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ABSTRACT OF THE THESIS 

REGIONAL VARIATION IN TIGER SHARK (GALEOCERDO CUVIER)  
 

ABUNDANCE AND HABITAT USE 
 

by 

Kathryn Elizabeth Cameron 

Florida International University, 2010 

Miami, Florida 

Professor Michael Heithaus, Major Professor 

The purpose of this study was to investigate whether there is regional variation in the 

abundance and habitat use of tiger sharks (Galeocerdo cuvier) within in a model seagrass 

ecosystem.  Abundance was determined with catch rates on drumlines and habitat 

preferences were investigated using acoustic tracking of large tiger sharks (n=4).  I found 

spatiotemporal variation in the probability of catching at least one shark and in catch rates 

on days sharks were caught.  In general, sharks were present throughout more of the year 

and in higher abundances in the northern region.  Habitat use also varied between 

regions.  In the northern region, sharks moved randomly with respect to habitat, while in 

the southern region sharks preferred shallow habitats.  Although preliminary, these 

results suggest that large predator abundance and habitat use may vary over relatively 

small spatial scales and that such variation may be useful for elucidating their ecological 

role. 
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I. Introduction 

Recent studies have documented increased and widespread declines in populations of 

marine top predators (Pauly et al. 1998, Myers and Worm 2003, Myers et al. 2007).  

Since upper trophic level predators may influence ecosystem dynamics through top-down 

mechanisms (e.g., Estes et al. 1998, Pace et al. 1999, Frank et al. 2005, 2006, Heithaus et 

al. 2008), concerns have arisen that their declines could alter ecosystem functioning via 

trophic cascades.  For example, in rocky reef ecosystems offshore of southwest Alaska, 

increased predation of sea otters (Enhydra lutris) by killer whales (Orcinus orca) in the 

1990’s released herbivorous sea urchins (Strongylocentrotus sp.) from otter predation 

(Estes and Duggins 1995, Estes et al. 1998, 2004).  Increased urchin density resulted in 

an ecosystem phase-shift from an alga-dominated state (kelp forests) to a less productive 

herbivore-dominated state (urchin barrens) with reduced biodiversity (Estes and Duggins 

1995, Estes et al. 1998, 2004, 2010).  In another example, gradual declines in large 

sharks along the Atlantic seaboard since the 1970’s may have led to increased densities of 

elasmobranch mesopredators (i.e., cownose ray, Rhinoptera bonasus, Atlantic sharpnose 

shark, Rhizoprionodon terraenovae, chain catshark, Scyliorhinus retifer, and smooth 

butterfly ray, Gymnura altavela).  The release of mesopredators, particularly rays, 

appears to have played a role in the decline and/or continued depression of bivalve 

populations (i.e., bay scallops, Argopecten irradians, soft-shelled clams, Mya arenaria, 

hard clams, Mercenaria mercenaria, and oysters, Crassostrea virginica) (Myers et al. 

2007, but see Heithaus et al. 2010 for a review of potential confounding factors). 

 Despite empirical support for strong top-down control in marine ecosystems, it is 

increasingly apparent that the ecological role of marine top predators is context-
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dependent and additional studies are needed to determine the species and conditions that 

are likely to result in strong top-down control of marine systems (Gripenberg and Roslin 

2007, Heck and Valentine 2007, Heithaus et al. 2008).  Such studies, however, are 

generally hindered by the logistical difficulties of studying large-bodied and wide-

ranging top predators in the ocean, and by a lack of pristine areas where top predators, 

like sharks, and their prey exist at near natural densities.  Furthermore, a failure to 

account for the diversity of mechanisms through which predators can alter the dynamics 

of their prey populations and communities has hindered efforts to create predictive 

frameworks from model systems (Heck and Valentine 2007, Heithaus et al. 2008, 2009). 

 The mechanisms through which predators impact their prey and communities 

include, but are not limited to, direct predation (“consumptive effects”) and non-

consumptive effects (also called “risk effects”).  These two mechanisms, alone or in 

combination, can alter abundance, distribution, and behavior of prey species (Schmitz et 

al. 2004, Preisser et al. 2005, Schmitz 2005, Creel and Christianson 2008, Heithaus et al. 

2008).  The recent understanding that non-consumptive effects may be as, or even more, 

important than direct predation in affecting prey population dynamics and community 

structure (Schmitz et al. 2004, Preisser et al. 2005, Creel and Christianson 2008, Heithaus 

et al. 2008) has led to increased interest in the role of risk effects in top-down control. 

Not surprisingly, the relative importance and strength of risk effects varies with 

context (e.g., Nicieza 1999, van Oers et al. 2005, Figueria and Lyman 2007, Heithaus et 

al. 2009, Schmitz 2009, Wirsing et al. 2010).  One key factor that influences the 

dynamics of risk effects is the habitat use pattern of predators.  Indeed, habitat use is a 

key feature in understanding ecological systems because habitats contain the resources 
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required for survival and reproduction, and the context for interspecific interactions 

(Morris 2003).   Resource availability often influences habitat use patterns of predators, 

especially when they are not at risk themselves. Most simply, optimal foraging theory 

predicts that, all else being equal, foragers, including top-predators, should select habitats 

with the highest net energy intake rates (MacArthur and Pianka 1966, Charnov and 

Orians 1973, Pyke 1984).  Many factors influence energy intake rates of predators 

including prey abundance and availability, the number of competitors present, and anti-

predator tactics of prey (Sih et al. 1998, Gende and Quinn 2004, Hebblewhite et al. 2005, 

Lecomte et al. 2008).  The landscape in which predator-prey interactions take place can 

influence the probability of an encounter and the probability of a successful attack by the 

predator (i.e., the probability of prey escape; Hebblewhite et al. 2005).  Therefore, studies 

of predator habitat use across a range of habitat configurations can provide important 

insights into the factors influencing the relative importance of risk effects in marine 

ecosystems.  

