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response plots for the two week long test period are presented in figure 

3.8. Although the hardness of the bond looked fine, the frequency response 

of the transmission characteristics of the piezo couple changed very 

drastically after the second week when it operated at 200oC. The data 

taken at the beginning of this experiment showed a settling in effect, i.e., 

some amplitude reduction during the first cycle, followed by a leveling off 

of the variation. Based on the observations, it is not recommended to use 

the piezoelectric elements and adhesive at 200oC.  

 

Figure 3.7 Test plate with one Metis MD1 (analog PZT/flex assemblies 
with 1/4"piezo) and two APC International D-018 
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(b) 

Figure 3.8 Frequency response of (a) Metis MD1 piezo (b) APCI D-018 
piezoelectric transducer 
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order to insulate the connections of piezoelectric sensors. 

3.4.1 Testing durability of M-Bond 200 adhesive for underwater 

conditions 
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by bonding four APC International (D-0.50) piezoelectric element using M-

Bond 200 adhesive. The location of piezoelectric sensors on the plate is 
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frequency response of piezo numbered 3 was recorded. The frequency 

response characteristics of the plates significantly changed every week as 

presented in figure 3.10 and figure 3.11. 

 

 

 

 

 

 

 

Figure 3.9.The Small and Big Test Plate with schematic diagram 

 

The small Test Plate with 4 

Piezoelectric Elements 

The Big Test Plate with 4 

Piezoelectric Elements 
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Figure3.10 The Frequency Response of the Piezo 3 of the Small Plate 

 

 

Figure 3.11 The Frequency Response of the Piezo 3 of the Big Plate 
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amplitude reduction. But there was no sign of physical deterioration of the 

bonding material (M-Bond 100). 

3.4.2 Testing durability of M-Bond AE-10 adhesive for underwater 

conditions 

Two test plates referred to as plate 1 and plate 2 (figure 3.12) with 

identical geometrical and material properties were prepared by bonding 

three piezoelectric elements. That includes, One Metis MD1 (analog 

PZT/flex assemblies with 1/4"piezo) sensor and two APC International (D-

0.50) sensors attached to aluminum plate by using the M-Bond AE-10 

adhesive. The frequency responses of piezoelectric elements were plotted 

in figure 3.13 and figure 3.14 while one of the elements was subjected to 

sweep sine wave.  

 

 

 

 

 

  Sample Plate 1 Sample Pate 2 

Figure 3.12 Identical plate samples for underwater experiment 
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Figure 3.13 Frequency Response of the APC D-018  piezo of the Plate 1 

 

 

Figure 3.14 The Frequency Response of the Metis MD1 of the Plate 2 

Observing the above plots obtained from the data recorded from the 
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the results of the above two experiments it can be seen that M-Bond 200 

performed better than M-Bond AE-10 adhesive for underwater conditions. 

3.5 Conclusion 
The endurance and sustainability of the piezoelectric elements and the 

bonding material used was analyzed by testing them under different 

conditions i.e. under room temperature, at elevated temperatures and 

under water condition. The piezoelectric elements at room temperature 

were working without any problem over 20 week period with or without 

external excitation. There was no significant change in the characteristics 

of the bonding material as well as the piezoelectric transducers/sensors 

used. Bonding material M-Bond 200 was first subjected to temperature 

range from 50oC for one week and 100oC the next week. The response 

characteristics started to change at the end of 8th week but the adhesive 

immediately failed above 100oC.  On the other hand M-Bond AE-10 was 

tested at 100oC for one week and 200oC the next week. There was no 

visual degradation of the adhesive at that temperature, but the response 

characteristics indicated that the piezoelectric elements failed at 200oC. 

