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cameras, and communication systems to monitor, manage, and control traffic, based on 

information collected from different sources.  

A dynamic O-D matrix contains time dependent traffic demand information for a 

road network. Given a dynamic O-D matrix, it is possible to estimate and predict time 

dependent traffic flow in a road network. Thus, an accurate dynamic O-D matrix can act 

as a critical input to ITS to implement short-term traffic controls, real-time route 

guidance, and so on. In addition, the dynamic O-D matrix is important for the success of 

dynamic traffic assignment applications. 

Due to the importance of dynamic O-D matrices over the past two decades, much 

effort has been devoted to developing effective and efficient methods to estimate 

dynamic O-D matrices. Existing dynamic O-D matrix estimation models can be classified 

into assignment-based and non-assignment-based. Assignment-based estimation models 

employ a dynamic traffic assignment (DTA) simulator to determine the relationship 

between traffic demand and traffic measurement data. They then use an optimization 

method to estimate a dynamic O-D matrix by minimizing the difference between the 

observed traffic measurements and the simulated ones. Representative works include 

those by Ashok and Ben-Akiva (1993, 2000, and 2002) and Zhou et al. (2006 and 2007). 

The advantages of assignment-based dynamic O-D matrix estimation models are, (1) they 

have a simple model structure; (2) they can be applied to large road networks; and (3) 

they can easily combine available traffic information, such as automatic vehicle 

identification (AVI) data, into the estimation function to improve accuracy. In contrast, 

the drawbacks of assignment-based O-D matrix estimation models are, (1) estimation 

results depend heavily on an initial O-D matrix, so the initial O-D matrix must first be 
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accurate to get a good estimation; and (2) the DTA simulator employed needs to be 

accurately calibrated in order to correctly imitate travelers’ behavior and traffic 

conditions in the real world.  

Non-assignment-based models do not rely on a DTA simulator. Instead, they 

establish relationships between dynamic traffic demand and traffic measurements based 

on the traffic conservation relationship between trips at entries, exits, and mainstreams of 

a road network. Studies by Cremer Keller (1981, 1984, and 1987), Bell (1991a and 

1991b), Chang and Wu (1994), and Lin (2006) fall into this category. Although non-

assignment-based dynamic O-D matrix estimation models are independent of a DTA 

simulator, they still have problems in three aspects: (1) the traffic conservation equations 

cannot describe complicated traffic situations such as queuing and signal delay; (2) the 

traffic conservation models are too cumbersome to apply accurately to a large road 

network; (3) extra traffic measurement data, such as AVI data, are not easy to integrate 

into the model. Currently, the main applications of non-assignment-based models are for 

freeway segments. 

Despite the progress made by researchers in the past 20 years, developing an 

improved model for dynamic O-D matrix estimations based on available traffic 

measurements remains a challenge. 

1.2 Problem Statement 

Assignment based dynamic O-D matrix estimation models have attracted an increasing 

amount of attention because they do not require the construction of complicated traffic 

conservation equations. This dissertation focuses on improving assignment-based 

dynamic O-D matrix estimation models. 



 

4 

A general O-D matrix estimation is the inverse process of a traffic assignment, 

with the observed traffic measurement as input and the traffic demand as output. The 

criterion used in the estimation addresses if the estimated demand can reproduce 

observed traffic conditions. Existing assignment-based dynamic O-D matrix estimation 

models have two types of problems: (1) they implicitly contain a problematical 

assumption, namely the proportional assignment assumption defined by Bell and Lida 

(1997), meaning a doubling in demand causes a doubling in traffic volume; and (2) they 

ignore the initial O-D matrix estimation.  

With the implicit proportional assumption, the existing assignment-based 

dynamic O-D matrix estimation models try to minimize the deviation between 

assignment and observed traffic volume, based on a fixed linear relationship between the 

O-D demand and assignment traffic volume. This relationship is often denoted as the 

dynamic traffic mapping matrix.  

The proportional assumption ignores the real relationship between traffic demand 

and traffic volume, as illustrated by Figure 1.1, based on the modified Greenshields 

model (Mahmasani et al., 2005). Under the proportional assumption, traffic volume is 

assumed to have the positive proportional relationship with traffic demand. However, 

Figure 1.1 illustrates that the positive proportional relationship between traffic volume 

and traffic demand only holds true in Region A, indicated by the solid line, where traffic 

volume is below road capacity. In Region B of Figure 1.1, upon reaching the link’s 

capacity, the relationship between traffic volume and demand becomes negative. Clearly, 

in Region B, the assumption is totally inapplicable, as increasing traffic demand only 

causes traffic volume to drop. 
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Figure 1.1 The relationship between link traffic volume and link traffic density. 

The proportional assignment assumption cannot be entirely abandoned for its 

weakness, as analyzed above. The point is that the link traffic condition needs to be 

identified before applying the assumption. The assumption can be used for those links 

with traffic conditions that fall in Region A, as shown in Figure 1.1. In Region B, some 

necessary modifications to the assumption are needed. 

The second problem of the existing dynamic O-D matrix model is the ignorance 

of the initial O-D matrix estimation. An inaccurate initial O-D matrix can cause problems 

in two aspects: 

1. First, if an initial O-D matrix is much larger than the real one, then the traffic 

conditions in many road links will fall in Region B of Figure 1.1. Under this 

condition, it will be much less likely for the existing estimation model to yield an 

accurate result because the proportional assignment assumption cannot hold true 

in Region B.  
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2. Secondly, the final estimation result relies heavily on the initial O-D matrix 

because of the limited information from an insufficient number of traffic detectors 

in a road network. Known as an under-specification problem, Zhou and 

Mahmassani (2006) define it as when the number of estimated, unknown O-D 

demand is higher than the available constraints. The under-specification problem 

can be seen in the example shown by the hypothetical road networks of Figure 1.2. 

 

(a)                                                                  (b)  
Figure 1.2 Two simple road networks 

In Figure 1.2 (a), there are two O-D pairs (1→3 and 2→3) with only one detector 

installed in link 4-3, thus the O-D matrix estimation for the network in Figure 1.1 (a) has 

the under-specification problem. In order to see the impact of the under-specification 

problem, two scenarios can be assumed in the hypothetical network: (1) the detector 

observed volume is 100, and initial trips for 1→3 and 2→3 are assumed 10 and 10; and (2) 

the detector observed volume is 100, and initial trips for 1→3 and 2→3 are assumed as 10 

and 0. Based on the proportional assumption, the estimation result for scenario (1) is 50 

for 1→3 and 2→3, and the result for scenario (2) is 100 for 1→3 and 0 for 2→3. 

