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specific problem; (ii) an agent is embedded in an environment and can proactively get 

information and react to affect that environment; and, (iii) an agent is autonomous and 

self-contained in controlling its own states; it performs the action of its best interest.   

 

 

 

Figure 16. (a) Agent-oriented modeling; (b) essential modeling steps. 

(b) 

Agent-oriented modeling: 

(1) Identify the agent roles and their responsibilities (activities); and, each agent role 

is modeled as an agent net that specifies the behavior of the agent. 

(2) Identify the activities that involve external interactions for each agent net.   

(3) determine cooperation processes and the coordination context based on the 

requirements in step (2). 

(4) Generate coordinators for all interaction activities in agent nets. 

(5) Compose all coordinators to form the mediator agent net, which specifies the 

cooperation process among agents. 

(a) 
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In this study, agent-oriented modeling is considered as an approach for constructing 

abstract models based on the agent concept defined in Definition 4.1.1. Therefore, the 

following major components are supported:  

(1) Agent models can be built individually to meet the requirement of their design 

objectives;  

(2) An agent model can be constructed with essential features, such as autonomy, pro-

activeness, reactivity and sociality. 

(3) A coordination model can be constructed to model the cooperation process among 

agents; and  

(4) Agent models can be coordinated and interact through the coordination model.  

Figure 16(a) shows the idea of an agent-oriented modeling approach. First, agent nets are 

built individually; and next, they are coupled through coordinators. The resulting model 

is a two-level nested PrT net describing a system model with the MAS architecture. The 

modeling steps can be summarized into five major steps as shown in Figure 16(b). 

4.2 Aspect Orientation of the Internal Structure of an Agent Net 

There are different concerns when designing different types of agents [35]. For 

example, the concern for designing mobile agents is mobility, and the concern for 

designing task agents is collaboration.  Various concerns are considered as features of an 

agent model. In multi-agent systems, agents are usually designed to solve different 

problems. That is, each agent has a different action model with respect to its design 

objective; however, it also may shares common features with the others. For example, an 
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agent that consumes resources may share an identical plan of getting authorization for 

using resources.     

A variety of agent types substantially increases the complexity of agent design. One 

of the techniques to manage complexity is modularity. Aspect-oriented programming 

(AOP) [21] is one of the techniques applied at the implementation stage for modularity. 

The idea of AOP is to wrap crosscutting concerns into aspects, which are desired 

properties that can be woven into functional components. In recent years, aspect-oriented 

concepts were introduced into an early stage of system design to address the modularity 

of abstract models; for example, aspect-oriented modeling for MAS in [48, 49].  

In this study, the concept of aspects as modular features is adopted to address the 

complexity of building agent models with different internal structures. First, the features 

shared among agents are identified and specified as aspects. Next, an agent net can be 

constructed by weaving desired features into the fundamental action model. As a 

consequence, agent nets are adaptable for different features, thus are more manageable. 

Figure 17 shows the conceptual model of an aspect-oriented agent net that is composed of 

the fundamental action model and various aspects. 

knowlege
plans

Action model

Interaction
protocols

security

mobility

 

Figure 17. A conceptual model for an aspect-oriented agent net.  
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 Other advantages of an aspect-oriented agent model include net model reusability 

and flexibility. In terms of model analysis, an aspect-oriented agent model is amenable 

for incremental analysis by gradually weaving additional aspects or, by weaving different 

combinations of aspects.   

4.2.1   Specifying Aspects     

To specify aspects, several terms from AspectJ [22] are used here; however, they are 

given different meanings for aspect weaving. These terms are defined as follows. 

Definition 4.2.1  An aspect is a modular specification, including an advice, a set of 

pointcuts and a set of join points. 

Definition 4.2.2  An advice is a PrT net, which specifies the common behavior shared by 

multiple agent nets.   

Definition 4.2.3  A pointcut specifies a weaving point in the advice; it can be a place or a 

transition. 

Definition 4.2.4  A join point specifies a weaving point in the target net; it can be a place 

or a transition. 

A specification table is defined to specify an aspect. The table includes the essential 

information defined above. First, the aspect name is identified. Second, the advice to be 

woven is defined, including the advice name, the net structure, the semantic definitions 

and the pointcuts. Third, the names of target nets and their joint points are specified. The 

pointcuts from the advice and the joint points from the target nets are the matching points 

for aspect weaving. The specification is shown in Figure 18(a). An aspect weaving is 

considered as the process of composing two net structures into a single net structure by 
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connecting the advice to the target net specified in an aspect. Syntactically, two nets are 

connected together by specifying weaving points. Semantically, the semantics defined for 

weaving points have to be consistent before and after aspect weaving. Note that the 

semantic definitions of the advice can be delayed until it has been woven. In addition, it 

is assumed that there is no duplicate name in the woven net. That is, it is assumed that 

duplicate names with regard to net element definitions of the woven net have been 

properly resolved. 

Let N be the target agent net, and A be the aspect specification in which advice_name 

denotes the advice, PC denotes the set of pointcuts in advice_name, JP denotes the set of 

join points in N, and R denotes the set of weaving relations for net N. A weaving 

specification N: R defined in aspect A weaves advice_name in A into N based on the 

weaving relations specified in R. A weaving relation r in R is a binary relation (pointcuti 

→ join_pointi), where pointcuti ∈ PC and join_pointi ∈ JP; that is, r specifies a pair of 

matching points for an aspect weaving.  

An aspect specification is shown in Figure 18(a). An aspect weaving process is shown 

in Figure 18(b). 

There are two possible kinds of join points, namely transition join point and place 

join point. A place join point is considered as a place where an aspect of alternate choice 

can be added or, as a place that can hold the tokens generated from an aspect of some 

extended behaviors. A transition join point is considered as a point where an aspect of 

some concurrent behaviors can be added or, where an aspect of additional enabling 

conditions can be added. 
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Aspect: A;

t1

p1

t2

p2

pointcut1

Advice: advice_name; 
P = {pointcut1, p1, p2}; T = {t1, t2}; F = {(pointcut1, t1), (t1, p1), (p1, t2), (t2, p2)};
φ(p1) = φ(p2) = φ(pointcut1) = TYPE;
R(t1) = R(t2) = λ;
L(pointcut1, t1) = L(t1, p1) = L(p1, t2) = L(t2, p2) = x;
M0(p1) = M0(p2) = M0(pointcut1) = { };

Pointcut: pointcut1 [, pointcut2, pointcut3, ….]; 
N: pointcut1 -> join_point1 [, pointcut2 -> join_point2, pointcut3 -> join_point3 ….];

x x x x

 

(a) 

 
(b) 

Figure 18. (a) An aspect specification table; (b) an aspect weaving process.   

In addition to the previous example, some weaving patterns are generalized and 

shown in Figure 19, where (a), (b) and (c) are patterns of transition join point since the 

weaving point is at a transition; and, the patterns in (d), (e) and (f) are place join point 

since the weaving point is at a place. Patterns (a) and (d) are similar to after advice in 

Aspect weaving: 

(1) ∀ r ∈  R such that, for all incoming arcs (x, pointcuti) and outgoing arcs 

(pointcuti, x) defined in F, replace (x, pointcuti) with (x, join_pointi) and 

(pointcuti, x) with (join_pointi, x); and, replace L(x, pointcuti) with L(x, 

join_pointi) and L(pointcuti, x) with L(join_pointi, x). 

(2) Discard pointcuti such that P = P - pointcuti, where P is the set of places in the 

advice.  

(3) Weaving advice_name into N such that: N.P = N.P ∪P; N.T = N.T ∪ T; N.F = 

N.F ∪ F, where N.P is the set of places in target net N, and N.T is the set of 

transitions in target net N. 

        

 



63 

AOP; (b) and (e) are before advices; and, (c) and (f) are around advices that can be added 

as an explicit control of the net. Intuitively, during a weaving process, a transition join 

point must be connected with a place in the advice and a place join point must be 

connected with a transition in the advice. This is to ensure the correctness of the syntax 

and static semantics of a woven net. 

 
Figure 19. Weaving patterns. 

4.3 Modeling a Single Agent Net 

An agent net specifies the behavior of a distributed computation entity in the MAS 

context. It describes an agent’s behavior without a centralized control. That is, it has the 

control over its own internal states. For modeling agent communications, channel 

commands are instrumented in transition constraints to specify external message 

exchanges. It is assumed that agent nets are communicating within the same context that 

has been defined in the semantic domain Spec, and are interpreting the information that is 

relevant to their computations based on their best interest. Furthermore, token types 

defined for exchanging messages between agent nets must be consistent. As a result, the 

messages exchanged among agent nets are in a simpler structure, and are only relevant to 
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the behavior of associated agent nets. This principle avoids the redundancy of irrelevant 

details and unnecessary complexity with regard to the interpretation of messages. The 

modeling steps for an agent net with communication channels can be summarized in 

Figure 20.  

 

Figure 20. Modeling steps for an agent net with communication channels. 

4.3.1   Modeling Examples      

A Gas Station scenario is used as an example to demonstrate the construction of an 

agent net.  

A Gas Station Scenario 

For the operation of a gas station, there are gas consumers, gas suppliers, the bank 

and the gas station itself. Gas consumers pump gas for their cars in order to accomplish 

(1) Identify the actions engaged for each agent and represent each action as a 

transition within an agent net; that is, define T. 

(2) Identify the pre-conditions and post-conditions for each transition in T; and, add 

associated input places, output places, arcs and transition constraint for all 

transition t in T, respectively; that is, define P, F and inscription ins. 

(3) Identify the transitions with external interactions in the net, and add associated 

channel commands; that is, define Tc in T, and ∀𝑡 ∈ 𝑇𝑐 . (𝑅(𝑡) = 𝑅𝑢(𝑡) ∧ 𝑅𝑐(𝑡)), 

where Rc(t) =  n!e | n?x; n  is the identification of the mediator agent net.  

(4) Draw an interaction elicitation table (IET), which contains four columns:  

(i) all t in Tc identified in step (3),  

(ii) the direction of the information flow associated with t,  

(iii) the exchanging information associated with t, and 

(iv) the elicited channel command associated with t based on (i), (ii) and 

(iii).  
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their plans, while gas suppliers produce gas in order to supply gas to the gas station. The 

bank provides banking services, including credit card authorizations that allow customers 

to make transactions when pumping gas. The gas station provides an environment for 

these activities. There are pumping stations in the gas station where the cars entering the 

station can park and pump the gas. The gas pumping process includes four major steps: (1) 

the consumer who is driving a car and entering the station can park the car at one of the 

pumping stations that are available; (2) after parking at one of the pumping stations, the 

consumer must slide their credit card first in order to get the authorization for pumping 

gas; (3) if authorized, the consumer can start pumping gas with the choice of regular or 

diesel gas; and, (4) the consumer finished pumping and left the station.  

Based on the above scenario, there are five different agent roles: (1) regular gas 

consumer, who uses a vehicle to commute between home and school; if the car is out of 

gas, he goes to the gas station and pumps regular gas; first, he needs to find an available 

pumping station, and then to slide his credit card in order to pump gas; (2) diesel gas 

consumer, who uses a vehicle to transport goods between the factory and the store; if it is 

out of gas, he goes to the gas station and pump diesel gas; he also needs to find an 

available pumping station first, and then slides his credit card in order to pump gas; (3) 

gas producer, who produces both regular and diesel gas based on orders; (4) the bank, 

which provides the credit card transaction service that checks credits and reports credits; 

and, (5) the gas station, which is served as the mediator agent that provides the global 

view of the gas pumping process in which multiple agents are engaged in.  

Example 1: Modeling an agent net with communication channels. 
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Let us take the diesel gas consumer as an example to build the agent net based on the 

steps in Figure 20. 

Step (1) define T;  

 According to the scenario, let T = {ToStore, ToGasStation, Go, ToFactory, 

Park, SlideCard, PumpGas, Deny}; 

Step (2) define P, F, and ins = (𝜑, R, L, M0);  

 Let P = {factory, store, GasStation, ToPump, standby, pumped, CreditCard}; 

 φ(factory) = φ(store) = φ(GasStation) = CAR×INTEGER, where the first 

element of the data token is the car type and the second element indicates the 

condition of the gas tank (1 represents full tank, 0 otherwise), and 

CAR={sedan, truck}; φ (standby) = φ (ToPump) =  φ (pumped) =  

CAR×INTEGER×INTEGER; φ(CreditCard) = INTEGER denoting credit 

card numbers;  

 R: see Appendix A1;  

 Let M0(factory) = {<truck, 0>} denoting that in place factory there is a truck 

with empty tank, M0(credit_card) = {<1>} stores the credit card number, and 

all other places in P such that M0(p) = ∅ ;  

 F and L are defined accordingly. 

Step (3) define Tc;  

 Based on the scenario, Tc = {Park, SlideCard, PumpGas, Fail}, while Tu = 

{ToStore, ToGasStation, Go, ToFactory}; and let the identification of the 

mediator net be S; 
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A BDI model can be nicely modeled using PrT nets [83]. The beliefs are considered 

as internal states, which are markings of the net; the desires are goals, which are a set of 

reachable markings with respect to some initial marking; and the intentions are choices to 

reach the goals with respect to current marking. That is, an agent net is a plan that 

includes a set of transition sequences that can reach some goals with respect to some 

markings.  For example, John’s traveling plan is shown in Figure 24. John is currently at 

Miami and intends to go to Los Angeles. Los Angeles is a goal. Nevertheless, there are 

two paths available from current location Miami to Los Angeles, namely: (1) Miami-

Houston-Los Angeles, and (2) Miami-Atlanta-Los Angeles. Thus, the set of transition 

sequences 𝜎 = {𝜎1,𝜎2}, where 𝜎1 =M0[t1>M1[t3>M2 , 𝜎2 =M0[t2>M1[t4>M2 and the set 

of reachable markings [M> = {M0,  M1,  M2}. [M> denotes the beliefs,  𝜎 denotes the 

agent plan, M2 denotes the desire, and transition sequences 𝜎1  and 𝜎2  denote the 

intentions. The net structure in Figure 24 exhibits the non-determinism that addresses the 

autonomy of path selection to reach the agent goal (Los Angeles). 

Miami Los AngelesAtlanta

Houstont1

t2

t3

t4

x

x

x

x

x

x

x

x<John>

 

Figure 24. John’s traveling plan. 

Let 𝜎 be the set of transition sequences with respect to marking M0, and [M> be the 

set of markings reachable from M0. A BDI PrT net can be formally defined as follows. 
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Definition 4.3.1 An agent plan is a net structure N = (P, T, F).  

Definition 4.3.2  The beliefs of an agent net A with respect to an agent plan N is the set 

of reachable markings [M0> with respect to M0.  

Definition 4.3.3   A goal of an agent is a goal state Mg of an agent plan N, where  

 Mg is a member of [M0>; 

 The set of goals MG = {Mg1, Mg2,, … Mgn} is called the desires of an agent plan N, 

where MG ⊆ [M0>.   

Definition 4.3.4   An intention is an execution sequence  𝜎𝑖= M0t1M1t2… Mgi, where  

 𝜎 is the set of possible execution sequences of agent plan N, and  

𝜎 = {𝜎1,𝜎2, . . ., 𝜎𝑛};  

 𝜎𝑖  ∈  𝜎; and 

 M0 is the initial state and Mgi is the goal state. 

A BDI PrT net can be constructed by the following steps:  

(1) Identify predicates.  

(2) Identify transitions.  

(3) Define each intention by connecting relevant predicates and transitions.  

(4) Combine all intentions to form the agent plan.  

Given an initial marking describing initial beliefs, the agent plan can be checked if 

the goals are reachable. 
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4.4 Coordination Modeling 

Agents are autonomous and heterogeneous computation entities that are usually built 

independently. Therefore, one of the major concerns of designing MAS is the coherence 

of overall system. The coherence of the system usually relies on some mediator, which is 

employed for task sharing and resource sharing among agents. The process of task 

sharing [2] is considered as agent cooperation. The activities of coupling agents during 

the cooperation process are considered as agent coordination. Agent communications are 

two-way message exchanging activities to facilitate the coordination within an agent 

community. As such, a mediator agent net is employed to model the cooperation and 

coordination among agent nets (see the conceptual model in Figure 4). The idea is to 

coordinate individually modeled agent nets to constitute the global process.   

Let S be a mediator agent net as defined in Definition 3.3.2. The mediator agent net S 

can be constructed by establishing a set of coordinators for coupling agent nets. A 

coordinator in the mediator agent net manages either an input or output information 

(resources) associated with an interaction activity of an agent net. A coordinator is 

formally defined as follows. 