The results for underwater conditions were opposite to the previous 

condition. The response characteristics of the piezoelectric couples which 

were attached to the aluminum plate with M-Bond 200 and located under 

water showed significant changes at the weekly inspections.  At the end of 

the 8th week, there was significant change compare to the beginning but 

piezoelectric elements were still operating and there was visually 

noticeable deterioration. On the other hand M-Bond AE-10 adhesive 
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became nonfunctional within one to two week period. From the above 

discussion, it can be concluded that both adhesive and piezoelectric 

elements perform good under room conditions. For high temperatures, M-

Bond AE-10 performs much better that M-Bond 200 whereas for 

underwater condition, opposite response was observed. 
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4. CRACK GROWTH MONITORING 

4.1 Literature Review 

Health monitoring and damage detection of structural and mechanical 

systems utilizing vibration measurement have attracted much attention 

in the past few decades. Most crack detection methods were tailor made 

for one-dimensional beam type structures [49-50], simple shear building 

models, trusses, two-dimensional frame structures and three-dimensional 

frame structures [51-54]. Early work related to cracked plates focused 

mainly on the problem to investigate the vibration and stability problems 

of the cracked plate. There is little research on crack detection in plate 

type structures. For instance Cawley and Adams [55] proposed a method 

to locate and roughly quantify defects on a rectangular plate based on 

finite element method utilizing changes in measured natural frequency in 

1979. In 2000, Chen and Bicanic [56] developed a method to detect 

damage in a cantilever plate using both natural frequency and mode 

shape based on FE analysis. Later Yam [57] investigated the sensitivities 

of static and dynamic parameters of damage occurring in plate like 

structures based on FE model, and corresponding damage indices were 

proposed to analyze their identification capabilities. It must be pointed 

out here that it is difficult to model a part-through crack using the FE 

method owing to the narrow gap and complex shape of the crack [58-]. As 

a result, FE solution for this type of cracked plate analysis has a high 

computational cost.  



29 
 

Many studies have also contributed to damage detection based on Lamb 

wave propagation in thin metallic structures [60]. Representatively, Tua 

et al. [61] located cracks in cylindrical pipes and plates with piezo-

actuated Lamb waves, and discussed the capacity for detection of cracks 

filled with impurities. Ihn and Chang [62] monitored hidden fatigue crack 

growth using a damage index (DI) with a built in piezoelectric sensor-

actuator network. In many studies for crack identification, the crack is 

generally perpendicular to the propagation path of Lamb waves or the 

crack is infinite at one end. As a result, the interaction between Lamb 

waves and the crack is usually simplified into normal transmission and 

reflection only. 

 The quantitative relationship between Lamb wave scattering and 

crack length can usually be described by the reflection and transmission 

coefficients. Two approaches are normally utilized to calculate these 

coefficients in frequency or time domain. In the frequency domain, the 

frequency spectrum of the reflected or the transmitted signal can be 

divided by that of the incident wave signal to obtain the reflection or 

transmission coefficients as a function of frequency. Alternatively, these 

coefficients can also be obtained by dividing the value of the reflected or 

transmitted wave peak by that of the incident wave peak in the time 

domain after applying Hilbert transformation (HT) [63]. 

In this chapter, elastic behavior of an aluminum plate was studied 

for monitoring the crack growth.   The propagation of the Lamb waves and 
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surface excitation response was analyzed.  Both approaches used the same 

piezoelectric sensors/actuators.   

4.2 Methodology and experimental setup 

The growth of a crack in an aluminum plate was monitored by using 

both Lamb waves and evaluating the surface excitation response. The 

surface excitation response approach is similar to well-known impedance 

measurement method; however, used a less expensive spectrum analyzer 

approach.  

For Lamb wave analysis, one of the piezoelectric elements was excited 

by a burst of three square waves, and the propagated signal was acquired 

at the other piezoelectric element.  The frequency of interest was isolated 

by using the s-transformation method.  The resultant signal corresponded 

to the envelope of the excitation frequency waveform.   

The surface excitation response was evaluated by actuating one 

piezoelectric element with a swept sine wave signal and measuring the 

voltage at the other one.  Spectrum analyzer was used to generate the 

excitation signal, acquired the data, and calculated the frequency response 

of the system.   