Differences in the initial O-D demand can result in different estimations with under-
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specification problem. The O-D matrix estimation for the road network in Figure 1.2 (b) 

does not have the under-specification problem because there are as many detectors as 

unknown demands.  

An accurate initial O-D matrix can provide not only the approximate demand 

information for an individual O-D pair but also useful information on traffic demand 

temporal distribution pattern. Suggested by Lin (2006), the accuracy of an initial O-D 

matrix is important for the estimation result. However, current assignment-based dynamic 

O-D matrix estimation studies ignore the estimation of an initial O-D matrix. 

1.3 Research Goal and Objectives 

Designed to develop an assignment-based dynamic O-D matrix estimation framework 

both efficient in computation and accurate in estimation, this study has the following 

main objectives: 

1. Develop an initial O-D matrix estimation model to provide an improved initial O-

D matrix for the proposed dynamic O-D matrix estimation model and thereby 

increase the accuracy of the final estimation results. 

2. Develop a dynamic O-D matrix estimation model with efficient and accurate 

estimation performance under congested traffic conditions. The model is designed 

to detect links with heavy simulated traffic congestion in Region B of Figure 1.1 

(where the proportional assumption cannot hold), and then modify the 

corresponding element in the dynamic mapping matrix to improve the 

performance of the dynamic O-D matrix estimation under congested traffic 

conditions.  
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1.4 Dissertation Organization 

This dissertation consists of seven chapters. Chapter 1 introduces the background of the 

research, describes the major problems, and sets forth the project’s goals and objectives. 

Chapter 2 presents an extensive literature review covering classic static O-D 

matrix estimation models, assignment-based dynamic O-D matrix estimation models, and 

non-assignment-based dynamic O-D matrix estimation models. The purpose of the 

review is to understand the current studies in order to analyze the existing problems in 

those models.  

Chapter 3 proposes a complete methodology framework. In response to the 

problems stated in Chapter 1, this chapter puts forward a series of models: a traffic flow 

model calibration (TFMC) model, an initial O-D matrix estimation (IODE) model, a 

dynamic O-D matrix estimation (DODE) model, and a traffic flow model fine-tuning 

(TFMFT) model.  

Chapter 4 uses a hypothetical road network to test the dynamic O-D matrix 

estimation (DODE) model in the proposed methodology framework. In this case study, 

with the simulation data, each term in the estimation model is analyzed. Finally, a 

comparison of the DODE model’s performance with that of the existing one demonstrates 

the advantage of the proposed model. 

Chapter 5 applies the proposed methodology to a road segment of I-95. The case 

study is designed to test the feasibility and efficiency of the proposed methodology for a 

middle-sized road network. 

Chapter 6 applies the proposed methodology to a regional road network from 

Jacksonville to test the feasibility and efficiency of the proposed methodology for a large-
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sized road network.  

Chapter 7 summarizes the major research results in each chapter, draws 

conclusions, and recommends issues for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter reviews the literature on O-D matrix estimation models, including static and 

dynamic approaches. Static O-D matrix estimation models are the foundation of dynamic 

O-D matrix estimation approaches. There are two types of dynamic O-D matrix 

estimation models, namely assignment-based and non-assignment-based estimation 

models, and these are reviewed separately. 

2.1 Static O-D Matrix Estimation Models 

Developed mainly for the purpose of transportation planning, static O-D matrix 

estimation models can be categorized into two groups, namely entropy maximization- 

based (EM) and econometrics based. 

The EM approach means applying the concept of entropy to quantitative methods 

to forecast spatial interaction (Wilson, 1967). The entropy of an O-D matrix is the 

number of different permutations of trips. The hypothesis is that an O-D matrix that 

maximizes the entropy subject to the constraints of link traffic measurements would be 

the most likely O-D matrix.  

Van Zuylen and Willumsen (1980) developed an EM-based static O-D matrix 

estimation model. In their study, O-D matrix estimation problems are formulated as 

Equations 2.1 and 2.2. 

])ln(max[argˆ ∑ −−=
ij

ijijij
T

ij TTTT
ij

      (2.1) 

subject to 

∑=
ij

a
ijija PTV          (2.2) 



 

11 

where Tij is the O-D trips from i to j that are to be estimated; ijT̂  is the best estimation of 

Tij; a
ijP  is the proportion of O-D demand from i to j passing link a; and Va is the observed 

traffic volume on link a. 

The advantages of the EM approaches are, (1) their full utilization of observed 

data; (2) their ability to easily incorporate prior estimations of O-D matrices; (3) their 

ability to produce estimation when knowledge of travel behavior is lacking; and (4) their 

potential application for equilibrium assignment. However, EM approaches assume that 

link flows are measured without error, which conflicts with real situations; furthermore, 

the assumption of EM approaches may not be consistent with the traveler’s route choice 

behaviors in the real world. 

Econometrics based approaches aim to build statistical models between O-D 

matrices and measured traffic counts. Econometrics approaches can be categorized into 

three groups: maximum likelihood-based (ML) models, Bayesian inference-based (BI) 

models, and generalized least square-based (GLS) models.  

Spiess (1987) presented a ML-based O-D matrix estimation model from the 

observed traffic volumes of several links and a sample O-D matrix. The assumption is 

that the elements of a sample O-D matrix ti follow an independent Poisson distribution 

with mean ρiTi. The coefficient ρi represents the sampling rate factor for the O-D pair Ti 

that is to be estimated. The proposed estimation model is presented as Equations 2.3 and 

2.4, below: 

∑
∈

−=
Oi

iiiii TtTMinTf )ln()( ρ       (2.3) 

subject to 
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∑
∈

=
Oi

aiia VTn , Ia ∈         (2.4) 

where the coefficient nia corresponds to the proportion of trips for O-D pair i that uses 

link a; Va denotes the observed volume of link a; I stands for the set of links with 

observed traffic volumes; and O represents the total number of O-D pairs.  