Definition 4.4.1 A coordinator C is a PrT net with net structure (Pc, tc, Fc) where: 

 Pc = Pd ∪ Pa, where Pd  is the set of places holding data tokens and Pa ≠ ∅; 

 Pa is the set of places holding agent net tokens and Pd ≠ ∅;  

 tc is a communication transition such that Rc(tc) ≠ 𝜆; and 

 Fc is the flow relation indicating the information flows associated with transition tc.  
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4.4.1   Coupling Agent Nets 

Figure 25 shows two different coordinators in which Figure 25(a) is an input channel 

coordinator, while Figure 25(b) is an output channel coordinator. Coordinators for all 

agent nets can be built by drawing a coordination elicitation table (CET). The CET 

provides an intermediate step to build the mediator agent net.  

inChannelA1

p

a A2

msg

(a) (b) 

a outChannelA1

p

a A2

msg

a

 
Figure 25. (a) An input channel coordinator; (b) an output channel coordinator 

Definition 4.4.2 A coordination elicitation table (CET) is a seven-columned table, where:  

Column 1. N.Rc(t) is the communication constraint of transition t in an agent 

net N; 

Column 2. C.tc is the communication transition tc of the coordinator C; 

Column 3. C.Rc(tc) is the communication constraint of transition tc of the 

coordinator C derived from  N.Rc(t); 

Column 4. C.Pd  is the set of places holding data tokens associated with tc of C; 

Column 5. C.Pa  is the set of places holding agent tokens associated with tc of 

C; 

Column 6.  C.ltc is the preset of tc; 

Column 7. C. tcl is the post set of tc. 

 The drawing steps of a CET are shown in Figure 26(a).  Each entry in the CET 

represents a coordinator accommodating an interaction with an agent net. Therefore, each 
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entry constitutes either an input channel coordinator (Figure 25(a)) or an output channel 

coordinator (Figure 25(b)). A coordinator in the mediator agent net manages either an 

input or output information (resources) associated with an interaction activity of an agent 

net. The mediator agent net S is generated by merging all coordinators in the CET. The 

generating steps are shown in Figure 26(b). 

Example 3: Modeling the mediator agent net (the gas station). 

First, let us look at an example to build coordinators using the steps in Fig. 26(a) for 

the Diesel_consumer agent net shown in Figure 21(a). 

Step (1) Based on Table 2, there are four entries of Rc(t) in Diesel_consumer agent net: 

S?st, S!<car, cr, st>, S?g, S?cr; thus, the first column of the coordination 

elicitation table is filled with these entries. 

Step (2) For each entry in the first column, the transition tc is added for coupling. 

Step (3) Rc(tc) of coordinator C can be defined based on column one pairing with Rc(t) 

of agent net N. 

Step (4) Define Pa and Pd based on Step (3). 

Step (5) Define F based on column Rc(tc).  

Table 3 shows the CET in which each entry produces one coordinator. Thus, there are 

four coordinators for the Diesel_consumer agent net. Each coordinator is transformed 

into a net structure according to table 3. These coordinators are shown in Figure 27(a).  
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Figure 26. (a) The steps for generating CET; (b) the steps for generating the mediator 
agent net.  

Table 3. The coordination elicitation table. 

N.Rc(t) C.tc  C.Rc(tc)  C.Pd  C.Pa C. ltc C. tcl 

S?st Park N!st {pumping_stations} 
{in_station, 

parked} 

{pumping_stations, 

in_station} 
{parked} 

S!<car, 

cr, st> 
Pay 

N?<car, 

cr, st> 
{transactions} 

{parked, 

waiting} 
{parked} 

{waiting, 

transactions} 

S?g PumpDiesel N!g 
{authorized,  

diesel_gas} 

{waiting, 

pumped} 

{authorized, 

diesel_gas, waiting} 
{pumped} 

S?cr Fail N!cr {authorized} 
{ waiting,  

parked} 

{authorized, 

waiting} 
{parked} 

(a)  Generating the coordinators by a coordination elicitation table (CET): 
(i) For each agent net N = (P, T, F) in the multi-agent nets MAS, list Rc(t) for all t 

in T in the first column of the table.  
(ii) Add associated transition tc in the second column for paring with each Rc(t) 

listed in the first column.  
(iii) Define Rc(tc) in the third column by the following rules:  

if N.Rc(t) = S?msg, then C.Rc(tc) = N!msg; 
if N.Rc(t) = S!msg, then C.Rc(tc) = N?msg;  

(iv) Add a place p to Pd for holding msg, an input place A1 and an output place A2 
to Pa for holding net N; if necessary, add other places for holding data tokens.  

(v) Determine ltc and tcl based on the following rules;  
if C.Rc(tc) = N?msg, then ltc = {A1}, tcl = {A2, p}, F = { (A1, tc), (tc, A2), 

(tc, p)}; 
if C.Rc(tc) = N!msg, then ltc = {A1, p}, tcl = {A2}; F = { (A1, tc), (tc, A2), (p, 

tc)}; 
 

(b)  Generating the mediator agent net from CET: 
(i) Merge all coordinators by removing redundant places and redirecting the arcs to 

associate transitions. 
(ii) Add local transitions and places to S based on the requirements for modeling the 

cooperation process. 
(iii) Define 𝜑, R, L and M0 for S accordingly. 
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(c) The gas station: a  mediator agent net
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Fig. 27. (a) The coordinators of the Diesel_consumer agent net; (b) the intermediate net;  
(c) the mediator agent net. 
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Next step is to merge all coordinators to form a single net structure based on the steps 

in Figure 26(b). The coordinators shown in Figure 27(a) are merged by the following 

steps. 

Step (1) Merge all coordinators in Table 3; Figure 27(b) is the intermediate mediator 

agent net by merging all coordinators in Figure 27(a); coordinators for other 

agent nets in Figure 21 can be built and merged in the same manner.   

Step (2) Merge all coordinators for all agent nets result in the mediator net shown in 

Figure 27(c). Two boundary transitions “drive_in” and “drive_out” are added 

to denote the entering and leaving of agent nets. 

Step (3)  Define the semantic definitions for the net (see Appendix A2). 

4.5 Summary 

In an effort to ease the construction of formal MAS models, this chapter presents a 

systematic approach for modeling a single agent net with an aspect-oriented approach, 

and for modeling the mediator agent net to coordinate agent nets.  

Although there were several research works incorporated aspect-oriented concepts 

into PrT nets, their focus was not on MAS modeling. For example, in [84, 85], aspect-

oriented concepts were used to address security concerns based on PrT nets. Security 

concerns were modeled as aspects and woven into a base net to generate a secured PrT 

net model. These works were not related to MAS modeling and were limited to security 

issues.  

Among research works based on UML for modeling MAS, the work in [86] proposed 

an aspect-oriented agent architecture based on UML (Unified Modeling Language). In 
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this work, essential agent concerns were separated from functional components and 

modeled as aspectual components. In [48], model roles were defined to model aspects. In 

[49], a meta-modeling framework was defined to include aspect-oriented concepts. A 

crosscutting composition mechanism was provided to compose agent models and aspects. 

These work [48, 49, 86] were based on informal methods and focused on guidelines and 

steps for the aspect orientation of an agent program’s internal structure. Their models did 

not support formal analysis. 
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CHAPTER 5 

A METHOD FOR ANALYZING FORMAL MAS MODELS 

 

Given that there is no existing method for the analysis of nested PrT nets, a model 

transformation technique is developed in this dissertation research to transform a MAS 

model with a two-level nested PrT net structure into a PROMELA program in SPIN 

(Simple PROMELA Interpreter) [38]. As a consequence, a full line of functionalities in 

SPIN can be utilized for the analysis of formal MAS models. 

Among research works for the analysis of high-level nets, there were two major 

approaches adopted: (1) simulation-based model analysis, and (2) model checking. The 

most commonly-used tool for the first approach is the CPN (Colored Petri Nets) tool [79]. 

CPN tool is a well-developed simulation tool based on Colored Petri nets. However, this 

dissertation research aims at modeling checking formal MAS models. Therefore, the 

model checking approach is adopted. There are two renowned model checkers: (1) SMV 

(Symbolic Model Verifier) [15], and (2) SPIN [23]. SMV is a tool for checking whether 

or not a finite-state system satisfies specifications given in CTL (Computation Tree Logic) 

[87]. SMV has been very successful in verifying hardware systems, however suffers from 

the state-explosion problem in verifying software systems. SPIN is a model checking tool 

based on the partial order reduction method, which is aimed at reducing the size of the 

state space needed to be explored. The SPIN verifier checks abstract models written in 

PROMELA that if a given PROMELA model satisfies the claims given in LTL (Linear 

Temporal Logic) [39]. SPIN is a well-suited tool for this dissertation research based on 

two main reasons: (1) it is a well-developed tool for model checking concurrent and 
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asynchronous software systems; and (2) it supports the modeling of asynchronous 

process interactions which is an important feature for studying multi-agent systems. 

Therefore, the idea is to transform the formal MAS model into a PROMELA model that 

can be analyzed by the model checker SPIN.   

Previous works in model translation from Petri nets to executable models generally 

fall into two major categories: (1) translation of Petri nets to high-level programming 

languages [72, 73, 74, 75]; and (2) translation of Petri nets to the meta-language 

supported in simulation tools [76, 77, 78, 79]. The authors in the first category attempted 

to use Petri nets as a central means during a model-driven system engineering process 

[88], and to generate an implementation dependent prototype from an implementation 

independent model. The works in the second category, however, focused on the 

validation of system design in critical aspects prior to implementation. The model 

transformation in this dissertation research aims at providing a method for verifying the 

proposed two-level nested PrT nets. Thus, a set of translation rules are explicitly defined 

for model transformation. The transformation technique provides a foundation for further 

automation in developing the tool for analyzing nested PrT nets.  

The rest of this chapter is organized as follows. Section 5.2 introduces PROMELA 

and its semantics engine. Section 5.3 elaborates the translation rules for model 

transformation. Section 5.4 provides the proof of correctness regarding the translation. 

Section 5.5 presents a translation example from a disaster mitigation system. Section 5.6 

demonstrates a method for analyzing the transformed PROMELA model using SPIN.  

Section 5.7 draws the conclusion. 
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5.1 The Target Language PROMELA 

The specification language used in SPIN is called PROMELA, in which the focus is 

on specifying the controls, rather on the computations, of distributed systems. The 

program structure and semantics engine of PROMELA are briefly introduced in the 

following sections. 

5.1.1  The Program Structure   

A PROMELA model is constructed from three basic types of objects: (1) processes, 

which define the behaviors of distributed entities; (2) data objects, which define the 

variables for keeping information; and, (3) message channels, which model the exchange 

of information between processes. Figure 28 shows a generic PROMELA program 

structure. The detailed syntax and grammar rules of PROMELA can be found in [38]. 

 

Figure 28. A generic PROMELA program structure.  

 

#define MAX_TOKENS 10   
mtype = { …. }     /* defines global data objects */ 
typedef TYPE { …. }    
inline FUNC { … }                        /* defines macros */ 
chan CHANNEL = [0] of { .. } /* define global message channel */ 
 
active proctype MAIN_PROCESS ( ) {  
 /*  statement sequence  */      
} 
proctype PROCESS1 ( ) { /*  statement sequence  */    } 
proctype PROCESS2 ( ) { /*  statement sequence  */    } 
……………… 
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5.1.2  The Semantics  

In a PROMELA program, each declaratory proctype defines a process. Before model 

execution, each process is transformed to a FSA (finite state automaton) describing the 

execution sequences of that process. A FSA is a tuple (S, s0, L, T, F) [38], where  

• S is a set of states denoting the possible points of control within a proctype; 

• s0 ∈S, is a distinguished initial state; 

• 𝑇 is a set of transition relations denoting the flow of controls, and 𝑇 ⊆ (𝑆 × 𝐿 × 𝑆);  

• L is a set of labels that link each transition in T with a specific basic statement that 

defines the executability (pre-conditions) and the effect (post-conditions) of that 

transition; only six basic statements are allowed as valid labels: print, receive, send, 

assignment, assertion and expression, where print and assignment statements are 

unconditionally executable; and, 

• F is a set of final states, and 𝐹 ⊆ 𝑆. 

The global behavior of a concurrent system described by a PROMELA program is 

obtained by computing an asynchronous interleaving product of automata. The resulting 

system behavior is also represented by an automaton. In the initial system state, all 

processes are in their initial state, and all data objects are set to their initial values. The 

semantics engine in SPIN executes a PROMELA model in a step by step manner. In each 

step, one executable basic statement (transition) is selected out of the transitions in all 

active processes. If more than one statement is executable, any one of them can be 

selected randomly (non-determinism). Depending on the system state, any statement in a 

SPIN model is either executable or blocked; that is, if a process reaches a point where no 
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executable transition left to be executed, it is simply blocked. On the other hand, as long 

as there are executable transitions, the semantic engine repeatedly selects one of them at 

random and executes it. The execution of a transition is to apply the effect (post-

conditions) defined in that transition. As a result, system variables, local variables, and 

the contents of channels may be modified. By simulating the execution of a PROMELA 

model, a large directed graph including all reachable system states is generated. Figure 29 

shows the operational model of the PROMELA semantics engine. 

startset initial 
state

any executable 
transition t ?

select t and
apply t.effect

Y

N set current 
state 

blockedtime out?

stop

Y

N

 

Figure 29. The operational model of the PROMELA semantics engine.  

5.2 A Translation Method 

The translation for model analysis is aimed at providing a method for analyzing the 

proposed two-level nested PrT nets. Therefore, the overall translation principles and 

assumptions are discussed as follows. 

(1) No embedded C codes.  
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Since the objective of this work is to provide a means to model and verify the 

properties of abstract models at the system design stage, the principle is to build a smaller 

sufficient abstract model and to avoid possible redundancies. Despite the full description 

power of C language, no embedded C code is considered in this translation.  

(2) Restricted PrT nets.  

PrT nets are very expressive given that: (i) there is no explicit definition regarding the 

limitation of the quantity of tokens in a place; (ii) the sorts and their operations are 

implicitly defined in the semantic domain Spec; (iii) testing enabling conditions of 

transitions and instantiation of tokens are implicit; and, (iv) the firing sequences can be 

infinite as long as there are sufficient tokens. On the other hand, a PROMELA model is 

an executable program, in which the quantity and types of data objects are bounded and 

the execution is finite. Therefore, due to tractability, the expressive power of PrT nets 

needs to be restricted by limiting the sorts and the quantity of tokens in each place. As a 

result, the nested PrT nets to be translated have a finite state space such that model 

executions will terminate appropriately.  

(3) Interleaving semantics within a net entity.  

For simplicity, it is assumed that all transitions fire immediately after the guard 

conditions are evaluated to be true, and the firings are interleaving given that this 

restricted semantics does not affect the verification of state-based properties.    

(4) Communication channels are communicating in a one-to-one and unidirectional 

fashion.  

Broadcasting is not considered in this translation; however, it can be done through an 

appropriate setup of a loop-statement construct for multiple communications.  
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(5) Machine analysis.  

This translation aims at the verification of the proposed two-level nested PrT nets in 

order to facilitate the machine analysis of multi-agent systems prior to implementation.  

(6) Correctness of translation.  

To justify the correctness of this translation, a translation from a two-level nested PrT 

net to a PROMELA program is said to be (i) complete, if all the net entities and net 

elements in a nested PrT net are faithfully translated to a set of non-overlapping 

statements in the target PROMELA program; (ii) consistent, if the target PROMELA 

program preserves the dynamic semantics of the nested PrT net; and, (iii) correct, if the 

translation is complete and consistent. 

5.2.1   Translation Rules 

The nested PrT net to be translated is called a multi-agent net. Each net entity in a 

multi-agent net is translated to a process in the target PROMELA program. As a result, a 

process describes the behavior of an agent, which is an autonomous entity and capable of 

interacting with the others. Each net element of a net entity is translated to a set of non-

overlapping compound statements within a process to address the semantics of the net 

entity. The static semantics of a net entity is defined by the inscription ins = (φ, L, R, M0), 

while the dynamic semantics is defined by the transition enabling and firing rules in 

Chapter 3. Therefore, there are net entity translation rules and net element translation 

rules. The mapping relations are summarized in Table 4. 
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Table 4. Mapping relations of net elements to PROMELA objects. 

PrT net elements PROMELA objects 

Net Process 

Place Array data object 

Transition (event) Guard conditions →      
          statement sequence 

Communication channels Message channels 

 

A. Net entity translation rule  

Let MAS be a set of PrT nets specifying a multi-agent system, including a mediator 

agent net and multiple agent nets. Each member in MAS is translated to a process object 

in the target PROMELA program. The rule for translating net entities in MAS to their 

counterparts in the target PROMELA program is called net entity translation rule. The 

rule is defined as follows. 

Rule e.1: For every net entity 𝑁 ∈ 𝑀𝐴𝑆, add a process proctype [active] N( ) { } to the 

target PROMELA program, where N is a unique process name. 

