[db_idx].DB_content =
 p4[p4_idx].content; p4[p4_idx].content =
 message_sent
 :: db_idx >= MAX_DB -> printf("DB full !!");
 p4[p4_idx].content = error
 fi;
 /* returnM */
 aid!p4[p4_idx]; remove_token(p4[p4_idx]); user_in = david
 /* publish */
 :: m.action == publish ->
 if :: p6_idx < MAX_TOKENS -> add_token(m, p6[p6_idx]);
 p6_idx++
 :: p6_idx >= MAX_TOKENS -> printf("Exceed maximum
 token deposits!")

168

 fi;
 /* publishRS */
 p6_idx--;
 if :: db_idx < MAX_DB ->
 db[db_idx].DB_category = p6[p6_idx].category;
 db[db_idx].DB_content = p6[p6_idx].content;
 p6[p6_idx].content = published
 :: db_idx >= MAX_DB -> printf("DB full !!");
 p6[p6_idx].content = error
 fi;
 /* returnP */
 aid!p6[p6_idx]; remove_token(p6[p6_idx])
 /* End */
 :: m.action == quit ->
 cnt = 0;
 do :: cnt < MAX_SESSION && session[cnt].sid ==
 m.agent_id -> act_idx--; session[cnt].sid =
 session[act_idx].sid; session[cnt].sname =
 session[act_idx].sname; session[act_idx].sid =
 NULL; session[act_idx].sname = NULL; break
 :: cnt < MAX_SESSION && session[cnt].sid !=
 m.agent_id --> cnt++
 :: cnt >= MAX_SESSION -> break
 od;
 fi }
 od
}

proctype agentS(mtype i1, i2, i3) /* Supervisor S_NET */
{ chan me = [0] of { MSG };
 MSG m, start, waiting, result;

 initial_marking(start, _pid, i1, i2, i3);
 S!start(me);
 add_token(start, waiting);
 remove_token(start);
 me?m;
 printf("operation %e %e %e", m.action, m.category, m.content);
 m.action = quit;
 S!m(me)
}

proctype agentO(mtype i1, i2, i3) /* Observer O_NET */
{ chan me = [0] of { MSG };
 MSG m, start, waiting, result;

 initial_marking(start, _pid, i1, i2, i3);
 S!start(me);
 add_token(start, waiting);
 remove_token(start);
 me?m;
 printf("operaton %e successful!", m.action);
 m.action = quit;
 S!m(me)
}

169

proctype agentP(mtype i1, i2, i3) /* Primary Contact P_NET */
{ chan me = [0] of { MSG };
 MSG m, start, waiting, result;

 initial_marking(start, _pid, i1, i2, i3);
 S!start(me);
 add_token(start, waiting);
 remove_token(start);
 me?m;
 printf("operaton %e successful!", m.action);
 m.action = quit;
 S!m(me)
}

proctype agentPR(mtype i1, i2, i3) /* Participant PR_NET */
{ chan me = [0] of { MSG };
 MSG m, start, waiting, result;

 initial_marking(start, _pid, i1, i2, i3);
 S!start(me);
 add_token(start, waiting);
 remove_token(start);
 me?m;
 printf("operaton %e successful!", m.action);
 m.action = quit;
 S!m(me)
}

170

VITA

LILY CHANG

1977 － 1982 Department of Accounting and Statistics
 The Overseas Chinese Institute of Technology
 Taichung, Taiwan

1982 － 1986 Banker, Consumer and Small Business Banking
 The 7th Commercial Bank (Now: Cathay United Bank)
 Taichung, Taiwan

1986 － 1988 M.S., College of Computing Sciences
 New Jersey Institute of Technology
 Newark, New Jersey

1988 － 1991 Senior Software Engineer, Department of Information Systems
 Tatung Co.
 Taipei, Taiwan

1997 － 1999 Director, Computing and Network Center
 Taipei College of Maritime Technology
 Taipei, Taiwan

1991 － 2005 Instructor, Computing and Network Center
 Taipei College of Maritime Technology
 Taipei, Taiwan

2005 － 2011 Doctoral Candidate in Computer Science
 Florida International University
 Miami, Florida

PUBLICATIONS AND PRESENTATIONS

L. Chang, X. He and S. Shatz: “A Methodology for Modeling Multi-Agent Systems using
Nested Petri Nets”, International Journal of Software Engineering and Knowledge
Engineering, 2011.

L. Chang and X. He: "A Model Transformation Approach for Verifying Multi-Agent
Systems", Proceedings of the Symposium on Applied Computing (SAC2011), Taichung,
Taiwan, March, 2011.

171

L. Chang and X. He: "A Multi-Agent Model for a Business Continuity Information
Network", Proceedings of the International Conference on Software Engineering and
Knowledge Engineering (SEKE10), San Francisco, July 2010, pp. 657-663.

L. Chang and X. He: "Towards Adaptable BDI Agent: a Formal Aspect-Oriented
Modeling Approach", Proceedings of the International Conference on Software
Engineering and Knowledge Engineering (SEKE09), Boston, July, 2009, pp. 189-193.

L. Chang, J. Ding, X. He, S. Shatz: “A Formal Approach for Modeling Software Agents
Coordination”. Communication of SIWN, Vol. 3, 2008, pp. 58-64.

L. Chang, X. He, J. Lian, and S. Shatz: "Applying a Nested Petri Net Modeling Paradigm
to Coordination of Sensor Networks with Mobile Agents", Proc. of Workshop on Petri
Nets and Distirbuted Systems 2008, Xian, China, June, 2008, 132-145.

B. Wongsaroj, S. Graham, O. Wolfson, R. Steinhoff, A. Cary, L. Chang, A. Lee, A.
Rodriguez, P. Singh, R. Haynes, T. Rush, A. Barreto, M. Adjouadi, N.Rishe, “Native
XML Database Management”, Proceedings of The 3rd International Conference on
Cybernetics and Information Technologies, Systems and Applications, CITSA, Orlando,
FL, July, 2006.