Maher (1983) and Cascetta and Nguyen (1988) proposed BI-based O-D matrix 

estimation models. There are three advantages to BI-based models (Maher, 1983): (1) 

they are flexible when considering the confidence level of an a priori O-D matrix and 

observed traffic volumes; (2) they can successively update O-D matrices by observed link 

volumes; and (3) they can produce confident intervals for the estimation results. In a 

typical BI model, the a priori information on trip demand T can be formulated as the a 

priori probability function g(T). Traffic volumes are considered an additional source of 

information about T, with given probability L(V|T), and BI methods allow the 

combination of these two sources of information to provide the a posteriori probability 

function f(T|V): 

f(T|V) ∝  L(V|T)·g(T)       (2.5) 

Based on the maximization of an a posteriori distribution, T can be estimated as: 

T=arg max ln f(T|V) = arg max[ln L(V|T)+ln g(T)]    (2.6) 

Generally speaking, the a priori distribution function of g(T) can be assumed to 

be a multinomial Poisson or a multivariate normal distribution function. The traffic 

volume distribution function L(V|T) can be a Poisson or a multivariate normal likelihood 

function. One of the disadvantages of BI estimation is that the estimation result varies 

with different a priori distribution functions for g(T). Usually, the historical information 
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on the large dimensional vector T is insufficient to derive a reliable g(T), which can 

render the estimation result erroneous. 

Cascetta (1984) proposed a GLS-based O-D matrix estimation model. The model 

combines O-D demands with traffic volume through an assignment model. O-D demands 

are modeled as Equation 2.7, below: 

εtt +=ˆ          (2.7) 

where t̂ is an estimated O-D vector; t is a true O-D vector; and ε is a random vector with 

mean µ and variance and covariance matrix V.  

The relationship between O-D demands and traffic volumes, also known as the 

assignment model, is formulated as Equation 2.8: 

ηtAf += ˆ          (2.8) 

where f is a traffic volume vector; Â  is an assignment matrix; and η is a random vector 

with mean δ and variance and covariance matrix W.  

Based on Equations 2.7 and 2.8, Cascetta (1984) models the O-D matrix 

estimation problem as Equation 2.9: 


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min       (2.9) 

In the above GLS model, if the random vector (ε, η)T follows a multivariate 

normal distribution with a mean of 0, the estimator is the best linear unbiased estimator 

(BLUE) of the O-D matrix t, which is the same as the maximum likelihood estimator. 

Generally speaking, GLS models can account for measurement errors in traffic flows 
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explicitly. The disadvantage of GLS models is that the results may contain bias due to 

error in the initial O-D matrices’ values and from the assignment models. 

To solve the O-D matrix estimation problem from available traffic measurements, 

a bi-level structure is often needed, where the upper-level problem minimizes a distance 

metric between measured and estimated traffic conditions, and the lower-level generates 

an equilibrium assignment mapping matrix to feed the upper level problem. Considering 

the heavy computation required by bi-level approaches, Nie et al. (2005) proposed a path 

flow estimation framework that integrates a decoupled path flow estimator (PFE) into a 

generalized least square (GLS) model as shown in Equation 2.10. The GLS model 

minimizes the combined errors from link volume and historical the O-D demand matrix.  

  

           (2.10) 

subject to: f ≥ 0 

where P represents an user equilibrium assignment mapping matrix, obtained from a K-

shortest path ranking procedure; M is a matrix that converts equilibrium path flows to O-

D demands; f represents path flows; and S and T represent the variance-covariance 

matrices for target matrix q and traffic counts x. The decoupled PFE model can 

exogenously calculate user-equilibrium optimal paths based on a K-shortest path 

algorithm, which simplifies the work in equilibrium assignment. 

By relaxing the user equilibrium conditions, Nie and Zhang (2008) proposed 

another O-D estimation model that can incorporate travelers’ route choice behavior. 

Through relaxation, efficient algorithm solutions can be developed to handle large-scale 
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estimation problems. A column generation algorithm was used to solve the relaxed model. 

The relaxed model is formulated by Equation 2.11, as follows: 

 

          (2.11) 

subject to: f ≥0 

where f is a vector of path flows; q is a vector of historical travel demands; x is a vector 

of measured traffic counts; τa (w) is a travel cost function of link a; P and M are 

corresponding path-link incidence and path-OD incidence matrices; wx >0 and wq > 0 are 

relative weight factor for x and q; and θ is a dispersion parameter for travel cost. 

2.2 Dynamic O-D Matrix Estimation Models 

A dynamic O-D matrix provides the critical input information for implementing and 

evaluating traffic management strategies. According to Lin (2006), dynamic O-D matrix 

estimation models can be categorized into two groups: assignment-based and non-

assignment-based. In the following two subsections, these two methods are reviewed. 

2.2.1 Assignment-Based Estimation Models 

With the assistance of DTA simulators to obtain complex traffic dynamics, assignment -

based dynamic O-D matrix estimation models yield the best estimation by minimizing the 

difference between observed traffic measurements and simulated ones. Based on 

modeling approaches, assignment-based dynamic O-D matrix estimation models can be 

classified into three groups: generalized least square-based (GLS) models, variational 

inequality-based (VI) models, and state-space-based models. Currently, with more traffic 

data available, people are trying to combine traffic data from different resources into 
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dynamic O-D estimation models. As such, the last subsection will introduce some studies 

on the dynamic O-D matrix estimation models that use combination of AVI data, called 

AVI data-based estimation models. The following subsections review the four dynamic 

O-D matrix estimation models. 

This group of models extends the static GLS O-D matrix estimation models by adding a 

temporal dimension in both O-D matrices and traffic measurement data. 

Cascetta et al. (1993) transformed static GLS O-D matrix estimation models into 

dynamic ones. In their study, traffic volume can be formulated as shown in Equation 2.12, 

below: 

2.2.1.1 GLS based Estimation Models 

lhV̂ = Vlh + Wlh        (2.12) 

where lhV̂ is a measured link volume vector for link l in time interval h; Vlh is a real link 

volume vector for link l in time interval h; and Wlh is a random term. 

Link volume Vlh results from O-D demand passing link l during time interval h, 

and the relation between O-D matrices and link volumes can be formulated as Equation 

2.13, shown below:  

Vlh = ∑∑
=

h

t r
rt

rt
lh

1
dp         (2.13) 

where drt is a vector of a time-dependent O-D matrix, and rt
lhp  is the fraction of O-D 

matrix drt which contributes to the observed traffic volume of link l. rt
lhp can be formulated 

as the product of link-path fraction and route choice probability, as shown in Equation 

2.14 below: 
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∑
∈

=
rKk

kt
lh

rt
lh αP q(k, t)        (2.14) 

where kt
lhα is a link path incidence fraction, and q(k, t) is the probability of an O-D trip 

choosing path k with departure time interval t. 