For example, let MAS = {S, agent1, agent2}, the translated skeleton program in 

PROMELA is as follows. 

active proctype S( ) {statement sequence } 

proctype agent1(argument_list ) { statement sequence } 

proctype agent2(argument_list) { statement sequence }   
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The keyword active in the declaratory statement denotes an immediate instantiation of 

the process when the program starts to run. The system process is required to be 

instantiated immediately as soon as the program starts to run, while agent processes are 

not. Instead of declaring as active processes using the declaratory keyword active, agent 

processes can be dynamically instantiated during model execution by the statement “run 

agenti(argument_list)”, in which the name of the agent process and arguments 

representing the initial marking are instantiated through the operator run. The maximum 

number of active processes in PROMELA is 255; that is, if |MAS| = n, then 2 ≤ n ≤ 255 

given that MAS has at least two members and at most 255 members.  

B. Net element translation rules 

 Net inscription ins = (𝜑, L, R, M0) specifies the static semantics of a net entity N = (P, 

T, F) with respect to the semantic domain Spec. The translation rules for translating net 

elements P, T, F and inscription ins are called net element translation rules. 

B.1.  Place Transition Rules 

In PrT nets, a place p in P is a predicate denoting a relation among individuals. Thus, 

tokens in p are instantiations of individuals. An arc label in L specifies the variable 

extension of a place p to which the arc is connected. A consistent substitution of the 

labeled variables on an arc is an instantiation of a particular token in p. For example, a 

token <a1,…, ak> in place p is a substitution of arc label x = (x1, …, xk).   

To translate a place p to its counterpart in the target PROMELA program, the 

translation strategy is to declare an array data object for p for holding tokens. Since the 

instantiation of tokens when executing the PROMELA program is simply by selecting the 
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element directly from the array data object, the translation of the associated labeled 

variable is omitted to avoid redundancy. In PrT nets, the token type of a place p is defined 

by 𝜑(𝑝) = 𝑆𝑂𝑅𝑇, where SORT is valid data types defined in the semantic domain Spec. 

In this translation, SORT is restricted to the basic data types in the target language 

PROMELA [38]. Due to tractability, the maximum number of elements for each array 

data object has to be predefined. In addition, an index is required for each array data object 

to keep track of token deposits.  

In PrT nets, tokens deposited in a place do not have specific orders, and their 

instantiations are implicit. However, for model execution, token instantiations have to be 

explicitly defined. For simplicity, the strategy is to let the index of the array data object 

always points to the tail of the array. As a result, removing or adding a token is always 

happening at the tail of the array data object. For example, an array p has three elements 

p[0], p[1], p[2]; assuming that the index is pointing at the third element p[2], which means 

the third element p[2] is null and is the first available slot to deposit a token. On the other 

hand, if a token is to be instantiated, then p[1] will be instantiated (removed) since it is the 

first available token next to the null element p[2]. For translating initial marking M0(p), the 

array data object representing p is initialized to desired values at the time of declaration.  

In summary, place translation rules are defined based on the following principles: 

(1) For all p in P, p and its associated labeled variable are translated to an array data object 

in the PROMELA program.  

(2) The data type for array data object p is limited to the basic data types supported in 

PROMELA. 
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(3) For each array data object p, define the maximum number of elements for p, and 

define an integer variable as the index of p. 

(4) Removing or adding a token is at the tail of array data object p. 

(5) Places that hold agent tokens are not explicitly translated due to two reasons: (a) agent 

tokens (agent nets) have been covered in the entity translation rule; (b) the 

identification (process id) of an agent token is given at runtime since each agent token 

run as an independent process in the PROMELA program.  

Place translation rules are summarized in Table 5. 

Table 5. Place translation rules. 

Rule Elements associated 
with a p in P Declarative PROMELA statements 

p.1  p 
#define MAX_p = MAX; 
place_p  p[MAX_p];  
int  p_idx = TAIL; 

p.2 𝜑(p)= sort1×…×sortn 
typedef  place_p { 
               sort1  x1; … ; sortn  xn}; 

p.3 M0(p) p[MAX_p] = INITIAL_VALUES; 

 For example, let 𝜑(𝑝) = 𝑖𝑛𝑡 × 𝑖𝑛𝑡; that is, the sort of place p is a Cartesian product of 

two integers. Assuming that place p holds a maximum of four tokens, the translated 

PROMELA statements are as follows.  

#define MAX_p = 4             

typedef   place_p { int x; int y }    

place_p   p[MAX_p] = 0;   

int p_idx = 0;   
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B.2.  Transition translation rules.  

The set of transitions T specifies the events that can change the marking of a PrT net. 

For all t ∈ T, there exists a constraint formula R(t) that defines the pre-conditions for 

enabling t and post-conditions after firing t. The set of all possible firing sequences with 

respect to some initial marking defines the dynamic behavior of a PrT net. Based on the 

dynamic semantics of PrT nets, (1) an enabled transition may not fire immediately; (2) the 

firing of an enabled transition is atomic; and (3) enabled transitions can fire non-

deterministically and concurrently. In this translation, however, it is assumed that an 

enabled transition fires immediately and the transition firings are interleaving. These 

assumptions do not affect the verification of state-based system properties such as safety 

and liveness properties, thus are adequate for this study. Transition translation rules are 

defined based on the following principles:  

(1) All transitions in a net are compositional in a do…od loop. Within the loop, transitions 

in conflict are specified by a selection construct if … fi. As a result, the executability of 

transitions within the loop will be repeatedly checked in which the selection of 

transitions for execution is non-determinism based on PROMELA’s semantics engine.  

(2) The constraint formula R(t) of a transition t is translated to a associated PROMELA 

construct in the form: precondition-statements → post-condition-statements, where the 

executability of t is based on the ‘precondition-statements’ and the firing of t is an 

atomic execution of post-condition-statements in PROMELA.  

(3) The universal quantifier  ∀ and existential quantifier  ∃ in R(t) are translated into 

do…od loop statements since they involve checking all or part of the elements in an 

array data object.  
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(4) The channel command specified in R(t) is translated to a rendezvous channel with 

buffer size 0 in PROMELA to address synchronous interactions among agents. The 

system channel that is shared by all agents is declared as a global message channel to 

be used for exchanging messages among processes. In addition, a local channel in each 

process is declared to receive messages from the mediator net through the global 

message channel.  

Transition translation rules are summarized in Table 6. 

A constraint formula R(t) of t is composed of Ru(t) ∧ Rc(t), where Ru(t) is a non-

communication constraint and Rc(t) is a communication constraint; Rc(t) = ∅ if transition t 

is not a communication channel. A constraint formula R(t) is translated to a PROMELA 

construct in the form: precondition-statements-t →  post-condition-statements-t. In 

PROMELA, a separator ‘;’ is usually used for the separation of sequential composition of 

statements and declarations; it is not a statement terminator. The right arrow sign ‘→’ is a 

separator as well, and not a logical implication. For program readability, however, the 

arrow sign ‘→’ is used instead of the ‘;’ sign for separating pre-condition statements and 

post-condition statements. Precondition statements are guard statements, which may 

include relational statements (expressions with relational operators  <, >,≤ 𝑎𝑛𝑑 ≥ ), 

equality statements, inequality statements, or a compound statement of the above 

statements connecting by logical and operator ‘&&’ or logical or operator ‘||’. For 

example, if the pre-conditions for transition t are defined as: 𝑥 ≠ 1 ∧ (𝑦 = 0 ∨ 𝑧 > 1); the 

translated PROMELA statement is x != 1 && (y == 0 || z > 1). The evaluation result of the 

guard statements is either true or false.  
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Table 6. Transition translation rules. 

Rule t.1.   Communication channel translation rule 

Channel Interactions  (synchronization) 

(1) declare global message channel:  
chan S = [0] of { MSG, chan}; 
(2) declare local message channel in the 
system net:  
chan a_id; 
(3) declare local message channel in an 
agent net:  
chan me = [0] of { MSG }; 

typedef  MSG { 
 ………… 
   } 
 
(1) agent net initiate communication:  
       MSG msg; 
 

        S!start(me);      /* agent send  */ 
        S?msg(a_id);   /* the system receive 
*/  
(2) system response: 
       MSG msg; 
 

        a_id!msg;    /* system send   */ 
      me?msg;      /* agent receive   */ 

Rule t.2.    Structural translation rule 

Step 1: for each non-conflicting transition 
t ∈ T such that R(t) = pre ∧ post, R(t) is 
translated into an atomic statement: 
:: atomic { pre-statements-t →  
                          post- statements-t } 

t
 

Step 3:  for k conflicting transitions t1 .. tk  
such that R(ti) = prei ∧ posti 

t1

tk
 

Translated PROMELA statements: 
:: atomic { guard-condition → 
         if  :: pre-statements-t1 →  
                            post-statements-t1 
             :: pre-statements-t2 →  
                            post-statements-t2 
                   ……….. 
             :: pre-statements-tk →  
                           post-statements-tk 
          fi  } 

Step 2: Compose all atomic statements 
into a do…od construct: 
do   
:: atomic { pre-statements-t1 →  
                          post- statements-t1 } 
:: atomic { pre-statements-t2 →  
                         post- statements-t2 }  
     ……….. 
:: atomic { pre-statements-tn →  
                        post-statements-tn }  
od   
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Rule  t.3.   Constraint formula with channel command translation rules 

(i) R(t) = pre ∧ c?msg ∧
 post 
translated statement: 
:: atomic { 

        statements-t; c?msg 
→   post-statements-t }              

(ii) R(t) = c?msg ∧ post 
translated statement: 
:: atomic { 
    c?msg → 
          post-statements-t }                          

(iii) R(t) = pre ∧ post ∧
 c!msg 
translated statement: 
:: atomic {       
pre-statements-t →  
    post-statements- t; c!msg }             

Rule t.4.   Constraint formula translation rules 

Components PROMELA statements 

preconditions pre 
(a logical formula containing 
operators =,≠, <, >,≤,≥, ∧, ∨) 

(1) relational statements with relational-
operators <, >, <= or >= :    
      op1 relational-operator op2;  
(2) statements with equality or inequality 
operators == or !=:    
      op1 == op2; or, op1 != op2 
(3) logical statement with logical-operators 
&& or  ||:   
     relational-statement-1 logical- operators  
                relational-statement-2 

 
universal quantifier ∀ in R(t) 
(e.g., ∀𝑥 ∈ 𝑋. (𝑝𝑟𝑒 ∧ 𝑝𝑜𝑠𝑡)) 
  

int p_idx = 0;  
do  

  :: p_idx < MAX_p && !pre → break 
  :: p_idx < MAX_p && pre → p_idx++ 
  ::  p_idx >= MAX_p → post; break 
od  

existential quantifier ∃ in R(t) 
(e.g., ∃𝑥 ∈ 𝑋. (𝑝𝑟𝑒 ∧ 𝑝𝑜𝑠𝑡)) 

int p_idx = 0; 
do  

  :: p_idx < MAX_p && pre → post; break 
  :: p_idx < MAX_p && !pre → p_idx++ 
  ::  p_idx >= MAX_p → break 
od 

post-conditions post 
(a logical formula containing ∧ 𝑜𝑟 ∨) 

a statement sequence including valid 
expressions in PROMELA 
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A global message channel S_CHAN is shared by agent processes to send messages to 

the system process; local message channel a_id in the system process is used to send 

messages to agent processes; and, local message channel me in agent processes is used to 

receive message from the system process. That is, channels ‘a_id’ and ‘me’ are matching 

pairs of message channels. Note that if an input channel is used as part of the pre-

conditions and is not a sole pre-condition, then the input channel has to be put at the end 

of a set of precondition statements. The reason for this is the executability of a rendezvous 

message channel depends on the other matching message channel based on the semantics 

engine of PROMELA. It will cause an error if an input channel is put in the middle of a 

conjunction of guard statements. In addition, a separator ‘;’ has to be used instead of 

logical and operator ‘&&’ between the input channel and its previous guard statements. 

This precaution is to make sure that the original semantics of the net is translated 

correctly. For example, let agent1 = (P, T, F) be an agent net, where P = {p1, 

p2}; 𝜑( 𝑝1) = 𝜑( 𝑝2) = 𝑖𝑛𝑡; T = {t1, t2}; F = {(p1, t1), (p1, t2), (t1, p2), (t2, p2)}; L(p1, 

t1) = L(p1, t2) = x; L(t1, p2) = L(t2, p2) = z; R(t1) = x > 3 ∧ me?y ∧ z = x - y; R(t2) = 

x ≤ 3 ∧ me?y ∧ z = x + y; M0(p1) = {5}; M0(p2) = ∅; the translated PROMELA statements 

by applying translation rule  t.3 are as follows. 

 chan me = [0] of { int } 

 do   

 :: atomic { x > 3; me?y → z = x - y } 

 :: atomic { x ≤ 3; 𝑚𝑒? 𝑦 → z = x + y }  

 od   
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The transition constraint R(t1) = x > 3 ∧ me?y ∧ z = x – y, where x > 3 ∧ me?y is the 

pre-conditions and  z = x – y  is the post-condition. The pre-conditions are translated to 

PROMELA statements as “x > 3; me?y”, where  two guard statements are separated by the 

separator ‘;’ instead of logical and operator ‘&&’; that is, the pre-conditions cannot be 

specified as “x > 3 && me?y”, which will cause an error.  

If a constraint formula contains universal quantifier ∀, then the whole set of tokens 

need to be examined. For example, ∀𝑥 ∈ 𝑋. (𝑝𝑟𝑒 → 𝑝𝑜𝑠𝑡), where every element of X has 

to be checked for pre-condition pre. The strategy is to use an index for the array object 

that contains the tokens, and examine each element for the pre-condition. As soon as an 

element is found to be false, then the formula is immediately evaluated as a false. On the 

other hand, if a constraint formula contains quantifier ∃, then only one element in the array 

object is needed to satisfy the pre-condition. A constraint formula containing quantifiers is 

translated to PROMELA statements by applying rule t.4 in Table 6.  

Let us look at a translation example for a transition constraint formula without channel 

command. Let a constraint formula R(t) be defined as pre → post where pre is ∃p∈P.(p[1] 

= ra[4]) ∧ ∀r∈R.(r[1] ≠ ra[3]), and post is R’ = R ∪ <ra[3], ra[4]>∧ ra’[4] = ‘added’; the 

translated PROMELA statements are shown in Figure 30.  

5.2.2   Model Transformation 

Let MAS be the set of PrT nets called multi-agent nets specifying a multi-agent system, 

and PROG be the target PROMELA program. The transformation steps can be defined as 

follows:  
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Step 1. Apply entity translation rule e.1 to MAS such that, for all 𝑁 ∈ 𝑀𝐴𝑆, add a process 

proctype  N( ) to the target PROMELA program 𝑃𝑅𝑂𝐺.  

Step 2. For each process 𝑁( ) in 𝑃𝑅𝑂𝐺, add PROMELA statements by applying rule p.1~ 

p.3 to all 𝑝 ∈ 𝑃 associated with net entity N.  

Step 3. For each process 𝑁( ) in 𝑃𝑅𝑂𝐺, add PROMELA statements by applying rule t.1~ 

t.4 to all 𝑡 ∈ 𝑇 associated with net entity N. 

 

Figure 30. A constraint formula translation example. 

5.3 Correctness of the Translation 

The translation is under the assumption that every PrT net in the formal MAS model 

has finite tokens. In addition, an interleaving semantics is adopted in translating transition 

cnt = 0; p12_idx--; 
do :: cnt < MAX_SESSION && pa[cnt].roleP ==   
              p12[p12_idx].content →  cnt = 0; break 
     :: cnt < MAX_SESSION && pa[cnt].roleP !=  
              p12[p12_idx].content → cnt++                               
     :: cnt >= MAX_SESSION →  
                  printf("Role %e denied !", p12[p12_idx].content);   
                  p12[p12_idx].content = error 
od;                        
do :: cnt < MAX_ROLE && ra[cnt].user == p12[p12_idx].category  
                  →  ra[ra_idx].roleR = p12[p12_idx].content;           
               p12[p12_idx].content = updated; break 
      :: cnt < MAX_ROLE && ra[cnt].user != p12[p12_idx].category  → cnt++  
      :: cnt >= MAX_ROLE && ra_idx < MAX_ROLE 
                  → ra[ra_idx].user = p12[p12_idx].category;  
                       ra[ra_idx].roleR = p12[p12_idx].content;  
                       p12[p12_idx].content = added; ra_idx++; break 
      :: ra_idx >= MAX_ROLE 
                  → printf("Exceed maximum role"); 
                       p12[p12_idx].content = error; break  
od; 
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firings. The correctness of the translation is justified based on translation completeness 

and behavior consistency between two models.  

5.3.1   Completeness  

Definition 5.3.1 Given a multi-agent net MAS and a translated PROMELA program 

PROG, the translation from MAS to PROG is complete if all net entities and net elements 

in MAS are covered by associated language constructs in PROG.   

(1) Completeness of net entity translation 

Lemma 1. Given a multi-agent net MAS and a translated PROMELA program PROG, a 

net entity translation is complete if, ∀ 𝑁 ∈ 𝑀𝐴𝑆 such that, there exists a process proctype 

N( ) in PROG.   

Proof. Based on net entity translation rule e.1, a skeleton process is faithfully created for 

each net entity in MAS. Therefore, PROG covers all entities in MAS. 