Since 1997, the relatively pristine seagrass ecosystem of Shark Bay, Western 

Australia has been used as a model system for understanding the ecological role of a top-

predator, in this case the tiger shark (Galeocerdo cuvier).  Studies to date have focused 

on how tiger sharks influence their prey, and possibly community dynamics, through 

non-consumptive effects.  Of particular interest is how spatiotemporal variation in tiger 

shark abundance and food availability influence habitat use decisions by their prey 

(Heithaus and Dill 2002, Heithaus et al. 2007a, Wirsing et al. 2007a, Heithaus et al. 

2009) and the potential cascading effects of anti-predator decisions by prey.  Seasonal 

and inter-annual variation in the abundance of tiger sharks in the study area (Heithaus 
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2001a, Wirsing et al. 2006), combined with studies of shark habitat preferences at 

multiple spatial scales (Heithaus et al. 2002, 2006), and surveys of food distributions, 

have allowed researchers to test predictions based on behavioral ecological theory (see 

Heithaus et al. 2009).  For example, dolphins (Tursiops aduncus), dugongs (Dugong 

dugon), and pied cormorants (Phalacrocorax varius) reduce their use of productive, 

shallow foraging grounds when tiger shark abundances are high, and instead use deeper 

waters where these species have a lower predator encounter rate, but reduced access to 

food (Heithaus and Dill 2002, Heithaus 2005, Wirsing et al. 2007a).  At smaller spatial 

scales, healthy green turtles (Chelonia mydas), bottlenose dolphins, and dugongs abandon 

productive seagrass interiors for less productive seagrass edge microhabitats where their 

escape probability is increased (Heithaus and Dill 2006, Heithaus et al. 2007a, Wirsing et 

al. 2007a, Heithaus et al. 2009).  

While previous studies in Shark Bay have advanced our understanding of the 

potentially wide-reaching effects of sharks in marine ecosystems, these studies have been 

conducted primarily within a 150-km2 study area with a single habitat configuration that 

allows for replication within the site.  Regions within Shark Bay vary in the configuration 

of critical habitat types (i.e., arrangement of deep and shallow habitat patches) and it is 

possible that tiger shark abundance and habitat preference varies between sites within the 

bay.  Expansion beyond a single study site in Shark Bay would be of value to 

understanding the ecological function of tiger sharks in Shark Bay and behavioral 

decisions made by their prey.  Further, knowledge of shark ecology across a larger scale 

could help in elucidating the factors that influence the non-consumptive effects that 

predators have on their communities (e.g., Heithaus et al. 2009, Wirsing et al. 2010).   
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The objective of this study was to determine if seasonal patterns of tiger shark 

abundance, habitat preferences, and movement patterns varied between two regions of 

Shark Bay that contain similar prey communities but have different habitat configurations 

(i.e., spatial arrangement of shallow and deep water patches) and access to oceanic 

waters.  In addition, I investigated whether the size distributions and sex ratios of tiger 

sharks varied between these two regions and whether there were differences in the 

structure of the community of top elasmobranch predators.  These data are an important 

first step in developing testable hypotheses about the impact of habitat configuration on 

the nature of predator-prey interactions in Shark Bay and their effects on community 

dynamics. Additionally, the knowledge gained from this study provides the first step 

towards a deeper understanding of the potential effects of shark declines. 

 

II. Methods 

Study site 

Shark Bay (approximately 25°45’S, 113°44’E; Figure 1a) is located in the subtropical 

zone of Western Australia, approximately 800 km north of Perth. The climate in the 

region is semi-arid, and the combination of minimal freshwater input (228 mm average 

rainfall, WA Bureau of Meteorology) and restricted water exchange between the ocean 

and bay, results in hypersaline conditions throughout the southern reaches of both the 

Eastern and Western Gulfs (Berry and Playford 1997). The approximately 15,000-km2 

bay is relatively shallow throughout with large expanses of nearshore shallows and 

offshore shallow seagrass banks (<4.0 m) surrounded by deeper waters (10-50 m depth).  

Shark Bay lies in a tidal transition zone with mixed tides that are mostly semi-diurnal 
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(Burling et al. 2003).  The tidal range at the original sampling site, Monkey Mia, is 1.2 m 

(Burling et al. 2003). 

In 1991 Shark Bay was listed as a World Heritage site in part because it contains 

some of the largest seagrass beds in the world (ca. 4000 km2; Walker et al. 1988), which 

support large populations of megagrazers (e.g., dugongs, green sea turtles), piscivores 

(e.g., dolphins, pied cormorants, sea snakes), and their primary predator, tiger sharks 

(Heithaus 2001a,b, Wirsing et al. 2007a, Heithaus et al. 2007a, Kerford et al. 2008, 

Heithaus et al. 2009). Tiger sharks have not been subject to commercial fishing pressure 

within Shark Bay for over 15 years, and pressure prior to 1994 was from a single 

operator, working primarily in the Western Gulf (Heithaus 2001a). The relative isolation 

of the bay allows ecosystem dynamics to be studied in the absence of substantial human 

impacts.  