Both approaches proved to have significant damage detection 

capabilities.  The envelope pattern and frequency response curves changed 

drastically as the crack length increased.  These sensitive detection 

techniques could be monitored by calculating the sum of the squares of the 
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difference between the baseline data and subsequent damage cases.  This 

study indicates that Lamb wave analysis and evaluation of the surface 

excitation are effective methods for monitoring the crack growth. 

An aluminum plate specimen of 12x6x.25 inch dimensions was used.  

Several approaches were used to create a crack at one of the edges of the 

plate. Since a large amount of pressure is required to enforce a crack on a 

straight edge, a notch was first developed at one of the edges of the plate 

to increase the stress concentration at that point. After a notch was 

created, the plate was first restrained in two brackets from sides and then 

a vertical force was applied on those brackets with the help of a hydraulic 

press (figure). 

 

Figure 4.1 Process of crack formation 

A crack was then created successfully by the above procedure without 

much damage to the plate. After an initial crack, two APC international 

(D-0.25 inch) piezoelectric actuators were bonded to the plate using M-

Bond 200 adhesive (Figure 4.2) and data was recorded using both Lamb 

wave & surface excitation to response techniques.  Furthermore, the crack 

was increased until the plate was torn apart into pieces.  Before the 
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Figure 5.13 Comparison of envelopes of signals for three identical hole 
positions. 

From the results above it can be seen that the Lamb wave approach 

provided promising results for defects caused by hole. The three arrows in 

the plot show the signal response from the defect positions. Since the size 

of the holes was identical, the amplitude for all the three cases was 

approximately the same. And regarding the positions of these peaks, the 

peak of left hole occurred first followed by the hole in middle and then the 

hole on right side of the weld because position of these holes was in the 

same order from the sensor as they occurred in the plot. 

 

5.5 Results and discussions: Surface Response to Excitation 

For the second approach, the frequency response characteristics of the 

(SuRE) were evaluated. One of the piezoelectric elements was excited by 

sweep sine wave, and the magnitude of the measured signal at other 
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piezoelectric elements was calculated using a spectrum analyzer. The 

actuator on the specimen was excited by sweep sine wave with frequency 

range from 1- 100 KHz and recording up to 2000 data points in each case. 

The waves thus generated by the actuator travelled through the specimen 

and their response was recorded by the sensors bonded onto the surface of 

the specimen. First, the analysis of the cut/crack was done. The measured 

frequency response characteristics at different crack lengths are plotted in 

figure 5.14. 

 

Figure 5.14 Sweep sine wave responses 

From the measured frequency response obtained above it can be 

seen that the characteristics of the response of the signal are very 
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squares of the difference is calculated at each frequency (figure 5.15). The 

data from the perfect condition was taken as the base line data and the 

square of difference of two test cases was subtracted from it. 

 

Figure 5.15 Sum of square of difference between defected and perfect 
sample 

It can be seen clearly from the above result that the sum of the 

squares of the difference of the frequency response characteristics 

indicated the severity of the defect (cut). Data 2 and 3 in plot represents 

the small cut and enlarged cut respectively whereas 1 represents the 

baseline data. To calculate the most significant frequency range between 

1-100 KHz, sum of square of the difference was generated after every 25 

KHz frequency interval and the results were compared (figure 5.16).  
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(a) 

 

(b) 

Figure 5.16 Sum of square of difference at four different frequency 
intervals (a) Bar graph representation (b) Linear representation 

Since the maximum difference between the small cut and the 

enlarged cut was illustrated in the frequency interval 4, hence from the 

1 2 3
0
2
4

x 10
5

Test case versus baselineS
um

 s
q.

 o
f d

iff
.

Frequency from 0 to 25 KHz

1 2 3
0
5

10
x 10

5

Test case versus baselineS
um

 s
q.

 o
f d

iff
.

Frequency from 25 to 50 KHz

1 2 3
0
1
2

x 10
6

Test case versus baselineS
um

 s
q.

 o
f d

iff
.

Frequency from 50 to 75 KHz

1 2 3
0
1
2

x 10
6

Test case versus baselineS
um

 s
q.

 o
f d

iff
.

