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Figure 17: HNPC cells using 10X magnification – Day 4  

  

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

Fig. 17: Neurotoxicity observed in HNPCs following treatment with 20µM HMWO Aβ1-

42 alone and in combination with 5µM NS-398 and 25µM Ibuprofen after 96h as 

recorded using the Scion software imager at 10X magnification.  
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Fig. 18: LDH in HNPCs  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: LDH ratio of media versus lysate of HNPCs after treatment with 20µM HMWO 

Aβ1-42 alone and in combination with 5µM Nilvadipine, 5µM KN62, 5µM NS-398, 

25µM Ibuprofen after 96h. ANOVA followed by post-hoc analysis revealed significant 

main effects between control and HMWO (p<0.05), HMWO and HMWO + Nilvadipine 

(p<0.05), HMWO and HMWO + KN62 (p<0.05), HMWO and HMWO + NS-398 

(p<0.05), HMWO and HMWO + Ibuprofen (p<0.05). 
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              CHAPTER FIVE 

     DISCUSSION and CONCLUSIONS 

DISCUSSION:   

 My previous studies and several other reports have established that Aβ causes 

inflammation which is evident by increased activation/expression of Cox-2 enzyme (Paris 

et al 2002, Quadros et al 2003), activation of astrocytes and microglia in response to Aβ 

deposition (Sastre et al 2006). Other evidence supporting that inflammation is one of the 

pathogenic factors involved in AD is based on epidemiological studies with NSAIDs 

which show protective effects with long-term intake in AD patients (McGeer and 

McGeer 2007, Stewart et al 1997). Aβ which is derived from its substrate APP assumes 

different conformations capable of assuming different biological activities. Several earlier 

reports differentiated Aβ as soluble and aggregated forms and the soluble forms of Aβ 

were demonstrated to be more pathogenic in AD (Mclean et al 1999). Subsequent studies 

by atomic force microscopy revealed that the soluble pool of Aβ consisted of 

monomers/dimers and oligomers (Mastrangelo et al 2006). I have tried to determine 

which conformation of Aβ1−42 is most toxic to neurons by correlating its toxicity to 

inflammation in glial cells and its subsequent effect on neurons. My results demonstrate 

that Aβ1−42 in its monomer/dimer form also referred to as freshly solubilized (FS) is not 

toxic to neurons nor does it stimulate inflammation as observed by the release of 

interleukins IL-6 and IL-8 in astrocytes and microglia.  However oligomeric forms of 

Aβ, more specifically the high molecular weight oligomers (HMWO) as opposed to the 

low molecular weight oligomers (LMWO) are more toxic to neurons and also produce 
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significantly higher levels of proinflammatory IL-6 and IL-8 in both astrocytes and 

microglia (Quadros chapter 3). IL-6 and IL-8 are both pro-inflammatory molecules found 

to be elevated in the brains of patients with diseases such as AD, mild cognitive 

impairment (MCI) and traumatic brain injury (TBI) (McGeer and McGeer 1999, Lue et al 

2001, Kushi et al 2003). Studies in rat cortical neurons reveal that Aβ together with IL-6 

activate NMDA receptors resulting in neuronal damage (Quiz and Gruol 2003, Conroy et 

al 2004). Similar studies in rat neurons with IL-8 treatment resulted in neurotoxicity via 

increase in the release of neurotoxins and pro-apoptotic proteins (Thirumangalakudi et al 

2007).  

 The other part of my thesis was to determine if excess influx of calcium into cells 

is responsible for the inflammation observed in AD. It is well established that in AD there 

is a dysregulation of calcium within the cells (Mattson and Chan 2003). Recent reports 

have shown that calcium accelerates the change in conformation of Aβ (Isaacs et al 2006) 

and this change from soluble to oligomeric forms is probably responsible for the 

neurotoxicity observed in AD (Hartley et al 1999, Watson et al 2005). In addition, 

increase in cytosolic calcium also affects APP processing in rat cortical neurons resulting 

in an increase in intraneuronal production of Aβ1-42 (Pierrot et al 2004). But I wanted to 

correlate this increase in intracellular calcium mediated by Aβ with increases in 

inflammation. My results with astrocytes and microglia demonstrate that oligomeric 

forms of Aβ (more specifically HMWO Aβ) that increased IL-6 and IL-8 were also the 

most potent form in increasing intracellular levels of calcium within these cells. This 

proinflammatory effect mediated by calcium was blocked when an intracellular calcium 

chelator BAPTA-AM was used and conversely was potentiated significantly with the 
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calcium ionophore A23187. Hence my results strongly suggest that blocking increased 

intracellular levels of calcium could reduce inflammation mediated by activated glia in 

response to Aβ. Acute inflammation is neuroprotective in nature, however chronic 

inflammation is neurotoxic. My hypothesis was that L-type calcium channel blockers and 

other inhibitors of the calcium signaling pathway like NFkB inhibitors and calmodulin 