My study was conducted in two sites along the eastern side of Peron Peninsula, in 

the Eastern Gulf of Shark Bay (Figure 1a).  The Monkey Mia study site (MM), which has 

been the focus of past studies of tiger sharks and their prey, is located in Red Cliff Bay 

and surrounding waters up to 8 km offshore of the Monkey Mia Dolphin Resort (Figure 

1b).  At Monkey Mia, the deep habitats (>6 m) are interspersed with shallow banks 

(<2.5m at interior) that average 1.25 km in width and 4 km in length (Figure 1b).  

Virtually all the shallow habitat is accessible to tiger sharks and their prey at low tide. 

The Herald Bight study site (HB) is 30 km north of Monkey Mia and is closer to the 

mouth of the bay.  The Herald Bight site includes the waters of Herald Bight, east of the  
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A 

 

B 

 
Figure 1: Maps of study sites, (A) Herald Bight and Monkey Mia, are 
within 30 km of one another and located in the Eastern Gulf of Shark 
Bay.  The town of Denham (*) lies on the Western Gulf. 
(B) Herald Bight (left) and Monkey Mia (right) differ in the 
configuration of shallow and deep habitats.  Fishing zones used in this 
study are indicated with black lines. 
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northern tip of Peron Peninsula (approximately 25°34’S, 113°32’E), and the waters 

surrounding Guichenault Point, approximately 10 km east of Peron. 

The two sites have nearly identical proportions of shallow-to-deep water (MM: 

15:85, HB: 14:86), but differ in the configuration of these two habitat types (see Figure 

1b).  Unlike the more complex mosaic of deep and shallow habitats at the Monkey Mia 

site, the Herald Bight site is composed almost entirely of deep, open water with nearshore 

seagrass shallows and one long seagrass bank extending from the exposed sand spit at 

Guichenault Point (Figure 1b).  Bank widths at Herald Bight range from as little as 100 m 

to 1.7 km and banks average 7.5 km in length. Large areas of the nearshore shallows and 

the seagrass shallows extending north of Guichenault Point are inaccessible to large tiger 

sharks on most low tides.    

 Mean monthly water temperatures vary temporally in Shark Bay, ranging from 

14°C in the cold season to 25°C in the warm season (Heithaus 2001a, Wirsing et al. 

2006). Previous studies at Monkey Mia have found positive correlations between water 

temperature and both shark (Heithaus 2001a) and dugong abundance (Wirsing et al. 

2007a).  Additionally, other prey species such as dolphins, pied cormorants, and healthy 

green sea turtles, appear to alter their foraging behavior and habitat use during the cold 

season in response to a reduction in the number of tiger sharks encountered (Heithaus and 

Dill 2002, Heithaus 2005, Heithaus et al. 2007a, Wirsing et al. 2007b, Heithaus et al. 

2009, Dunphy-Daly et al. 2010).  Because of these documented temporal variations, I 

compared shark abundances between the study sites in both warm and cold seasons.   
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Fishing methods 

Spatial and temporal variation in the relative abundance of tiger sharks was investigated 

using catch rates on drumlines.  Each drumline consisted of a single 4-5 kg Danforth 

anchor attached to 30 m of rope that terminated in a buoy line with three 20 cm diameter 

foam buoys and a 25 L sealed plastic barrel of air.   Hook lines were tied to the buoy line 

with 1 m of rope spliced to 1 m of chain, equipped with a Mustad 13/0 J shark hook.  

Because of disruptions to the supply of standard bait (Australian salmon), hooks were 

baited with approximately 1 kg of sea mullet (also called striped mullet, Mugil cephalus), 

Australasian snapper (Pagrus auratus) or blue-lined emperor (Lethrinus laticuadus).  

Previous fishing studies found no significant effect of these bait types on tiger shark catch 

rates in the Monkey Mia study area (Wirsing et al. 2006).  On each fishing day 

(n>4/month/site), 10 lines, spaced 0.4 km apart, were set in one of three deep-water 

fishing zones located at each site (Figure 1b).  It is not possible to assess catch rates in 

shallow water habitats because of high rates of bait loss to non-target species, primarily 

northwest blowfish (Lagocephalus sceleratus, Heithaus 2001a).  Lines were set at or near 

dawn and allowed to soak for three hours before the initial check.  At initiation of set, 

water temperature, tide (i.e., flood, high, ebb, or low), and cloud cover were recorded.  

The depth and GPS location was recorded for each fishing line.  After the initial check, 

no more than two hours elapsed between succeeding checks.  Missing bait was replaced 

and recorded.   

When a shark was captured, it was brought alongside the boat and the anchor was 

retrieved.  This allowed the boat to move with the shark as it swam forward slowly, 

which minimized stress.  All sharks were measured (total length, fork length, and 
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precaudal length), sex was determined on the basis of the presence or absence of claspers, 

tagged with an individually numbered plastic roto tag, and then released by cutting the 

hook. 