Frequency from 75 to 100 KHz

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

2

4

6

8

10

12

14

16

18
x 10

5

Test case versus baseline

S
um

 s
q.

 o
f t

he
 d

iff
. f

ro
m

 D
at

a 
1

Comparision of the sum of squares at different frequency intervals

 

 
Freq.Int.1 (0-25)
Freq.Int.2 (25-50)
Freq.Int.3 (50-75)
Freq.Int.4 (75-100)



61 
 

results above, then most significant frequency range for this test case is 

from 75-100 KHz. The results were demonstrated in two different ways; 

bar graph and linear representation. The linear representation of the 

results is more understandable as compared to the bar graph 

representation.  

After the defect due to a cut was distinguished and characterized, 

the same analysis was performed on a different type of defect i.e. a hole. 

The measures frequency response was first recorded by exciting the 

actuator with a sweep sine wave with a frequency range from 1-100 KHz 

and the output wave was collected from the sensor bonded onto the surface 

of specimen using a spectrum analyzed. Since all the three holes were 

identical to each other, the measured frequency response was almost the 

same for all three cases as shown in figure 5.17. 
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Figure 5.17 Sweep sine wave response for three hole positions 

 

After the frequency response, the sum of square of the difference was 

calculated versus the baseline data. Since the three holes made in the 

sample were identical to each other, the magnitude of the square of the 
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Figure 5.18 Sum of square of difference between perfect and three 
identical holes signals 
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(b) 

Figure 5.19 Comparison of sum of squares at different frequency intervals 
(a) Bar graph representation (b) Linear representation 

After the square of difference was calculated, the total frequency 

range was divided into four intervals, in order to calculate the most 

significant interval. The purpose of doing this was to find a frequency 

range that demonstrates the maximum difference between the perfect and 

defected condition. From figure 5.19, the frequency range from 75-100 

KHz was the most significant range. The surface response to excitation 

approach proved to be an ideal approach for determining the intensity of 

the defect. 

5.6 Analysis validation and benefits 
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that were done in order to obtain above results, all the above experiments 

were performed couple of times keeping all conditions identical. Due to 

large number experiments and enormous data sets, one of the experiments 

was selected to validate the system. The data from the welded plate 

defects was selected as a test case. First the envelopes of the propagated 

signals were generated and compared in the figure 5.20. It can be clearly 

seen that data 1 & data 2 in the plot below are almost identical to each 

other and similarly data 3 and data 4 are very close to each other, yet 

there was a little bit difference between the two identical signals. 

 

Figure 5.20 Comparison of envelopes of two identical data sets. 

 

So, in order to calculate the magnitude of difference between two identical 

data points, the absolute difference between these data points was 

calculated by comparing the peaks of the signals in time domain (figure 
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difference in both cases came out to be very small as compared to the 

original signals. Hence, the repeatability of the monitoring technique 

including the experimental procedure is validated. 
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(b) 

Figure 5.21 Absolute differences between two identical sets of data in time 
domain (a) Difference between identical data 1 & 2 (b) Difference between 

identical data 3 & 4 

Since a large amount of data points has to be collected in order to 

obtain good results for the Lamb wave analysis, it becomes very 

cumbersome to analyze the data. Hence, the wavelet transformation of the 

original data was done to compress the data. Wavelet transformation is a 

mathematical tool that is quite useful for analyzing many types of signals. 

It has been proven especially useful in data compression. An important 

property of wavelet analysis is perfect reconstruction, which is the process 

of reassembling a decomposed signal or image into its original form 

without loss of information. A data at random was selected and wavelet 

transformation of that data was calculated as shown in figure 5.22. 
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(c) 

Figure 5.22 Wavelet transformations of random data (a) First level          
(b) Second level (c) Fourth level 
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aircrafts, etc. or the structures operating in extreme conditions such as 

dams, nuclear plants etc. the error percentage should be minimum as 

compared to other structures in order to detect any defect before sudden 

failure of the structure. Hence wavelet transformation is proved to be a 

good tool for Lamb wave data analysis where a large amount of data can 

be represented by a comparatively small amount of the data points 

without any/much loss of important information. 