(2) Completeness of net element translation 

Lemma 2. Given a net entity N in MAS and its associated process 𝑁( )  in PROG, 

where  𝑁 = (𝑃,𝑇,𝐹) , a net element translation of N is complete if, net elements 

𝑃,𝑇,𝐹 and their static semantics 𝜑, 𝐿,𝑅, 𝑎𝑛𝑑 𝑀0  are properly mapped to associated 

PROMELA statements in process 𝑁( ). 

Proof. Rule p.1~p.3 and t.1~t.4 cover all net element translations of net N given that (i) 

for all places p in P such that, 𝜑(𝑝), 𝐿(𝑝, 𝑥) 𝑎𝑛𝑑 𝑀0(𝑝) are translated by applying rule 

p.1~p.3; and, (ii) for all t in T such that, R(t) is translated by applying rule t.1~t.4. Thus, 

the process 𝑁 ( ) covers all syntactic and static semantics definitions of a net entity N.  
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(3) Completeness of multi-agent net translation 

Lemma 3. Given a multi-agent net MAS and a translated PROMELA program PROG, a 

multi-agent net translation is complete if,  ∀ 𝑁 ∈ 𝑀𝐴𝑆 , there exists a process 

𝑝𝑟𝑜𝑐𝑡𝑦𝑝𝑒 𝑁( ) in PROG such that, 𝑁( ) covers the syntactic and static semantics of N.   

Proof. Given Lemma 2, the net element translation rules can be applied to all N in MAS. 

Thus, PROG is a complete translation of multi-agent net MAS. 

5.3.2   Consistency 

The dynamic behavior of a PrT net depends on the initial marking, instantiation of 

tokens and the definition of transition constraints. That is, the variation of the initial 

marking and instantiation of data tokens result in different execution sequences at runtime 

based on the same transition constraints. Therefore, the behavior consistency of two 

models in the translation is justified based on the same initial marking.  

Definition 5.3.2 Given a multi-agent net MAS and a translated PROMELA program 

PROG, MAS and PROG are behavior consistent if, 

(i) For every net entity N ∈ MAS, there is a process N( ) in PROG preserves the dynamic 

semantics of N. 

(ii) For every transition t in T of the net entity N ∈ MAS, there is an atomic language 

construct E in the process N( ) in PROG such that, E preserves the semantics of R(t).    

Lemma 4. Given a transition t with R(t) = pret ∧ postt in N, and its associated language 

construct E = pre-statements-t → post-statements-t in process N( ); E is semantically 

consistent with R(t) if, for a firing M[t/𝛼>M’ in N there exists an execution s E s’ in N( ) 

such that M ⟺ s and M’⟺ s’. 
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Proof. If E is executable under state s in the process N( ), then pre-statements-t must be 

true; the execution of E under state s results in state s’. By rule t.2~t.4, (i) pre-statements-

t is a mapping of pret in R(t) implies M ⟺ s; and, (ii) post-statements-t is a mapping of 

postt in R(t) implies M’⟺ s’.  

Lemma 5. Given a net entity N ∈ 𝑀𝐴𝑆, and a complete translation process N( ) in PROG 

from N, N( ) is semantically consistent with N if, for any firing sequence 𝜎 in N starting 

from the initial marking M0, there exists an execution sequence e starting from the initial 

state s0 in N( ), such that 𝜎 ⟺ 𝑒 when M0 = s0. 

Proof.  

(1) By Lemma 4, a firing 𝜎 = M0t0M1 of transition t0 under the initial marking M0 in N 

implies that there is an execution e = s0E0s1 under the initial state s0 in N( ) such that, 

M0 ⟺s0 and M1 ⟺s1; thus, e is semantically consistent with 𝜎.      

(2) By (1), e is semantically consistent with 𝜎 for the case 𝜎 = M1t1M2 and e = s1E1s2 

such that, M1 ⟺s1 and M2 ⟺s2. It immediately follows that e is consistent with 𝜎 for 

the case 𝜎 = M0t0M1t1M2 and e = s0 E0s1E1s2, since M1, s1 are the derivatives of M0, s0 

and M2, s2 are the derivatives of M1, s1 respectively.  

(3) By (1) and (2), for an execution 𝜎 = M0t0M1t1M2….Mk-1tk-1Mk starting from the initial 

marking M0 in N, there is an execution e = s0 E0s1 E1s2… sk-1 Ek-1sk starting from the 

initial state s0 in N( ) such that, 𝜎 and e are consistent given that  M0 ⟺ s0, M1⟺ 

s1, …, and Mk⟺sk. 
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(4) Based on the same initial state, other executions are proved by (1), (2) and (3). Thus, 

given a net entity N and a complete translation process N( ) from N, N( ) preserves the 

semantics of N. 

By Lemma 1 through 5, the correctness of this translation approach transforming the 

formal MAS model to a concrete model in PROMELA is proved.   

5.4 A Translation Example 

Figure 31 shows a formal MAS model specifying a disaster mitigation system called 

BCIN (Business Continuity Information Network) [89]. Based on our previous study [90], 

BCIN employs a role-based access control for system resources. Each role has a distinct 

behavior model. The BCIN net shown in Figure 31 is the formal model to visualize the 

control of resources in BCIN. The semantic definitions for BCIN net are shown in 

Appendix A4. BCIN net is transformed to a PROMELA program by applying the 

translation rules defined in the previous sections. The resulting BCIN net consisting of one 

system net and four agent nets, has 28 transitions (excluding boundary transitions), 31 

places and 16 communication channels.  

The translated PROMELA model contains 237 lines of codes, including five processes: 

(1) the system net; (2) supervisor role (S_NET); (3) observer role (O_NET); (4) primary 

contact role (P_NET); and, (5) participant role (PR_NET). The PROMELA model for the 

BCIN net is shown in Appendix B.  
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Figure 31. The BCIN net.  

5.5 Model Analysis 

Two types of correctness claims are considered in model checking the formal MAS 

model: (1) safety properties; and (2) liveness properties. A safety property defines an 

invariant that the model must always satisfy. A liveness property states that something 

good does happen on executing the model. Given a transformed PROMELA model, and 

correctness claims given in LTL, the model checker SPIN either proves that such claims 

are impossible or it provides examples of behaviors that match the claims. There are 

several ways to encode correctness claims in PROMELA. This section discusses how a 

transformed formal MAS model can be analyzed by the model checker SPIN.  
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5.5.1  Encoding System Properties in PROMELA 

In SPIN, correctness claims are used to formalize erroneous system behaviors. The goal 

is to decide whether design requirements could possibly be violated [38]. There are six 

basic constructs in PROMELA to specify correctness properties:  

(1) Basic assertions; an assertion statement is a correctness claim, which asserts that the 

expression used in the statement cannot be false.  

(2) End-state labels; a meta-label indicating a valid end-state other than the default end-

state of a process. A default end-state is at the end of the codes of a process. 

(3) Progress-state labels; a meta-label marking the execution of some statement; they 

can be used to detect a non-progress cycle. 

(4) Accept-state labels; they are used to find all cycles that do pass through at least one of 

those labels; and, there should not exist any execution that can pass through an 

accept-state label infinitely often. 

(5) Never claims; they are used to specify either finite or infinite system behavior that 

should never occur. A never-claim is checked at each execution step of the model 

execution. 

(6) Trace assertions; they are used to formalize statements about valid or invalid 

sequences of operations that processes can perform on message channels [38]. All 

channel names referenced in a trace assertion must be globally declared, and all 

message fields must be globally known constants or mtype symbolic constants. 

Traces on monitoring rendezvous channels can only capture the occurrence of the 

receive part of a handshake, not of the send part. Receive events on rendezvous 

channels can be monitored with trace assertions, but not with never claims. 



104 

Let us look at some examples using the above constructs to encode the correctness 

claims of the BCIN net [90]. Since BCIN net models the resource control among agent 

nets, there are several important properties need to be ensured:  

(a) A user cannot access the system without a valid role assignment.  

(b) A user enacting a role can only perform the actions pre-assigned based on permission 

assignments.  

(c) A user can only play a role at one time. 

(d) For each request received by the system net, there will be a response to the agent net 

eventually.  

Property (a), (b) and (c) are considered as safety properties, which are required to be 

true at all times, and property (d) is considered as a liveness property. Safety properties 

can be encoded using basic assertions or never claims, while liveness properties can be 

encoded using meta-labels and trace assertions. These properties are translated into 

PROMELA codes as follows. 

Although the constraint formula: ∀r∈R.(r[1] ≠ u) defined in transition ‘UserOut’ 

(Appendix A4) enforces the elimination of  invalid user tokens, a system invariant can be 

defined to check whether or not the BCIN model satisfies property (a). For example, the 

constraint formula states that if the user has not yet been assigned a role (a member of the 

set of role assignment R), then the user cannot enter the system. Intuitively, all users in the 

system must be members of the set R. Therefore, the correctness claim can be defined as 

follows. 

Property (a) 
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 assert ( valid_user == ra[0].user || valid_user == ra[1].user || valid_user == 

ra[2].user ) 

The assertion states that a valid user must be one of the users that defined in the array 

data object ‘ra’ that stores valid role assignments. All possible user identities need to be 

enumerated in order to check if this correctness claim is satisfied. An assertion statement 

is the only type of correctness property that can be checked in the simulation mode in 

SPIN. The execution will stop at the point where the assertion fails. 

Another way to encode the correctness claim for this property is using a never claim. 

The property requires that a user cannot access the system without a valid role assignment; 

that is, at all time, users who are in sessions should be valid users.  In the PROMELA 

model for BCIN net (Appendix B), the array data object ‘session[act_idx].sname’ stores 

the user names in sessions. Therefore, when ‘session[act_idx].sname’ is not null, it has to 

be one of the member of role assignments stored in the array data object ‘ra’. Let 

proposition p denotes users in sessions, and proposition q denotes valid users. The 

property can be encoded into a LTL formula [] (p -> q), where  

 p is defined as: session[act_idx] != NULL, and 

 q is defined as:  

(session[act_idx].sname == ra[0].user || session[act_idx].sname == ra[1].user || 

session[act_idx].sname == ra[2].user || session[act_idx].sname == ra[3].user ) 

SPIN provides a built-in translator that translates a LTL formula to never claim 

statements. A property can be encoded in a LTL formula first, and then translated into 

PROMELA codes using the translator provided. The PROMELA statements generated 
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from the above formula is shown in Figure 32, which results in the verification report in 

Figure 33. 

In BCIN net, an actor is a valid user enacting a predefined agent role. An agent role is a 

role model with predefined permission assignments for accessing system resources. The 

constraint formula: ∃p∈P.(p[1] = a[2]) defined in transition AssignPA (Appendix A4) 

makes sure that an associated role model is available to be activated. To assure this 

property, a correctness claim can be defined as follows. 

Property (b) 

 assert (actor.roleR == pa[0].roleP || actor.roleR == pa[1].roleP || actor.roleR == 

pa[2].roleP || actor.roleR == pa[3].roleP) 

The assertion states that an agent role that an actor is enacting must be one of the 

predefined role models.    

A session constraint is enforced by the formula ∃ s∈ S.(s = u) in the constraint 

definition of transition UserOut. In the PROMELA model, an assertion statement “assert ( 

inSession == false)” asserts that a user can only have one session at a time.  

Property (c) 

The message channels in agent processes are declared as local message channels in the 

BCIN model. Since a trace assertion can only monitors global channels, this property can 

be checked simply using a progress label at a receiving message channel to make sure the 

agent receives the information from the server. For example, “progress: me?m” states that 

Property (d) 
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it is impossible for the system to execute forever without also passing through the labeled 

states.  In other words, the receive-message channel in an agent process should be visited 

infinitely often. 

 

Figure 32. The PROMELA codes for a never claim.  

#define p (session[act_idx].sname != NULL) 

#define q (session[act_idx].sname == ra[0].user || session[act_idx].sname == 

ra[1].user || session[act_idx].sname == ra[2].user || session[act_idx].sname == 

ra[3].user ) 

 

 /* 

  * Formula As Typed: []  (p  ->  q) 

  * The Never Claim Below Corresponds 

  * To The Negated Formula !([]  (p  ->  q)) 

  * (formalizing violations of the original) 

  */ 

 

never {    /* !([]  (p  ->  q)) */ 

T0_init: 

 if 

 :: (! ((q)) && (p)) -> goto accept_all 

 :: (1) -> goto T0_init 

 fi; 

accept_all: 

 skip 

} 
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Figure 33. The verification report for the never claim.  

(Spin Version 5.2.4 -- 2 December 2009) 
 + Partial Order Reduction 
 
Full statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 acceptance   cycles  + (fairness disabled) 
 invalid end states - (disabled by never claim) 
 
State-vector 234 byte, depth reached 174, errors: 0 
      148 states, stored 
       33 states, matched 
      181 transitions (= stored+matched) 
      452 atomic steps 
hash conflicts:         0 (resolved) 
 
Stats on memory usage (in Megabytes): 
    0.035 equivalent memory usage for states (stored*(State-vector + 
overhead)) 
    0.262 actual memory usage for states (unsuccessful compression: 
743.19%) 
          state-vector as stored = 1842 byte + 16 byte overhead 
    2.000 memory used for hash table (-w19) 
    0.305 memory used for DFS stack (-m10000) 
    2.501 total actual memory usage 
 
 
pan: elapsed time 0.002 seconds 
 
#endif 
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In summary, safety properties can be checked through never claims and basic 

assertions, while liveness properties can be checked through never claims, progress-state 

labels and trace assertions. One important liveness property in formal MAS models is that 

an agent’s request is eventually responded. This can be checked by using a progress-state 

label at the receive-message channel statement of an agent net. SPIN provides a translator 

for translating valid LTL formulas into never claims.  Note that, liveness properties deal 

with infinite runs. An infinite run only happens in a finite system if the run is cyclic [38]. 

SPIN checks liveness properties by identifying acceptance cycles [38]. Table 7 

summarizes the encoding rules.  

Table 7. Encoding system properties 

System Properties PROMELA statement 

System invariant: 
   
         [] p  

#define p ………. 

assert (p) 

Properties expressed in LTL: 

(1) [] (p -> q) 

(2) [] (p -> <> q) 

(3) <> [] p 

(4) [] (p -> <> q) 

(5) Other valid LTL formula 

#define p ………. 

#define q ………. 

never { 

………. 

} 

 

Liveness property: 

an agent net eventually  received  

the response   

……… 

progress: 

       me?msg; 

………… 
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5.5.2  Model Checking the MAS Model 

Table 8 shows the transformation statistics from the BCIN net to the PROMELA 

model. 

After generating the PROMELA model and desired correctness claims, the model is 

ready to be checked in SPIN. There are verification mode and simulation mode in SPIN. 

Usually, the model is checked in the verification mode first. If errors are found, execution 

trails can be examined step by step in the simulation mode. 

Table 8. Statistics of model transformation. 

The BCIN Net The PROMELA Model 

 5 individual nets 

(1 system net and 4 agent nets) 

 31 places 

 28 transitions 

(including 16 communication 

channels, excluding 

boundary transitions) 

 5 processes 

 237 lines of codes 

 328 execution trails generated 

(executing with some initial 

marking) 

 2.501 Mbytes of memory used 

(500 states per second) 

 

The BCIN model is used as an example running under XSpin version 5.2.3 based on 

the following initial marking (initial state):  

M0(User) = {<Emily>};  

M0(RAs) = {<David, observer>, <Alice, supervisor>, <Emily, contact>};  

M0(PAs) = {<observer, O_NET>, <supervisor, S_NET>, <contact, P_NET>, 

<participant, PR_NET>};  

M0(BCIN_Database) = {<advisory, Wilma>, <message, generator>}.  
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While the BCIN model is checked under the verification mode, agent nets are activated 

at different point in the PROMELA model to test the correctness of interactions between 

processes at runtime. In addition, unknown agent identities are also intentionally 

introduced at some points of the execution to test the exception handling of the 

PROMELA model. System properties (a), (b), (c) and (d) defined in the previous section 

are added in the PROMELA model and checked in both verification mode and simulation 

mode. While execution in verification mode, there was an error found as shown in Figure 

34. By examining the simulation trails and sequence chart, the errors from the verification 

report and some subtle errors in the PROMELA model can be found and fixed. The 

interaction of agent processes in the corrected BCIN model is shown in Figure 35.  

 

Figure 34. The verification output with non-progress cycle detected.   



112 

 

Figure 35. The sequence chart of agent interactions in a simulation run.  

5.6 Summary 

In this chapter, a methodology for analyzing formal MAS models is developed and 

presented. The objective is to provide a method to study the behavior of a given MAS 

model. The methodology is summarized as follows. 

(1) Translation rules are defined for model transformation from the formal MAS model 

to the PROMELA model, including the net entity translation rule that transforms a 

PrT net into a process skeleton in PROMELA, and net element translation rules that 

transform places and transitions into their associated PROMELA language constructs. 