 

Tiger shark movements and habitat use 

Habitat preferences of sharks in Herald Bight were determined via acoustic tracking (e.g., 

Heithaus et al. 2002).  Sharks were selected for tracking on the basis of the timing of 

capture (before 1300 to allow sufficient track durations), size (>270 cm to be comparable 

to studies in the MM site), and condition (swimming strongly on the line).  Prior to 

tagging sharks chosen for the tracking study, all other fishing hooks were collected and 

any other sharks were processed and released.  For each shark that was tracked (n = 4), a 

VEMCO (Shad Bay, Nova Scotia) V32 transmitter was attached to the first dorsal fin 

using two plastic cable ties after routine processing. Transmitters measured 12 cm in 

length and transmitted between 28.5 and 32.8 kHz. 

Tracking took place from a 5.5 m research vessel using a VEMCO V-11 

directional hydrophone and VR-60 acoustic receiver. Sharks were tracked until time of 

day or weather conditions forced me from the water.  Every five minutes I recorded the 

GPS position of the boat, the direction to the shark, the approximate distance of the shark 

from the boat (based on strength of signal), and the shark’s habitat. During tracking, I 

kept the boat 150-250 m from the shark’s estimated position and I changed the boat’s 

position relative to the shark frequently to avoid affecting its behavior. 
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Statistical analysis 

Water temperature 

Water temperature was compared between the two sites separately for each season with 

paired t-tests because of a difference in data collection.  Water temperatures at Herald 

Bight and during both warm seasons (2009 and 2010) at Monkey Mia were measured 

from the boat’s depth sounder (Northstar Explorer 660), mounted at the stern of the 

vessel approximately 45 cm below the water surface.  In the 2009 cold season, equipment 

malfunction prevented the collection of temperature data from the research vessel while 

at Monkey Mia.  Instead, water temperatures from the Pearl Farm, a floating house 

permanently moored in Red Cliff Bay and taken 1 m below the water surface, were used 

in place of MM temperatures (linear regression on log-transformed temperatures, 

R2=0.94, F5=68.5, p=0.001).   Note that analyses of differences in temperature among 

zones reflect variation in temperature among days on which shark fishing occurred rather 

than comparisons between zones on the same days (i.e., reflects conditions during 

sampling rather than absolute differences in environmental conditions). 

 

Shark abundance, sex ratios, and size distributions 

Variation in the probability of catching at least one tiger shark and the catch rates of tiger 

sharks on those days when sharks were caught were compared across seasons and 

between sites using a conditional approach (e.g., Serafy et al. 2007), which is useful for 

data sets that include a large proportion of zeros.  Instead of employing non-parametric 

methods, the ecological relevance of the data is maintained by separating the data into 

two parts, the probability of catching at least one shark and catch rate, resulting in a 
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conditional model.  For the probability of catching at least one shark, days when no 

sharks were caught were designated with a zero and days on which at least one shark was 

caught were designated with a one.  These data were fit to a binomial distribution, and the 

effects of site (MM or HB), season (warm or cold) and their interaction were tested with 

a generalized linear model (GLM), run in JMP 6.0.  I calculated catch rates by dividing 

the number of sharks captured on a day by the total hours spent fishing on that day.  I 

assumed that bait was lost, or sharks were captured, halfway between the last check when 

bait was present and the time when bait loss or shark capture was detected (e.g., Heithaus 

2001a).   Daily catch rates were log transformed and fit with a GLM (run in JMP 6.0) to 

test for effects of site, season, and their interaction. 

I tested for spatial and temporal variation in the sizes of tiger sharks with 

ANOVA in Sigma Stat 3.5. Differences in sex ratios were investigated by comparing the 

number of individuals of each sex (males assigned a 0 and females assigned a 1, fit to 

binomial distribution) in each site and season using chi-square in JMP 6.0. 

 

Tiger shark movements and habitat use 

Assessing habitat preferences can be difficult when using tracking data. The expected 

proportion of time an individual spends in each habitat type, even if they do not exhibit a 

preference, can vary with starting location of the track, duration of the track, and habitat 

configuration (e.g., Heithaus et al. 2002, 2006). For these reasons, it is often not valid to 

compare the observed habitat use of an individual to the overall availability of habitats in 

a study area.  In order to overcome these difficulties, I used three Monte Carlo 

randomization procedures (Heithaus et al. 2002), to assess tiger shark habitat preferences. 
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These procedures recreate random tracks for each tracked shark based on different rules 

of movement. 

The simplest, but most conservative protocol is the step randomization method 

(RZ).  In this method, an individual track was decomposed into component “moves.” 

Each move included both the distance and direction of movement between successive 

observed GPS positions.  The order of each move was randomized and a new track was 

recreated that began and ended at the observed locations (see Heithaus et al. 2002 for 

illustration).  The RZ protocol assumes that sharks move between two fixed locations for 

some underlying reason, but they do not have a preference for the habitats they use while 

in transit (Figure 2). 

 
  
Figure 2: Randomization protocols: location fixes for three randomization 
protocols based on the observed track of shark 6018.  In the RZ method, 
all points cluster around the original track and all tracks start and end at 
the observed points.  The underlying tendency to move east is maintained 
in the CRW method, while the FRW produces a symmetrical cloud of 
points around the start location with the exception of movements onto 
land. The black line in each panel illustrates the observed track. 