kinase inhibitors could block Aβ mediated inflammation via modulation of calcium 

inside the cell. The reason I chose L-type calcium channel blockers over other types of 

voltage gated calcium channel blockers such as N, P/Q, and R was because of previous in 

vitro studies on neurons indicating an increase in L-type calcium channel activity 

following exposure to beta amyloid (Ekinci et al 1999, Ho et al 2001). Hence blocking L-

type calcium channels would reduce inflammation in glia and decrease 

neurodegeneration which is supported by my results shown on glia and HNPCs (Quadros 

et al. 2007, chapter 4).  L-type calcium channel blockers and calmodulin kinase inhibitors 

could therefore act as dual antagonists of inflammation and calcium influx and possibly 

have potential therapeutic effects not only in AD but also in other neuroinflammatory 

diseases like multiple sclerosis, Parkinson’s disease, TBI etc. Studies in rat cortical 

neurons revealed that L-type calcium channel blockers reduced neuronal apoptosis 

mediated by activation of spla2 enzyme (Yagami et al 2004). My results with known 

anti-inflammatory agents NS-398, a selective COX-2 inhibitor and Ibuprofen, a NSAID 

reveal significant reduction in neuronal loss even after day 4 compared to control and 

HMWO Aβ1-42.  Both NS-398 and Ibuprofen were capable of inhibiting the effect of 

HMWO Aβ mediated neurodegeneration. Similar effects were observed with 

Nilvadipine, the L-type calcium channel blocker and KN62, the calmodulin kinase 
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inhibitor. Interestingly, both known anti-inflammatory agents NS-398 and Ibuprofen 

were capable of reducing the increased calcium influx in human neuronal precursor cells 

(HNPCs) mediated by HMWO Aβ1-42 thereby suggesting that there is a correlation 

between calcium influx and inflammation.  

 

CONCLUSIONS: 

 It is well established that several etiological factors are responsible for the 

pathogenesis in AD. However, my hypothesis was that there is a connection between 

excess calcium influx into glial cells and inflammation in AD. Regulating excess calcium 

influx in glial cells would decrease subsequent activation of these cells from releasing 

proinflammatory cytokines and chemokines which could be toxic to neurons. Several 

reports on astrocytes indicate that Aβ mediated toxicity on neurons is via changes in 

intracellular levels of calcium (Abramov et al 2003, Monnerie et al 2005).  My results 

with Nilvadipine, the L-type calcium channel blocker, and KN62, a calmodulin kinase 

inhibitor reveal that blocking excess levels of intracellular calcium in HNPCs mediated 

by HMWO Aβ and to some extent LMWO Aβ may be responsible for the attenuation of 

neurotoxicity observed in these cells. Calmodulin kinase and NFkB are actively involved 

in the regulation of calcium signaling across cells (Lin et al 2004, Choi et al 2006).  

Studies with NFkB inhibitors demonstrate that they have anti-inflammatory effects 

(Lopez-Franco et al 2006, Lopez-Franco et al 2002). My data with L-type calcium 

channel blocker and calmodulin kinase inhibitor on glial cells reveal that they reduce the 

production of IL-6 and IL-8 which are both pro-inflammatory thereby suggesting that 

increase in intracellular calcium causes inflammation. The reason these inhibitors 
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mitigate neurotoxicity in HNPCs could be due to reduction in the production of these pro-

inflammatory molecules. To further demonstrate that the neuroprotection offered by these 

calcium channel blockers or inhibitors associated with calcium binding were as a result of 

their anti-inflammatory effect, I used anti-inflammatory agents such as NS-398, a Cox-2 

inhibitor and Ibuprofen , an NSAID on HNPCs. Previous studies with Ibuprofen on 

TgAPPsw mice early in the course of the disease reveal that it reduced amyloid 

deposition and the treatment also reduced activation of microglia around plaques 

resulting in a subsequent reduction in dystrophic neurites (Lim et al 2000, Heneka et al 

2005).  Reports indicate that increased Cox-2 activity caused neuronal damage in primary 

cortical neurons when induced by LPS and iron (Im et al 2006). My results with 

Ibuprofen and NS-398 reveal significant reduction in neurotoxicity mediated by HMWO 

Aβ. Another interesting result is that these anti-inflammatory agents (NS-398 and 

Ibuprofen) were capable of inhibiting the increase in calcium influx mediated by HMWO 

Aβ. This suggests that there is a correlation between inflammation and calcium influx 

and my results further indicate that HMWO Aβ1−42  are most potent than 

monomers/dimers or fibrillar forms in mediating inflammation via disruption of 

intracellular calcium levels and causing neurotoxicity to cells. Hence, modulating 

intracellular calcium levels by using calcium channel blockers or calmodulin kinase 

inhibitors may reduce HMWO Aβ mediated chronic inflammation in glial cells and 

protect neurons in AD patients.  
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