5.7 Conclusion 

Both approaches Lamb wave propagation and surface response to 

excitation were evaluated to monitor the defects in a welded plate 

structure. In the Lamb wave approach, the signals of interest were 

isolated by using the S-transformation and then the envelopes of those 

signals were compared, whereas the surface response to excitation (SuRE) 

method calculated the surface response characteristics and evaluated the 

intensity of defect. 

The results from both approaches were complementary to each other, 

as the envelopes of the generated Lamb wave signals changed as the 

defects keep on changing and similarly the frequency response for the 

SuRE method also showed a significant change due to defects. Hence both 

approaches could be used for monitoring the structure with a welded joint. 

In Lamb wave approach, the envelopes indicated the position of the 

defects, but were not able to indicate clearly the severity of the defects 

where as an opposite condition was seen in SuRE approach. The sum of 
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squares of the difference of the frequency response characteristics 

indicated the severity of the defects and can be used for any condition 

irrespective of the size and shape of structure. Both approaches are in 

expansible due to the low cost of the sensors and equipment’s and over 

that, the SuRE approach was similar to the impedance method but the 

overall cost and complexity of the equipment is much less. 
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6 CONCLUSION & FUTURE WORK 

6.1 Conclusion 

Structural Health Monitoring is an area of growing interest. SHM 

using embedded PWAS for the detection of material damages with Lamb 

wave propagation methods, which are now being profoundly researched as 

having the most potential for damage detection in plates and SuRE 

method, which have traditionally received the most attention. Detection 

and monitoring of defects in plates has been an interesting area of 

scientific study in the past two decades. Particularly, the dynamic 

characteristics of a crack in a plate/plate like structures and their 

monitoring have received considerable attention in this area of research. 

This thesis starts from exploring the durability and sustainability of 

the sensory system including the adhesive materials under different 

atmospheric conditions. Several experiments were performed using 

various combinations of the sensors and bonding materials. The sweep 

sine wave approach was used to generate the surface waves, and the best 

combination for each condition was concluded on the basis of weekly 

response of the system. 

An extensive amount of experimental data for the healthy, 30% 

cracked and 50% cracked plate sample has been collected, analyzed and 

presented. The obtained results demonstrate that the external excitation 

force with a calculated frequency range when applied on the cracked plate 

induces combinational frequencies. These combinational frequencies 



73 
 

provide an indication of the presence of a crack. From the experimental 

results, it was observed that the amplitude of the frequencies amplify 

when the crack depth increases. Moreover the amplitude of the frequency 

peaks depends on the location of the sensor. In addition, the Lamb wave 

propagation method has been presented in detail. The results from both 

approaches have been compared and were complementary to each other. 

In another set of experiments, the defects in the welded plate structure 

were monitored. Both techniques successfully detected the intensity of the 

damage and in addition, the Lamb wave method was able to detect the 

approximate location of the identical defects in the structure. It is thus 

concluded that both Lamb wave and SuRE methods were able to monitor 

and detect the damage intensity for varying size and thickness of the plate 

structure.  

6.2 Recommendations for Future Work 

Much work still remains before current SHM systems can be relied 

upon to replace standard inspection and maintenance sequence. 

• For frequency response method, more experiments should be 

performed on built-up and larger structures to validate the initial results. 

An experimental study paralleling the performed tests but varying the 

size of the damaged regions would also be useful in determining this 

method’s sensitivity. 
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• For Lamb wave testing, further work lies ahead for different types 

of built-up structures other than the ones tested during the present 

research. 

• Another possibility would be to test these methods on materials in 

use, since the present work only indicated newly manufactured specimens 

with artificially introduced damage, and did not considered the 

complexities in an aging structure. 

• Remotely controlling and accessing data from sensors via wireless 

connection still needs much attention. 
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