 

The second protocol is a full random walk (FRW).  The FRW protocol assumes that 

animals move a particular distance between position fixes for an underlying reason, that 

they choose the direction to travel at each position fix, and that the direction of travel is 
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random. To create random tracks based on tiger sharks, the observed distance for each 

move was maintained, but reordered randomly as in the RZ method.  The direction of 

travel (between 1 and 360°) of each move was selected completely at random.  

The final protocol is a correlated random walk (CRW), which like the FRW does 

not assume that all randomized tracks will end at the observed final location of the track 

(Figure 2).  Instead, CRW assumes that animals move an observed total distance for a 

particular reason (i.e., the total distance traveled by the shark was the same for every 

randomized track), but the direction of each move is correlated to the average movement 

direction of the population sample.  To create random tracks, move distances were 

randomly reordered, as in the FRW, but the direction of travel for each move was 

determined using a two-step process.  First, the direction of each move was allocated to a 

45° bin (e.g., NNE, ENE, ESE, etc.) on the basis of the observed probabilities of moves 

from all observed shark tracks (each individual contributed one set of proportions of 

moves, Figure 3).  Second, the exact angle of the move within each bin was selected 

randomly, therefore each direction within a 45° bin was equally likely to be selected.  

Therefore, the CRW created tracks that have longer distances between the starting and 

ending point than those of the FRW. 

For all randomization procedures, 1000 random tracks were generated and 

mapped into a GIS map of the study site (ArcView 9.3, ArcGIS 9).  The habitat (shallow 

or deep) was assigned to the end point of each move (Figure 2) and the proportion of 

fixes per habitat was calculated for each random track.  In the FRW some random tracks 

moved onto land.  These tracks were removed from the analysis and new random tracks 

were generated until 1000 tracks that did not move onto land were obtained.  If >97.5% 
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of the random tracks displayed less use of a habitat than observed, I considered an 

individual to have a significant preference for a habitat (i.e., p<0.025 for a two-tailed 

test).  Similarly, if >97.5% of random tracks displayed greater use of a habitat type than 

the observed track, I considered an individual to show a significant avoidance of a 

habitat. All randomization protocols are conservative and unlikely to predict a habitat 

preference, even if one exists (low type I error). However, they are subject to relatively 

higher Type II error, especially when the arrangement of habitat patches does not allow 

sharks to easily access them over the duration of the track (Heithaus et al. 2002). 

 

 
Figure 3: The frequency distribution of mean tiger shark (n=4) movement 
directions used for CRW randomization protocol.  Arrow outside of 
circles is the mean direction (122.3°). 
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Habitat preference at the population level was determined with G-tests and using 

individuals as single data points.  The G-test compared the number of moves that ended 

in a shallow habitat for observed tracks to expected tracks based on the three 

randomization protocols and habitat availability (e.g., Heithaus et al. 2002). 

Shark speed and displacement were compared between observed tracks and 

expected tracks that had different end points from the observed track (CRW and FRW; 

linear regression, R Development Core Team, 2009, R 2.1) to determine if sharks were 

moving in a more or less directional manner than predicted (Turchin 1998, Bergman et 

al. 2000).  I used logistic regression to test for the effect of shark length on swimming 

speed. 

 

III. Results 

Water temperature 

Water temperatures during warm season sampling did not vary significantly between 

Monkey Mia (mean=27.7 ± 1.1°C SD) and Herald Bight (mean=25.1 ± 1.1°C SD (paired 

t-test, n=3, DF=2, t=4.3, p=0.55).  However, during the single cold sampling season, 

water temperatures during sampling days in Herald Bight (mean=14.8 ± 1.2°C) were 

significantly colder than during those at Monkey Mia (mean=17.8 ± 1.16°C, paired t-test, 

n=3, df=2, t=4.3, p=0.007). 

 

Shark size distribution, sex ratio and species assemblage 

I fished for a total of 26 days in MM (16 warm, 10 cold) and 30 in HB (21 warm, 9 cold).  

I captured 34 tiger sharks between 156 and 376 cm in MM and 69 tiger sharks between 
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162 and 387 cm in HB. Tiger shark total length varied significantly between sites (F1, 100 

= 4.09, p = 0.04) and seasons (F1, 100 = 4.27, p = 0.04), but there was no significant 

interaction (F1, 100 = 0.33, p = 0.64).  On average, sharks were larger at Herald Bight (301 

cm TL ± 46 SD) than Monkey Mia (283 cm TL ± 55 SD) and during the warm season 

(300 cm TL ± 53 SD) compared to the cold season (281 cm TL ± 33 SD). 

 The sex ratio of my sample of tiger sharks was female-biased (1:4.7 male:female).  

There was no significant variation in the sex ratios by season (χ2
1, 101 = 1.34, p = 0.25), or 

site (χ2
1, 101 = 1.48, p = 0.22), and there was no interaction between site and season (χ 2

1, 

101 = 2.51, p = 0.11).   

I recaptured six tiger sharks in Monkey Mia that had previously been tagged in 

that site as far back as 2004.  In Herald Bight, I recaptured two tiger sharks previously 

captured outside of Herald Bight.  The first was initially tagged at Monkey Mia in 2008.  