(2) Given a nested PrT net model specifying MAS, an equivalent PROMELA model can 

be generated using the translation rules defined. 
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(3) Given the transformed PROMELA model, the correctness claims can be encoded for 

model checking, including safety properties and liveness properties. 

(4) The PROMELA model can be executed in the verification mode for checking desired 

properties. If there are errors, the model can be diagnosed under the simulation mode 

by examining the execution trails generated during verification.  

Based on this study, the transformed PROMELA model is fairly efficient in model 

analysis. However, there are two issues need to be considered for further automation of 

code generation from a formal MAS model to a PROMELA program. First, due to the 

complexity of transition constraints, manual modifications for transition translation may 

be needed after applying the translation rules. Second, since tokens at a place are 

structured data represented by an array data object, specifiers need to enumerate all 

possible substitutions to construct correctness claims.  

The methodology presented in this chapter provides a foundation for tool development. 

The future work is to automate model analysis based on the transformation technique 

developed. The idea is to use nested Petri nets as the modeling tool for behavior models at 

the front-end, and the model checker SPIN as the analysis tool at the back-end.   
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CHAPTER 6 

CASE STUDY 

 

This chapter discusses case studies in three different application domains. Section 6.1 

presents the case study of a wireless sensor network with mobile devices. Section 6.2 

introduces the case study of an e-market. Section 6.3 elaborates the modeling of a 

business continuity information network for disaster mitigation.  

6.1 Wireless Sensor Network with Mobile Devices 

 Recent wireless sensor network systems (WSN) integrate mobile devices to take 

advantage of the storage, communication ability and computation power of the mobile 

devices for gathering and sharing sensor data [34]. Since mobile devices constantly 

change their locations, the idea of sharing information through WSN with mobile devices 

is in a publish/subscribe pattern where the subscribers (some mobile devices) express the 

interest in some class of information and the publisher (some mobile device) picks up the 

information from a sensor at its current location and broadcasts the information to the 

subscribers. An information server is employed to manage group information of the 

mobile devices.  

A key idea of the coordination is that mobile devices share common interest (sensor) 

data within the same group or among different groups. The coordination mechanism is a 

form of publish and subscribe and provides a paradigm for organizing multiple mobile 

devices through an interest-management server, in which groups of mobile devices are 

formed based on the location of their interested information. Mobile devices that issue 

queries for sensor data are subscribers. The server manages subscribers' information but 
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does not directly publish sensor data; that task is actually done by mobile devices using a 

multicast mechanism that sends the shared data to a group address given by the server. 

The sensor nodes in WSN are divided into clusters according to their geographic 

locations and the information of clusters is kept in the server. Each cluster, identified by a 

unique cluster id, has a cluster head and the sensor data within a cluster is periodically 

sent to the cluster head, which serves as a communication point with entities outside the 

cluster. The entities involved in communication behaviors have been identified and 

shown in Figure 36.  The arrows denote the message flows. 

 
 

subscribe

Mobile
Device

Server

friendly update

group joiningCluster
Head

unsubscribe

pickup data

sensor data

gain publish

Group Address

fail

 
 

Figure 36. Message flows between the entities in a WSN with mobile devices. 

 
The WSN with mobile devices [91] is used as an example and modeled using the two-

level PrT nets defined in Chapter 3. Based on the communication relations in Figure 36, 

the mobile devices are modeled as agent tokens of a server net.  A mobile device can 

issue a query (subscribe), pick up sensor data, publish shared data, gain shared data and 
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unsubscribe. The behavior models of a mobile device and the server net are discussed in 

the following sections. 

6.1.1   The Interest-Management Server Model 

When the server receives a query request from a mobile device, there are some 

interactions between the server and the mobile device. The interaction scenarios are 

described as follows.    

(1) The server checks whether or not there exists some common interest group with an 

interest at current location of the mobile device. If there is an existing common interest 

group at current location of the requesting mobile device, a message containing the group 

address is sent back to the mobile device. The message includes the instruction for 

'friendly update', which is an action for the mobile device to pick up the sensor data from 

the relevant cluster head. After picked up the sensor data, the mobile device multicasts 

the data to the group address indicating in the message from the server.  

(2) Followed by the friendly update, the server adds the requesting mobile device to the 

identified common interest group(s) that have the same query region as the subscribing 

mobile device. In the case that no existing cluster region covers the query region, a failed 

message is sent to the mobile device. The mobile device can unsubscribe after getting the 

result. When the server receives an unsubscribe message, it removes the information of 

the unsubscribing mobile device. Table 9 summarizes the actions of the server. 

The following conventions have been used: (1) the model does not restrict the multiple 

subscriptions of the same group for the same mobile device; (2) it is assumed that the 

information required for multicasting is kept in the server, and the information is 

accessible during a multicast; (3) there is no action for a mobile device to temporarily 
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join a group to perform a friendly update; (4) the original query content is used as the 

unsubscribing message and assume that the group address described in the requirement is 

a unique and fixed value, such as a cluster id. Figure 37 shows the server's behavior 

model according to the information and control flows in Table 9. 

Table 9. The server’s actions. 

Actions Pre-conditions Post-conditions 

Subscribe 
Mobile device sends a 

query   
Query received  

Instruct friendly 

update 

Mobile device’s current 

location exist common 

interest sharing group.  

Sends a message to mobile 

device to instruct a friendly 

update at its current location. 

Group Joining 

Mobile device’s query 

region is covered at least by 

one cluster 

Adds the mobile device to the 

common interest sharing group 

(s) with the same query region 

and sends a joining message to 

the mobile device. 

Fail  
None of the cluster regions 

covered the query region. 

Sends a fail message to the 

mobile device. 

Unsubscribe 

Received the unsubscribe 

message from a mobile 

device 

Removes the information of 

the unsubscribing mobile 

device 
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Figure 37. The behavior model of the information server. 

 
Semantic Definitions of the Server net 

Token Types: 

)()3(
)()4()2(

)()1(
)(_

_

CLUSTERp
QUERYMobileNetpp

MobileNetp
MobileIDssGroupAddreregionClusterClusterIDCLUSTER

TimeToLiveregionQueryationCurrentLocMobileIDQueryIDQUERY

℘=
×℘==

℘=
℘×××=

××××=

ϕ
ϕϕ

ϕ  

Note that, QUERY and CLUSTER are Cartesian product of predefined data types, which 

define the contents of a query, and the subscribed information about common interest 

groups, respectively. Query_region and Cluster_region are of the same type that can be 

used to represent a set of coordinates, which define the covered region of a query and the 

cluster region, respectively. The MobileNet is the net token defined by a mobile device 

net. 
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Transition Constraints: 

])2[]4[]4[']4[]2[.(?)(
'_']!2[)]4[]2[.()(

)],3[],2[(]!2[])2[]4[]4[']4[]2[.()]4[]2[.()(
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Note: transition subscribe is fireable when a matched output channel n in other net is 

ready. Transition f_update is enabled if mobile device q[2]’s (an id) current location q[3] 

is in cluster region c[2] and a non-empty set c[4] of mobile devices subscribed to cluster 

region c[2]. After firing, the friendly update message is sent through the channel. 

Transition join add mobile device id q[2] to the set of subscribed mobile devices c[4]. If 

query region q[4] is not covered by any cluster region c[2] in C, transition fail will fire 

and a failing message is sent through channel q[2]. Transition unsubscribe removes the 

active query token and its subscribed information.  

6.1.2   The Mobile Device Model 

A mobile device communicates with the user, server, other mobile devices and cluster 

heads. First, a user may generate a query through the interface on the mobile device when 

he/she needs information. Then, the mobile device sends a query request message to the 

server for subscription. Various actions may be taken according to the responding 

message from the server. If a friendly-update instruction message is received, the mobile 

device has to pick up the sensor data from the cluster head at current location, and 

publishes the data to a group address indicating in the friendly-update message. Upon 

receiving the group-joining instruction message and by the expiration of Time-To-Live 

time frame, the mobile device may receive the data through other mobile devices.  
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Table 10. A mobile device’s actions. 

Actions Pre-conditions Post-conditions 

input query 
The user of the mobile 
device needs information 

A query is generated containing 
query id, mobile id, current 
location, query region and 
Time-To-Live(valid time)  

Subscribe 
A query message is ready to 
send to the server. 

Waits for the reply from the 
server. 

friendly update 
The server instructs a 
friendly update  

Get the friendly update message 
and ready to pickup data from 
the cluster head in current 
region  

join 
Server has sent a group-
joining message 

(1) received sharing data from 
group members, or 

(2) picks up the sensor data 
directly by itself 

(3) performs direct injection to 
acquire the data and 
publishes 

Fail  
Server has sent a failed 
message  

Outputs the error message to the 
user 

Gain 
Cluster data is published by 
group members 

Got the data and ready to 
unsubscribe 

Publish 
Sensor data has been picked 
up. 

Published the data and ready to 
unsubscribe 

Direct pickup 
Current location is inside 
the query region 

Interact directly with cluster 
head to acquire sensor data 

Direct injection 

Current location is not in 
the query region and the 
valid time for the query 
is about to expire and no 
sharing data is available 

Request sensor data from query 
region cluster head remotely 
through sensor network 
routing 

Unsubscribe 
Received the data and sends 
an unsubscribe message to 
the server 

Outputs the data to the user 
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In other case, if the mobile device traveled to the same region with its query region 

before receiving the interested data through group sharing performed by the other mobile 

devices, it can pick up the sensor data itself and share the data with the members in the 

same group. If no such group sharing event happens when the time of a valid query is 

going to expire, i.e., no one in the same group ever reached the query region or no 

friendly update is performed, the mobile device will perform the ‘direct injection’, which 

is a way of getting the sensor data from the query region through sensor network routing. 

After received and published the data, the mobile device can unsubscribe from the server. 

The data received by the mobile device is properly extracted and displayed on the 

interface of the mobile device for the user. Table 10 shows the actions of a mobile device. 

Based on the actions listed in Table 10, the behavior model of a mobile device is 

developed and shown in Figure 38. Figure 39(a) shows the group address multicast 

behavior model, and 39(b) shows the cluster head’s behavior model. It is assumed that a 

mobile device knows its location through the GPS (Global Positioning System) or other 

localization techniques. Place p8 in Figure 38 keeps the mobile device’s id and its current 

location. Place p2 in Figure 39(a) refers to the same database as place p3 in Figure 38, 

which is assumed to be accessible during a multicast. In the model, the content of the 

responding message from the server contains the query information.  

Semantic Definitions of Mobile Device’s PrT Model 

Token Types: 
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Note: QUERY, Cluster_region and Query_region are of the same type as defined in the 

server’s behavior model. QueryID, MobileID, CurrentLocation, TimeToLive, 

GroupAddress and DATA are predefined data types.  

Transition Constraints: 
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Note: ε is a predefined and small constant value, which is determined by the designer to 

enforce the firing of the transition. Transition input query and output data are boundary 

transitions for user interface. Transition positioning is the boundary transition that has the 

function of obtaining the current location (coordinates) of the mobile device. Transition 

subscribe is enabled whenever there is token r available from the input place p1 and a 

matched input channel S in the server net is ready. Transition f_update, join and fail are 
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unconditionally ready for firing whenever output channel S in the server is ready to 

output messages. Transition gain is unconditionally ready for fire whenever output 

channel ga from group address multicast is ready to broadcast messages. Transition 

publish is ready for firing when sensor data s is received through transition sensor data in 

through input channel cr. Transition direct pickup is enabled if current location cl[2] is in 

query region cr. After firing, a message is sent through output channel cr to the cluster 

head to request data. Transition direct injection is enabled if current location cl[2] is not 

in the query region and the time to live q[5] is going to expire within ε. Transition 

unsubscribe is enabled if query q is finished and data d is available in p6. After firing, 

data d is output to p7 and query q is sent through output channel S to the server to be 

removed from subscribed information. 
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Figure 38. The mobile device's behavior model. 
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Figure 39. (a) Group address multicast (b) Cluster head data communication  

Semantic Definitions of Group Address Multicast’s PrT Model 

Token Types: 
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Semantic Definitions of Cluster head Data Communication’s PrT Model 
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6.1.3   A Query Request Scenario 

Let us look at a simple scenario based on the behavior models defined in previous 

sections.  
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A campus WSN system with information-management server keeps the information of 

three cluster regions: library, cafeteria and gymnasium. The students on campus are 

usually interested in the conditions of these locations (for example, available space in the 

library). There are four students, John, Mary, Peter and Eric with their own mobile 

devices, and they are at different locations on campus. John and Mary are currently at the 

library; Peter is at the cafeteria and Eric is at the gym. Eric finished his workout and is 

heading to the cafeteria but wondering if the cafeteria is crowded or not. So Eric sends a 

query request through his mobile device to subscribe for information about the cafeteria. 

In the meantime, John and Mary finished their study at the library and are also heading to 

the cafeteria for lunch; they have sent query requests and subscribed for the information 

about the cafeteria. Peter has finished his lunch at the cafeteria and is heading to the gym. 

He subscribed the information for the gym. As such, two different common interest 

groups have been formed based on the interested regions: (1) John and Mary for the 

cafeteria, and (2) Peter for the gym. Eric's query request scenario is used as an example to 

demonstrate the interaction behaviors between Eric and the server. Let the current 

marking M0 of the server for the above scenario be the following: 

M0 (p1)={John, Mary, Peter, Eric} 

M0 (p2)= ∅   

M0 (p3)={(1, library, 1, ∅ ), (2, cafeteria, 2, {md1,md2}), (3, gym, 3, {md3})} 

M0(p4)={(John, q1, md1, library, cafeteria, 10),  (Mary, q1, md2, library, cafeteria, 10), 

(Peter, q1, md3, cafeteria, gym, 10)} 

For simplicity, only Eric's mobile device net is demonstrated in which there are 

interactions with the server, the group address multicast and the cluster head. Initially, 
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only place p8 has tokens, which stores the mobile ids and the current location of the 

mobile device. After Eric sent a query request through the mobile device's interface, a 

query request message containing the information of a query id, a mobile device id, the 

current location, the query region and a maximum waiting time for the query is 

generated. That is, there is a token q = {q1, md4, gym, cafeteria, 10} has been generated. 

Since the server is ready to input message through transition ‘subscribe’, together with 

the transitions ‘subscribe’ in the mobile device net,  a synchronized communication 

occurs as a result of firing a pair of matching transitions. After firing the matching 

transitions, the server received the query request. That is, the token {Eric, q1, md4, gym, 

cafeteria, 10} is output to p2 in both nets. This query simply says that the mobile device 

md4 is interested in the information of the region cafeteria; and its current location is 

gym; and, this query is valid only within 10 seconds after the query is sent. The mobile 

device is ready to join a common interest group. 

Next, the server checks if there exists a common interest group in mobile device md4's 

current location gym. Refers to place p3, which holds the information of subscriptions 

and regions in the server net, there is a common interest group indicating cluster id '3', 

which is the region gym, linking a group address '3' and mobile device id 'md3'. The 

server then responds with the friendly update message containing {gym, 3} through 

output channel ‘md4’, which is the communication channel to Eric's mobile device. The 

mobile device's input channel ‘f_update’ simultaneously receives that message. Eric's 

mobile device then requests the sensor data through the communication channel ‘direct 

pickup’ with the cluster head at the situated region. As soon as it got the response through 

‘sensor data in’ from the cluster head, the mobile device publishes the data to the group 
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address ‘3’ through the firing of transition ‘publish’ in Figure 38. The shared data is sent 

through a multicast, and the mobile device ‘md3’, which is Peter, will receive the data. 

After instructing a friendly update, the server adds Eric's mobile device to the group of 

region 'cafeteria' through a simultaneous firing of transition 'join' in Figure 37 and Figure 

38. Eric’s mobile device received the group joining message containing {cafeteria, 2}, 

indicating that he has joined in the group address ‘2’ in region cafeteria. After Eric joined 

the group, Mary happens to arrive at the cafeteria and gets the information of the cafeteria. 

She publishes the information for sharing to group address '2'. All the mobile devices in 

the same group, John and Eric, received the information of the cafeteria through input 

channel 'gain'. After Eric received the data, he sends an unsubscribing message through 

transition 'unsubscribe' with output channel S to server. Server receives the message and 

removes Eric's subscription information. The firing sequence of the mobile device net 

regarding Eric's query request is as follows. 

M0 [input query> M1 [subscribe> M2 [f_update> M3 [direct pickup> M4 [sensor data in> 

M5 [publish> M6 [join> M7 [gain> M8 [unsubscribe> M9 [output data> 

  
The firing sequence of the server net regarding Eric's query request is: 

M0 [subscribe> M1 [f_update}> M2 [join> M3 [unsubscribe> 
  
The firing sequence of the group address multicasting net and the cluster head net regards 

to Eric's query request is: 

M0 [receive> M1 [send> 
  
The corresponding pairs of communication channels are listed in Table 11. 

Let the firing sequence of Eric's request query be the sequence called ReqSeq, the 

transition firings of these nets be represented in the order of [server net, mobile device 
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net, group address multicast net, cluster head net], and λ  be no transition firing in the 

net. The concurrently firing sequence ReqSeq of these nets regarding Eric's request query 

is as follows.  