In actual applications, q̂ (k, t) and kt
lhα̂  may be obtained through the simulation 

result from a DTA model, which is subject to estimation errors. Therefore, the 

relationship between O-D matrices and link volumes can be revised as follows: 

∑∑
=

=
h

1t r

rt
lhlh PV ˆˆ drt +  πh       (2.15) 

where πh is a random error vector. 

After redefining the dynamic relationship between the dynamic O-D matrices and 

link volumes, the dynamic O-D matrix estimation model can be represented as a GLS: 

d = )]ˆ(f)ˆ([fminarg 21 vv,ds,
Ss

+
∈

      (2.16) 

where d is a dynamic O-D demand vector; s is an a priori known dynamic O-D demand 

vector (sample O-D matrix); S is a feasible set of s; and f1(·) and f2(·) measure the 

distance between observed and estimated measurements. 

Sherali and Park (2001) developed a dynamic path flow estimation method based 

on an optimization algorithm that uses link volume data in a general road network. The 

proposed model aims to determine the path flows with the least cost O-D paths and the 

least deviation between assignment and observed link traffic volumes. The developed 

model can be decomposed into a restricted master programming model and a sub-

programming model. The purpose of the master programming model is to find a set of 

path flows that minimize the combination of the total network travel cost and the 
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difference between the assignment and the observed link volumes. The sub-programming 

model’s purpose is to solve the problem of a time dependent shortest path on an 

expanded time-space network. The result of the sub-programming model feeds into the 

master programming model for the next round of estimation. The proposed methodology 

is conducive only for off-line processing purposes. A constrained least square model 

formulates the master-programming model in their study, as shown by Equations 2.17 

and 2.18 below: 

Minimize z(f) = ∑ ∑∑∑∑ ∑ ∑∑
∈ ∈ == ∈ ∈ ∈ ∈

+−
ODr Kk

T

t

r
kt

r
kt

T

h Ll ODr Kk Tt
lh

r
kt

ktr
lh fcyfP

r 11

2]ˆ[
2
1 µ   

           (2.17) 

0≥r
ktf           (2.18) 

where r is the number of O-D pairs; k is the number of routes connecting a given O-D 

pair; l is the number of links with measured traffic volumes; h is a specific time interval; 

r
ktf  is the dynamic O-D route flow for O-D pair r departing at interval t in route k; lhŷ  is 

the traffic volume on link l and during interval h; ktr
lhP is the proportion of r

ktf  

contributing to lhŷ ; r
ktc  is the travel delay for vehicles entering route k at interval t; and µ 

is the weight for path travel cost. 

Gajewski et al. (2002) developed an integrated square error (L2E) dynamic O-D 

matrix estimation model instead of an existing least square (LS) model, which is 

vulnerable to the traffic measurement error. The authors assume that the possibility for 

measurement error in observed traffic volume is high, so the LS model is not ideal for 

dynamic O-D matrix estimation. In contrast, the L2E model is theoretically more robust 
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than the LS model in defending against large measurement error because it measures the 

integrated squared difference between the observed and estimated traffic volume 

probability density functions. The L2E model for dynamic O-D matrix estimation is 

shown, as follows, in Equation 2.19: 

})]|()|([{min 2
2 ∫

+∞

∞−

−= tjOjttjjttjEL dDDfDfF POPO
P

   (2.19) 

where t is the number of time periods (t=1, 2…, T); Dtj is the observed traffic volume in 

destination j during time interval t; Ot is a row vector that stands for the original observed 

traffic volumes vector in time period t for destination j; Pj is a column vector that 

represents the estimated split proportions from all origins to destination j; POj is a column 

vector that represents the real split proportions from all origins to destination j; and f(.|.) 

is a conditional probability distribution function. After certain approximations, Equation 

2.19 can be converted into Equation 2.20, as shown: 

});(2
2

1{min
1 1

2
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= =

−−=
T

t

p

j
jttjEL DN

Tp
F σ

πσ
PO

p
    (2.20) 

where T is the total number of time periods; σ is the standard deviation for the difference 

between observed estimated traffic volumes; p represents the number of destinations; and 

N(Dtj – OtPj; σ2) stands for a normal probability distribution function. 

According to Equation 2.20, L2E models minimize the sum of probability density 

functions while the maximum likelihood estimation (MLE) or LS models minimize the 

negative product of probability density functions. The effect of data outliers on MLE or 

LS models is more severe than that on L2E models. Thus, L2E dynamic O-D matrix 
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estimation models have the potential to obtain better results in the case of large data 

errors.  

Tavana and Mahmassani (2001) propose a bi-level optimization method to 

estimate dynamic O-D matrices based on observed traffic measurement data. In their 

method, a least-squares estimation model is used at the upper-level and a DTA simulator 

solves a user-equilibrium problem at the lower-level. Equations 2.21, 2.22, and 2.23 show 

the proposed model, as follows: 

Upper-level: 

2

, ,,
,,,),,(),,( ][∑ ∑ −⋅=

hl jit
hljitjithl cdpZ       (2.21) 

subject to 

dt,i,j ≥ 0          (2.22) 

Lower-level: 

p(l.h),(t,i,j)=assignment |d(t,i,j)| from DTA      (2.23) 

where i and j are, respectively, the origin and destination zones; t and h represent, 

respectively, trip departure time interval and link volume observation time interval; l 

stands for the link number; p(l.h),(t,i,j) represents the link-flow proportion that is to the ratio 

of demand dt,i,j, which flows onto link l during observation interval h; dt,i,j is the demand 

that initiates trips during time interval t with origin i and destination j; and cl,h, is the 

observed traffic count from link l in time interval h. Case studies show that when the 

network is congested, the proposed model cannot guarantee satisfactory estimation 

results because observed link volume data cannot provide enough information on the O-D 

pattern under congested traffic conditions. 
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Zhou et al. (2003) improved the dynamic O-D matrix estimation method of 

Tavana and Mahmassani (2001) by incorporating multi-day link traffic volumes into the 

objective function. Composed of two terms, the objective function’s first term is the 

deviation between observed and estimated link flows for multiple days, and the second 

term is the deviation between target and estimated demand for multiple days. The 

updated model can help analyze traffic demand patterns using multi-day data, and is 

formulated by Equations 2.24, 2.25 and 2.26 below: 