I was unable to read the ID number on the second tag, so this individual may have been 

tagged at Monkey Mia or elsewhere along the coast by the Department of Fisheries. Two 

tiger sharks were recaptured in Herald Bight, one in 2009 and one in 2010, both of which 

were tagged in Herald Bight during 2009.  I did not recapture any tiger sharks in Monkey 

Mia that I had tagged in Herald Bight. 

Tiger sharks were the only shark species captured during my sampling at MM.  In 

Herald Bight tiger sharks accounted for 86% of sharks captured (nall=80).  Other shark 

species included pigeye sharks (Carcharhinus amboinensis, n=4, 5%), spottail sharks 

(Carcharhinus sorrah, n=4, 5%), bronze whalers (Carcharhinus brachyurus, n=2, 2%), 

and sandbar sharks (Carcharhinus plumbeus, n=1, 1.25%). 
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Tiger shark abundance 

The probability of capturing at least one tiger shark did not vary significantly between the 

two study sites, although the interaction of site and season approached significance 

(Table 1), trending toward a higher probability of capturing at least one tiger shark in 

Herald Bight than in Monkey Mia in winter (Figure 4).  

Table 1: Generalized linear model testing the effect of season, 
site, and their interaction on the probability of capturing at 
least one tiger shark during a day of fishing. 
 

 DF Chi-Square P-value 
Season 1 1.74 0.19 

Site 1 2.66 0.10 
Season*Site 1 3.58 0.06 

 

Tiger shark catch rates on days that sharks were present were significantly higher 

in Herald Bight than in Monkey Mia (Figure 5).  The interaction of site and season on 

catch rates was marginally non-significant (Table 2), but the presence of a trend was 

likely driven by relatively higher catch rates in Herald Bight in the cold season while 

catch rates at Monkey Mia were higher in the warm season. 
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Figure 4: The probability of capturing at least one tiger shark in a fishing 
day in Herald Bight and Monkey Mia.  Although not significant, there was 
a trend towards higher probabilities of capture in Herald Bight in the cold 
season compared to Monkey Mia.  Error bars are standard error. 
 

Table 2: Generalized linear model testing the influence of season, 
site, and their interaction on the catch rate of tiger sharks.  

 
 DF Chi-Square P-value 

Season 1 0.51 0.47 
Site 1 17.87 <0.0001 

Season*Site 1 3.61 0.06 
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Figure 5: Tiger shark catch rate (sharks/hr) on days when at least one 
shark was caught. Error bars are standard error. 
 

Tiger shark movement and habitat use 

Tiger sharks tracked in Herald Bight (n=4) generally moved from west to east (Figure 6).  

The net-squared displacement of expected tracks created with the FRW method was 

significantly less than observed tracks (Table 3, G-test, G=63.33, p<0.005), indicating 

that the tracks were directional, and movements were not made randomly.   
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Figure 6: Track paths for the four tiger sharks tracked in Herald Bight.  All 
tracks originated in deep habitats.  Starting points are designated with 
shark identification numbers. 

 

However, the net-squared displacement of expected tracks based on the CRW method 

was significantly greater than the displacement of observed tracks (Table 3, G-test, 

G=15.27, p<0.01), indicating the average movement direction of the observed tracks was 

less directional than expected and that the sharks may be remaining in the region without 

exhibiting site attachment.  The speed of observed tiger sharks (mean=3.23 km/hr ± 0.5 
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SD) was influenced by total length (Figure 7, R2=0.96, p=0.02), but displacement was not 

(R2=0.16, p=0.59). 

 
Table 3: Net-squared displacements of observed tracks and expected 
tracks based on two randomization protocols.  CRW displacements are 
significantly greater than observed (G=15.27, p<0.01) while FRW 
displacements are significantly less than observed (G=63.33, p<0.005). 

 

Shark 
Observed 

displacement 
squared 

CRW net-squared 
displacement 

FRW net-squared 
displacement 

6017 1.79 2.98 0.21 
6018 3.24 1.79 0.15 
6021 3.49 7.43 0.24 
6022 3.76 18.62 0.39 

 

y = 0.0297x - 6.8862

R2 = 0.9634

2

2.5

3

3.5

4

4.5

300 310 320 330 340 350 360 370 380

total length
 

Figure 7: Tiger shark speed (km/hr) relative to shark total length (linear 
regression, R2=0.96, p=0.02). 
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Overall, sharks in HB (n=4) spent only 1% of the observed time in shallow 

habitats, even though 14% of the available habitat is shallow in Herald Bight (Figure 8).  

Only one observed position fix from all sharks occurred in a shallow habitat.  At the 

population level, the FRW method suggests that sharks might use deep habitats 

preferentially (G-test, G=10.36, p<0.025, Figure 8), but no other randomization methods 

suggested a potential habitat preference (G-test, RZ: G=0.96, p>0.5, CRW: G=1.17, 

p>0.5, HA: G=1.21, p>0.5).  Furthermore, none of the randomization procedures 

indicated that observed use of deep habitats was significantly greater than that expected 

by random movements for any individual (Table 4). 

Table 4: Observed proportion of location fixes in deep habitats for tracks 
of four tiger sharks and the number of randomly generated tracks 
(n=1000) that predicted less use of shallow habitats than observed.  No 
significant habitat preferences were detected for either habitat. 
 