ReqSeq = [λ , input query, λ , λ ], [subscribe, subscribe, λ , λ ], [f_update ,f_update, λ , 

λ ], [λ , direct pickup, λ , receive], [λ , sensor data in, λ , send],  [λ , publish, receive, 

λ ], [join, join, λ , λ ], [λ , gain, send, λ ], [unsubscribe, unsubscribe, λ , λ ], [λ ,output 

data, λ , λ ] 

Table 11. Communication channels. 

Server Mobile Device Group 
Multicast 

Cluster 
head 

Subscribe(in) Subscribe(out)   

F_update(out) F_update(in)   

Join(out) Join(in)   

Fail(out) Fail(in)   

Unsubscribe(in) Unsubscribe(out)   

 Publish(out) Receive(in)  

 Gain(in) Send(out)  

 Direct 
pickup(out)  Receive(in) 

 Sensor data in(in)  Send(out) 

 Direct 
injection(out)  Receive(in) 

 

6.1.4   Discussion 

 During this study, the applicability of two-level nested PrT nets is examined in 

modeling various aspects of an agent – autonomy, reactivity, pro-activeness, sociability, 
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and mobility. It is worth noting that, through this case study [91], I found the usefulness 

of formal modeling, which forces me to explicitly deal with all hidden assumptions and 

missing requirements. The messages and control flows between mobile devices and the 

server can be nicely modeled using two-level nested PrT nets. However, WSN involves 

low level communication mechanisms, such as the multicast. Although, the broadcasting 

of messages can be specified by a first order logic formula indicating all agent members, 

the details of low-level communications have to be abstracted away, such as identifying 

current coordinates (locations) of a mobile device. 

6.2 E-Market 

 In the e-market study [36], an Interaction Model is defined to handle the coordination 

behaviors of a set of possible agent conversations in an e-market. A Conversation is an 

execution sequence, which is initiated by a requestor and ended with a successful 

commitment or terminated by a failure resulted from any participant that is engaged in 

the conversation. In a typical e-market, there are buyers and sellers engaging in some 

high-level negotiations for the goods.  

Let us consider a simple conversation scenario at an e-market where seller and buyer 

auctioning goods. The conversation is in a format as: sender: communicative act, 

message content and receiver. An example of conversations is as follows. 

Seller: request, ‘sell book 30’, broker 

Broker: agree, ‘posted book 30’, seller 

Buyer: request,’ buy book 25’, broker 

Broker: inform, ‘sell book 25’, seller 

Seller: commit, ‘commit book 25’, broker 

Broker: inform, ‘buy book 25’, buyer 
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Buyer: commit, ‘commit book 25’, broker 

A higher level of abstraction is used to represent the message for demonstration 

purpose. The negotiation process about the transaction of a payment and the shipping 

detail between a seller and a buyer is abstracted away, since it is not relevant to the 

coordination behavior. The conversation starts from a request of a seller who wants to 

sell book for 30 dollars, the broker agreed with the request and posted the information. 

The buyer sends a request to the broker for buying the book. The broker informs the 

seller that there is someone wants to buy the book for 25 dollars and the seller agreed 

with the price. The broker informs the buyer and the deal is committed by the buyer. 

First of all, there are three entities engaged in the conversation: a broker, a seller and a 

buyer. The broker is served as the coordinator thus modeled as the higher level host net, 

which provides the information service of auctioning goods. The buyer and seller are 

participants in the activity of auctioning goods, therefore modeled as agent nets at the 

lower level. According to the conversation scenario, the communicative acts in verb 

represent actions. These actions are transformed into transitions. For example, the seller 

has ‘request’ and ‘commit’ actions, which imply proactive and reactive behaviors, 

respectively. The actions should be linked to a message outgoing place. After received a 

message, a seller’s decision logic decides which action to be taken according to its local 

knowledge and policy. The seller’s, buyer’s and the broker’s interaction model are shown 

in Figure 40 and Figure 41, respectively . 
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Figure 40. The seller’s and buyer’s interaction model. 
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Note: type MESSAGE is a Cartesian product of predefined type which can represent 

message id, sender id, action, price and receiver id. PRICE is a preset price defined by an 

integer. 
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Note: transition ‘receive’ and ‘send’ are used to input and output messages through 

communication channels. Transition commit is enabled when there is a previous request 

exists in place p5 and a response message for that request is also available. If the message 

content cannot be identified, the message is discarded through transition ‘fail’. Transition 

‘set request’ inputs message tokens from outside of the model. Transition ‘reasoning’ 

decides which action to be taken based on the received message. The initial marking M0 

sets a message token with message id #1, sender agent id a1, book price 30 dollars, 

minimum acceptance price 25 dollars, and receiver id s1. 

sendreceive
p2

commit

inform

p1

p3

p4

participate unparticipate

im

im

om

omD’

D

D

a a

D D’

im

agree

a a

im om

 

Figure 41. The broker’s interaction model. 
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Note: type MESSAGE and DIRECTORY are of the same type that is defined in the agent 

model. Type AGENTNET defines the net tokens. 
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Transition Constraints: 

)''']3[]1[]1[.()(
]2[]5[]4[]4[]3[]3[

]5[]2[]1[]1[]1[]1[.()(inf
])2[]5[]4[]4['']3[]5[]2[
]1[]1[)']1[]1[.(()(

!]5[)(
?)(

imDDcommitimdimDdcommitR
domdomdom

domdomimdDdormR
imomimompostedomimom
imomimDDimdDdagreeR

omaidomaidsendR
imaidreceiveR

−=∧=∧=∈∃=
=∧=∧=

∧=∧=∧=∈∃=
=∧=∧=∧=

∧=∧∪=∧≠∈∀=
∧==

=

 

Note: transition ‘receive’ and ‘send’ are used to input messages and output messages 

through channels respectively. Transitions ‘participate’ and ‘unparticipate’ allow agent 

nets enter and leave the system. Transition ‘agree’ sends a message for a successful 

posting back to agents. Transition ‘inform’ notifies agents that there is a matched deal. 

When the deal is committed, the information is deleted from the directory through 

transition ‘commit’.   

6.2.1   Discussion 

In this case study, a higher level of abstraction is used to describe the negotiation 

mechanism to avoid unnecessary redundancy in message interpretation. However, e-

market involves intensive context-based interactions, which result in a too fine-grained 

abstract model that introduced additional complexity for model analysis. 

There are several major research issues to be solved. First, an agent’s decision logic 

decides the degree of autonomy and the behavior of how an agent should react to external 

events. The decision logic largely depends on the knowledge base of the agent. Thus, 

knowledge representation in a Petri net model is a challenging issue. Second, all entities 

have to speak the same language in order to understand each other and the content of the 

exchanged information, which is usually domain specific. Third, message exchange in 
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multi-agent systems is often asynchronous, i.e. agents may not need to respond 

immediately or wait for responses. However, there may still be some temporal 

dependency among agent tasks. Fourth, some of the methodologies for MAS design used 

an organization view; for instance, the work in [42]. It is possible for an agent to be 

assigned more than one role based on requirements. 

6.3 Disaster Mitigation 

 Disaster management has been one of the major application areas for multi-agent 

systems due to its socially significant nature. Heterogeneous agents are engaged in an 

emergency scenario [9, 10, 11, 12, 89, 92]. The major concerns are resource management 

and emergency response among distributed agents.  

In this case study [90], the multi-agent modeling approach is applied to a Business 

Continuity Information Network (BCIN) [89], which is aimed to prepare private sectors 

for a rapid recovery after major disasters. Since BCIN employs a role-based access 

control, the agent-oriented approach is used to model the interactions between agent roles 

and the BCIN system. At current stage, BCIN system supports static information sharing, 

including (1) the advisories from public agencies, and (2) the resources provided by 

private sectors. Yet, the interdependencies between recovery plans and the resources 

from private sectors were not studied. The availability of resources is rather dynamic in 

the aftermath of a disaster, and affects the feasibility of recovery plans. The objective of 

this work is to provide a dynamic model to study the interdependencies of activities and 

the dynamics of resource consumptions in BCIN prior to deployment to ensure system 

dependability.   
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We consider BCIN system as a coordination model to accommodate multiple agents 

in a multi-agent system context. BCIN currently employs a role-based access control 

(RBAC) mechanism [93]. Some use case scenarios are as follows. 

Scenario 1: David, a member from EOC (Emergency Operations Center), intends to get 

the most up-to-date information about Hurricane Wilma, which has been announced as a 

category one hurricane. The advisory for Wilma has been published and is available in 

BCIN. 

Scenario 2: Alice, a supervisor from Hardware Depot for emergency response, intends to 

assign John as the primary person to publish the resources provided by their company.  

Scenario 3: Eric, the supervisor of EOC, is going to publish a new advisory for an 

incoming hurricane. 

Scenario 4: Emily, a primary contact for emergency response from Shop Mart, has 

entered BCIN system and read information about resources provided by other companies. 

She decided to send a message to Hardware Depot, which has three power generators 

available. Shop Mart needs the generators for frozen foods.     

  For simplicity, this case study only demonstrates the above scenarios instead of all 

possible scenarios. However, the above scenarios are typical examples in accessing 

information in the BCIN system. The actors and their associated actions are listed in 

Table 12 based on the above scenarios.   

Here, an actor is an external entity that interacts with the system. Each actor plays a 

different role regarding system access. That is, each role has different permission 

assignments (PAs) [93], which describe the operations that a role can perform in the 

system. To this end, an actor is modeled as an agent net, and BCIN system as the system 
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net that accommodates agents. In the following sections, the steps for generating agent 

nets and the system net with communication channels are introduced. Modeling examples 

based on the above scenarios in the BCIN system are given as well. 

Table 12. Actors and their associated roles and actions. 

Actors Roles   Actions 

David Company Observer read information 

Alice Company Supervisor assign roles  

John Company Participant publish resources 

Eric EOC Supervisor publish advisories 

Emily Primary Contact send messages 

 
6.3.1   Modeling Interactions in an Agent Net 

The behaviors related to permission assignments are considered as an interaction 

aspect of an agent net. An interaction aspect addresses the sociality of an agent and is 

called a role model. Since the information stored in BCIN database is organized based on 

categories, a typical flow of event for an action in a role model is: (1) send a 

request(action, x, criteria) to trigger the system process action regarding category x based 

on the criteria, and (2) get the result of action from a receive(action, x, result). A ‘request’ 

denotes an outgoing data flow to the system, while a ‘receive’ denotes an incoming data 

flow from the system.  

Formally, a role model RM with the net structure (PRM, TRM, FRM) is a PrT net, which 

models the interaction aspect of an agent net. The set of permission assignments PAs of 

an RM defines the set of operations OP, where each op∈OP is either a request(action, x, 

criteria) or a receive(action, x, result) operation. A request operation involves an 

outgoing data flow to the system, and a receive operation involves an incoming data flow 
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from the system. The set of transition Top ⊆ TRM models the set of OP in an RM. As a 

result, a role model RM with communication channels can be generated based on the 

algorithm in Figure 42. 

. 

Figure 42. An algorithm for generating a role model.  

Example1: A PrT net for a supervisor role model. 

Let us look at an example to build a role model for a supervisor role by applying the 

algorithm in Figure 42. Based on Table 12, the operations permitted for a supervisor role 

are read information, publish advisories, and update role assignments. Therefore, the 

1: set Top =∅ ; 

2: ∀op∈OP  

      { top = action; 

 Top  = Top ∪ top ; 

add top and top and associated arcs; 

∀𝑝 ∈ (𝑡𝑜𝑝  ∪  𝑡𝑜𝑝), define φ(p); 

define Ru(top); 

/* Ru(top)∈R(top) is a non-communication constraint  */ 

label each arc of top with sort-respecting variables; 

  if action∈request { 

Rc(top) = S!x; 

 /* S is the system id, x∈L (top, p) and p∈top */ 

 R(top) = Ru(top) ∪ Rc(top); } 

if action∈receive { 

Rc(top) = S?e;  

 /* S is the system net id, e∈L (p, top) and p∈top */ 

 R(top) = Ru(top) ∪ Rc(top); } 

 } 
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action in request(action, x, criteria) is instantiated and results in request(Read, x, 

criteria), request(Publish, x, criteria), and request(Assign, x, criteria). 

For simplicity, only action Return is used in operation receive(action, x, result). As a 

result, the set of operations OP is defined as {request(Read, x, criteria), request(Publish, 

x, criteria),  request(Assign, x, criteria), receive(Return, x, result)}. The denotation of an 

op is not restricted, however should be differentiated in terms of the direction of an 

information flow. For example, all operations in OP denoted as request/receive can be 

denoted as output/input instead. After OP is defined, a PrT net for the supervisor role can 

be generated based on the algorithm in Figure 42. The resulting net structure for a 

supervisor role is shown in Figure 43, where relevant semantic definitions are given in 

Appendix A3. Note that, two boundary transitions (with no input or output places) ‘Input’ 

and ‘Output’ are added to denote the interfaces of the role model for non-interaction 

aspects. 

Non-interaction 
aspects

start

waiting

Read 

Input 

Returnresult

Output

Publish e

x

e

e

e

S_NET

x

e

eAssign e

e

x

 

Figure 43. A role model for a supervisor role.  

6.3.2   Modeling Interactions in the System Net 

The system net has three major components in order to accommodate multiple agents; 

namely access controls, communications and resource controls. Access controls address 
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the security aspect of the system, while communications and resource controls address 

the coordination among agents.  

a. Modeling Role-based Access Control 

From a system view, each user has to be assigned a role for the purpose of access 

control. Based on Table 12, each user plays a different role. However, it is possible that 

different users play the same role and one user plays more than one role at the same time. 

Therefore, a role is considered as a pattern of interactions within the system. A role 

assignment happens at runtime, that is, a user becomes an actor enacting a role given by 

the system after successfully started a session. To this end, the strategy is to keep a net 

template for each distinct role in a repository. A net template is the behavior model of a 

role interacting with the system, and is activated while a valid user enacting the role. This 

strategy not only conforms to the agent-oriented design, but also allows the adaptation of 

interaction behaviors at runtime. Net templates can be built for every distinct roles based 

on the algorithm described in Figure 42. Activated role models are executing 

concurrently. In other words, the role models that are activated from the same template 

(users enacting the same role) have different markings (states).  

Formally, a RBAC model is a tuple (RAs, PAs, Sessions, AssignRole, AssignPA), where 

RAs is a set of U×R relations of users U and roles R, PAs is a set of R×RM relations of R 

and role model RM, Sessions is a set of user sessions represented by U×R, AssignRole: 

U→R, is a function that maps a user in U to a role in R, AssignPA: R→RM is a function 

that maps a role in R to a role model RM. Each element in the RBAC model is mapped to 

an appropriate net element; for example, RAs, PAs, Sessions are modeled as places and 

the functions are modeled as transitions (see RBAC in Figure 31), where transition 
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AssignRole assigns a valid user a role based on predefined RAs, and transition AssignPA 

assigns PAs by activating an associated role model from net templates. Activated role 

models (net tokens) are kept in place Activated with their identifications. Note that 

boundary transitions UserIn, UserOut, ActorOut and End are added to generate or 

eliminate tokens. A session constraint [93] is enforced by the formula: ∃s∈S.(s = u) in 

transition UserOut to eliminate an invalid user token that has an active session in place 

Sessions. Relevant dynamic definitions can be found in Appendix A4. 

b. Modeling interactions and resource controls 

In the system net, a typical interaction sequence of an operation is: (1) an agent net 

sends the request for an operation (incoming information flow); (2) the system net 

performs the operation requested (resource controls); and, (3) the result is sent back to the 

agent net (outgoing information flow). The information flows involved in the above 

sequence are modeled by a pair of transitions with input/output channel commands to 

address the interactions with agent nets. Let the set of operations OPs denotes the 

resource controls in a system net S; a RC net with net structure (Prc, Trc, Frc) models the 

data and controls of an operation op∈OPs, and there exists a pair of transition tin and tout 

model the input and output channel respectively, where tin∈Trc and tout∈Trc. The 

algorithm in Figure 44 describes the steps to build a RC net that models an operation op.  

Example 2: A PrT net for operation ‘read’ in system net. 

For simplicity, a transition readDB and a pair of input place and output place are used 

to model data access against BCIN database (resource controls). Input channel transitions 

‘Read’ and output channel transition ‘returnR’ are added to address the data flows 
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from/to agent nets. The net structure for operation ‘read’ is shown in Figure 45. Note that 

a transition with a channel command in the system net has an input and an output places 

that hold agent net tokens, which can be instantiated for interactions. For example, places 

Activated and p1 stores the agent net tokens to enable input and output channel transitions 

Read and returnR when interactions are desired. Detailed constraint definitions are 

elaborated in Appendix A4. 

 

Figure 44. The algorithm for generating a RC net. 
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Figure 45. A resource acquisition operation. 