Upper-level: 

}][}][)1{(
,

2
),(),,,(

2

, ,,
),,(),,,(),,,(),,(∑ ∑ ∑∑ ∑ −+−⋅−=

m ji t
jimjit

hl jit
mhlmjitmjithl gdwcdpwZ  

           (2.24) 

subject to 

d(t,i,j),m≥0         (2.25) 

Lower-level: 

p(l.h),(t,i,j),m=assigning d(t,i,j) based on a DTA simulator   (2.26) 

where i and j respectively stand for origin and destination zone number; t and h represent, 

respectively, trip departure time interval and link volume observation time interval; l is 

the link number; m denotes the day; w is a weighting factor; p(l.h),(t,i,j),m is a link-flow 

proportion, which is the proportion of demand d(t,i,j),m that flows onto link l during 

observation interval h; d(t,i,j),m is the demand that activates trips during interval t on day m 

with origin i and destination j; c(l,h),m is the observed traffic count from link l in time 

interval h of day m; and g(i,j) is the target demand from i to j. 
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Recently, off-line GLS-based dynamic O-D matrix estimation methods (Kim, 

2006 and Balakrishna et al., 2007) have provided an approach to jointly estimate time-

dependent O-D matrices and DTA supply-side parameters, without using traffic mapping 

matrices, by using a stochastic optimization algorithm. The typical model of this group 

has the following generalized least squared format: 

}][min{),( 1'

1

1'1'
βββ εΩεεΩεεΩεβX −

=

−− ++= ∑
H

h
xhxhxhMhMhMhZ    (2.27) 

O
hhMh MMε −=         (2.28) 

a
hhxh XXε −=          (2.29) 

a
hhxh ββε −=          (2.30) 

Mh = f(X, β, G)        (2.31) 

LX ≤ X ≤ Ux         (2.32) 

Lβ  ≤ β ≤ Uβ         (2.33) 

where X represents an O-D demand vector; β denotes the DTA simulator model 

parameters; M stands for observed traffic measurement data, such as speed and link 

volume; a
hX  represents a historical O-D demand vector; G denotes a road network; ε 

stands for the deviation vectors between observed or historical variables with the 

variables awaiting estimation; and Ω represents the variance and covariance matrix for 

observed or historical variables.  

Kim (2006) proposed a bi-level structure to jointly calibrate the dynamic O-D 

matrix and a micro-simulation model for a real road network in Texas. A genetic 

algorithm (GA) is employed to calibrate the simulation model parameters in the upper-
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level because of the significant complexity in the relationship between traffic 

measurements and subsequent model parameters.  

Balakrishna et al. (2007) employed a stochastic approximation algorithm 

developed by Spall (1998) to simultaneously calibrate a mescoscopic DTA model in 

terms of supply parameters and demand parameters, based on the generally available 

sensor data. After test runs, the suggested algorithm received validation in both synthetic 

and real-world road networks.  

Kattan and Abdulhai (2006) proposed an approach based on evolutionary 

algorithms (EA) to estimate dynamic O-D trip matrices. EA is potentially powerful as a 

global search and optimization tool. While the results of their study proved the use of EA 

to be better than the existing deterministic O-D matrix estimation method, the 

computational burden incurred by this approach remains to be problem. 

Nie and Zhang (2008) modeled the dynamic O-D estimation problem as a variational 

inequality (VI) in consideration of travelers’ response to congestion. By endogenetically 

determining the dynamic assignment matrix, the model avoids a bi-level solution 

structure. In their model, the path deviation for a time interval t is formulated by Equation 

2.34, as follows: 

2.2.1.2 VI based Estimation Models 

     (2.34) 

where P is a dynamic path-link incidence matrix; M is a dynamic path-O-D incidence 

matrix; u and q are, respectively, vectors for observed traffic volume and historical O-D 

demand; wx and wq are, respectively, confidence levels for u and q; and im represents the 

number of measurement time intervals. 
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At optimum, any user will experience a travel cost equivalent to the scaled 

dynamic deviation. The experienced travel cost would be always equal to or higher than 

the scaled dynamic deviation on any unused path. Mathematically, this implies the 

following: 

        (2.35) 

        (2.36) 

where, , , and  are, respectively, path flow, path travel cost, and path deviation 

for the kth path between O-D pair rs with departure interval t; and θ is a dispersion factor, 

which reflects the weight of travelers’ behavior. 

The above optimal conditions can be transformed into a variational inequality 

(VI), which finds  such that: 

      (2.37) 

where  and  are generated based on . A column generation algorithm is used to 

solve the VI model. 

As an approach to modeling a physical system, state-space models include a set of first-

order 

2.2.1.3 State-Space-based Estimation Models 

differential equations with input, output, and state variables. State-space models can 

act as a convenient way to model dynamic systems. 

State-space models have been used in modeling the dynamic relationship between 

O-D demands and observed link volumes in consecutive time intervals (Okutani, 1987; 

Ashok and Ben-Akiva, 1993, 2000, and 2002; and Antoniou et al., 2007). A typical state-

space dynamic O-D matrix estimation model consists of two parts, namely the transition 

function and the measurement function. 

http://en.wikipedia.org/wiki/Differential_equation�
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Transition functions model the auto-regressive relationship among the O-D 

demand at time interval h + 1 and those at previous time intervals, as Equation 2.38 

below shows: 

Xh+1 = ∑
−=

h

qhp

p
hf Xp + Wh       (2.38) 

where Xh+1 is the dynamic O-D demand origins during time interval h+1; p
hf  is the 

corresponding auto-regression coefficient matrices; p is the time interval before h+1; q is 

the number of lagged O-D demand affecting the O-D demand in time interval h+1; and 

Wh is a random error matrix. 

Measurement functions model the relationship between the O-D demand and the 

link volume, as shown in Equation 2.39:  

Yh = ∑
−=

h

rhp
p

p
h Xa +Vh        (2.39) 

where Yh is the link flow matrix at time interval h; p
ha  is a traffic assignment coefficient 

matrix; r is the maximum number of time intervals taken to travel between any O-D pairs 

in the network; and Vhis a random measurement error matrix term. 

Okutani (1987) applied a state-space model to estimate the dynamic O-D matrix 

for a small test network. In the model, O-D matrices were directly used as state variables. 