Shark Observed RZ CRW FRW 
6017 1.0 0 0 0 
6018 1.0 0 0 0 
6021 0.98 773 806 259 
6022 1.0 0 0 0 
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Figure 8: The proportion of time spent in deep habitats by tiger sharks 
tracked in Herald Bight: compared to tracks expected based on 
randomization protocols and habitat availability (HA). Error bars are 95% 
CI. 

 
 
IV. Discussion 

Shark abundance 

I found differences in catch rates of tiger sharks between two study sites that are 

relatively close in proximity.  At Monkey Mia, tiger sharks were unlikely to be captured 

in the cold season, and when they were, few were caught.  In contrast, most fishing days 

during the warm season resulted in capturing at least one shark and catch rates were 

relatively high on days that sharks were caught.  The pattern I observed at Monkey Mia is 

consistent with previous studies in Monkey Mia, although inter-annual variations in cold 

season shark densities have been documented (Heithaus 2001a, Wirsing et al. 2006).  
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Unlike Monkey Mia, sampling at Herald Bight resulted in substantial captures of tiger 

sharks in both seasons.  The probability of catching at least one tiger shark remained high 

across both the warm and cold seasons and was similar to the probability of catching at 

least one shark at Monkey Mia during the warm season.  Catch rates on days sharks were 

present were relatively similar between seasons at Herald Bight, although somewhat 

higher in the cold season.  Additionally, all catch rates at Herald Bight were higher than 

at Monkey Mia regardless of season, suggesting a higher overall density of tiger sharks in 

the Herald Bight study site. 

Although the results presented here are based on a single cold season of data 

collection, the high catch rates of tiger sharks in Herald Bight merits additional 

exploration.  There are several hypotheses to explain the apparent regional differences in 

the temporal variation in tiger shark abundance.  First, prey availability may not change 

during the cold season at Herald Bight as it does in Monkey Mia.  Dugongs, a primary 

prey for tiger sharks, have been documented to abandon the Monkey Mia study site when 

water temperatures drop below 18°C, likely for physiological reasons (Anderson 1986, 

Wirsing et al. 2007a).  Additionally, catch rates of large tiger sharks (>3.5 m TL) in the 

Monkey Mia study site were found to have a positive correlation to dugong abundance 

(Wirsing et al. 2007c).  Transect surveys of dugongs in the Herald Bight site in 2009 

(conducted concurrently with shark sampling, see Wirsing et al. 2007a for methods of 

dugong surveys) showed consistently high densities of dugongs across seasons while 

patterns of dugong density in Monkey Mia maintained the typical pattern of low dugong 

densities when water temperatures dropped and higher densities when water temperatures 

were above 18°C (unpublished data).  Therefore, these preliminary data suggest that tiger 
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shark abundance may be positively correlated to dugong abundance in Herald Bight, like 

at Monkey Mia, but that both dugong and tiger shark abundance may remain high year-

round at Herald Bight, at least in some years. 

Another possible explanation for high tiger shark densities during the cold season 

in Herald Bight is water temperature.  Herald Bight, which is further north, is closer to 

the Indian Ocean, and was expected to have warmer water temperatures during the winter 

than Monkey Mia.  Some shark species make seasonal migrations away from colder 

winter water temperatures or will abandon foraging grounds when water temperatures 

decline rapidly (Knip et al. 2010).  However, the water temperatures recorded during the 

single cold season of sampling were significantly colder in Herald Bight than at Monkey 

Mia, so it is unlikely that water temperature is responsible for the difference in tiger shark 

density between the sites. 

Alternatively, the increased proximity of the Herald Bight study site to open 

oceanic waters may in part be responsible for the lack of temporal variation tiger shark 

density.  Tiger sharks are capable of traveling thousands of kilometers (Kohler et al. 

1998, Heithaus et al. 2007b, Meyer et al. 2009).  Therefore, it is possible that the sharks 

caught in Herald Bight during the cold season are making regular forays to Herald Bight 

from the Indian Ocean to forage on resident animals.  Round trip movements between 

different foraging grounds have been documented in tiger sharks in Hawaii (Meyer et al. 

2009) and could apply to tiger sharks in Shark Bay (Heithaus et al. 2002).   Since tiger 

shark abundance has been linked to dugong abundance (Wirsing et al. 2007c), sharks 

may not include Monkey Mia in winter trips because dugongs are not present in high 

densities at that site. 
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These data are based on two warm sampling periods and one cold sampling 

period.  Previous catch rate data from Monkey Mia documented interannual variation in 

seasonal shark abundance (Wirsing et al. 2006).  It is possible that the 2009 cold season 

represented an unusually high density of tiger sharks in Herald Bight.  As such, additional 

years of sampling at Herald Bight are recommended to strengthen the findings from this 

study. 

During my sampling, I found that tiger sharks were the only species captured at 

Monkey Mia, but other species made up 14% of the captures in Herald Bight.  This is 

likely the result of relatively low sample sizes.  Nine other species of sharks have been 

captured on drumlines in the Monkey Mia study area (Heithaus 2001a, Wirsing et al. 

2006) and the only species captured in Herald Bight not captured in Monkey Mia was the 

spot tail shark (Carcharhinus sorrah).  Spot tail sharks, however, were only captured on 

4 days in 2010.  A full investigation of differences in the community structure of sharks 

between the sites would require larger sample sizes than I had and the use of other gear 

types that are more likely to capture species other than tiger sharks. 