1: define Prc, Trc and Frc for operation op∈OPs.  

2: for all p∈Prc define φ(p); 

3: for all t∈Trc define Ru(t); 

4: for all f∈Frc define L; 

5: add an input channel tin to Trc; 

    define tin, tinand associated arcs;  

    define Ru(tin); 

    Rc(tin) = a?x;  /* a is the agent net id */ 

    R(tin) = Ru(tin) ∪ Rc(tin);  

6: add an output channel tout to Trc; 

    defne tout and toutand associated arcs; 

    define Ru(tout); 

    Rc(tout) = a!e;  /* a is the agent net id */ 

    R(tout) = Ru(tout) ∪ Rc(tout);  
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The BCIN Net 

A BCIN net based on the operations in Table 12 is shown in Figure 31 by applying the 

algorithms described previously for modeling RBAC, communication channels and 

resource controls. The detailed semantic definitions for the net are given in Appendix A4.  

The resource controls addressed are rather straightforward in this example for 

demonstration purpose. However, further policies for resource sharing during a global 

process can be modeled in two ways: (1) define further constraints (rules) in output 

channel transitions for dispatching resources; and/or (2) add an input place (or multiple 

input places) representing additional pre-conditions for the enabling of output channel 

transitions. Either way, the policies are enforced at the point of synchronization, which 

results in an outgoing information flow downward to an agent net.   

6.3.3   Soundness of BCIN Net 

There are several important properties regarding information access in BCIN need to 

be ensured: (1) an invalid user cannot play a role in the system; (2) an actor cannot 

perform the operations that were not assigned; (3) a user cannot play more than one role 

at the same time; and, (4) for a request received from an agent net, there will be a 

response to the agent net eventually. The prove sketches for the above properties are 

given as follows. 

Property (1): The constraint formula: ∀r∈R.(r[1] ≠ u) defined in transition ‘UserOut’ 

(Appendix A4) enforces the elimination of  invalid user tokens, where R is the set of 

valid role assignments. 

Property (2): The constraint formula: ∃p∈P.(p[1] = a[2]) defined in transition AssignPA 

make sure that an associated role model is available to be activated. Since role models are 
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predefined based on PAs, user behaviors are well controlled. The constraint formula 

∀p∈P.(p[1] ≠ a[2]) defined in transition ‘ActorOut’ eliminates the user token that has not 

yet been assigned any permissions.   

Property (3): A session constraint is enforced by the formula ∃s∈ S.(s = u) in the 

constraint definition of transition UserOut; that is,  if a user is already in Sessions, it is 

considered as an invalid user and is eliminated.  

Property (4) The semantic definitions for a RC net constructed by applying algorithm 

given in Figure 44 has to be carefully defined to make sure that if there is a request token 

rq in p such that p∈tin, there will be a result token rs in p such that p∈tout, and the agent 

id∈rq equals to the agent id∈rs. For example, in Figure 45, there will be an agent token 

in place p1 and a request token in place p2 with the same agent id if transition Read fired. 

Since the constraint definition of transition ReadDB (Appendix A4) encompasses 

exception handling, there will be a result token sent to place p7 eventually. 

6.3.4   Discussion 

This work provides a dynamic model to study the interdependencies of activities and 

the dynamics of resource consumptions in BCIN. Yet, further studies for the 

interdependencies between the recovery plans and resources from private sectors are 

needed, since the availability of resources is rather dynamic in the aftermath of a disaster, 

and affects the feasibility of the recovery plans from private sectors. Although, it is 

difficult to obtain the detail information regarding the recovery plans from private sectors, 

recovery plans from private sectors are essential for further studies of the dynamics of 

agent behaviors during a disaster scenario.   
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CHAPTER 7 

CONCLUSION 

 

To address the representation and analysis of complex systems with the MAS 

architecture, this dissertation research developed a framework that provides a 

comprehensive methodology for modeling and analyzing MAS based on model-oriented 

formal methods. An important element of the framework is modularity, which is fulfilled 

by an agent-oriented modeling methodology incorporated with aspect-oriented concepts. 

As a result, the MAS model is a modular composition of multiple agent nets, and the 

individual agent net is a modular composition of agent features. The advantages of a 

modular system model includes: (i) adaptability for future extensions; (ii) reusability of 

modular components; (iii) conciseness of the model; and (iv) compositionality for 

incremental analysis. 

The underlying formalism of the framework is PrT nets, which is adapted and infused 

with agent-oriented concepts for modeling MAS. A key idea is to support the modeling 

of the dynamic structure in MAS. The nested PrT nets defined in this study facilitate the 

modeling of a hierarchical MAS architecture, which can be changed dynamically. Nested 

PrT nets can be checked by the model checker SPIN. SPIN is an excellent tool for model 

checking logical correctness of distributed software systems. This study takes advantage 

of the functionalities in the model checker SPIN to verify nested PrT nets. Given a nested 

PrT nets describing the behavior of a MAS, a PROMELA program can be generated 

through the model transformation technique developed in this study for model checking. 
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The contributions, limitations and future works based on this dissertation research are 

discussed in the following sections. 

7.1 Contributions 

The framework presented in this dissertation provides a systematic approach for 

modeling and analyzing complex systems within the MAS context. Given a multi-agent 

system with a set of agent roles, their behavior models can be constructed and analyzed 

following the methodology provided in this dissertation. Compared to other works based 

on Petri nets([24, 25, 26, 27, 28, 29, 30] in Table 1), this dissertation research provides a 

more comprehensive framework featured a well-defined formal model with a dynamic 

structure, agent communication notations, agent coordination modeling, a comprehensive 

modeling methodology, and the tool support for machine analysis. Major contributions of 

this dissertation research are summarized as follows. 

(1) Developed a process model based on PrT nets to address the modeling of multi-agent 

systems. 

 Support agent-oriented modeling in which the system model is a modular 

composition of multiple agent nets;   

 Support the modeling of a dynamic MAS architecture in which the formal MAS 

model is a two-level nested PrT net;  

 Support the modeling of dynamic agent communications with the instrumentation 

of channel commands in transition constraints.   

(2) Developed a methodology for constructing formal MAS models. 
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 Provide an aspect orientation technique for constructing individual agent nets with 

different features;  

 Provide a technique for agent coordination modeling to ease the construction of 

formal MAS models. 

(3) Developed a model transformation technique for model checking formal MAS 

models.  

 Define a set of translation rules that systematically transform nested PrT nets to 

PROMELA programs in SPIN for automatic model analysis.   

7.2 Limitations 

The framework supports the modeling of essential characteristics found in MAS [1, 4, 

8, 94, 95]. Some limitations are discussed as follows. 

(1) The MAS model focuses on the interdependencies between agent nets, rather on the 

computations. Therefore, the detail of how to implement the search algorithm for 

solving a problem efficiently using an agent program [32] is outside the scope of this 

study.    

(2) The nested PrT nets defined in this study is limited to a two-level nested net structure 

under the assumption of a two-layered multi-agent architecture. However, it can be 

extended to a multi-level structure by defining the relations between mediator agent 

nets. 

(3) Agent communications are in a one-to-one and unidirectional fashion through channel 

commands instrumented in transition constraints. Transitions with channel commands 

can fire many times as long as there are sufficient tokens. Since channel names are 

agent identifications, broadcasting or one-to-many communication can be achieved 
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by defining the constraint formula and tokens. For example, given a set of agent 

identifications, send the same message token to all members of the set. 

(4) Agent communications involve high-level knowledge exchange in which the context 

of the knowledge is usually domain specific. Thus, the structure of the messages is 

difficult to be generalized in the abstract models. Therefore, in this work, the 

messages exchanged among agents are in a simpler structure that is only relevant to 

the behavior models. The idea is to focus on the control flows with regard to system 

resources, and to produce a smaller sufficient model for model checking. This 

approach is applicable to most MAS domains, such as control systems, workflow 

managements and disaster mitigations where the resource management and controls 

are the central issues. However, for application domains where intensive context-

based interactions are involved, such as the e-commerce, the messages need to be 

handled with a different approach. For example, based on our e-market case study, 

there are certain patterns with regard to agent interactions. This can be dealt with by 

naming all possible interaction patterns and modeling each pattern as an aspect as 

defined in Chapter 4. That is, the interactions can be treated as agent features. 

Another way to handle content-rich messages is to use only one pair of input and 

output channels to handle incoming and outgoing messages uniformly in each agent 

net. As a result, the interpretation of the messages is a part of the agent behaviors. 

(5) The BDI model provides a theoretical foundation to build intelligent computer 

systems by explicitly modeling the mental states to mimic the reasoning behaviors of 

human. Based on the case study in [83], PrT nets can naturally model agent 

knowledge in terms of logical formulas. However, agent reasoning involves domain 
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specific ontology and inference techniques, which will result in a too fine-grained 

abstract model for model checking.   

(6) There are limitations for model checking nested PrT nets:  

 Given that nested PrT nets are very expressive, they need to be restricted in order 

to be properly translated into PROMELA models. That is, due to tractability, the 

sort of a place is restricted to the data types supported in PROMELA, and the 

quantity of tokens in the place is finite. As a result, the transformed concrete 

model to be analyzed has a finite state space such that the model execution in the 

model checker SPIN will terminate appropriately. 

 For simplicity, all transitions in the PROMELA model fire immediately after the 

guard conditions are evaluated to be true, and the firings are interleaving given 

that this restricted semantics does not affect the verification of state-based 

properties.  

 The properties can be checked are restricted within the scope of the model 

checker SPIN has to offer with XSpin version 5.2.3. 

7.3 Future Works 

Based on the limitations described in the previous section, several research directions 

are possible. 

(1) Extension of current framework. 

Currently, the framework supports two-level nested PrT nets. It can be extended 

to a multi-level structure. An idea for this extension is to define the relation among 

mediator agent nets. That is, the mediator agent of an agent community serves as a 

proxy to other communities.  
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(2) More case studies. 

Three different application domains have been studied in this dissertation research, 

namely wireless sensor network, disaster mitigation and e-market. However, there are 

other domains [1] need to be further investigated.     

(3) Context and knowledge representation problems. 

Agents are heterogeneous computation entities in the MAS context. Thus, each 

agent has its own computational logic. However, an essential element in MAS is 

coordination in which agents must communicate within the same context. The context 

of the high-level knowledge exchanged is considered as the precondition of an agent 

plan. That is, an agent reasons about the context of knowledge it currently has to 

decide whether or not a plan is feasible. How to define the meta-knowledge for agent 

communications is an interesting topic. For example, represent resources, policies and 

trust metrics among distributed agencies during an emergency response scenario.  

(4) Tool development.  

One of the key elements to increase the value of the proposed methodology is to 

develop a tool that provides a reasonable user interface for easy prototyping and 

analysis. This can be done in two directions.  

 Integrate nested PrT nets with current tools. Recently, a tool based on SAM 

(Software Architecture Model) [77] has been developed to support the editing of 

two-level nested PrT nets. The translation rules defined for model transformation 

in this dissertation research provides a foundation for further tool development in 

model analysis by integrating SPIN as the model checker at the back-end.   
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 Develop a general-purpose tool for modeling and simulation of agent-based 

systems. Dynamic interactions in a multi-agent system are difficult to be directly 

observed. A hand-on tool for simulation will help. However, current state-of-the-

art tools for agent-based modeling and simulation need to be investigated first.   
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APPENDIX A 

SEMANTIC DEFINITIONS 

A1. Figure 21. 

Diesel_consumer 

P = {factory, store, GasStation, ToPump, standby, pumped, CreditCard}; 

Tc = {Park, SlideCard, PumpDiesel, Deny}; 

Tu = {ToStore, ToGasStation, Go, ToFactory};  

𝜑(factory) = 𝜑(store) = 𝜑(GasStation) = CAR×INTEGER;  

𝜑(standby) = 𝜑(ToPump) = 𝜑(pumped) = CAR×INTEGER×INTEGER;  

CAR = {sedan, truck}; 𝜑(CreditCard) = INTEGER;  

R(ToStore) = c[2]=1; R(ToGasStation) = c[2]=0; R(Go) = c[2]=1 ∧ g=1; 

R (ToFactory) = 𝜆; R (Park) = S?st; R(SlideCard) = S!<c[1], cr, st>; R(PumpDiesel) 

= S?g ∧ c’[2]=1; R(Deny) = S?cr;   

M0(factory) = {<truck, 0>}; M0(CreditCard) = {<1>}; M0(store) = ∅ ; 

M0(GasSstation) = ∅; M0(ToPump) = ∅; M0(standby) = ∅; M0(pumped) = ∅; 

F and L are as seen in the Figure 21(a). 

Gas_producer 

P = {Ready, Orders, Diesel, Regular}; 

Tc = {TakeOrder, SendDiesel, SendRegular}; 

Tu = {ProduceRegular, ProduceDiesel};  

𝜑(Ready) = INTEGER; 𝜑(Orders) = INTEGER; 

 𝜑(Diesel) = 𝜑(Regular) = INTEGER;   

R(TakeOrder) = S?o; R(SendDiesel) = S!ds; R (SendRegular) = S!rs;  

R (ProduceRegular) = o=2 ∧ rs=1; R(ProduceDiesel) = o=1 ∧ ds=1;   

M0(Ready) = {<1>} ; M0(Orders) = ∅   ; M0(Diesel) = ∅ ; M0(Regular) = ∅;   

F and L are as seen in the Figure 21(b). 
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Regular_consumer 

P = {home, school, GasStation, ToPump, standby, pumped, CreditCard}; 

Tc = {Park, SlideCard, PumpRegular, Deny}; 

Tu = {ToSchool,  ToGasStation, Go, ToHome};  

𝜑(home) = 𝜑(school) = 𝜑(GasStation) = CAR×INTEGER; 

𝜑(standby) = 𝜑(ToPump) = 𝜑(pumped) = CAR×INTEGER×INTEGER;  

𝜑(CreditCard) = INTEGER;  

R(ToSchool) = c[2]=1; R(ToGasStation) = c[2]=0; R(Go) = c[2]=1 ∧ g=1;  

R (ToHome) = 𝜆; R (Park) = S?st; R(SlideCard) = S!<c[1], cr, st>;  

R(PumpRegular) = S?g ∧ c’[2]=1; R(Deny) = S?cr; 

M0(home) = {<sedan, 0>}; M0(CreditCard) = {<2>}; M0(school) = ∅ ; 

M0(GasStation) = ∅; M0(ToPump) = ∅; M0(standby) = ∅; M0(pumped) = ∅; 

F and L are as seen in the Figure 21(c). 

The bank 

P = {Ready, transaction, Accounts, Report}; 

Tc = {CheckCredit, ReportCredit}; 

Tu = {Deny, Authorize};  

𝜑(Ready) = INTEGER;  

𝜑(transaction) = INTEGER×CAR×INTEGER×INTEGER;  

𝜑(Accounts) = INTEGER×INTEGER;  

𝜑(Report) = INTEGER×CAR×INTEGER×INTEGER×INTEGER; 

R(CheckCredit) = S?cr; R(ReportCredit) = S!<cr,r>;  

R (Authorize) = ∃𝑎 ∈ 𝐴. (𝑡𝑟[3] = 𝑎[1]) ∧ 𝑎′[2] = 𝑎[2] − 1 ∧r[1]=t[1] ∧r[2]=t[2] 

∧r[3]=t[3] ∧r[4]=t[4] ∧r[5]=1;         

R (Deny) = ∀𝑎 ∈ 𝐴. (𝑡𝑟[3] ≠ 𝑎[1]) ∧ r[1]=t[1] ∧r[2]=t[2]∧r[3]=t[3] ∧ 

r[4]=t[4] ∧r[5]=0;       

M0(Ready) = {<1>} ; M0(CardNumber) = ∅ ;  

M0(Accounts) = {<1,5>, <2, 4>, <3,3>, <4,1>} ; M0(Report) = ∅;   

F and L are as seen in the Figure 21(d). 
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A2. Figure 27(c). 
  