The results show that a larger traffic volumes data set leads to better estimation results.  

Ashok and Ben-Akiva (1993), however, thought that Okutani’s model only 

captured temporal interdependencies among O-D flows, but ignored structural 

information on O-D patterns. They used deviations of current O-D flows from the best 

historical estimated O-D flows as state variables in their study. Such model formulations 
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indirectly take into account all the available a priori structural information, thus making 

the transformed variables follow a normal distribution. A normal distribution of model 

variables is useful in allowing the available algorithms to effectively solve the state-space 

model. The proposed state-space models are shown as Equation 2.40 and Equation 2.41 

below: 

∑
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++ +−=−
h

qhp
h

H
pp

p
h

H
hh

'
11 )( WXXfXX       (2.40) 

∑
−=

+−=−
h

php
h

H
pp

p
h

H
hh

'
)( VXXayy       (2.41) 

where Xh+1 is the O-D vector for time interval h+1; H
h 1+X  is the best historical O-D vector 

estimation for time interval h+1 ; p
hf is a autoregressive coefficient matrix that reflects the 

effects of previous time interval demand deviations on the current time interval demand 

deviation; Wk is a vector of random errors; yh is the observed traffic count vector for time 

interval h; H
hy  is the historical observed traffic count vector for time interval h; p

ha  is an 

assignment matrix that reflects the contribution of demand vectors from previous time 

intervals to yh; and hV  is a vector of random measurement errors on traffic counts.  

Ashok and Ben-Akiva (2000) proposed an alternative method to model a state-

space structure by representing O-D demands as the product of origin trip and O-D split 

factors (the percentage of origin traffic demand to each destination), which supposedly 

enhances the predictive ability of the model because of the relative stability of O-D split 

factors. The authors combined the trip split factors into their estimation model to improve 

the model performance. The two transition equations and one measurement equation are 

shown as Equations 2.42, 2.43, and 2.44, respectively: 
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Figure 6.1 Subarea road network in Jacksonville, FL. 
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6.2 Traffic Data Preparation and Traffic Flow Model Calibration 

There are a total of 35 detectors selected to provide traffic measurement data for the 

dynamic O-D matrix estimation. The detectors are listed in Table 6.1, with the locations 

of these detectors specified in Figure 6.2. Traffic data including speed, volume, and 

occupancy are collected from these detectors within a time interval of 15 minutes.  

Table 6.1 Detector and road link.  

Num. Detector 
Link Node 

Num. Detector 
Link Node 

A B A B 
1 220022 118541 118542 19 200052 118741 119989 
2 220122 118488 119962 20 200042 122802 119994 
3 220142 120536 118544 21 210312 120057 122036 
4 220202 118483 118478 22 210362 119140 120060 
5 220362 118547 118475 23 210442 121604 121925 
6 220432 118549 118550 24 210632 119151 119152 
7 220562 118465 119950 25 210692 119154 119155 
8 220602 118551 118552 26 210711 121013 120788 
9 220631 122230 120971 27 210511 119133 119136 

10 220551 121413 120520 28 210371 119119 119120 
11 220491 118435 118436 29 210211 119122 119123 
12 220382 120512 120513 30 210171 119147 121602 
13 220311 118440 120514 31 210041 121457 118668 
14 220131 118442 118443 32 200091 118674 118676 
15 220071 118491 118494 33 200141 118706 118677 
16 220011 120970 118445 34 200201 118680 118681 
17 200132 118750 118705 35 200242 121466 118718 
18 200082 118751 118752        
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Figure 6.2 The location of detectors in the subarea road network. 

According to the availability of traffic data, a total of ten traffic flow models are 

calibrated based on the proposed linear regression algorithm, as presented in Table 6.2. 
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Table 6.2 Traffic flow model parameters. 
Model Uf Kb Vf V0 Kj α R2 

1 52 28 112 6 200 5.59 0.70 
2 65 22 106 6 200 4.59 0.88 
3 62 33 133 6 200 4.48 0.85 
4 65 18 99 6 200 4.12 0.83 
5 69 20 126 6 200 6.11 0.64 
6 69 27 130 6 200 4.71 0.75 
7 64 23 110 6 200 4.75 0.83 
8 70 25 103 6 200 3.05 0.79 
9 68 27 170 6 200 6.74 0.91 
10 60 23 90 6 200 3.60 0.85 

6.3 Initial O-D Matrix Estimation (IODE) 

The initial O-D matrix estimation includes two parts: the static initial O-D matrix 

estimation and the dynamic O-D estimation. The static initial O-D matrix estimation 

(SIODE) is performed with the aid of the CUBE ANALYST program. CUBE 

ANALYST requires road network, traffic count, initial O-D matrix, and so forth as 

inputs. The initial estimation methodology flow chart is presented in Figure 5.3. 

The extracted subarea O-D matrix is a daily O-D matrix, which needs to be 

factorized into a sequence of 15 minutes based on O-D matrices to be used as input for 

CUBE ANALYST. The daily O-D matrix is factorized based on the ratio of observed 

traffic volume in a certain time interval to the total observed traffic volume. 

The initial O-D matrices are estimated based on the SIODE model. Like the 

previous case study in Chapter 5, RMSPE for volume is used to evaluate SIODE result. 

In Figure 6.3, the solid line represents the RMSPE between observed volume and static 

assignment volume based on the initial demand for the 35 detectors, and the dashed line 

stands for the RMSPE between observed volume and static assignment volume based on 

the estimated demand for the 35 detectors. The average RMSPE is reduced from 0.369 to 
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0.111 as the result of SIODE. The figure demonstrates that the SIODE estimation 

improves the accuracy of the initial O-D matrix. 

 

 
Figure 6.3 Comparison between assignment volume before-and-after SIODE. 

SIODE depends on static assignment methods. The estimated O-D matrix needs 

to be further tuned based on dynamic traffic assignment methods. The DIODE model is 

used to further tune the estimated O-D matrix. The two proposed sub models in DIODE 

are used, and their performances are illustrated in Figures 6.4 and 6.5. Sub-model 1 

reaches convergence after three iterations, and the objective function value drops from 

400 to 48. Sub model 2 reaches convergence after six iterations, and the objective 

function value drops from 48 to 45. The DIODE model also proves advantageous in 

saving computation time, since it contains only a few variables. In this case study, Sub-

model 1 has one variable, and Sub-model 2 has eight variables.  
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Figure 6.4 Performance of DIODE Sub-model 1. 
 