 

Tiger shark movement and habitat use 

Expected tracks produced with CRW had higher displacement rates (km/hr) than 

observed tracks, while tracks produced with FRW had much lower displacement than the 

observed tracks.  Together, these results suggest that sharks are not highly site-attached in 

Herald Bight (higher displacements than FRW), but are not rapidly moving out of the 

region (lower displacements than CRW, Bergman et al. 2000).  Interestingly, sharks 

tracked at Monkey Mia displayed greater displacements than predicted by CRW 
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suggesting that they were transiting through the region (Heithaus et al. 2002).  Because of 

the small sample size in this study, more studies are needed to gain further insights into 

residency patterns and movements of tiger sharks in the Herald Bight region.  However, 

during the course of this study, two tiger sharks previously tagged in Monkey Mia were 

recaptured in Herald Bight, and therefore, the differences in habitat use between the sites 

are more likely explained by context-dependent behavioral changes rather than variation 

in habitat preferences between two separate populations. 

Previous research in Monkey Mia found that large tiger sharks (n=45) preferred 

shallow habitats to deep ones (Heithaus et al. 2002).  Tiger sharks used shallow habitats 

36% of the time, which was 1.6 times greater than predicted using RZ and CRW 

randomization protocols (Heithaus et al. 2002).  At the individual level, however, no 

significant habitat preference was detected for 23 of the 45 (51%) sharks tracked, while 

19 sharks (42%) preferred shallow and only 3 (7%) preferred deep.  Deep water accounts 

for the same amount of available habitat in Herald Bight (86%) as it does at Monkey Mia 

(85%) where tiger sharks were found to prefer shallow habitats (Heithaus et al. 2002).  

Expected habitat use described by the three randomization protocols did not detect a 

habitat preference for tiger sharks in Herald Bight.  These data illustrate the importance 

of large sample sizes and longer track during in studies of habitat use, and suggests that 

further work is needed to fully understand habitat preferences, or lack thereof, in tiger 

sharks found in Herald Bight.  The possibility of regional variation in habitat preference, 

especially since individual tiger sharks were observed to move between the study sites, 

merits further study. 
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In addition to low sample sizes, the position of track starting locations relative to 

the habitat configuration in Herald Bight may reduce the probability of detecting 

significant habitat preferences. Three of the four sharks were tagged just east of a large 

peninsula (Figure 5) and would have had to move towards land in order to use shallow 

habitats.  While these sharks had greater access to deep water east of their tagged 

location, they could have moved inshore to access shallow habitat if it was preferred over 

deep.  A significant preference for deeper habitats would be virtually impossible to detect 

(high Type II error) because of the lack of available shallow habitats along the path 

sharks followed.  

It is possible that the sharks tracked in this study responded to the stress of 

capture and tagging by abandoning the study site and moving into deeper water.  

However, the sharks chosen for tagging were swimming strongly on the hook and 

generally processed and released within 15 minutes.  Additionally, footage from tiger 

sharks captured in Monkey Mia and equipped with an animal-borne video cameras  

(AVEDS) were found to immediately return to stereotyped swimming behavior and some 

individuals began foraging within minutes of release (Heithaus et al. 2001, 2002).  Since 

AVEDS were larger than the transmitters that I used and required longer handling times, 

it is unlikely that stress responses played a large role in habitat use decisions by the 

sharks in this study. 

Two sites, located in the same relatively pristine coastal bay that are separated by 

only 30 km, support similar community structure and are connected by movements of 

large sharks and other megafauna, do not appear to have the same spatiotemporal patterns 

of tiger shark abundance or habitat use.  If the differences observed here are upheld by 
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future studies, then the spatiotemporal pattern of tiger shark risk effects may also vary.  

Previous research at Monkey Mia found that lowered shark abundances in the cold 

season released prey from some risk effects (Heithaus and Dill 2002, Heithaus et al. 

2007a, Wirsing et al. 2007a, Heithaus et al. 2009).  Prey that had abandoned more 

productive foraging grounds during the warm season returned to these habitats when 

shark numbers declined (Heithaus and Dill 2002, Heithaus 2005, Heithaus et al. 2007a, 

Wirsing et al. 2007a, Heithaus et al. 2009).  High shark catch rates year round at Herald 

Bight may increase the overall intensity of prey risk effects in Herald Bight and prevent 

the seasonal changes prey habitat use observed in Monkey Mia.   

 

Significance 

Top-predators often drive marine ecosystem functioning and, in some cases, stability, 

through trophic cascades.  Predators not only kill and eat prey, but also have non-

consumptive effects, altering foraging behavior (e.g., Ripple and Beschta 2006), use of 

refuges (e.g., Gelwick 2000), and physiological processes (e.g., Mateo 2007).  Three 

main drivers influence these “risk” effects: predator hunting mode, anti-predator tactics 

of prey, and the landscape in which interactions occur (Heithaus et al. 2009, Schmitz 

2009).  In this study, I found that there were apparent differences in the seasonal patterns 

of tiger shark density and habitat use between two sites that vary in their landscape (i.e., 

the arrangement of habitat types) and access to oceanic waters but not in prey community 

assemblage.  These differences in patterns of top predator abundance offer a rare 

opportunity for future studies to examine how habitat configuration influences predator-

prey interactions and the potential cascading consequences for lower trophic levels.   
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