P a = {in_station, parked, bank_agent, waiting, gas_producer_agent, pumped }; 

P d = {pumping_station, transactions, authorized, diesel_gas, regular_gas}; 

Tc = {Park, Pay, CheckCredit, ReportCredit, PumpDiesel, PumpRegular, Fail, 

GetDiesel, GetRegular, OrderRegular, OrderDiesel}; 

Tu = {drive_in, drive_out};  

𝜑(in_station) = 𝜑(parked) = 𝜑(waiting) = 𝜑(pumped) = 

INTEGER×CONSUMER_AGENT; 

𝜑(bank_agent) = INTEGER×BANK_AGENT; 

𝜑(gas_producer_agent) = INTEGER×GAS_PRODUCER_AGENT; 

𝜑(transactions) = INTEGER×CAR×INTEGER×INTEGER;  

// the three integers represent agent id, car type, credit card number and pumping 

station respectively; 

𝜑(authorized) = INTEGER×CAR×INTEGER×INTEGER×INTEGER;  

// the four integers represent agent id, car type, credit card number, pumping station 

and credit report repespectively; 

𝜑(pumping_station) = INTEGER;  

𝜑(diesel_gas) = 𝜑(regular_gas) = INTEGER; 

R(Park) = N!st; R(Pay) = N?<c, cr, st>∧tr[1]=a1[1]∧tr[2]=c∧tr[3]=cr∧tr[4]=st; 

R (CheckCredit) = N!tr; R(ReportCredit) = N?r;  

R(PumpDiesel) = a1[1]=r[1]∧r[2]=truck∧r[5]=1∧d’=d-1∧g=1∧N!g;  

R(PumpRegular) = a1[1]=r[1]∧r[2]=sedan∧r[5]=1∧r’=r-1∧g=1∧N!g; 

R(Fail) = r[5]=0∧N!cr; R (GetDiesel) = N?ds ∧ 𝑑′ = 𝑑 + 𝑑𝑠;  

R(GetRegular) = N?rs ∧ 𝑟′ = 𝑟 + 𝑟𝑠;  

R(OrderDiesel ) = 𝑑 < 1 ∧ N!1; R(OrderRegular) = 𝑟 < 1 ∧ N!2; 

R(drive_in) =  R (drive_out) = 𝜆; 

M0(in_station) =  {<1, dieselConsumer>, <2, regularConsumer>}; M0(parked) = ∅; 

M0(waiting) = ∅ ; M0(pumped) = ∅; M0(bank_agent) = {<3, bank>}; 

M0(gas_producer_agent) = {<4, producer>};  

M0(pumping_station) = {<1>, <2>, <3>}; M0(credit_card) = ∅;  
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M0(diesel_gas) = {<10>}; M0(regular_gas) = {<10>}; 

F and L are as seen in the Fig. 27(c). 

A3. Figure 43. 

The supervisor role 

φ(start) = φ(waiting) = NAME×ACTION×CATEGORY×CONTENT; 

φ(result) = CONTENT; 

R(Read) = e[1] = ‘read’∧ S!e; 

R(Publish) = e[1] = ‘publish’∧ S!e; 

R(Assign) = e[1] = ‘assign’∧ S!e; 

R(Return) = S?r∧ r[2] = e[1]∧ x = r[4]  

A4. Figure 31. 

The BCIN net 
 

φ(Users) = NAME; 

φ(RAs) = ℘(NAME×ROLE); 

φ(Sessions) = ℘(NAME); 

φ(Actor) = NAME×ROLE; 

φ(PAs) = ℘(ROLE×RM); 

φ(Activated) = φ(p1) = NAME×RM; 

φ(BCIN_Database) = ℘(CATEGORY×CONTENT); 

φ(p2) = φ(p7) = NAME×ACTION×CATEGORY×CONTENT 

φ(p3) = φ(p5) = φ(p11) = NAME×RM; 

φ(p4) = φ(p8) = φ(p6) = φ(p9) = φ(p12) = φ(p10) = NAME×ACTION ×

CATEGORY×CONTENT; 

R(UserOut) =∃s∈S.(s = u)∨∀r∈R.(r[1] ≠ u); 

R(AssignRole) =∃r∈R.(r[1] = u)∧ a = r; 

R(AssignPA) =∃p∈P.(p[1] = a[2]) ∧m[1] = a[1]∧m[2] = p[2]∧ S’=S∪a[1]; 

R(ActorOut) =∀p∈P.(p[1] ≠ a[2]); 

R(End) = m[1]?op∧ op[1] = ‘quit’∧ ∃s∈S.(s = m[1])∧ S’= S\s; 

R(Read) = m[1]?op∧ r = op; 
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R(ReadDB) =(∃ d∈D.(d[1] = r[3])∧ r’[4] = d[2])∨ (∀ d∈D.(d[1] ≠ r[3]) ∧ r’[4] = 

‘error’); 

R(returnR) = m[1]= r’[1]∧m[1]!r’; 

R(SendM) = m[1]?op∧w = op; 

R(WriteMG) = D’= D ∪ <w[3], w[4]>∧w’[4] =’message sent’; 

R(returnM) = m[1] = w’[1]∧ s!w’; 

R(Publish) = m[1]?op∧ p = op; 

R(PublishRS) =  D’= D ∪ <p[3], p[4]>∧ p’[4] =’published’; 

R(returnP) = m[1] = p’[1]∧m[1]!p’; 

R(RA) = m[1]?op∧ ra  = op; 

R(UpdateRA) = (∃ p∈P.( p[1] = ra[4]) ∧ ((∀r∈R.(r[1] ≠ ra[3] ∧R’ = R ∪ <ra[3], 

ra[4]> ∧  ra’[4] = ‘added’)∨ (∃ r∈R.(r[1] = ra[3]) ∧ r’[2] = ra[4]))∧ ra’[4] = 

‘updated’))∨ (∀ p∈P.(p[1] ≠ ra[4])∧ ra’[4] = ‘error’); 

R(returnRA) = m[1] = ra’[1]∧m[1]!ra’; 
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APPENDIX B 

THE PROMELA MODEL FOR BCIN NET 

 
#define NULL  0 
#define MAX_SESSION 4 
#define MAX_ACTIVATED 4 
#define MAX_ROLE 4 
#define MAX_DB 4 
#define MAX_TOKENS 4 
 
mtype = { read, publish, sendM, assign, quit }; 
mtype = { updated, added, error, message_sent, published} 
mtype = { david, john, alice, emily, mary}; 
mtype = { observer, supervisor, contact, participant }; 
mtype = { advisory, message, resource }; 
mtype = { Wilma, generator}; 
mtype = { O_NET, S_NET, P_NET, PR_NET }; 
 
typedef MSG { 
 pid agent_id; 
 mtype action; 
 mtype category; 
 mtype content } 
 
typedef  ROLE { 
              mtype user; 
              mtype roleR } 
 
typedef PA { 
              mtype roleP; 
              mtype net } 
 
typedef IN_SESSION { 
 pid sid; 
 mtype sname } 
          
typedef BCIN_DB { 
 mtype DB_category; 
 mtype DB_content } 
 
chan S = [0] of { MSG, chan}; 
 
inline initial_marking(pl, p_pid, v1, v2, v3) { pl.agent_id = p_pid; 
pl.action = v1; pl.category = v2; pl.content = v3 } 
inline add_token(p_in, p_out) { p_out.agent_id = p_in.agent_id; 
p_out.action = p_in.action; p_out.category = p_in.category; 
p_out.content = p_in.content} 
inline remove_token(p) { p.agent_id = 0; p.action = 0; p.category 
= 0; p.content = 0 } 
 
active proctype system_net() 
{     
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    chan aid;  
    MSG m, p12[MAX_TOKENS] = NULL, p2[MAX_TOKENS] = NULL, 
p4[MAX_TOKENS] = NULL, p6[MAX_TOKENS] = NULL; 
    byte cnt, act_idx = 0, p12_idx = 0, p2_idx = 0, p4_idx = 0, p6_idx 
= 0; 
         
    ROLE  actor, ra[MAX_ROLE] = NULL; 
    IN_SESSION session[MAX_SESSION] = NULL; 
    ra[0].user = david; ra[0].roleR = observer; 
    ra[1].user = alice; ra[1].roleR = supervisor; 
    ra[2].user = emily; ra[2].roleR = contact; 
    byte ra_idx = 3; 
  
    PA pa[MAX_SESSION]; 
    pa[0].roleP = observer; pa[0].net = O_NET; 
    pa[1].roleP = supervisor; pa[1].net = S_NET; 
    pa[2].roleP = contact; pa[2].net = P_NET; 
    pa[3].roleP = participant; pa[3].net = PR_NET; 
       
    BCIN_DB db[MAX_DB] = NULL; 
    db[0].DB_category = advisory; db[0].DB_content = Wilma; 
    db[1].DB_category = message; db[1].DB_content = generator; 
    byte db_idx = 2; 
    bool inSession = false; 
    mtype valid_user = NULL; 
       
 /* RBAC Begin */ 
     mtype user_in = emily;  
      
     do 
         /* UserOut */           
         :: atomic { user_in != NULL -> cnt = 0;  
 do   
 :: cnt < MAX_SESSION ->  

if :: session[cnt].sname == user_in -> printf("User %e in 
session !", user_in); user_in = NULL; inSession = true; break  

                                                   
:: session[cnt].sname != user_in  -> cnt++         

            fi 
 :: cnt >= MAX_SESSION -> cnt = 0; inSession = false; break  
 od; 
 do 
 :: inSession == false ->  

if :: cnt < MAX_ROLE && ra[cnt].user == user_in ->  valid_user  
      = user_in; user_in= NULL; break 

  :: cnt < MAX_ROLE && ra[cnt].user != user_in  -> cnt++  
         :: cnt >= MAX_ROLE ->  printf("No role assignment for %e 
!",  
               user_in); user_in = NULL; break   
     fi; 
       od } 
 
          /* Assign Role */ 
      :: atomic { valid_user != NULL -> cnt = 0;   
 do 
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 :: cnt < MAX_ROLE ->  
         if :: ra[cnt].user == valid_user  ->  actor.user =  
               ra[cnt].user; actor.roleR = ra[cnt].roleR; valid_user =  
               NULL; break 
    :: ra[cnt].user != valid_user -> cnt++    
         fi; 
      :: cnt >= MAX_ROLE -> break     
 od }                                  
         /* ActorOut */ 
      :: atomic { actor.user != NULL -> cnt = 0;  
          do 
  :: cnt < MAX_SESSION && pa[cnt].roleP != actor.roleR ->  
               cnt++          
  :: cnt < MAX_SESSION && pa[cnt].roleP == actor.roleR ->   
/* Assign PA */ 
            if :: actor.roleR == supervisor -> session[act_idx].sid =  
               run agentS(assign, john, participant)  
     :: actor.roleR == observer -> session[act_idx].sid = run  
                  agentO(read, advisory, Wilma)  
     :: actor.roleR == contact -> session[act_idx].sid = run  
                  agentP(sendM, message, generator) 
               :: actor.roleR == participant -> session[act_idx].sid =  
                  run agentPR(publish, resource, generator) 
       fi; 
         session[act_idx].sname = actor.user; act_idx++; actor.user  
            = NULL; actor.roleR = NULL; 
       actor.user = NULL; actor.roleR = NULL; break  
   :: cnt >= MAX_SESSION -> printf("Role %e not available !",  
               actor.roleR); break 
            od }                             
                  
/* RBAC End */  
 
/* Main Operation */ 
           :: atomic { S?m(aid) -> 
              /* Assign RA */     
              if :: m.action == assign ->    
         if :: p12_idx < MAX_TOKENS -> add_token(m, p12[p12_idx]);  
                    p12_idx++                                            
                 :: p12_idx >= MAX_TOKENS -> printf("Exceed maximum  
                      token deposits!") 
                 fi; 
              /* UdateRA */ 
          cnt = 0; p12_idx--; 
               do :: cnt < MAX_SESSION && pa[cnt].roleP ==  
                     p12[p12_idx].content ->  cnt = 0; break 
             :: cnt < MAX_SESSION && pa[cnt].roleP !=  
                     p12[p12_idx].content -> cnt++                               
                  :: cnt >= MAX_SESSION -> printf("Role %e denied !",  
                    p12[p12_idx].content); p12[p12_idx].content = error 
               od;                        
               do :: cnt < MAX_ROLE && ra[cnt].user ==  
                     p12[p12_idx].category -> ra[ra_idx].roleR =  
                     p12[p12_idx].content; p12[p12_idx].content =  
                     updated; break 
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           :: cnt < MAX_ROLE && ra[cnt].user !=  
                   p12[p12_idx].category -> cnt++  
                :: cnt >= MAX_ROLE && ra_idx < MAX_ROLE ->  
                   ra[ra_idx].user = p12[p12_idx].category;  
                   ra[ra_idx].roleR = p12[p12_idx].content;  
                   p12[p12_idx].content = added; ra_idx++; break 
                :: ra_idx >= MAX_ROLE -> printf("Exceed maximum role");  
                   p12[p12_idx].content = error; break  
          od; 
              /* returnRA */  
                   aid!p12[p12_idx] ; remove_token(p12[p12_idx])   
              /* read */  
                  :: m.action == read ->  user_in = alice; 
             if :: p2_idx < MAX_TOKENS -> add_token(m, 
p2[p2_idx]);  
                       p2_idx++ 
                    :: p2_idx >= MAX_TOKENS -> printf("Exceed maximum  
                       token deposits!") 
                 fi; 
              /* readDB */ 
            cnt = 0; p2_idx--; 
                 do :: cnt < MAX_DB && db[cnt].DB_category ==  
                       p2[p2_idx].category ->  p2[p2_idx].content =  
                       db[cnt].DB_content; break 
               :: cnt < MAX_DB && db[cnt].DB_category !=  
                       p2[p2_idx].category -> cnt++  
                    :: cnt >= MAX_DB->  p2[p2_idx].content = error;  
                       break 
            od;  
              /* returnR */ 
                       aid!p2[p2_idx]; remove_token(p2[p2_idx])   
             /* sendM */ 
                   :: m.action == sendM ->  
            if :: p4_idx < MAX_TOKENS -> add_token(m, p4[p4_idx]);  
                       p4_idx++  
                    :: p4_idx >= MAX_TOKENS -> printf("Exceed maximum  
                       token deposits!") 
                 fi;      
              /* WriteMG */ 
       p4_idx--; 
                if :: db_idx < MAX_DB  ->  db[db_idx].DB_category =   
                      p4[p4_idx].category; db[db_idx].DB_content =  
                      p4[p4_idx].content; p4[p4_idx].content =  
                      message_sent 
              :: db_idx >= MAX_DB -> printf("DB full !!");  
                      p4[p4_idx].content = error 
           fi;  
               /* returnM */ 
        aid!p4[p4_idx]; remove_token(p4[p4_idx]); user_in = david 
               /* publish */ 
            :: m.action == publish ->  
            if :: p6_idx < MAX_TOKENS -> add_token(m, p6[p6_idx]);  
                       p6_idx++ 
                    :: p6_idx >= MAX_TOKENS -> printf("Exceed maximum  
                       token deposits!") 
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                 fi;                     
               /* publishRS */ 
                  p6_idx--; 
                  if :: db_idx < MAX_DB  ->   
                        db[db_idx].DB_category = p6[p6_idx].category;  
                        db[db_idx].DB_content = p6[p6_idx].content;  
                        p6[p6_idx].content = published 
                :: db_idx >= MAX_DB -> printf("DB full !!");  
                        p6[p6_idx].content = error 
              fi;   
               /* returnP */ 
           aid!p6[p6_idx]; remove_token(p6[p6_idx])  
               /* End */ 
             :: m.action == quit ->  
                            cnt = 0; 
                do :: cnt < MAX_SESSION && session[cnt].sid ==  
                      m.agent_id -> act_idx--; session[cnt].sid =  
                      session[act_idx].sid; session[cnt].sname =  
                      session[act_idx].sname; session[act_idx].sid =  
                      NULL; session[act_idx].sname = NULL; break 
                   :: cnt < MAX_SESSION && session[cnt].sid !=  
                      m.agent_id --> cnt++ 
                   :: cnt >= MAX_SESSION -> break 
                 od; 
              fi   }                    
    od 
} 
 
proctype agentS( mtype i1,  i2,  i3)   /* Supervisor S_NET */ 
{   chan me = [0] of { MSG }; 
    MSG m, start, waiting, result; 
     
    initial_marking(start, _pid, i1, i2, i3); 
    S!start(me); 
    add_token(start, waiting); 
    remove_token(start);  
    me?m; 
    printf("operation %e %e %e", m.action, m.category, m.content); 
    m.action = quit; 
    S!m(me) 
} 
 
proctype agentO(mtype i1, i2, i3)   /* Observer O_NET */ 
{   chan me = [0] of { MSG }; 
    MSG m, start, waiting, result; 
 
    initial_marking(start, _pid, i1, i2, i3); 
    S!start(me);      
    add_token(start, waiting); 
    remove_token(start); 
    me?m; 
    printf("operaton %e successful!", m.action); 
    m.action = quit; 
    S!m(me) 
} 
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proctype agentP(mtype i1, i2, i3)   /* Primary Contact P_NET */ 
{   chan me = [0] of { MSG }; 
    MSG m, start, waiting, result; 
 
    initial_marking(start, _pid, i1, i2, i3); 
    S!start(me); 
    add_token(start, waiting); 
    remove_token(start); 
    me?m; 
    printf("operaton %e successful!", m.action); 
    m.action = quit; 
    S!m(me) 
} 
  
proctype agentPR(mtype i1, i2, i3)   /* Participant PR_NET */ 
{   chan me = [0] of { MSG }; 
    MSG m, start, waiting, result; 
 
    initial_marking(start, _pid, i1, i2, i3); 
    S!start(me); 
    add_token(start, waiting); 
    remove_token(start); 
    me?m; 
    printf("operaton %e successful!", m.action); 
    m.action = quit; 
    S!m(me) 
} 
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