 
Figure 6.5 Performance of DIODE Sub-model 2. 
 

With the aid of the DIODE model, the estimation result is improved, as is 

illustrated in Figure 6.6. In the figure, the solid line represents the RMSPE for volume 

before DIODE. The dashed line stands for the RMSPE of volume after DIODE. The 

average RMSPE for volume is reduced from 1.044 to 0.362. It should be mentioned that 
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the RMSPE for volume before DIODE in Figure 6.6 is different from that in Figure 6.3, 

because the assignment traffic volume is obtained from the static assignment in Figure 

6.3 and from the dynamic assignment in Figure 6.6.  

 
Figure 6.6 Comparison between assignment volume before-and-after DIODE. 

6.4 Dynamic O-D Matrix Estimation (DODE) 

After the initial O-D matrix estimation, the proposed dynamic O-D matrix estimation 

(DODE) model is used to estimate the dynamic O-D demand. Since there are more 

unknown variables (dynamic O-D pairs, 147×147×12) than those of available constraint 

traffic information (available traffic measurement 35×8×2), extra constraints are needed 

for the DODE model.  

In this case study, additional capacity constraints are used. The assumption is that 

a traffic analysis zone (TAZ) will not produce or attract more trips than those of the road 

network connected with the TAZ can afford within the whole study periods. This idea 

can be illustrated in Figure 6.7, where A and H represent two different TAZs, AB and 

GH are the links directly connected with the TAZs, and BC, BD, EC, and EG are 
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connected with link AB and link GH. In the DTA simulator DYNASMART, usually a 

very large capacity is assigned to link AB and GH, also called the generation link, so that 

the capacity bottlenecks often occur in link BD and BC for TAZ A, and in link EG and 

FG for TAZ H. Thus, the production constraint for TAZ A is the traffic production of 

TAZ A ≤ capacity of link BC plus capacity of link BD. In the same way, the attraction 

constraint for TAZ H is attraction of TAZ H ≤ capacity of link EG plus capacity of link 

FG.  

 

 

 

                         (a)                                                                               (b) 
Figure 6.7 Capacity constrain.  

 
Before using this capacity constraint, users need to make sure that there is no 

significant difference between the simulation and real road network in the connectors 

between TAZs and major roads; otherwise, the constraint may not reflect the real traffic 

conditions. In this study, with the proposed capacity constraints, the DODE model 

reaches a convergent solution point after 10 iterations, as illustrated in Figure 6.8, and the 

objective function value drops from 45.213 to 0.714. Figure 6.9 shows a comparison of 

RMSPE for volume before-and-after DODE. Based on the figure, the RMSPE of volume 

is reduced significantly. The average RMSPE for volume drops from 0.362 to 0.045 

through the DODE. 

A B 

C 

D 

E 

F 
G H 



 

110 

 
Figure 6.8 Performance of dynamic O-D matrix estimation (DODE).  
 

 
Figure 6.9 Comparison between assignment volume before-and-after DODE. 

Figure 6.10 compares the observed volumes and assignment volumes before 

DODE and Figure 6.11, after DODE. By comparing Figure 6.10 with Figure 6.11, one 

can conclude that the estimation result is reasonable, and that the real traffic count can be 

reflected by assigning the estimated dynamic O-D matrix to the network.  
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Figure 6.10 Assignment volumes versus observed volumes before SIODE. 

 

 
Figure 6.11 Assignment volumes versus observed volumes after DODE. 

Figure 6.12 shows a comparison of RMSPE for speed before-and-after applying 

the proposed models. Although there is much improvement on the RMSPE for speed, 

which has been reduced from 0.410 to 0.110, more work is needed since the RMSPE for 

the speed of some detectors is still large (around 0.5 after using the proposed models).  
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Figure 6.12 Comparison between assignment speed before-and-after applying the 
proposed methodology framework. 

In this case study, the proposed traffic flow model fine-tuning (TFMFT) model is 

not used since the stochastic optimization algorithm (sequential SPSA) requires 

simulation hundreds of times to reach a satisfying result. The large size of the network in 

this case study causes a much longer computation time. Thus, it is unrealistic to use the 

TFMFT model to calibrate the parameters of the traffic flow model.  

Finally, Zhou’s dynamic O-D matrix estimation model is used to perform the 

estimation for this case study. For the purpose of comparison, the initial O-D matrix is 

directly extracted from the SERPM model and factorized by the volume proportional 

factor. The traffic flow models are presented in Table 6.1. The performance of Zhou’s 

estimation model is illustrated in Figure 6.13. 
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Figure 6.13 Performance of Zhou’s dynamic O-D matrix estimation model. 

According to Figure 6.13, after 10 initial iterations, the objective function value 

drops from 450.213 to 10.491. In subsequent iterations, however, the objective function 

value stays the same. With the estimated O-D matrix from Zhou’s estimation model 

loading onto the road network, the average RMSPE for volume is 0.168 and 0.179 for 

average speed RMSPE. Comparatively, in the proposed estimation framework, with the 

negligible computation time spent by the SIODE, it takes six iterations for the DIODE to 

reach a stable solution, as indicated by Figures 6.4 and 6.5. Furthermore, it takes 10 

iterations for the DODE to reach a stable solution, as indicated by Figure 6.8. The total 

iteration number for the proposed methodology framework is 16. Its estimation results 

have the average volume RMSPE of 0.045 and speed RMSPE of 0.110. Based on the 

above comparison, it can be concluded that the proposed methodology has a better 

performance than Zhou’s model.  
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6.5 Summary 

In this chapter, the proposed methodology framework is applied to the regional road 

network in Jacksonville, FL. Before the application of the proposed models, there are two 

modifications to the methodology: (1) the capacity constraint is enforced to relieve the 

under-specification problem, and (2) the TFMFT model is not used due to the heavy 

computation burden. Through estimation, the objective function value drops from 

403.145 to 0.7 in 16 iterations. The average RMSPE for the assignment volumes is 

around 0.045 after the estimation. For the purpose of comparison, Zhou’s dynamic O-D 

matrix estimation model is also used to perform the estimation. The result shows that the 

objective function value drops from 450.213 to 10.491 in 10 iterations and will not 

decrease further. The average RMSPE for volume is 0.168 after the estimation by Zhou’s 

model. Based on the data, it can be concluded that the proposed estimation framework 

shows an improved performance when compared with Zhou’s estimation model. 

Although the average RMSPE for speed was reduced significantly after the dynamic O-D 

matrix estimation, it is still high. Future efforts should be aim at reducing the RMSPE for 

speed.  
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CHAPTER 7 

RESEARCH SUMMARY 

This study develops a dynamic O-D matrix estimation framework, which has better 

performance than existing models, especially under congested traffic conditions. This 

chapter provides conclusions about the performance of each model in the proposed 

framework, based on the case studies, and restates the original contribution of the 

proposed framework. 

7.1 Conclusions 

Compared with existing dynamic O-D estimation models, the proposed methodology 

framework has two advantages: (1) it can produce an initial O-D matrix with a high-

confidence level, which has the potential to significantly improve the accuracy of 

dynamic O-D estimation, and reduce the associated computation time; (2) the framework 

can automatically convert traffic volume deviation to traffic density deviation in the 

objective function, under the congested traffic condition, to avoid the side impact from 

the proportional assignment assumption of the existing dynamic O-D estimation models. 

In addition, by converting traffic volume data into traffic density data, traffic speed data 

are implicitly incorporated into the estimation model, which means more traffic 

information can be incorporated into the estimation model, thus contributing to the 

improvement in estimation performance.  

The proposed methodology framework includes four models: the traffic flow 

model calibration (TFMC) model, the initial O-D matrix estimation (IODE) model, the 

dynamic O-D matrix estimation (DODE) model, and the traffic flow model fine-tuning 

(TFMFT) model.  
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The IODE model aims to provide an accurate initial O-D matrix for the proposed 

DODE model. The advantages of the IODE are, (1) it can reduce the systematic deviation 

of the link traffic measurement while maintaining the information of the input O-D 

matrix in terms of relative relationship of O-D demand value; (2) it can relieve the 

problematic proportional assignment assumption by automatically converting the traffic 

volume deviation into traffic density deviation in the objective function, under congested 

traffic conditions; and (3) it can be solved without a heavy computational burden in that 

less variables are involved.  

The DODE model has three advantages over the existing estimation model. First, 

similar to the IODE model, the DODE model can relieve the problematic proportional 

assignment assumption by automatically converting the traffic volume deviation into 

traffic density deviation in the objective function, under congested traffic conditions. 

Second, it can adaptively update the weighting factor to restrict the magnitude of O-D 

demand adjustment to avoid the divergent problem. Finally, the DODE model can 

incorporate the temporal pattern of the historic O-D matrix into the estimation model to 

further improve estimation. 

Three case studies were performed to test the proposed method. In the first case 

study, a hypothetical network is used to test the DODE model under congested, initial 

traffic conditions. The DODE model demonstrates much better performance than that of 

Zhou’s model, reaching a good estimation result within eight iterations, while Zhou’s 

estimation model could not obtain a convergent result at all. 

In the second case study, the road network is a segment of I-95 in Miami-Dade 

County, FL. There are a total of 21 zones in the network. It takes seven iterations with the 
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proposed method to reach a convergent objective function value of 0.025, while it takes 

about 50 iterations with Zhou’s estimation model to reach an objective function value of 

0.250. After the estimation from the proposed models, the average RMSPE for volume is 

0.010, and the average RMSPE for speed is 0.283. In comparison, when Zhou’s model is 

used, the final average RMSPE for volume is 0.023, and the average RMSPE for speed is 

0.285. The case study demonstrates that the proposed method has better performance than 

Zhou’s model. In addition, the TFMFT model can reduce the average RMSPE for speed 

from 0.283 to 0.130. 

In the third case study, the road network is the regional road network in 

Jacksonville, FL. There are a total of 149 TAZs in the network. It takes 16 iterations for 

the proposed method to reach the objective function value of 0.70, compared to the 10 

iterations for Zhou’s estimation model to reach the final value of 10.71. Using the 

proposed method, the final average RMSPE for volume is 0.045, and the average RMSPE 

for speed is 0.110. When Zhou’s estimation model is used, the final average RMSPE for 

volume is 0.168, and the final average RMSPE for speed is 0.179. The case study shows 

that the proposed method is more efficient than Zhou’s model. The advantages of the 

proposed methodology framework in all three case studies demonstrate the feasibility of 

its application to a large network with an efficient estimation. 

7.2 Limitations and Future Work 

There are several limitations in the proposed method, which need to be addressed in 

future studies. Firstly, the IODE and DODE models cannot perform O-D matrix 

estimation on O-D pairs with a zero initial demand value. The existing O-D matrix 

estimation (dynamic or static) model has the same problem. The reason for this difficulty 
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is that the estimation is based on the link proportion matrix P, and P is generated based 

on the assignment results from the initial O-D demand matrix. If an O-D pair in the initial 

O-D matrix has zero demand value, then there is no corresponding contribution factor in 

P from this O-D pair to link volume. Consequently, the estimation model will not adjust 

the demand of the O-D pair. For this reason, the proposed framework fails to guarantee a 

good estimation for the skewed initial O-D demand matrix with multiple zero (missing) 

demand value. In the future, efforts should be focused on how to combine more 

information, such as a survey of travelers’ behaviors, into the link proportion matrix P, so 

that the proposed framework has a robust performance given conditions of inaccurate or 

missing values in the initial O-D matrix. 

Secondly, the IODE and DODE models yield poor estimation results when the 

detectors are located downstream of the simulated traffic bottlenecks. In this situation, the 

information collected from the detectors fails to indicate the congested situation of the 

road network because the traffic downstream of the bottlenecks remains uncongested. 

The estimation models may blindly increase traffic demand to raise the traffic volume in 

the downstream, which may only weaken the estimation. In the future, the impact of the 

location and number of detectors needs to be studied to determine the minimum traffic 

measurement information required to obtain good estimation. 

Thirdly, the TFMFT model is inapplicable of dealing with a large road network 

due to the heavy computational burden. It is a topic for future studies to devise an 

efficient algorithm to solve this problem. 

Finally, because of the under-specification problem, it is problematic to believe 

that a strong O-D matrix estimate is achieved only based on the matching criteria 
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between the assignment traffic measurement data from DTA simulators and the observed 

traffic measurement data from the same limited detectors. In the future, efforts should be 

focused on how to effectively combine more traffic measurement data, such as AVI data, 

into the estimation model to increase accuracy of the estimation results. 
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